[go: up one dir, main page]

JP2000250025A - Reflection type liquid crystal display device, its production and mask for production of reflection type liquid crystal display device - Google Patents

Reflection type liquid crystal display device, its production and mask for production of reflection type liquid crystal display device

Info

Publication number
JP2000250025A
JP2000250025A JP11047543A JP4754399A JP2000250025A JP 2000250025 A JP2000250025 A JP 2000250025A JP 11047543 A JP11047543 A JP 11047543A JP 4754399 A JP4754399 A JP 4754399A JP 2000250025 A JP2000250025 A JP 2000250025A
Authority
JP
Japan
Prior art keywords
liquid crystal
pattern
crystal display
display device
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11047543A
Other languages
Japanese (ja)
Other versions
JP3992393B2 (en
Inventor
Munehito Kumagai
宗人 熊谷
Kazunori Inoue
和式 井上
Keisuke Nakaguchi
佳祐 中口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Display Inc
Original Assignee
Advanced Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Display Inc filed Critical Advanced Display Inc
Priority to JP04754399A priority Critical patent/JP3992393B2/en
Priority to KR1020000008734A priority patent/KR100723599B1/en
Priority to TW089103197A priority patent/TW477904B/en
Priority to US09/512,107 priority patent/US6985195B1/en
Publication of JP2000250025A publication Critical patent/JP2000250025A/en
Application granted granted Critical
Publication of JP3992393B2 publication Critical patent/JP3992393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain a reflection type liquid crystal display device in an easy process, the device which has a high aperture ratio and excellent display quality and which can be driven with low electric power. SOLUTION: In the production of this reflection type liquid crystal display device, a photosensitive insulating resin is applied into a flat layer to eliminate steps caused by gate electrode wirings 2, source electrode wirings 7, TFTs or the like, exposed to light while varying the light quantity and then developed to form an interlayer insulating film 11 having a proper rugged pattern as a non-separated pattern in the pixel region and having a contact hole 12 as a separated pattern on the drain electrode 8 of a TFT. The insulating resin is exposed by a divided exposure method with different masks for the non-separated pattern and for the separated pattern, and the non- separated pattern is exposed to specified quantity of light by 20 to 80% of the exposure light quantity for the separated pattern. For example, an h-line stepper exposing machine is used, and the region for the contact hole 12 is exposed to 400 mg/cm2 irradiation while the rugged pattern in the pixel region is exposed to 160 mg/cm2 irradiation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外部より入射した
光を反射させ表示を行う反射型液晶表示装置及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection type liquid crystal display device for displaying an image by reflecting light incident from the outside and a method of manufacturing the same.

【0002】[0002]

【従来の技術】液晶表示装置は、CRTに代わるフラッ
トパネルディスプレイの一つとして活発に研究開発が行
われており、特に消費電力が小さいことや薄型であると
いう特徴を生かして、電池駆動の小型TV、ノートブッ
ク型コンピュータ、カーナビゲーション及び携帯端末機
器等として実用化されている。液晶表示装置の駆動方法
として、高品質表示であることから薄膜トランジスタ
(以下TFTと記す)をスイッチング素子に用いたアク
ティブマトリクス型TFTアレイが主として用いられて
いる。ディスプレイの構成としては、透過型と反射型の
ものがあり、反射型のものは透過型のようなバックライ
ト光源が不要であることから低消費電力が実現でき、携
帯端末等の用途として極めて適していると言える。この
反射型液晶表示装置は、格子状に設けられた走査線及び
信号線、TFT、反射画素電極等を備えた第一の絶縁性
基板と、カラーフィルタ、ブラックマトリクス及び対向
電極等を備えた第二の絶縁性基板を対向させ、これらの
基板間に液晶を配置するよう構成されている。
2. Description of the Related Art Liquid crystal display devices are being actively researched and developed as one of the flat panel displays replacing the CRT. In particular, the liquid crystal display device has a small power consumption and a thin shape. It has been put to practical use as a TV, a notebook computer, a car navigation system, a portable terminal device, and the like. As a driving method of a liquid crystal display device, an active matrix type TFT array using a thin film transistor (hereinafter referred to as a TFT) as a switching element is mainly used because of high quality display. There are two types of display configurations: transmission type and reflection type. Reflection type does not require a backlight light source such as transmission type, so low power consumption can be realized, and it is extremely suitable for applications such as portable terminals. It can be said that. This reflective liquid crystal display device has a first insulating substrate provided with scanning lines and signal lines, TFTs, reflective pixel electrodes, and the like provided in a grid pattern, and a first insulating substrate provided with a color filter, a black matrix, a counter electrode, and the like. It is configured such that two insulating substrates are opposed to each other, and a liquid crystal is arranged between these substrates.

【0003】反射型液晶表示装置の表示特性向上には、
液晶表示パネルの画素部の有効表示面積を大きくし、光
の利用効率を高めること、すなわち画素の高開口率化が
有効である。高開口率画素のTFTアレイを得る方法と
しては、走査線、信号線及びTFTに起因する段差を解
消する十分な厚さのある絶縁性樹脂からなる層間絶縁膜
を形成し、この層間絶縁膜上に、前述の走査線及び信号
線等と重畳させて広い面積で画素電極を形成し、層間絶
縁膜に設けられたコンタクトホールにより画素電極とT
FTのドレイン電極とを接続する方法が有効である。こ
の方法によれば、基板の凹凸に起因するラビング時の不
良も防止することができる。一方、光の利用効率を高め
る方法としては、入射光側に散乱フィルム(前方散乱板
方式)を施さないで、前述の第一の絶縁性基板に良好な
指向性を有する散乱光が得られる反射膜兼画素電極を設
ける方法が提案されている。これは、反射膜兼画素電極
の表面に適度な凹凸を設けることで良好な散乱光を得る
ものである。この構造を用い、フォトリソグラフィ法に
て、感光性を有する絶縁性樹脂表面に凹凸を形成した反
射型液晶表示装置が特開平9−90426号公報に開示
されている。
In order to improve the display characteristics of a reflective liquid crystal display device,
It is effective to increase the effective display area of the pixel portion of the liquid crystal display panel and increase the light use efficiency, that is, to increase the aperture ratio of the pixel. As a method of obtaining a TFT array of high aperture ratio pixels, an interlayer insulating film made of an insulating resin having a sufficient thickness to eliminate a step caused by a scanning line, a signal line, and a TFT is formed. In addition, a pixel electrode is formed in a large area so as to overlap with the above-described scanning line and signal line, and the pixel electrode and the T electrode are formed by a contact hole formed in the interlayer insulating film.
A method of connecting the drain electrode of the FT is effective. According to this method, a defect at the time of rubbing due to unevenness of the substrate can be prevented. On the other hand, as a method of increasing the light use efficiency, the above-mentioned first insulating substrate is provided with scattered light having good directivity without providing a scattering film (forward scattering plate method) on the incident light side. A method of providing a film / pixel electrode has been proposed. This is to obtain good scattered light by providing appropriate irregularities on the surface of the reflective film and pixel electrode. Japanese Patent Application Laid-Open No. 9-90426 discloses a reflection type liquid crystal display device using this structure and having photo-lithography to form irregularities on the surface of a photosensitive insulating resin.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記特
開平9−90426号公報では、凹凸用パターンとコン
タクトホール用パターンの両方が形成されたマスクを用
い、それらの寸法差で現像時の溶解速度を変えることに
より凹凸パターンとコンタクトホールパターンを同時に
形成する方法が記載されているが、コンタクトホールを
形成するとともに樹脂表面に良好な散乱光が得られる反
射膜用の凹凸を安定的に得ることは非常に難しい。さら
に、鏡面反射が無い良好な散乱光を得るためには、凹凸
パターンにある程度の大きさが必要であり、その溶解速
度はコンタクトホールパターン溶解速度とほとんど差が
無いため、凹凸パターンとコンタクトホールパターンを
区別して形成することは非常に困難である。
However, in Japanese Patent Application Laid-Open No. 9-90426, a dissolving rate at the time of development is determined by using a mask on which both a concavo-convex pattern and a contact hole pattern are formed. A method is described in which a concavo-convex pattern and a contact hole pattern are formed at the same time by changing, but it is extremely difficult to stably obtain concavities and convexities for a reflective film that forms a contact hole and provides good scattered light on the resin surface. Difficult. Furthermore, in order to obtain good scattered light without specular reflection, the uneven pattern needs to have a certain size, and the dissolution rate is almost the same as the contact hole pattern dissolution rate. It is very difficult to form them separately.

