JP2000249290A - Vacuum heat insulating body - Google Patents
Vacuum heat insulating bodyInfo
- Publication number
- JP2000249290A JP2000249290A JP11050034A JP5003499A JP2000249290A JP 2000249290 A JP2000249290 A JP 2000249290A JP 11050034 A JP11050034 A JP 11050034A JP 5003499 A JP5003499 A JP 5003499A JP 2000249290 A JP2000249290 A JP 2000249290A
- Authority
- JP
- Japan
- Prior art keywords
- core material
- vacuum heat
- heat insulating
- insulating body
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011162 core material Substances 0.000 claims abstract description 57
- 239000000463 material Substances 0.000 claims abstract description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- 230000000149 penetrating effect Effects 0.000 claims abstract description 8
- 239000002650 laminated plastic Substances 0.000 claims abstract description 5
- 239000012212 insulator Substances 0.000 claims description 37
- 239000012254 powdered material Substances 0.000 claims description 4
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 239000000843 powder Substances 0.000 abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 230000006835 compression Effects 0.000 abstract description 3
- 238000007906 compression Methods 0.000 abstract description 3
- 239000000378 calcium silicate Substances 0.000 abstract description 2
- 229910052918 calcium silicate Inorganic materials 0.000 abstract description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 abstract description 2
- 238000007602 hot air drying Methods 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 239000005001 laminate film Substances 0.000 abstract 1
- 230000006866 deterioration Effects 0.000 description 10
- 238000009413 insulation Methods 0.000 description 10
- 239000011810 insulating material Substances 0.000 description 5
- 238000012805 post-processing Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Landscapes
- Thermal Insulation (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気湯沸かし器な
どの中温域で使用可能な真空断熱体に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum insulator which can be used in a medium temperature range such as an electric water heater.
【0002】[0002]
【従来の技術】近年、省エネルギー化を狙いに、家電製
品における断熱材の高性能化への要求が益々高まってい
る。2. Description of the Related Art In recent years, demands for higher performance of heat insulating materials in home electric appliances have been increasing in order to save energy.
【0003】冷蔵庫等の保冷機器の断熱材には、高性能
な硬質ウレタンフォームやウレタンを芯材とした真空断
熱材が使われている。[0003] A high-performance rigid urethane foam or a vacuum heat-insulating material using urethane as a core material is used as a heat insulating material for refrigerators and other cooling devices.
【0004】しかしながら、電気湯沸かし器等の保温機
器では使用温度帯が高く適用が困難であった。[0004] However, it has been difficult to apply heat insulating devices such as electric water heaters to a high operating temperature range.
【0005】この様な中温域で使用可能な断熱材とし
て、一般的にグラスウールが使われていたが、更なる省
エネルギー化のためには断熱層の厚みを厚くする必要が
あり、機器の大型化等の弊害をもたらす問題があった。Glass wool has generally been used as a heat insulating material that can be used in such a medium temperature range. However, in order to further save energy, it is necessary to increase the thickness of a heat insulating layer, and the size of equipment is increased. And other problems.
【0006】この問題を解決する一手段として無機粉末
の真空断熱体がある。特開昭57−173689号公報
に記載の真空断熱体は、単粒子径が1μm以下の粉末を
フィルム状プラスチック容器に充填し、内部を減圧密封
したものである。効果としては、微粉末であるため、工
業化が容易な0.1から1mmHgの真空度で優れた断
熱性能が得られるというものである。As one means for solving this problem, there is a vacuum insulator made of inorganic powder. The vacuum insulator disclosed in Japanese Patent Application Laid-Open No. 57-173689 is obtained by filling a film-shaped plastic container with powder having a single particle diameter of 1 μm or less and sealing the inside under reduced pressure. The effect is that since it is a fine powder, excellent heat insulating performance can be obtained at a degree of vacuum of 0.1 to 1 mmHg, which is easily industrialized.
【0007】さらに、前記粉末の課題である粉塵飛散と
扱い難さを改善した考案として、特開昭60−0892
53が開示されている。内容は、繊維や乳化剤等で成形
した無機粉末を芯材として使用した真空断熱体である。[0007] Furthermore, Japanese Patent Application Laid-Open No. 60-0892 discloses a device for improving the problem of dust scattering and difficulty in handling the powder.