【0005】また、特開平7−198919号公報で
は、光の透過量が制御された露光マスクを用い、光量を
感光性膜の深さ方向で多段に変化させて露光し、表面に
凹凸を有する反射板の形成方法が開示されている。しか
しながら、良好な散乱特性を得るためには平らな部分を
無くする必要があり、例えば12. 1SVGAアレイの
場合、1画素内に200〜300程度の凹凸が必要であ
る。総画素数144万画素に対し、反射斑を無くすため
凹凸の画素間形状を均一にする必要があり、上記の条件
を満たす露光を行うことが可能なマスクは非常に高価で
あり、且つそのようなマスクを製造することは非常に困
難である。さらに、露光現像された樹脂は熱処理される
が、この熱処理によって樹脂は流動化し、樹脂の物性値
から決まる固有の形状になるため、多段に露光量を変え
て凹凸を形成しても、隣接する微小な凹凸は淘汰されて
しまうという問題がある。
In Japanese Patent Application Laid-Open No. 7-198919, exposure is performed by using an exposure mask in which the amount of transmitted light is controlled, and changing the amount of light in multiple steps in the depth direction of the photosensitive film. A method for forming a reflector is disclosed. However, in order to obtain good scattering characteristics, it is necessary to eliminate a flat portion. For example, in the case of a 12.1 SVGA array, unevenness of about 200 to 300 is required in one pixel. For a total of 1.44 million pixels, it is necessary to make the inter-pixel shape of unevenness uniform in order to eliminate reflection spots, and a mask capable of performing exposure satisfying the above conditions is very expensive, and such a mask is expensive. It is very difficult to manufacture a suitable mask. Further, the exposed and developed resin is subjected to a heat treatment. The heat treatment causes the resin to flow, and has a unique shape determined by the physical property values of the resin. There is a problem that minute irregularities are eliminated.

【0006】本発明は、上記のような問題点を解消する
ためになされたもので、低電力駆動が可能で表示品位に
優れた高開口率TFTアレイ基板を、簡易なプロセスで
安定的に得ることが可能な反射型液晶表示装置の製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and a stable high-aperture-rate TFT array substrate which can be driven at low power and has excellent display quality can be stably obtained by a simple process. It is an object of the present invention to provide a method of manufacturing a reflection type liquid crystal display device capable of performing the method.

【0007】[0007]

【課題を解決するための手段】本発明に係わる反射型液
晶表示装置の製造方法は、絶縁性基板上に複数本の走査
線と、この走査線と交差する複数本の信号線と、走査線
及び信号線によって区画された個々の画素領域にスイッ
チング素子を形成する工程と、基板上に、感光性を有す
る絶縁性樹脂を走査線、信号線及びスイッチング素子等
に起因する段差を解消するように平坦に塗布し、露光量
を変えて露光、現像することにより、画素領域内に非分
離パターンである適度な凹凸を、スイッチング素子のド
レイン電極上に分離パターンであるコンタクトホールを
有する層間絶縁膜を形成する工程と、層間絶縁膜上にA
l等の高反射膜を成膜後、パターニングし、個々の画素
領域に整合した位置に層間絶縁膜による凹凸を有し、コ
ンタクトホールを介してスイッチング素子と電気的に接
続された反射画素電極を形成する工程を含んで製造する
ようにしたものである。また、層間絶縁膜を形成する工
程において、絶縁性樹脂の露光は、非分離パターンと分
離パターンを異なるマスクに配置した分割露光により行
い、非分離パターンを分離パターンの露光量に対して2
0〜80%内の所定の露光量で露光するものである。
According to a method of manufacturing a reflection type liquid crystal display device according to the present invention, a plurality of scanning lines, a plurality of signal lines intersecting with the scanning lines, and a plurality of scanning lines are provided on an insulating substrate. And forming a switching element in each pixel region partitioned by the signal line, and disposing a photosensitive insulating resin on the substrate so as to eliminate a step caused by the scanning line, the signal line, the switching element, and the like. By applying a flat coating, exposing and developing with changing the exposure amount, an appropriate amount of unevenness which is a non-separable pattern in the pixel region, and an interlayer insulating film having a contact hole which is a separable pattern on the drain electrode of the switching element. Forming step and forming A on the interlayer insulating film.
After forming a highly reflective film such as l, a reflective pixel electrode which is patterned and has unevenness due to an interlayer insulating film at a position aligned with an individual pixel region, and which is electrically connected to a switching element via a contact hole. The manufacturing process includes a forming process. Further, in the step of forming the interlayer insulating film, the exposure of the insulating resin is performed by divided exposure in which the non-separable pattern and the separated pattern are arranged on different masks, and the non-separable pattern is exposed to the exposure amount of the separated pattern by 2 times.
Exposure is performed at a predetermined exposure amount within 0 to 80%.

【0008】また、層間絶縁膜を形成する工程におい
て、絶縁性樹脂の露光に、ガラス等の基材に紫外線を2
0〜80%内の所定の値でカットする紫外線フィルター
層を含む2層以上の遮光材を有し、紫外線フィルター層
は、画素領域に整合した位置のマスクパターン開口部に
配置したマスクを用いたものである。また、本発明に係
わる反射型液晶表示装置は、上記のいずれかに記載の方
法によって製造されたものである。また、本発明に係わ
る反射型液晶表示装置の製造用マスクは、格子状に設け
られた走査線及び信号線、TFT、層間絶縁膜及び反射
画素電極等を備えた第一の絶縁性基板と、カラーフィル
ター及び対向電極等を備えた第二の絶縁性基板を対向さ
せ、これらの基板間に液晶を配置してなる反射型液晶表
示装置の製造用マスクにおいて、ガラス等の基材に紫外
線を20〜80%内の所定の値でカットする紫外線フィ
ルター層を含む2層以上の遮光材を備え、上記紫外線フ
ィルター層を画素領域に整合した位置のマスクパターン
開口部に配置したものである。さらに、紫外線フィルタ
ー層としてa−Si膜、紫外線を完全に遮光する遮光材
としてCr/CrOX 膜を用いたものである。
In the step of forming an interlayer insulating film, ultraviolet light is applied to a base material such as glass to expose the insulating resin.
It has two or more light-shielding materials including an ultraviolet filter layer that cuts at a predetermined value within 0 to 80%, and the ultraviolet filter layer uses a mask arranged in a mask pattern opening at a position matching a pixel region. Things. Further, a reflection type liquid crystal display device according to the present invention is manufactured by any one of the methods described above. Further, a mask for manufacturing a reflective liquid crystal display device according to the present invention is a first insulating substrate provided with a scanning line and a signal line, a TFT, an interlayer insulating film, a reflective pixel electrode, and the like provided in a grid, A second insulating substrate provided with a color filter, a counter electrode, and the like is opposed to each other, and a liquid crystal is arranged between these substrates. Two or more light-shielding members including an ultraviolet filter layer that cuts at a predetermined value within 80% are provided, and the ultraviolet filter layer is arranged in a mask pattern opening at a position matching a pixel region. Furthermore, those with Cr / CrO X film a-Si film as a UV filter layer, ultraviolet rays as the light-shielding material which completely shielded.

【0009】[0009]

【発明の実施の形態】実施の形態1.以下に、本発明の
実施の形態を図面に基づいて説明する。図1は、本実施
の形態における反射型液晶表示装置を構成するTFTア
レイ基板を示す部分平面図、図2は、本実施の形態にお
けるTFTアレイ基板の製造工程の一部を示す部分断面
図である。図において、1は例えばガラス基板等の絶縁
性基板、2は絶縁性基板1上に行方向に形成された走査
線であるゲート電極配線、2aはゲート電極、3は共通
電極配線、4はゲート絶縁膜、5はゲート電極配線2及
び後述のソース電極配線によって区画された個々の画素
領域に形成されたスイッチング素子であるTFTの半導
体層となるアモルファスシリコン膜(以下、a−Si膜
と記す)、6は上記TFTのオーミックコンタクト層と
なる不純物をドープした低抵抗アモルファスシリコン膜
(以下、n+ −a−Si膜と記す)、7は絶縁性基板1
上に列方向に形成された信号線であるソース電極配線、
7aはソース電極、8はドレイン電極、9はTFTのチ
ャネル部、10はTFTを保護するパッシベーション
膜、11はゲート電極配線2、ソース電極配線7及びT
FTに起因する段差を解消すると共に、表面に意図的に
凹凸が形成された層間絶縁膜、12は層間絶縁膜11に
設けられたコンタクトホール、13は層間絶縁膜11上
に形成され、コンタクトホール12を介してTFTのド
レイン電極8と接続される反射画素電極である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partial plan view showing a TFT array substrate constituting a reflective liquid crystal display device according to the present embodiment, and FIG. 2 is a partial cross-sectional view showing a part of a manufacturing process of the TFT array substrate according to the present embodiment. is there. In the figure, 1 is an insulating substrate such as a glass substrate, for example, 2 is a gate electrode wiring which is a scanning line formed in a row direction on the insulating substrate 1, 2a is a gate electrode, 3 is a common electrode wiring, 4 is a gate electrode. The insulating film 5 is an amorphous silicon film (hereinafter, referred to as an a-Si film) serving as a semiconductor layer of a TFT serving as a switching element formed in each pixel region defined by the gate electrode wiring 2 and a source electrode wiring described later. And 6, a low-resistance amorphous silicon film (hereinafter referred to as an n + -a-Si film) doped with an impurity to be an ohmic contact layer of the TFT, and 7 an insulating substrate 1.
Source electrode wiring, which is a signal line formed in the column direction on the top,
7a is a source electrode, 8 is a drain electrode, 9 is a channel portion of the TFT, 10 is a passivation film for protecting the TFT, 11 is a gate electrode wiring 2, a source electrode wiring 7 and T
An interlayer insulating film in which unevenness due to FT is eliminated and the surface is intentionally formed with irregularities, 12 is a contact hole provided in the interlayer insulating film 11, 13 is formed on the interlayer insulating film 11, and a contact hole is formed. 12 is a reflective pixel electrode connected to the drain electrode 8 of the TFT via the reference numeral 12.

【0010】次に、本実施の形態におけるTFTアレイ
基板の製造方法を図2を用いて説明する。まず、絶縁性
基板1上にスパッタ法等を用いてCrを成膜し、フォト
リソグラフィ法にて複数本のゲート電極配線2及び共通
電極配線3を形成する。次に、プラズマCVD法等を用
いて窒化シリコンからなるゲート絶縁膜4、a−Si膜
5、n+ −a−Si膜6を順次成膜し、フォトリソグラ
フィ法を用いてa−Si膜5、n+ −a−Si膜6をパ
ターニングしてTFTの半導体層を形成する。さらに、
スパッタリング法、フォトリソグラフィ法により、ゲー
ト電極配線2と交差する複数本のソース電極配線7、ド
レイン電極8並びにTFTのチャネル部9を形成し、ゲ
ート電極配線2及びソース電極配線7によって区画され
た個々の画素領域にTFTを形成する。なお、ドレイン
電極8の一端は、無機絶縁膜であるゲート絶縁膜4を挟
み、後に形成される反射画素電極13のエリア内で、下
層に低抵抗金属で形成された共通電極配線3と対向し、
容量(コンデンサ)を形成する構造である。さらに、T
FTを保護するパッシベーション膜10をCVD法等で
成膜する(図2(a))。
Next, a method of manufacturing a TFT array substrate according to the present embodiment will be described with reference to FIG. First, Cr is formed on the insulating substrate 1 by a sputtering method or the like, and a plurality of gate electrode wirings 2 and common electrode wirings 3 are formed by a photolithography method. Next, a gate insulating film 4, an a-Si film 5, and an n + -a-Si film 6 made of silicon nitride are sequentially formed by using a plasma CVD method or the like, and the a-Si film 5 is formed by using a photolithography method. , The n + -a-Si film 6 is patterned to form a semiconductor layer of the TFT. further,
A plurality of source electrode wirings 7, drain electrodes 8, and TFT channel portions 9 that intersect with the gate electrode wirings 2 are formed by a sputtering method or photolithography method, and are individually partitioned by the gate electrode wirings 2 and the source electrode wirings 7. TFT is formed in the pixel region of FIG. Note that one end of the drain electrode 8 faces the common electrode wiring 3 formed of a low-resistance metal in a lower layer in the area of the reflective pixel electrode 13 formed later with the gate insulating film 4 as an inorganic insulating film interposed therebetween. ,
This is a structure for forming a capacitance (capacitor). Furthermore, T
A passivation film 10 for protecting the FT is formed by a CVD method or the like (FIG. 2A).