53 are disclosed. The content is a vacuum heat insulator using, as a core, an inorganic powder molded with fibers, an emulsifier, or the like.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、従来の
構成では保温機器や電冷機器の断熱しようとする容体の
全周を覆うためには、異形成形した芯材を使用した真空
断熱体を複数個使用する必要がある。したがって、成形
行程を複雑化する上、工数が掛かり生産性を悪化する問
題があった。However, in the conventional configuration, in order to cover the entire circumference of the container to be thermally insulated of the heat insulation device or the electric cooling device, a plurality of vacuum heat insulators using a deformed core material are required. Must be used. Therefore, there is a problem that the molding process is complicated and the number of man-hours is increased, thereby reducing productivity.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
本発明の真空断熱体は、平板状に固形化した粉末材料か
らなる芯材と、アルミを有するプラスチックラミネート
フィルムからなる外被材によって構成され、前記芯材が
片面もしくは両面の端部を貫く溝を有するため、断熱し
ようとする容体に沿った形状に容易に変形することがで
きる。In order to solve the above-mentioned problems, a vacuum heat insulator according to the present invention comprises a core material made of a powdered material solidified into a flat plate and a jacket material made of a plastic laminate film having aluminum. Since the core material has a groove penetrating one or both ends, the core material can be easily deformed into a shape along the container to be thermally insulated.
【0010】また、容体に沿った形状に変形した後の肉
厚が溝の深さから予測できるため、肉厚のばらつきを小
さくでき、後加工でのプレス等の必要がない。したがっ
て、真空断熱体の密度のばらつきを抑制し、部分的な断
熱性能の悪化がない。In addition, since the thickness after deformation into the shape along the container can be predicted from the depth of the groove, variation in the thickness can be reduced, and there is no need for a press or the like in post-processing. Therefore, variation in the density of the vacuum heat insulator is suppressed, and there is no partial deterioration in heat insulation performance.
【0011】また、芯材が直方体であり、少なくとも外
被材に挿入する方向と平行な4辺の面取り加工が施され
ているため、芯材を外被材に挿入する時、端部における
粉末の崩壊が起こりにくく、シール性の悪化に起因した
真空度の悪化が起こりにくい。Further, since the core material is a rectangular parallelepiped and has at least four chamfers parallel to the direction in which the core material is inserted, when the core material is inserted into the jacket material, the powder at the end portion is Is less likely to collapse, and the degree of vacuum is less likely to deteriorate due to the deterioration of the sealing property.
【0012】また、芯材が直方体であり相対向する少な
くとも2辺にテーパーを有するため、円筒状の容体の外
周に装着する場合、継ぎ目における隙間がなく断熱性能
を悪化することがない。Further, since the core material is a rectangular parallelepiped and has tapered at least two opposing sides, there is no gap at the seam when mounted on the outer periphery of the cylindrical container, so that the heat insulating performance is not deteriorated.
【0013】また、芯材が片面もしくは両面の端部を貫
く溝を有し、かつ溝を有する面上に軟質フォームを有す
るため、外被材のアルミが溝に沿って芯材の厚さ方向に
深く入り込むことがなく、熱リークによる断熱性能の悪
化が抑制される。Further, since the core material has a groove penetrating one or both ends, and the flexible foam is formed on the surface having the groove, the aluminum of the jacket material is formed along the groove in the thickness direction of the core material. And the heat insulation performance is prevented from deteriorating due to heat leak.
【0014】[0014]
【発明の実施の形態】本発明の請求項1に記載の発明
は、平板状に固形化した粉末材料からなる芯材と、アル
ミを有するプラスチックラミネートフィルムからなる外
被材によって構成される真空断熱体において、前記芯材
が片面もしくは両面の端部を貫く溝を有する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention described in claim 1 of the present invention is a vacuum heat insulating material constituted by a core material made of a powder material solidified into a flat plate and a jacket material made of a plastic laminate film having aluminum. In the body, the core has a groove penetrating one or both ends.
【0015】以上のような真空断熱体では、断熱しよう
とする容体に沿った形状に容易に変形することができ
る。The above-described vacuum heat insulator can be easily deformed into a shape along the container to be insulated.