【0011】次に、上記基板上に、感光性を有する絶縁
性樹脂をゲート電極配線2、ソース電極配線7及びTF
T等に起因する段差を解消するように平坦に塗布し、露
光量を変えて露光、現像することにより、画素領域内に
非分離パターンである適度な凹凸を、TFTのドレイン
電極8上に分離パターンであるコンタクトホール12を
有する層間絶縁膜11を形成する。ここでは、感光性を
有する絶縁性樹脂として、低誘電率(<4)でポジ型の
アクリル系樹脂(JSR 製PC-335、i 線、h 線感光品)を
約4μm塗布した。また、凹凸は、ゲート電極配線2
上、ソース電極配線7上及び上記容量形成位置の一部を
除く画素領域内に形成した。なお、本実施の形態では、
絶縁性樹脂の露光は、非分離パターンと分離パターンを
異なるマスクに配置した分割露光により行い、非分離パ
ターンを分離パターンの露光量に対して20〜80%内
の所定の露光量で露光した。露光装置としては、h線の
ステッパー露光機を用い、コンタクトホール12部を4
00mj/cm2 (UV光1)で、画素内の凹凸を160mj
/cm2 (UV光2)で露光した(図2(b))。
Next, an insulating resin having photosensitivity is coated on the substrate with the gate electrode wiring 2, the source electrode wiring 7, and the TF.
By applying a flat coating so as to eliminate the step caused by T and the like, and exposing and developing with changing the exposure amount, appropriate unevenness which is a non-separable pattern in the pixel region is separated on the drain electrode 8 of the TFT. An interlayer insulating film 11 having a contact hole 12 as a pattern is formed. Here, as a photosensitive insulating resin, a low dielectric constant (<4) positive type acrylic resin (PC-335 manufactured by JSR, i-line, h-line photosensitive product) was applied to about 4 μm. Further, the unevenness is caused by the gate electrode wiring 2
The pixel electrode was formed in the pixel region except the upper portion, the source electrode wiring 7 and a part of the capacitance forming position. In the present embodiment,
The exposure of the insulating resin was performed by divided exposure in which the non-separable pattern and the separated pattern were arranged on different masks, and the non-separable pattern was exposed at a predetermined exposure amount within 20 to 80% of the exposure amount of the separated pattern. As an exposure device, an h-line stepper exposure device was used, and 12 contact holes were formed in 4 portions.
With 100 mj / cm 2 (UV light 1), irregularities in the pixel were reduced to 160 mj
/ Cm 2 (UV light 2) (FIG. 2B).

【0012】ポジ型感光樹脂の溶解速度は、感光剤の分
解率に大きく依存する(これをS字カーブ特性と称す
る)ことを利用し、画素領域内の凹凸部とコンタクトホ
ール12部の感光剤の分解率を変え、溶解速度に差を持
たせ、コンタクトホール12が十分に解像できる時間で
現像を行い、深さAのコンタクトホール12と深さBの
凹凸をそれぞれ得た(図2(c))。現像液は、弱アル
カリ現像液(TMAH0.4wt%)を用いた。現像後、200〜
230℃で約1時間焼成し、画素領域内に適度な凹凸
と、TFTのドレイン電極8上にコンタクトホール12
を有する層間絶縁膜11を形成した。以上の工程によっ
て得られた層間絶縁膜11表面のプロファイルを触針式
膜厚計で測定し、表面形状を確認した結果を図3に示
す。図において、(a)はコンタクトホール部、(b)
は凹凸部の形状をそれぞれ示し、図中Aは層間絶縁膜1
1の底部である基板面を示している。このように、本実
施の形態における製造方法によれば、良好な凹凸と底部
まで分離されたコンタクトホール12が形成されている
ことが確認できた。
Utilizing that the dissolution rate of the positive photosensitive resin greatly depends on the decomposition rate of the photosensitive agent (this is referred to as an S-curve characteristic), the unevenness in the pixel region and the photosensitive agent in the contact hole 12 are used. Of the contact hole 12 and development of the contact hole 12 having a depth A and unevenness having a depth B were obtained, respectively (FIG. 2 ( c)). The developer used was a weak alkaline developer (TMAH 0.4 wt%). After development, 200 ~
It is baked at 230 ° C. for about 1 hour to form appropriate irregularities in the pixel region and a contact hole 12 on the drain electrode 8 of the TFT.
Was formed. FIG. 3 shows the result of measuring the profile of the surface of the interlayer insulating film 11 obtained by the above steps with a stylus-type film thickness meter and confirming the surface shape. In the figure, (a) is a contact hole portion, (b)
Indicates the shape of the concave and convex portions, and A in the figure indicates the interlayer insulating film 1
1 shows a substrate surface, which is the bottom of FIG. As described above, according to the manufacturing method of the present embodiment, it was confirmed that the contact holes 12 having good unevenness and the bottom were separated.

【0013】次に、コンタクトホール12部のパッシベ
ーション膜10をエッチングし、ドレイン電極8をコン
タクトホール12内に露出させる。同時に、トランスフ
ァー電極を含む端子コンタクト部(図示せず)のパッシ
ベーション膜10も除去する。さらに、層間絶縁膜11
上にAl等の高反射膜を成膜後、パターニングし、個々
の画素領域に整合した位置に層間絶縁膜11による凹凸
を有し、コンタクトホール12を介してTFTのドレイ
ン電極8と電気的に接続された反射画素電極13を形成
した(図2(d))。以上の工程により得られたTFT
アレイ基板と、対向電極等が形成された他の絶縁性基板
の表面にそれぞれ配向膜を形成後、これらを対向させ基
板間に液晶材料を注入することにより、本実施の形態に
おける反射型液晶表示装置が完成する。
Next, the passivation film 10 in the contact hole 12 is etched to expose the drain electrode 8 in the contact hole 12. At the same time, the passivation film 10 of the terminal contact portion (not shown) including the transfer electrode is also removed. Further, the interlayer insulating film 11
After forming a high reflection film of Al or the like thereon, the film is patterned, and has irregularities due to the interlayer insulating film 11 at positions matching individual pixel regions, and is electrically connected to the drain electrode 8 of the TFT through the contact hole 12. The connected reflection pixel electrode 13 was formed (FIG. 2D). TFT obtained by the above steps
An alignment film is formed on the surface of an array substrate and another insulating substrate on which a counter electrode and the like are formed. Then, the alignment films are opposed to each other, and a liquid crystal material is injected between the substrates. The device is completed.

【0014】なお、本実施の形態では反射画素電極13
としてAlを用いたが、銀等の高反射膜を用いてもよ
い。また、層間絶縁膜11を黒色等の有色樹脂で形成す
るこよにより、不要部からの反射を抑えることができ
る。さらに、層間絶縁膜11の凹凸パターン寸法は、大
小のものをランダムに配置しても良い。また、本実施の
形態では、層間絶縁膜11の下にパッシベーション膜1
0を設けたが、パッシベーション膜10は設けなくても
良い。また、本実施の形態では、ステッパー方式を用い
て、露光パターン割り当てを変えた分割露光を行うた
め、従来に比べて処理能力を低下させることはない。一
括露光方式も適用可能であるが、処理能力を大きく低下
させるため適さない。
In the present embodiment, the reflective pixel electrode 13
Although Al is used as the material, a highly reflective film such as silver may be used. In addition, by forming the interlayer insulating film 11 with a colored resin such as black, reflection from unnecessary portions can be suppressed. Further, the size of the concavo-convex pattern of the interlayer insulating film 11 may be randomly large or small. In the present embodiment, the passivation film 1 is formed under the interlayer insulating film 11.
Although 0 is provided, the passivation film 10 may not be provided. Further, in the present embodiment, since the divided exposure is performed by changing the exposure pattern allocation using the stepper method, the processing capacity is not reduced as compared with the related art. A batch exposure method is also applicable, but is not suitable because it greatly reduces the processing ability.

【0015】以上のように、本実施の形態において製造
されたTFTアレイ基板によれば、層間絶縁膜11が十
分に厚く形成されているため、反射画素電極13をゲー
ト電極配線2及びソース電極配線7と重畳させて最上層
に広い面積で形成することが可能であり、低電力で十分
に液晶駆動が可能であると共に、コントラストの高い表
示品位に優れた高開口率の反射型液晶表示装置を、簡易
なプロセスで安定的に得ることが可能である。また、表
示不良の削減による歩留まり向上のため、製造コストの
低減も可能となる。
As described above, according to the TFT array substrate manufactured in the present embodiment, since the interlayer insulating film 11 is formed sufficiently thick, the reflective pixel electrode 13 is formed by the gate electrode wiring 2 and the source electrode wiring. 7 can be formed in a wide area on the uppermost layer by superimposition, and can sufficiently drive the liquid crystal with low power, and provide a reflective liquid crystal display device having a high contrast and a high aperture ratio and excellent display quality. , And can be stably obtained by a simple process. Further, the production cost can be reduced because the yield is improved by reducing the display defects.

【0016】実施の形態2.図4は、本発明の実施の形
態2であるTFTアレイ基板の製造方法の一部を示す部
分断面図である。図において、14は本実施の形態にて
使用されるマスクであり、15は基材であるガラス材、
16は紫外線フィルター層である遮光材A、17は紫外
線を完全にカットする遮光材Bを示している。また、図
中、aは画素パターンエリア、bはコンタクトホールパ
ターンエリアを示している。なお、図中、同一、相当部
分には同一符号を付し説明を省略する。本実施の形態で
は、格子状に設けられたゲート電極配線2及びソース電
極配線7、TFT、層間絶縁膜11及び反射画素電極1
3等を備えた第一の絶縁性基板と、カラーフィルター及
び対向電極等を備えた第二の絶縁性基板を対向させ、こ
れらの基板間に液晶を配置してなる反射型液晶表示装置
の製造用マスクにおいて、層間絶縁膜11を形成するた
めの絶縁性樹脂の露光に、ガラス等の基材に紫外線を2
0〜80%内の所定の値でカットする紫外線フィルター
層を含む2層以上の遮光材(ここでは遮光材A16及び
遮光材B17)を有し、紫外線フィルター層を画素領域
に整合した位置のマスクパターン開口部に配置したマス
ク14を用いたものである。
Embodiment 2 FIG. 4 is a partial cross-sectional view illustrating a part of the method for manufacturing the TFT array substrate according to the second embodiment of the present invention. In the figure, 14 is a mask used in the present embodiment, 15 is a glass material as a base material,
Reference numeral 16 denotes a light-shielding material A, which is an ultraviolet filter layer, and 17 denotes a light-shielding material B that completely blocks ultraviolet rays. In the figure, a indicates a pixel pattern area, and b indicates a contact hole pattern area. In the drawings, the same or corresponding parts have the same reference characters allotted, and description thereof will not be repeated. In the present embodiment, the gate electrode wiring 2 and the source electrode wiring 7, the TFT, the interlayer insulating film 11, and the reflective pixel electrode 1
Production of a reflection type liquid crystal display device in which a first insulating substrate provided with 3 and the like is opposed to a second insulating substrate provided with a color filter, a counter electrode and the like, and a liquid crystal is arranged between these substrates. In a mask for exposure, an ultraviolet ray is applied to a base material such as glass for exposure of an insulating resin for forming the interlayer insulating film 11.
A mask having two or more light shielding materials (here, a light shielding material A16 and a light shielding material B17) including an ultraviolet filter layer for cutting at a predetermined value within 0 to 80%, and a position where the ultraviolet filter layer is aligned with the pixel region. This uses a mask 14 arranged in a pattern opening.

【0017】本実施の形態におけるTFTアレイ基板の
製造方法を説明する。なお、絶縁性基板1上にTFTを
保護するパッシベーション膜10を成膜する工程まで
は、上記実施の形態1と同様であるため、説明を省略す
る。パッシベーション膜10形成後、感光性を有する低
誘電率(<4)でポジ型のアクリル系樹脂(JSR 製PC-3
35、i 線、h 線感光品)を、ゲート電極配線2、ソース
電極配線7及びTFTに起因する段差を解消するように
表面を平坦に塗布し、フォトリソグラフィ法にてマスク
14を用いて露光、現像し、ゲート電極配線2上、ソー
ス電極配線7上及び上記容量形成位置の一部を除く画素
領域内に適度の凹凸を形成し、且つドレイン電極8上に
コンタクトホールを形成する。
A method for manufacturing a TFT array substrate according to the present embodiment will be described. Note that the steps up to the step of forming the passivation film 10 for protecting the TFT on the insulating substrate 1 are the same as those in the first embodiment, and a description thereof will be omitted. After the passivation film 10 is formed, a photosensitive low dielectric constant (<4) positive type acrylic resin (PC-3 manufactured by JSR)
35, i-line and h-line photosensitive products) are coated on a flat surface so as to eliminate a step caused by the gate electrode wiring 2, the source electrode wiring 7 and the TFT, and are exposed using a mask 14 by a photolithography method. Then, development is performed to form appropriate irregularities in the pixel region except on the gate electrode wiring 2, the source electrode wiring 7, and a part of the capacitance forming position, and form a contact hole on the drain electrode 8.