【0016】また、容体に沿った形状に変形した後の肉
厚が溝の深さから予測できるため、肉厚のばらつきを小
さくでき、後加工でのプレス等の必要がない。したがっ
て、真空断熱体の密度のばらつきを抑制し、部分的な断
熱性能の悪化がない。Further, since the thickness after the deformation to the shape conforming to the container can be predicted from the depth of the groove, the variation in the thickness can be reduced, and there is no need for a press or the like in post-processing. Therefore, variation in the density of the vacuum heat insulator is suppressed, and there is no partial deterioration in heat insulation performance.
【0017】また、本発明の請求項2記載の発明は、芯
材が直方体であり、相対向する少なくとも2辺にテーパ
ーを有するため、円筒形の容体の外周に装着する場合、
継ぎ目における隙間がなく断熱性能を悪化することがな
い。In the invention according to claim 2 of the present invention, since the core material is a rectangular parallelepiped and has tapered at least two opposing sides, the core material is mounted on the outer periphery of a cylindrical container.
There is no gap at the seam and the heat insulation performance does not deteriorate.
【0018】また、本発明の請求項3記載の発明は、芯
材が直方体であり、少なくとも外被材に挿入する方向と
平行な4辺の面取り加工が施されているため、芯材を外
被材に挿入する時、端部における粉末の崩壊が起こりに
くく、シール性の悪化に起因した真空度の悪化が起こり
にくい。In the invention according to claim 3 of the present invention, the core material is a rectangular parallelepiped, and at least four sides parallel to the direction of insertion into the jacket material are chamfered. When inserted into the material, the powder at the end is less likely to collapse, and the degree of vacuum due to the deterioration of the sealability is less likely to occur.
【0019】また、本発明の請求項4記載の発明は、芯
材が片面もしくは両面の端部を貫く溝を有し、かつ溝を
有する面上に軟質フォームを有するため、外被材のアル
ミが溝に沿って芯材の厚さ方向に深く入り込むことがな
く、熱リークによる断熱性能の悪化が抑制される。In the invention according to claim 4 of the present invention, the core material has a groove penetrating one or both ends and has a flexible foam on the surface having the groove. Does not penetrate deeply in the thickness direction of the core material along the groove, and deterioration of heat insulation performance due to heat leak is suppressed.
【0020】[0020]
【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0021】(実施例1)図1は本発明の一実施形態に
おける芯材の外観図である。1は無機粉末からなる芯
材、2は芯材表面に形成した溝である。(Example 1) FIG. 1 is an external view of a core material according to an embodiment of the present invention. 1 is a core material made of an inorganic powder, and 2 is a groove formed on the surface of the core material.
【0022】芯材1は、凝集シリカ粉末と珪酸カルシウ
ム粉末を混合し、幅230mm、長さ640mm、厚さ
7mmの直方体に圧縮成形した粉末成形体である。The core material 1 is a powder compact obtained by mixing an agglomerated silica powder and a calcium silicate powder and compression-molding into a rectangular parallelepiped having a width of 230 mm, a length of 640 mm and a thickness of 7 mm.
【0023】溝2は、芯材1の片面の端部を貫通するよ
う平行に複数本設けられている。溝2の形状は、深くな
るにつれて幅が狭くなるV字形状をしている。溝2の深
さは2mmであり、芯材表面における幅は2mmであ
る。直方体の短手方向に平行に13本の溝を48mmピ
ッチの均等間隔になるよう施した。溝2の加工は切削工
具を用いて切り取った。A plurality of grooves 2 are provided in parallel so as to penetrate an end of one side of the core material 1. The shape of the groove 2 is a V-shape in which the width decreases as the depth increases. The depth of the groove 2 is 2 mm, and the width on the surface of the core material is 2 mm. Thirteen grooves were formed in parallel with the short direction of the rectangular parallelepiped so as to have a uniform pitch of 48 mm. The groove 2 was cut using a cutting tool.