【0018】上記実施の形態1では、画素領域内の凹凸
とドレイン電極8上のコンタクトホールを別マスクに配
置し、露光量を変えた分割露光を行った。h線の露光機
を用い、コンタクトホール部を400mj/cm2 、画素領
域内の凹凸を160mj/cm2で露光することにより、良
好な凹凸とコンタクトホールが形成されることは確認さ
れている。一方、本実施の形態では、画素領域内の凹凸
パターンとコンタクトホールパターンを同一マスク14
内に配置したものである。a−Si膜厚に対するh線の
透過率(計算値)を図5に示す。画素パターンエリアa
の開口部に厚さ4nmの遮光膜A16を残すと、h線は5
9. 8%吸収される。このとき、コンタクトホール部を
十分に開口するために400mj/cm2 で露光すると、画
素内の凹凸パターンエリア部の露光量は160mj/cm2
となり、それぞれに適した露光量が得られる。なお、マ
スク14は、a−Si膜を一部の開口部に残すか否かの
「1」「0」制御であるため、高い精度が要求されるこ
となく、安価で歩留まり良く製造できる。また、マスク
14の構成は、紫外線フィルター機能を有する遮光材A
16、紫外線を完全に遮光する遮光材B17を配置する
順序は問わない。また、紫外線フィルター機能を有する
遮光材Aとして、a−Si膜の他の金属薄膜を用いても
良い。さらに、紫外線を完全に遮光する遮光膜Bとして
は、Cr/CrOX 膜の他に、Mo、MoSi等の膜を
用いることもできる。
In the first embodiment, the unevenness in the pixel region and the contact hole on the drain electrode 8 are arranged on different masks, and divided exposure is performed with different exposure amounts. with h-ray exposure apparatus, by exposing the contact hole 400 mj / cm 2, the unevenness in the pixel region at 160 mJ / cm 2, that good uneven and contact holes are formed has been confirmed. On the other hand, in the present embodiment, the concavo-convex pattern and the contact hole pattern in the pixel region are
It is arranged inside. FIG. 5 shows the transmittance (calculated value) of the h-line with respect to the a-Si film thickness. Pixel pattern area a
When the light-shielding film A16 having a thickness of 4 nm is left in the opening of FIG.
9.8% absorbed. At this time, when the exposure is performed at 400 mj / cm 2 in order to sufficiently open the contact hole, the exposure amount of the uneven pattern area in the pixel is 160 mj / cm 2.
And the exposure amount suitable for each is obtained. Since the mask 14 is controlled by “1” and “0” to determine whether or not the a-Si film is left in a part of the opening, the mask 14 can be manufactured inexpensively with high yield without requiring high accuracy. The configuration of the mask 14 is a light shielding material A having an ultraviolet filter function.
16. The order of arranging the light shielding material B17 for completely shielding ultraviolet light does not matter. Further, a metal thin film other than the a-Si film may be used as the light shielding material A having an ultraviolet filter function. Further, as the light shielding film B for completely shielding ultraviolet rays, a film of Mo, MoSi, or the like can be used in addition to the Cr / CrO X film.

【0019】以上のように、マスク14を用いて露光し
た後、弱アルカリ現像液(TMAH0.4wt%)を用いて現像
し、200〜230℃で約1時間焼成し、画素領域内に
適度な凹凸と、ドレイン電極8上にコンタクトホールを
有する層間絶縁膜11を形成した。これ以降の工程につ
いては、上記実施の形態1と同様であるので説明を省略
する。本実施の形態においても、上記実施の形態1と同
様の効果が得られ、さらに、本実施の形態では、一括露
光方式に適用した場合でも処理能力を低下させないた
め、プロセス装置の制約が緩和される。
As described above, after exposure using the mask 14, development using a weak alkali developing solution (TMAH 0.4 wt%), baking at 200 to 230 ° C. for about 1 hour, an appropriate amount of An interlayer insulating film 11 having irregularities and a contact hole on the drain electrode 8 was formed. Subsequent steps are the same as those in the first embodiment, and a description thereof will be omitted. In the present embodiment, the same effects as those of the first embodiment can be obtained. Further, in the present embodiment, the processing capability is not reduced even when applied to the batch exposure method, so that the restrictions on the processing apparatus are relaxed. You.

【0020】[0020]

【発明の効果】以上のように、本発明によれば、感光性
を有する絶縁性樹脂を走査線、信号線及びスイッチング
素子等に起因する段差を解消するように平坦に塗布し、
露光量を変えて露光、現像することにより、画素領域内
に非分離パターンである適度な凹凸を、スイッチング素
子のドレイン電極上に分離パターンであるコンタクトホ
ールを有する層間絶縁膜を形成するようにしたので、低
電力駆動が可能で表示品位に優れた高開口率の反射型液
晶表示装置を簡易なプロセスで安定的に得ることが可能
となった。
As described above, according to the present invention, an insulating resin having photosensitivity is applied flat so as to eliminate steps caused by scanning lines, signal lines, switching elements, and the like.
By changing the exposure amount and exposing and developing, an appropriate amount of unevenness which is a non-separable pattern in the pixel region and an interlayer insulating film having a contact hole which is a separable pattern on the drain electrode of the switching element are formed. Therefore, it has become possible to stably obtain a reflective liquid crystal display device having a high aperture ratio, which can be driven at low power and has excellent display quality, by a simple process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1である反射型液晶表示
装置を構成するTFTアレイ基板を示す部分平面図であ
る。
FIG. 1 is a partial plan view showing a TFT array substrate constituting a reflective liquid crystal display device according to a first embodiment of the present invention.

【図2】 本発明の実施の形態1におけるTFTアレイ
基板の製造方法の一部を示す部分断面図である。
FIG. 2 is a partial cross-sectional view showing a part of the method for manufacturing the TFT array substrate according to the first embodiment of the present invention.

【図3】 本発明の実施の形態1において作成された層
間絶縁膜の表面形状を触針式膜厚計で測定した結果を示
す図である。
FIG. 3 is a diagram showing a result of measuring a surface shape of an interlayer insulating film formed in Embodiment 1 of the present invention with a stylus-type film thickness meter.

【図4】 本発明の実施の形態2におけるTFTアレイ
基板の製造方法の一部を示す部分断面図である。
FIG. 4 is a partial cross-sectional view showing a part of a method for manufacturing a TFT array substrate in Embodiment 2 of the present invention.

【図5】 a−Si膜厚に対するh線の透過率(計算
値)を示す図である。
FIG. 5 is a graph showing transmittance (calculated value) of h-line with respect to a-Si film thickness.

【符号の説明】[Explanation of symbols]

1 絶縁性基板、2 ゲート電極配線、2a ゲート電
極、3 共通電極配線、4 ゲート絶縁膜、5 a−S
i膜、6 n+ −a−Si膜、7 ソース電極配線、7
a ソース電極、8 ドレイン電極、9 チャネル部、
10 パッシベーション膜、11 層間絶縁膜、12
コンタクトホール、13 反射画素電極、14 マス
ク、15 ガラス材、16 遮光材A、17 遮光材
B。
REFERENCE SIGNS LIST 1 insulating substrate, 2 gate electrode wiring, 2 a gate electrode, 3 common electrode wiring, 4 gate insulating film, 5 a-S
i film, 6 n + -a-Si film, 7 source electrode wiring, 7
a source electrode, 8 drain electrode, 9 channel section,
DESCRIPTION OF SYMBOLS 10 Passivation film, 11 Interlayer insulating film, 12
Contact hole, 13 reflective pixel electrode, 14 mask, 15 glass material, 16 light shielding material A, 17 light shielding material B.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中口 佳祐 熊本県菊池郡西合志町御代志997番地 株 式会社アドバンスト・ディスプレイ内 Fターム(参考) 2H091 FA02Y FA14Y FA34X FB08 FC26 GA07 GA13 GA16 LA12 LA16 LA17 2H092 HA28 JA26 JA46 JB07 JB51 JB57 JB58 KA05 KA12 KA18 KB04 KB13 MA05 MA13 MA16 MA17 NA07 NA19 NA27 PA08 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Keisuke Nakaguchi 997 Miyoshi, Nishigoshi-cho, Kikuchi-gun, Kumamoto F-term in Advanced Display Co., Ltd. (Reference) 2H091 FA02Y FA14Y FA34X FB08 FC26 GA07 GA13 GA16 LA12 LA16 LA17 2H092 HA28 JA26 JA46 JB07 JB51 JB57 JB58 KA05 KA12 KA18 KB04 KB13 MA05 MA13 MA16 MA17 NA07 NA19 NA27 PA08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板上に複数本の走査線と、この
走査線と交差する複数本の信号線と、上記走査線及び上
記信号線によって区画された個々の画素領域にスイッチ
ング素子を形成する工程、 上記基板上に、感光性を有する絶縁性樹脂を上記走査
線、上記信号線及び上記スイッチング素子等に起因する
段差を解消するように平坦に塗布し、露光量を変えて露
光、現像することにより、画素領域内に非分離パターン
である適度な凹凸を、上記スイッチング素子のドレイン
電極上に分離パターンであるコンタクトホールを有する
層間絶縁膜を形成する工程、 上記層間絶縁膜上にAl等の高反射膜を成膜後、パター
ニングし、個々の画素領域に整合した位置に上記層間絶
縁膜による凹凸を有し、上記コンタクトホールを介して
上記スイッチング素子と電気的に接続された反射画素電
極を形成する工程を含むことを特徴とする反射型液晶表
示装置の製造方法。
A switching element is formed on a plurality of scanning lines on an insulating substrate, a plurality of signal lines intersecting the scanning lines, and individual pixel regions defined by the scanning lines and the signal lines. On the substrate, the insulating resin having photosensitivity is coated flat so as to eliminate a step caused by the scanning line, the signal line, the switching element, and the like, and is exposed and developed by changing an exposure amount. Forming an interlayer insulating film having a contact hole as a separating pattern on the drain electrode of the switching element by forming appropriate unevenness in the pixel region on the drain electrode of the switching element. After forming a high-reflection film, patterning is performed, and the switching element is provided with the unevenness by the interlayer insulating film at a position aligned with each pixel region, via the contact hole. Method of manufacturing a reflection type liquid crystal display device which comprises a step of forming an electrically connected reflective pixel electrodes and.
【請求項2】 層間絶縁膜を形成する工程において、絶
縁性樹脂の露光は、非分離パターンと分離パターンを異
なるマスクに配置した分割露光により行い、上記非分離
パターンを上記分離パターンの露光量に対して20〜8
0%内の所定の露光量で露光することを特徴とする請求
項1記載の反射型液晶表示装置の製造方法。
2. In the step of forming an interlayer insulating film, exposure of the insulating resin is performed by divided exposure in which a non-separable pattern and a separate pattern are arranged on different masks, and the non-separable pattern is exposed to light of the separated pattern. 20 to 8
2. The method according to claim 1, wherein the exposure is performed at a predetermined exposure amount within 0%.
【請求項3】 層間絶縁膜を形成する工程において、絶
縁性樹脂の露光に、ガラス等の基材に紫外線を20〜8
0%内の所定の値でカットする紫外線フィルター層を含
む2層以上の遮光材を有し、上記紫外線フィルター層を
画素領域に整合した位置のマスクパターン開口部に配置
したマスクを用いたことを特徴とする請求項1記載の反
射型液晶表示装置の製造方法。
3. In a step of forming an interlayer insulating film, a substrate such as glass is irradiated with ultraviolet rays for 20 to 8 to expose an insulating resin.
A mask having two or more layers of a light-shielding material including an ultraviolet filter layer that cuts at a predetermined value within 0%, and using the mask in which the ultraviolet filter layer is disposed in a mask pattern opening at a position aligned with a pixel region. The method for manufacturing a reflective liquid crystal display device according to claim 1.
【請求項4】 請求項1〜請求項3のいずれか一項に記
載の方法によって製造されたことを特徴とする反射型液
晶表示装置。
4. A reflection type liquid crystal display device manufactured by the method according to claim 1. Description:
【請求項5】 格子状に設けられた走査線及び信号線、
TFT、層間絶縁膜及び反射画素電極等を備えた第一の
絶縁性基板と、カラーフィルター及び対向電極等を備え
た第二の絶縁性基板を対向させ、これらの基板間に液晶
を配置してなる反射型液晶表示装置の製造用マスクにお
いて、ガラス等の基材に紫外線を20〜80%内の所定
の値でカットする紫外線フィルター層を含む2層以上の
遮光材を備え、上記紫外線フィルター層を画素領域に整
合した位置のマスクパターン開口部に配置したことを特
徴とする反射型液晶表示装置の製造用マスク。
5. A scanning line and a signal line provided in a grid pattern,
A first insulating substrate provided with a TFT, an interlayer insulating film, a reflective pixel electrode, and the like is opposed to a second insulating substrate provided with a color filter, a counter electrode, and the like, and a liquid crystal is arranged between these substrates. A mask for manufacturing a reflective liquid crystal display device, comprising: a base material such as glass, provided with at least two layers of a light shielding material including an ultraviolet filter layer for cutting ultraviolet rays at a predetermined value within 20 to 80%; A mask for manufacturing a reflective liquid crystal display device, wherein the mask is arranged in a mask pattern opening at a position matched with a pixel region.
【請求項6】 紫外線フィルター層としてa−Si膜、
紫外線を完全に遮光する遮光材としてCr/CrOX
を用いたことを特徴とする請求項5記載の反射型液晶表
示装置の製造用マスク。
6. An a-Si film as an ultraviolet filter layer,
Manufacturing mask of the reflection type liquid crystal display device according to claim 5, characterized by using a Cr / CrO X film as a light shielding material to completely shield the ultraviolet light.
JP04754399A 1999-02-25 1999-02-25 Method for manufacturing reflective liquid crystal display device and mask for manufacturing reflective liquid crystal display device Expired - Fee Related JP3992393B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04754399A JP3992393B2 (en) 1999-02-25 1999-02-25 Method for manufacturing reflective liquid crystal display device and mask for manufacturing reflective liquid crystal display device
KR1020000008734A KR100723599B1 (en) 1999-02-25 2000-02-23 Reflective liquid crystal display device and manufacturing method thereof and mask for manufacturing reflective liquid crystal display device
TW089103197A TW477904B (en) 1999-02-25 2000-02-24 Reflection type liquid display device, its manufacturing process, and mask for making such reflection type liquid display device
US09/512,107 US6985195B1 (en) 1999-02-25 2000-02-24 Reflection type liquid crystal display and method for manufacturing the same and mask for manufacturing reflection type liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04754399A JP3992393B2 (en) 1999-02-25 1999-02-25 Method for manufacturing reflective liquid crystal display device and mask for manufacturing reflective liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2000250025A true JP2000250025A (en) 2000-09-14
JP3992393B2 JP3992393B2 (en) 2007-10-17