【0024】図2は本発明の一実施形態における真空断
熱体の外観図であり、3は真空断熱体、4は外被材であ
る。外被材4の構成は、ポリエチレンテレフタレートフ
ィルム(12μm)、アルミ蒸着エチレン・ビニルアル
コール共重合体フィルム(15μm)、結晶性ポリプロ
ピレンフィルム(50μm)からなるラミネートフィル
ムである。FIG. 2 is an external view of a vacuum heat insulator according to one embodiment of the present invention, 3 is a vacuum heat insulator, and 4 is a jacket material. The structure of the jacket material 4 is a laminated film composed of a polyethylene terephthalate film (12 μm), an aluminum-deposited ethylene / vinyl alcohol copolymer film (15 μm), and a crystalline polypropylene film (50 μm).
【0025】真空断熱体3は、成形及び溝加工した平板
状の芯材1を120℃の熱風乾燥炉内で約1時間乾燥し
た後、3辺を熱容着したアルミ蒸着ラミネートフィルム
からなる外被材4に挿入した。そのまま、真空チャンバ
ー内に挿入し0.1torr以下で2分間維持し、その
まま残りの1辺を熱容着すると同時に大気解放すること
によって得た。The vacuum heat insulator 3 is formed by drying a molded and grooved flat core material 1 in a hot air drying oven at 120 ° C. for about 1 hour, and then forming an aluminum vapor-deposited laminated film heat-sealed on three sides. It was inserted into the workpiece 4. As it was, it was inserted into a vacuum chamber and maintained at 0.1 torr or less for 2 minutes, and the remaining one side was heat-sealed and simultaneously released to the atmosphere.
【0026】得られた真空断熱体は、芯材1の溝2に大
気圧縮による応力が集中し、溝が形成していた空間を埋
め尽くす方向に変形した。その結果、図2に示す円筒形
状の真空断熱体3を得ることができた。In the obtained vacuum heat insulator, stress due to atmospheric compression was concentrated on the groove 2 of the core material 1 and was deformed in a direction to fill the space formed by the groove. As a result, a cylindrical vacuum heat insulator 3 shown in FIG. 2 was obtained.
【0027】上記真空断熱体の熱伝導率と内部圧力を測
定した。熱伝導率は、ランダムな4箇所を平均温度24
℃に設定した熱伝導率測定装置で測定した。また、内部
圧力は、真空チャンバー内で差圧による膨らみ始めの点
を読みとることによって求めた。比較例として、溝を設
けなかった芯材を同様の方法で作製し、平板状の真空断
熱体を得た後、後行程で円筒形状にロール加工した場合
の物性を測定した。結果を(表1)に示す。The thermal conductivity and the internal pressure of the vacuum insulator were measured. Thermal conductivity was measured at an average temperature of 24 at four random locations.
It measured with the thermal conductivity measuring device set to ° C. The internal pressure was determined by reading the point at which swelling started due to the differential pressure in the vacuum chamber. As a comparative example, a core material without a groove was prepared in the same manner, a flat vacuum heat insulator was obtained, and then physical properties in a case of being rolled into a cylindrical shape in a subsequent process were measured. The results are shown in (Table 1).
【0028】[0028]
【表1】 [Table 1]
【0029】ランダムに測定した4箇所の熱伝導率は、
本発明の実施例においてほぼ一定の値を示したが、比較
例では0.0012kcal/mh℃もの範囲でばらつ
いた値となった。The thermal conductivities at four points measured at random are:
In the examples of the present invention, the values were almost constant, but in the comparative examples, the values varied in the range of 0.0012 kcal / mh ° C.
【0030】これは、芯材部の堅さのばらつきがあった
ため、内径と外径の差によって生じた芯材の崩壊厚肉部
が円筒ロール加工で部分的に圧縮され、密度のばらつき
が生じたためである。This is because, due to the variation in the hardness of the core portion, the collapsed thick portion of the core material caused by the difference between the inner diameter and the outer diameter is partially compressed by the cylindrical roll processing, and the variation in the density occurs. It is because.
【0031】なお、溝2の加工については、芯材の圧縮
成形用冶具に予めフィンを設け、溝を設けた場合にも同
様の効果が得られた。Regarding the processing of the groove 2, the same effect was obtained when the fin was previously provided in the compression molding jig of the core material and the groove was provided.
【0032】以上のように、芯材に端部を貫く溝がある
ため、真空断熱体の形状を大気圧縮による応力のみで断
熱しようとする容体に沿った形状に変形することができ
る。As described above, since the core material has the groove penetrating the end, the shape of the vacuum heat insulator can be deformed into a shape along the container to be insulated only by the stress due to the atmospheric compression.
【0033】また、容体に沿った形状に変形した後の肉
厚が溝の深さから予測できるため、肉厚のばらつきを小
さくでき、後加工でのプレス等の必要がない。したがっ
て、真空断熱体の密度のばらつきを抑制し、部分的な断
熱性能の悪化がない。In addition, since the thickness after the deformation into the shape along the container can be predicted from the depth of the groove, the variation in the thickness can be reduced, and there is no need for a press or the like in post-processing. Therefore, variation in the density of the vacuum heat insulator is suppressed, and there is no partial deterioration in heat insulation performance.
【0034】(実施例2)図3は、本真空断熱体の一実
施形態における断面図である。芯材1は円筒状の真空断
熱体3の継ぎ目5において、テーパーを形成させた。テ
ーパーは、芯材の短手端部に平行に、テーパー部断面の
大きさが230mm*16mmとなるよう施し、芯材の
対抗する辺において同様のテーパーを設けた。Example 2 FIG. 3 is a sectional view of an embodiment of the present vacuum heat insulator. The core material 1 was tapered at the joint 5 of the cylindrical vacuum heat insulator 3. The taper was applied in parallel with the short end of the core material so that the cross-sectional size of the tapered portion was 230 mm * 16 mm, and a similar taper was provided on the opposite side of the core material.
【0035】上記により、真空断熱体3が円筒状に形成
されたとき、テーパー面同士が重なり合う状態を造るこ
とができた。As described above, when the vacuum heat insulator 3 is formed in a cylindrical shape, a state where the tapered surfaces overlap each other can be produced.
【0036】(表2)は、外形が190mm、高さが2
50mmのステンレス円筒容器内に100℃の熱湯を9
分目まで注ぎ、円筒状の真空断熱体3を容器に巻き付け
固定した場合の、継ぎ目5における外周面上の2時間後
の温度を測定した結果である。比較として、テーパーを
設けなかった場合の継ぎ目5の外周面上の温度を測定し
た。なお、測定時の外気温は30℃であった。Table 2 shows that the outer shape is 190 mm and the height is 2
9 Hot water of 100 ° C in a 50 mm stainless steel cylindrical container
It is the result of measuring the temperature after 2 hours on the outer peripheral surface of the seam 5 when the cylindrical vacuum heat insulator 3 was wound around the container and fixed until the second minute. For comparison, the temperature on the outer peripheral surface of the joint 5 when no taper was provided was measured. The outside air temperature at the time of measurement was 30 ° C.
【0037】[0037]
【表2】 [Table 2]
【0038】比較例に対して、実施例では6℃の温度低
下が見られた。湯の温度がほぼ85℃と同じで、表面温
度に差が生じたことから、継ぎ目部分における断熱性能
の差があったといえる。また、継ぎ目から100mm離
れた場所での温度が43℃であっかことから、実施例に
おける継ぎ目の断熱性能の低下がほとんどなかった。As compared with the comparative example, a temperature drop of 6 ° C. was observed in the example. Since the temperature of the hot water was almost the same as 85 ° C. and the surface temperature was different, it can be said that there was a difference in the heat insulation performance at the joint. Further, since the temperature at a location 100 mm away from the seam was 43 ° C., there was almost no decrease in the heat insulation performance of the seam in the example.
【0039】(実施例3)また、芯材が直方体であり、
図1における面取り部6に示す4辺を面取り加工してい
る。面取り部は端部から1mmであり、芯材を外被材に
挿入する時、端部における粉末の崩壊が起こりにくく、
シール性の悪化に起因した真空度の悪化が起こらなくな
った。(Embodiment 3) The core material is a rectangular parallelepiped,
The four sides shown in the chamfered portion 6 in FIG. 1 are chamfered. The chamfered portion is 1 mm from the end, and when the core material is inserted into the jacket material, the powder at the end hardly collapses,
The deterioration of the degree of vacuum caused by the deterioration of the sealing property did not occur.
【0040】[0040]
【発明の効果】以上のように、本発明の真空断熱体は、
平板状に固形化した粉末材料からなる芯材と、アルミを
有するプラスチックラミネートフィルムからなる外被材
によって構成される真空断熱体において、前記芯材が片
面もしくは両面の端部を貫く溝を有する。As described above, the vacuum insulator of the present invention is
In a vacuum heat insulator composed of a core material made of a powder material solidified into a flat plate and a jacket material made of a plastic laminated film containing aluminum, the core material has a groove penetrating one or both ends.
【0041】したがって、断熱しようとする容体に沿っ
た形状に容易に変形することができる。Therefore, it can be easily deformed into a shape along the container to be insulated.
【0042】また、容体に沿った形状に変形した後の肉
厚が溝の深さから予測できるため、肉厚のばらつきを小
さくでき、後加工でのプレス等の必要がない。したがっ
て、真空断熱体の密度のばらつきを抑制し、部分的な断
熱性能の悪化がない。Further, since the thickness after the deformation to the shape conforming to the container can be predicted from the depth of the groove, the variation in the thickness can be reduced, and there is no need for a press or the like in post-processing. Therefore, variation in the density of the vacuum heat insulator is suppressed, and there is no partial deterioration in heat insulation performance.
【0043】また、本発明の真空断熱体は、芯材が直方
体であり、相対向する少なくとも2辺にテーパーを有す
るため、円筒形の容体の外周に装着する場合、継ぎ目に
おける隙間がなく断熱性能を悪化することがない。In the vacuum heat insulator of the present invention, since the core material is a rectangular parallelepiped and has tapered at least two opposing sides, there is no gap at the seam when installed on the outer periphery of the cylindrical container. Does not worsen.
【0044】また、本発明の真空断熱体は、芯材が直方
体であり、少なくとも外被材に挿入する方向と平行な4
辺の面取り加工が施されているため、芯材を外被材に挿
入する時、端部における粉末の崩壊が起こりにくく、シ
ール性の悪化に起因した真空度の悪化が起こりにくい。In the vacuum heat insulator of the present invention, the core material is a rectangular parallelepiped, and at least the core material is parallel to the direction of insertion into the jacket material.
Since the sides are chamfered, the powder at the ends is less likely to collapse when the core material is inserted into the outer cover material, and the degree of vacuum due to the deterioration of the sealing property is less likely to occur.
【図1】本発明の一実施形態による芯材の外観図FIG. 1 is an external view of a core material according to an embodiment of the present invention.
【図2】本発明の一実施形態による真空断熱体の外観図FIG. 2 is an external view of a vacuum insulator according to an embodiment of the present invention.
【図3】本発明の一実施形態による真空断熱体の断面図FIG. 3 is a sectional view of a vacuum insulator according to an embodiment of the present invention.
1 芯材 2 溝 3 真空断熱体 4 外被材 5 面取り部 6 継ぎ目 DESCRIPTION OF SYMBOLS 1 Core material 2 Groove 3 Vacuum heat insulator 4 Jacket material 5 Chamfer part 6 Joint
Claims (3)
材と、アルミを有するプラスチックラミネートフィルム
からなる外被材によって構成される真空断熱体におい
て、前記芯材が片面もしくは両面の端部を貫く溝を有す
ることを特徴とする真空断熱体。1. A vacuum heat insulator composed of a core material made of a powdered material solidified into a flat plate and a jacket material made of a plastic laminate film having aluminum, wherein the core material has one or both ends. A vacuum insulator having a penetrating groove.
材と、アルミを有するプラスチックラミネートフィルム
からなる外被材によって構成される真空断熱体におい
て、前記芯材が直方体であり相対向する少なくとも2辺
にテーパーを有することを特徴とする請求項1記載の真
空断熱体。2. A vacuum heat insulator comprising a core material made of a powdered material solidified into a flat plate and a jacket material made of a plastic laminate film having aluminum, wherein said core material is a rectangular parallelepiped and at least faces each other. The vacuum heat insulator according to claim 1, wherein the vacuum heat insulator has a taper on two sides.
材と、アルミを有するプラスチックラミネートフィルム
からなる外被材によって構成される真空断熱体におい
て、前記芯材が直方体であり、少なくとも外被材に挿入
する方向と平行な4辺の面取り加工を施したことを特徴
とする請求項1及び2記載の真空断熱体。3. A vacuum heat insulator comprising a core material made of a powdered material solidified into a flat plate and a jacket material made of a plastic laminated film having aluminum, wherein said core material is a rectangular parallelepiped, and at least 3. The vacuum heat insulator according to claim 1, wherein chamfering is performed on four sides parallel to a direction of insertion into the material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11050034A JP2000249290A (en) | 1999-02-26 | 1999-02-26 | Vacuum heat insulating body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11050034A JP2000249290A (en) | 1999-02-26 | 1999-02-26 | Vacuum heat insulating body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000249290A true JP2000249290A (en) | 2000-09-12 |
Family
ID=12847729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11050034A Pending JP2000249290A (en) | 1999-02-26 | 1999-02-26 | Vacuum heat insulating body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000249290A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006102296A (en) * | 2004-10-07 | 2006-04-20 | Matsushita Electric Ind Co Ltd | Insulation tank and electric water heater |
WO2006062080A1 (en) * | 2004-12-07 | 2006-06-15 | Matsushita Electric Industrial Co., Ltd. | Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material |
JP2007321951A (en) * | 2006-06-05 | 2007-12-13 | Kurabo Ind Ltd | Vacuum insulation |
JP2010096293A (en) * | 2008-10-17 | 2010-04-30 | Mitsubishi Electric Corp | Vacuum heat insulating material |
CN102147041A (en) * | 2011-03-11 | 2011-08-10 | 苏州维艾普新材料有限公司 | Special-shaped vacuum heat insulation panel and manufacturing method thereof |
CN102305335A (en) * | 2011-08-16 | 2012-01-04 | 靡玥崎 | Bent vacuum insulation board and manufacturing method thereof |
CN102393076A (en) * | 2011-10-31 | 2012-03-28 | 本科电器有限公司 | Water heater adopting vacuum insulation panel to insulate heat and preserve heat |
US20120201997A1 (en) | 2009-10-16 | 2012-08-09 | Mitsubishi Electric Corporation | Vacuum heat insulating material and refrigerator |
CN103727355A (en) * | 2013-04-22 | 2014-04-16 | 太仓派欧技术咨询服务有限公司 | Deformable compound insulation plate and manufacturing method thereof |
KR20140101307A (en) | 2013-02-08 | 2014-08-19 | 오씨아이 주식회사 | Method for forming curved surface of vacuum insulation panel and apparatus for purifying cold and hot water using vacuum insulation panel formed curved surface |
US9068683B2 (en) | 2009-10-16 | 2015-06-30 | Mitsubishi Electric Corporation | Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator |
US9074716B2 (en) | 2008-12-26 | 2015-07-07 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material |
US9103482B2 (en) | 2009-10-19 | 2015-08-11 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material |
JP2017203541A (en) * | 2016-05-13 | 2017-11-16 | 黒崎播磨株式会社 | Heat insulation material and construction method thereof |
CN111229078A (en) * | 2020-03-13 | 2020-06-05 | 南通福美新材料有限公司 | Production process of vacuum heat insulation plate core material |
-
1999
- 1999-02-26 JP JP11050034A patent/JP2000249290A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006102296A (en) * | 2004-10-07 | 2006-04-20 | Matsushita Electric Ind Co Ltd | Insulation tank and electric water heater |
WO2006062080A1 (en) * | 2004-12-07 | 2006-06-15 | Matsushita Electric Industrial Co., Ltd. | Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material |
US8753471B2 (en) | 2004-12-07 | 2014-06-17 | Panasonic Corporation | Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material |
JP2007321951A (en) * | 2006-06-05 | 2007-12-13 | Kurabo Ind Ltd | Vacuum insulation |
JP2010096293A (en) * | 2008-10-17 | 2010-04-30 | Mitsubishi Electric Corp | Vacuum heat insulating material |
US9074717B2 (en) | 2008-12-26 | 2015-07-07 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material |
US9074716B2 (en) | 2008-12-26 | 2015-07-07 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material |
US8920899B2 (en) | 2009-10-16 | 2014-12-30 | Mitsubishi Electric Corporation | Vacuum heat insulating material and refrigerator |
US20120201997A1 (en) | 2009-10-16 | 2012-08-09 | Mitsubishi Electric Corporation | Vacuum heat insulating material and refrigerator |
US9068683B2 (en) | 2009-10-16 | 2015-06-30 | Mitsubishi Electric Corporation | Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator |
US9103482B2 (en) | 2009-10-19 | 2015-08-11 | Mitsubishi Electric Corporation | Vacuum heat insulating material, heat insulating box, refrigerator, refrigerating/air-conditioning apparatus, water heater, appliance, and manufacturing method of vacuum heat insulating material |
CN102147041A (en) * | 2011-03-11 | 2011-08-10 | 苏州维艾普新材料有限公司 | Special-shaped vacuum heat insulation panel and manufacturing method thereof |
CN102305335A (en) * | 2011-08-16 | 2012-01-04 | 靡玥崎 | Bent vacuum insulation board and manufacturing method thereof |
CN102393076A (en) * | 2011-10-31 | 2012-03-28 | 本科电器有限公司 | Water heater adopting vacuum insulation panel to insulate heat and preserve heat |
KR20140101307A (en) | 2013-02-08 | 2014-08-19 | 오씨아이 주식회사 | Method for forming curved surface of vacuum insulation panel and apparatus for purifying cold and hot water using vacuum insulation panel formed curved surface |
CN103727355A (en) * | 2013-04-22 | 2014-04-16 | 太仓派欧技术咨询服务有限公司 | Deformable compound insulation plate and manufacturing method thereof |
JP2017203541A (en) * | 2016-05-13 | 2017-11-16 | 黒崎播磨株式会社 | Heat insulation material and construction method thereof |
CN111229078A (en) * | 2020-03-13 | 2020-06-05 | 南通福美新材料有限公司 | Production process of vacuum heat insulation plate core material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000249290A (en) | Vacuum heat insulating body | |
KR100540522B1 (en) | Vacuum Insulation and Devices Using it | |
JP3137946B2 (en) | Thermal insulation panel and manufacturing method thereof | |
TW591163B (en) | Process for manufacturing a flexible thermoinsulating device and so obtained device | |
US20120231204A1 (en) | Grooved type vacuum thermal insulation material and a production method for the same | |
JP3513142B2 (en) | Vacuum insulation, insulation, insulation box, insulation door, storage and refrigerator | |
WO2010087039A1 (en) | Vacuum insulation material and insulation box using the same | |
JP2007155065A (en) | Vacuum heat insulating material and manufacturing method thereof | |
KR20010075484A (en) | Vacuum insulation panel and method of preparing the same | |
CN103210250B (en) | Vacuum insulation material and method for producing same | |
EP1458551B1 (en) | Method for producing thermo-insulating cylindrical vacuum panels and panels thereby obtained | |
KR19990072618A (en) | Panel-shaped, evacuated molded element, method of thermal insulation and use of the molded element | |
KR101560125B1 (en) | Method for manufacturing insulation box improved insulation performance and insulation box for the same | |
TW494207B (en) | Evacuated panel for thermal insulation of cylindrical bodies | |
JP2000105069A (en) | Heat insulator | |
JP3455252B2 (en) | Vacuum insulation | |
WO2018047261A1 (en) | Vacuum insulation material and insulation box | |
JP6359087B2 (en) | Vacuum heat insulating material and heat insulator provided with the same | |
JP2001295986A (en) | Vacuum insulation material and method of manufacturing the same | |
JP4616481B2 (en) | Microporous insulation | |
JP2000018485A (en) | Evacuated insulation panel | |
CN221811135U (en) | Heating ventilation heat preservation pipe | |
JP2007138976A (en) | Vacuum heat insulating material and manufacturing method thereof | |
KR100329475B1 (en) | Vacuum adiabatic panel and manufacturing method thereof | |
CN113785154B (en) | Vacuum heat insulating material and heat insulating box using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060207 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060314 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090423 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090818 |