Family

ID=12778072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04754399A Expired - Fee Related JP3992393B2 (en) 1999-02-25 1999-02-25 Method for manufacturing reflective liquid crystal display device and mask for manufacturing reflective liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3992393B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006774A (en) * 2000-06-23 2002-01-11 Semiconductor Energy Lab Co Ltd Method for manufacturing electrooptical device
KR20020057228A (en) * 2000-12-30 2002-07-11 주식회사 현대 디스플레이 테크놀로지 Method for producing reflect lcd using of half tone patterning
JP2002229062A (en) * 2001-02-05 2002-08-14 Sony Corp Display device and its manufacturing method
WO2003079107A1 (en) * 2002-03-19 2003-09-25 Koninklijke Philips Electronics N.V. Semiconductor device manufacturing method, semiconductor device, and liquid crystal display
US6803174B2 (en) * 2001-08-18 2004-10-12 Samsung Electronics Co., Ltd. Methods for forming a photosensitive insulating film pattern and reflection electrode each having an irregular upper surface and method for manufacturing a lcd having reflection electrode using the same
US6853421B2 (en) 2001-08-06 2005-02-08 Nec Corporation Transflective type LCD and method for manufacturing the same
US6894747B2 (en) 2001-08-31 2005-05-17 Nec Lcd Technologies, Ltd. Manufacturing method for reflector, reflector, and liquid crystal display
US7042539B2 (en) 2001-06-22 2006-05-09 Nec Lcd Technologies, Ltd. Reflection plate, manufacturing method thereof, liquid crystal display device and manufacturing method thereof
US7193679B2 (en) 2002-09-09 2007-03-20 Nec Lcd Technologies, Ltd. Liquid crystal display with photosensitive organic film having first, second and third thicknesses is corresponding its transmission, reflective and terminal regions
KR100796746B1 (en) * 2001-03-13 2008-01-22 삼성전자주식회사 Manufacturing method of thin film transistor substrate for liquid crystal display device
US7903210B2 (en) 2001-01-25 2011-03-08 Sharp Kk Reflection type liquid crystal display device and manufacturing method thereof
US7973893B2 (en) 2001-01-25 2011-07-05 Sharp Kabushiki Kaisha Method of manufacturing a substrate for a liquid crystal display device
JP2012058757A (en) * 2011-12-05 2012-03-22 Sony Corp Display device and method for manufacturing the same
JP2013015866A (en) * 2012-10-09 2013-01-24 Sony Corp Display device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006774A (en) * 2000-06-23 2002-01-11 Semiconductor Energy Lab Co Ltd Method for manufacturing electrooptical device
KR20020057228A (en) * 2000-12-30 2002-07-11 주식회사 현대 디스플레이 테크놀로지 Method for producing reflect lcd using of half tone patterning
US7973893B2 (en) 2001-01-25 2011-07-05 Sharp Kabushiki Kaisha Method of manufacturing a substrate for a liquid crystal display device
US7903210B2 (en) 2001-01-25 2011-03-08 Sharp Kk Reflection type liquid crystal display device and manufacturing method thereof
JP2002229062A (en) * 2001-02-05 2002-08-14 Sony Corp Display device and its manufacturing method
KR100796746B1 (en) * 2001-03-13 2008-01-22 삼성전자주식회사 Manufacturing method of thin film transistor substrate for liquid crystal display device
US7042539B2 (en) 2001-06-22 2006-05-09 Nec Lcd Technologies, Ltd. Reflection plate, manufacturing method thereof, liquid crystal display device and manufacturing method thereof
US7817229B2 (en) 2001-08-06 2010-10-19 Nec Lcd Technologies, Ltd. Transflective type LCD and method for manufacturing the same
US7990501B2 (en) 2001-08-06 2011-08-02 Nec Lcd Technologies, Ltd. Transflective type LCD and method for manufacturing the same
US6853421B2 (en) 2001-08-06 2005-02-08 Nec Corporation Transflective type LCD and method for manufacturing the same
US6803174B2 (en) * 2001-08-18 2004-10-12 Samsung Electronics Co., Ltd. Methods for forming a photosensitive insulating film pattern and reflection electrode each having an irregular upper surface and method for manufacturing a lcd having reflection electrode using the same
US6894747B2 (en) 2001-08-31 2005-05-17 Nec Lcd Technologies, Ltd. Manufacturing method for reflector, reflector, and liquid crystal display
WO2003079107A1 (en) * 2002-03-19 2003-09-25 Koninklijke Philips Electronics N.V. Semiconductor device manufacturing method, semiconductor device, and liquid crystal display
US7193679B2 (en) 2002-09-09 2007-03-20 Nec Lcd Technologies, Ltd. Liquid crystal display with photosensitive organic film having first, second and third thicknesses is corresponding its transmission, reflective and terminal regions
JP2012058757A (en) * 2011-12-05 2012-03-22 Sony Corp Display device and method for manufacturing the same
JP2013015866A (en) * 2012-10-09 2013-01-24 Sony Corp Display device

Also Published As

Publication number Publication date
JP3992393B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP3394926B2 (en) Manufacturing method of liquid crystal display device
US7499118B2 (en) Structure of switching device for liquid crystal display device and fabrication method thereof
US20070109475A1 (en) Transreflection-type liquid crystal display device and method of fabricating the same
US20080007687A1 (en) Liquid crystal display device and a manufacturing method thereof
US20070141481A1 (en) Photo Mask and method of Fabricating array Substrate for Liquid Crystal Display Device Using The Same
KR20000057740A (en) Liquid crystal panel, liquid crystal panel manufacturing method, liquid crystal display, and liquid crystal projector
JP2000250025A (en) Reflection type liquid crystal display device, its production and mask for production of reflection type liquid crystal display device
JP3097841B2 (en) Method of manufacturing photomask and active element array substrate
US6459463B2 (en) Reflective liquid crystal display having a bent shape and method of manufacturing thereof
KR100723599B1 (en) Reflective liquid crystal display device and manufacturing method thereof and mask for manufacturing reflective liquid crystal display device
US6808868B2 (en) Method for manufacturing a substrate for a display panel
US7567321B2 (en) Liquid crystal display device and method of fabricating the same
CN100380220C (en) Liquid crystal display device and manufacturing method thereof
US20070188682A1 (en) Method for manufacturing a display device
JP3394925B2 (en) Manufacturing method of liquid crystal display device
JP4034470B2 (en) Liquid crystal display device and manufacturing method thereof
JP2000338524A5 (en)
KR100827853B1 (en) Method of manufacturing high aperture ratio liquid crystal display device
JP2007128117A (en) Liquid crystal display device and method for manufacturing the same
JP2001042304A (en) Liquid crystal display device and its production
KR100507283B1 (en) A method for manufacturing of thin film transistor liquid crystal display
JP2006220907A (en) Method for manufacturing electrooptical device
KR101006475B1 (en) Array substrate for liquid crystal display device and manufacturing method thereof
JP4668247B2 (en) Manufacturing method of liquid crystal display device
JP3610060B2 (en) Manufacturing method of liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313632

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees