[go: up one dir, main page]

JP2000247722A - Flame-retardant board and its production - Google Patents

Flame-retardant board and its production

Info

Publication number
JP2000247722A
JP2000247722A JP5622099A JP5622099A JP2000247722A JP 2000247722 A JP2000247722 A JP 2000247722A JP 5622099 A JP5622099 A JP 5622099A JP 5622099 A JP5622099 A JP 5622099A JP 2000247722 A JP2000247722 A JP 2000247722A
Authority
JP
Japan
Prior art keywords
sodium metasilicate
powder
acid
inorganic powder
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5622099A
Other languages
Japanese (ja)
Inventor
Katsuro Sato
勝朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANBA SHINGO
Original Assignee
HANBA SHINGO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANBA SHINGO filed Critical HANBA SHINGO
Priority to JP5622099A priority Critical patent/JP2000247722A/en
Publication of JP2000247722A publication Critical patent/JP2000247722A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Panels For Use In Building Construction (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively obtain a board having excellent heat resistance, flame retardance and soundproofing properties, not emitting a toxic gas by formulating a powder mixture having a specific composition composed of a vegetable fiber, inorganic powder, an acid and a coloring matter with an aqueous solution of sodium metasilicate, kneading, molding the mixture under pressure and drying. SOLUTION: A vegetable fiber of powder raw material in an amount of 15-60% is sufficiently formulated with 5-30% of inorganic powder of functional material, 2-10% of an acid and about 2.5% of a coloring matter. The vegetable fiber is preferably a cellulose having 10-300 μm diameter and 30-300 μm length. The inorganic powder is preferably a metal oxide having 0.3-300 μm diameter and natural stone named Hanmokustone, or the like, are used. An acid having 0.5-1,000 μm is used. The powder mixture is kneaded with an aqueous solution of sodium metasilicate and uniformly dispersed. The aqueous solution of sodium metasilicate is obtained by adding 5-80% of sodium metasilicate to water and mixing. The kneaded material is molded under pressure and dried to give the objective high-strength flame-retardant board.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、断熱材、建具材等
の広い用途に供する難燃性ボードとその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flame-retardant board used for a wide range of uses such as a heat insulating material and a fitting material, and a method for producing the same.

【0002】[0002]

【従来の技術】人体に直接影響するアスベストに代わっ
て、最近では発泡プラスチックや樹脂材,ガラスウール
等を用いた断熱材が用いられ、またビルのコンクリート
壁面には高温に耐える石灰が難燃材として混入されてい
る。
2. Description of the Related Art Insulating materials using foamed plastics, resin materials, glass wool, and the like have recently been used in place of asbestos that directly affects the human body. It is mixed as.

【0003】[0003]

【発明が解決しようとする課題】一般的断熱材としての
発泡プラスチックや樹脂材は高い難燃性を有するが、有
機物のため火災時に異臭を伴う有毒ガスが発生するとい
う問題点がある。一方ガラスウールは、有毒ガスの発生
がなく難燃材として優れるが、ガラスを繊維状に引き伸
ばしたものであるため建築の際に袋に詰め込む作業を必
要とし、詰め込んだ袋を壁と壁の間に積み上げるので取
り扱い上頗る不便を要するのと、材料費がかゝるという
欠点がある。また炭酸カルシウムである石灰は、コンク
リートの難燃材以外にはあまり用いられない。
Although foamed plastics and resin materials as general heat insulating materials have high flame retardancy, they have a problem that toxic gas with an unpleasant odor is generated at the time of fire due to organic substances. On the other hand, glass wool does not generate toxic gas and is excellent as a flame retardant.However, since glass is stretched into a fibrous form, it is necessary to pack it into bags at the time of construction. However, there are disadvantages in that the handling is extremely inconvenient because the materials are piled up and material costs are high. Lime, which is calcium carbonate, is rarely used except for flame retardants for concrete.

【0004】本発明は上記した従来の事情に鑑みてなさ
れたもので、耐熱性、難燃性、防音性に優れ、有毒ガス
の発生がなく、断熱材はもとより建材として、また家具
建具類など広範な用途に供することができるとともに、
安価に得られる難燃性ボードとその製造方法を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and is excellent in heat resistance, flame retardancy and soundproofing, does not generate toxic gas, and is used not only as a heat insulating material but also as a building material and as a furniture fitting. Can be used for a wide range of applications,
It is an object of the present invention to provide a flame-retardant board which can be obtained at low cost and a method for producing the board.

【0005】[0005]

【課題を解決するための手段】そこで本発明は、粉体原
料である植物性繊維15〜60%、機能材である無機粉
体5〜30%、酸2〜10%、色素2.5%程度からな
る粉体混合物に、メタ珪酸ナトリウム5〜80%のメタ
珪酸ナトリウム水溶液を加えて形成した混練物を、加圧
成形するとともに乾燥してなる難燃性ボードを主旨とし
ている。
Accordingly, the present invention provides 15 to 60% of vegetable fiber as a powder raw material, 5 to 30% of an inorganic powder as a functional material, 2 to 10% of an acid, and 2.5% of a pigment. The main object is a flame-retardant board formed by adding a 5 to 80% sodium metasilicate aqueous solution of sodium metasilicate to a powder mixture consisting of a mixture and pressing and drying the mixture.

【0006】そのための製造方法として、粉体原料とし
て径10〜300μm・長さ50〜3000μmの植物
性繊維15〜60%、機能材として径0.3〜300μ
mの金属酸化物である無機粉体5〜30%、0.5〜1
000μmの酸2〜10%、色素2.5%程度をよく混
合して粉体混合物を形成し、液体原料であるメタ珪酸ナ
トリウム5〜80%を水に加え混合してメタ珪酸ナトリ
ウム水溶液となし、前記粉体混合物にメタ珪酸ナトリウ
ム水溶液を加えて混練し均一に分散させるとともに混練
したものを加圧成形し、乾燥する工程からなることを手
段としている。
As a production method therefor, 15 to 60% of vegetable fiber having a diameter of 10 to 300 μm and a length of 50 to 3000 μm as a powder raw material, and a diameter of 0.3 to 300 μm as a functional material
5 to 30%, 0.5 to 1 of an inorganic powder which is a metal oxide of m
A powder mixture is formed by thoroughly mixing 2 to 10% of an acid of 000 μm and about 2.5% of a pigment, and 5 to 80% of sodium metasilicate as a liquid material is added to water and mixed to form an aqueous solution of sodium metasilicate. And a step of adding an aqueous solution of sodium metasilicate to the powder mixture, kneading and uniformly dispersing the mixture, and pressing and molding the kneaded mixture, followed by drying.

【0007】[0007]

【発明の実施の形態】植物性繊維すなわちセルロース繊
維を40%(径は100μmで長さ1000μm程
度)、無機粉体の金属酸化物粒子を20%(径100μ
m程度)、酸を5%(500μm程度)、色素2.5%
程度をよく混合して粉体混合物とし、これに30%以上
の液体原料であるメタ珪酸ナトリウムを水に混合してな
るメタ珪酸ナトリウム水溶液を加え混練する工程と、混
練したものを加圧する工程、そして加圧成形後に乾燥を
する工程を経て本発明の難燃性ボードは形成される。な
お金属酸化物として、SiO2 84%、Al23
%、Fe23 0.76%等で構成される天然物の通称
斑母石を用いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Vegetable fibers, ie, cellulose fibers, are 40% (diameter is about 100 μm and length is about 1000 μm), and metal oxide particles of inorganic powder are 20% (diameter 100 μm).
m), 5% acid (about 500 μm), 2.5% dye
Mixing and kneading the mixture into a powder mixture, and adding and mixing an aqueous solution of sodium metasilicate obtained by mixing sodium metasilicate, which is a liquid raw material of 30% or more, with water; Then, the flame-retardant board of the present invention is formed through a step of drying after pressure molding. In addition, as a metal oxide, 84% of SiO 2 and Al 2 O 3 8
%, Fe 2 O 3, 0.76%, etc., which are commonly used as natural products.

【0008】[0008]

【実施例】(混練工程)フィブリル化したセルロース繊
維1は、繊維同士絡み合いながら均一に分散した水分を
吸収しながら、繊維間でセルロース繊維のOH基と水分
子H2 O間での水素結合によって結合する(図1及び図
2(a)・(b)参照)。
EXAMPLES (Kneading step) The fibrillated cellulose fibers 1 absorb the uniformly dispersed moisture while being entangled with each other, and undergo hydrogen bonding between the OH groups of the cellulose fibers and water molecules H 2 O between the fibers. (See FIGS. 1 and 2 (a) and 2 (b)).

【0009】水分子の仲介による水素結合により結合し
たセルロース繊維1は鎖状、三次元的に網目構造を形成
し、分散している金属酸化物粒子(無機粉体2)を、図
3(a)・(b)に示したように繊維間の空洞に捕捉し
たり、繊維の表面に分散している無機粉体2はメタ珪酸
ナトリウムによって覆われ、メタ珪酸ナトリウムが酸に
より不溶性メタ珪酸ゲル3に変わることで該メタ珪酸ゲ
ル3に捕捉される(図3(c)、図4(a)・(b)・
(c)参照)。
Cellulose fibers 1 bonded by hydrogen bonds mediated by water molecules form a chain and three-dimensional network structure, and disperse metal oxide particles (inorganic powder 2) in FIG. (B) As shown in (b), the inorganic powder 2 trapped in the cavities between the fibers or dispersed on the surface of the fibers is covered with sodium metasilicate, and the sodium metasilicate is insoluble in acid by the acid. (FIG. 3C, FIG. 4A, FIG. 4B)
(C)).

【0010】液状のメタ珪酸ナトリウム水溶液は繊維の
表面を覆い、被膜を形成する(図4(c)参照)。繊維
内部の細孔部4及び繊維間の空洞5にしみ込んだメタ珪
酸ナトリウムは酸と反応して不溶性メタ珪酸ゲル3にな
り、鎖状、三次元的網目構造の一体化した骨格の形成が
進む(図4(a)・(b)・(c)参照)。
The liquid sodium metasilicate aqueous solution covers the surface of the fiber and forms a coating (see FIG. 4 (c)). The sodium metasilicate soaked into the pores 4 inside the fiber and the cavity 5 between the fibers reacts with the acid to form an insoluble metasilicate gel 3, and the formation of an integrated skeleton of a chain-like and three-dimensional network structure proceeds. (See FIGS. 4A, 4B, and 4C).

【0011】(加圧工程)混練したものを所定の形状に
加圧成形することで、混練物の各物質間(繊維同士、繊
維とメタ珪酸ナトリウム、繊維ー無機粉体ーメタ珪酸ナ
トリウム間)に存在する空洞を減らし密着性を増す。そ
の結果、繊維間の水素結合等の結合力及び各物質間の結
合力を増し、所定の形状を形成する。
(Pressurizing step) The kneaded material is pressed into a predetermined shape to form a material between the materials of the kneaded material (fibers, fiber and sodium metasilicate, fiber-inorganic powder-sodium metasilicate). Reduces existing cavities and increases adhesion. As a result, the bonding force such as hydrogen bonding between the fibers and the bonding force between the respective substances are increased, and a predetermined shape is formed.

【0012】(乾燥工程)加圧成形後、乾燥することで
水分が蒸発する。 セルロース繊維1の間の水分も蒸発し、繊維と水との
水素結合がなくなり、その代わりとして繊維同士がお互
いのセルロース繊維のOH基により、新たに繊維間の水
素結合という強い結合力により結合し、鎖状、三次元的
網目構造のペーパーボードの骨格を形成する(図2
(c)、図1、図2(b)参照)。
(Drying step) After the pressure molding, the moisture is evaporated by drying. The water between the cellulose fibers 1 also evaporates, and the hydrogen bond between the fiber and water disappears. Instead, the fibers are newly bonded to each other by the OH group of the cellulose fibers due to the strong bonding force of the hydrogen bond between the fibers. To form a skeleton of a paperboard with a chain-like, three-dimensional network structure (Fig. 2
(C), see FIGS. 1 and 2 (b)).

【0013】一方、繊維の細孔部4や繊維の間の空洞
5部にしみ込んだメタ珪酸ナトリウムは酸により、メタ
珪酸ナトリウム内のNa+ イオンが酸と反応し、Na+
イオンが取り除かれた代わりに酸のH+ イオンが置換さ
れ不溶性のメタ珪酸ゲル3になる。乾燥操作で水分が蒸
発すると、繊維の細孔部4で固化したメタ珪酸ゲル3は
強く繊維と結束し、更に繊維の間の空洞や表面を覆った
メタ珪酸ゲルは鎖状、三次元的構造を作り、固化して繊
維間をも強く結束し、剥離しないため更にペーパーボー
ドの強度は上がる(図4(a)・(b)・(c)参
照)。
On the other hand, the sodium metasilicate impregnated into the pores 4 of the fiber and the cavity 5 between the fibers reacts with the acid, so that Na + ions in the sodium metasilicate react with the acid, and Na +
Instead of removing the ions, the H + ions of the acid are replaced to form an insoluble metasilicate gel 3. When moisture evaporates during the drying operation, the metasilicate gel 3 solidified in the pores 4 of the fiber is strongly bound to the fiber, and the metasilicate gel covering the voids and the surface between the fibers has a chain-like, three-dimensional structure. Is formed, solidified and strongly bound between the fibers, and does not peel off, further increasing the strength of the paper board (see FIGS. 4 (a), (b) and (c)).

【0014】 機能材としての金属酸化物(無機粉体
2)は他の原料と混合されて均一に分散し、一部は繊維
の内部に捕捉され、一部は繊維表面でメタ珪酸ゲル3に
より捕捉され、剥離しない状態でペーパーボードに一体
化でき、無機粉体の各々の機能性を発揮する(図3
(a)・(b)・(c)及び図5(a)・(b)参
照)。
A metal oxide (inorganic powder 2) as a functional material is mixed with other raw materials and uniformly dispersed, and a part of the metal oxide is trapped inside the fiber, and a part of the metal oxide is formed on the fiber surface by the metasilicate gel 3. It can be integrated with a paper board without being caught and peeled off, and each function of the inorganic powder is exhibited (Fig. 3
(A), (b), (c) and FIGS. 5 (a), (b).

【0015】[0015]

【発明の効果】本発明は以上のようであって、以下に示
す多様な効果を奏する。 1.珪酸ナトリウムが酸と化学反応してできた珪酸ゲル
は繊維の表面を薄い皮膜で覆い、更に機能材の無機粉体
も、繊維の表面及び網目構造の空洞の中で捕捉され、繊
維の周囲に配列される。セルロース繊維は不溶性であ
り、約1000度の溶融点をもつメタ珪酸ゲルと金属酸
化物である無機粉体により周囲を覆われている。そのた
め繊維は燃えにくく発火しない状態にある。原料の中で
炭化水素系の物質は繊維だけであり他の原料は全て金属
酸化物の無機粉体及び無機質で燃焼しないものであり、
繊維部は無機物質の皮膜で覆われ、更に繊維部の周囲は
酸素量が少ない状態になっているため、一体化したボー
ドは耐熱性の特性を示し、ペーパーボードでありなが
ら、難燃性で発火しない防火用ボードとなる。 2.メタ珪酸ゲルは繊維間の空洞、繊維の表面、繊維の
細孔部でセルロース繊維を包み込む形で固化し、セルロ
ース繊維とも強く結合する。メタ珪酸ゲル自体も三次元
的網目構造による骨格を形成する。すなわちセルロース
繊維の強い水素結合による結合力と珪酸ゲルの結合力に
より、強い強度をもつ一体化した複合材ボードとなる。 3.三次元的構造を形成しているセルロース繊維構造、
及びメタ珪酸ゲル構造を調節することでボードの多孔性
を調節でき、空隙率を大きく調整すると防音効果の大き
いボードとすることができる。 4.セルロース繊維も多孔性のある網目構造体であり、
このセルロース繊維が持つOH基は空気中の極性の強い
水分と結合しやすい。この吸湿性に着目し、建材として
使用すると結露防止ができる。またボードの骨格はセル
ロース繊維と不溶性のメタ珪酸ゲルにより構成されてい
るため、水分を吸収した場合に水でセルロース繊維の水
素結合が切れても、メタ珪酸ゲルの構造により、ペーパ
ーボードがばらばらになることはない。 5.セルロース繊維とメタ珪酸ゲルが網目構造であるこ
と、繊維は多くの細孔を有していること、メタ珪酸ゲル
の構造体がマイナスに荷電していることから、複合材ボ
ードはガス吸収性、吸着性の特性をもっている。また無
機粉体、金属酸化物(斑母石)をボードに均一に封じ込
めることができるため金属酸化物がもつ硫化水素、アン
モニアガス等酸性ガス、アルカリ性ガスの吸着性を示す
複合材ボードとなる。 6.斑母石を機能材としてボードに一体化できるので、
斑母石による抗菌性、防カビ性を発揮できる。 7.斑母石、酸化チタン、酸化ジルコニウム、酸化アル
ミニウム、酸化珪素、酸化鉄を機能材としてボードに一
体化できるので、8〜20μmの遠赤外線放射の特性を
示す複合材ボードとなる。 8.斑母石をボードに一体化できるので、マイナスイオ
ン放射の特性をもつペーパーボードにすることができ
る。 9.多孔質で耐熱性を持ち、発火性がない複合材である
ため、断熱材として使用できる。 10.火災などで建材が燃えて他の物質から二酸化炭素
が発生しても、セルロース繊維、メタ珪酸ゲルは二酸化
炭素によって構造が壊れたり、強度が劣化するなどの影
響を受けない。一方、メタ珪酸ナトリウムは、ナトリウ
ムイオンが二酸化炭素と結合して炭酸ナトリウムに変わ
り、更に耐熱性のある不溶性のメタ珪酸ゲルが同時に生
成するので、そのメタ珪酸ゲルによる結合力が増すため
ボードは一層その強度を増す。 11.釘を打ちつけることができ、木材と同じようにの
こぎり等で裁断が可能となる。
As described above, the present invention has the following various effects. 1. The silica gel formed by the sodium silicate chemically reacting with the acid covers the fiber surface with a thin film, and the inorganic powder of the functional material is also trapped in the fiber surface and in the cavities of the network structure, and around the fiber. Are arranged. Cellulose fibers are insoluble and are surrounded by a metasilicate gel having a melting point of about 1000 degrees and an inorganic powder as a metal oxide. Therefore, the fibers are not easily burnt and do not ignite. Among the raw materials, the hydrocarbon-based material is only fiber, and all other raw materials are inorganic powders and inorganic materials of metal oxides that do not burn,
The fiber part is covered with a coating of inorganic material, and the surrounding fiber part has a low oxygen content, so the integrated board shows heat resistance properties, and it is a flame retardant paper board. It becomes a fire prevention board that does not ignite. 2. The metasilicate gel solidifies in such a manner that it wraps the cellulose fibers in the voids between the fibers, the surface of the fibers, and the pores of the fibers, and binds strongly to the cellulose fibers. The metasilicate gel itself also forms a skeleton with a three-dimensional network structure. That is, an integrated composite board having strong strength is obtained by the bonding force of the cellulose fibers by the strong hydrogen bond and the bonding force of the silicate gel. 3. Cellulose fiber structure forming a three-dimensional structure,
By adjusting the structure of the metasilicate gel and the porosity of the board can be adjusted, and by adjusting the porosity to a large value, a board having a large soundproofing effect can be obtained. 4. Cellulose fiber is also a porous network structure,
The OH groups of the cellulose fibers are likely to combine with highly polar water in the air. Focusing on this hygroscopicity, dew condensation can be prevented when used as a building material. In addition, since the skeleton of the board is composed of cellulose fibers and an insoluble metasilicate gel, even if the hydrogen bond of the cellulose fibers is broken by water when absorbing moisture, the paper board is separated due to the structure of the metasilicate gel. It will not be. 5. Because the cellulose fiber and the metasilicate gel have a network structure, the fiber has many pores, and the structure of the metasilicate gel is negatively charged, the composite material board has gas absorption, Has adsorptive properties. In addition, since the inorganic powder and the metal oxide (porphyry stone) can be uniformly contained in the board, the composite board exhibits an adsorbing property of an acidic gas and an alkaline gas such as hydrogen sulfide and ammonia gas which the metal oxide has. 6. Since gabbro can be integrated into the board as a functional material,
Can exhibit antibacterial and antifungal properties due to gabbro. 7. Since porphyry stone, titanium oxide, zirconium oxide, aluminum oxide, silicon oxide, and iron oxide can be integrated into the board as a functional material, a composite board exhibiting characteristics of 8 to 20 μm far-infrared radiation is obtained. 8. Since the porphyry stone can be integrated with the board, a paper board having the property of emitting negative ions can be obtained. 9. Since it is a porous, heat-resistant and non-ignitable composite material, it can be used as a heat insulating material. 10. Even if the building material is burned by fire or the like and carbon dioxide is generated from other substances, the structure of the cellulose fiber and the metasilicate gel is not damaged by carbon dioxide, and the strength is not deteriorated. On the other hand, in sodium metasilicate, sodium ions are combined with carbon dioxide to change to sodium carbonate, and a heat-resistant insoluble metasilicate gel is simultaneously formed. Increase its strength. 11. The nail can be hit, and it can be cut with a saw or the like like wood.

【図面の簡単な説明】[Brief description of the drawings]

【図1】セルロース繊維が水素結合した三次元構造の説
明図である。
FIG. 1 is an explanatory diagram of a three-dimensional structure in which cellulose fibers are hydrogen-bonded.

【図2】(a)・(b)・(c)は、セルロース繊維の
水素結合化学式の変化過程をフローチャート的に示した
説明図である。
FIGS. 2 (a), (b) and (c) are explanatory views showing a process of changing a hydrogen bond chemical formula of a cellulose fiber in a flow chart.

【図3】無機粉体の繊維の捕捉状態を示す説明図であ
り、(a)は三次元網目構造、(b)は無機粉体の拡
大、(c)はメタ珪酸ゲルの網目構造である。
FIGS. 3A and 3B are explanatory diagrams showing a state of capturing fibers of an inorganic powder, wherein FIG. 3A shows a three-dimensional network structure, FIG. 3B shows an enlarged inorganic powder, and FIG. 3C shows a network structure of a metasilicate gel. .

【図4】繊維とメタ珪酸ゲルとの結合を示し、(a)は
無機粉体と繊維の細孔、(b)は繊維の空洞、(c)は
骨格形成の説明図である。
4A and 4B show a bond between a fiber and a metasilicate gel, wherein FIG. 4A is a diagram illustrating inorganic powder and fine pores of a fiber, FIG. 4B is a diagram illustrating a cavity of a fiber, and FIG.

【図5】珪酸ゲル三次元網目と無機粉体等の構造説明図
であり、(a)は全体図、(b)は部分図である。
FIGS. 5A and 5B are explanatory diagrams of the structure of a three-dimensional silicate gel network and inorganic powder, and FIG. 5A is an overall view and FIG. 5B is a partial view.

【符号の説明】[Explanation of symbols]

1 繊維 2 無機粉体 1 fiber 2 inorganic powder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 22:08 14:02) 111:12 Fターム(参考) 2E001 DD01 DD05 DE01 DF01 FA00 GA03 HC11 JA06 JC03 2E162 CC00 FA00 FC02 4G012 PA11 PA24 PB06 PE03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C04B 22:08 14:02) 111: 12 F term (Reference) 2E001 DD01 DD05 DE01 DF01 FA00 GA03 HC11 JA06 JC03 2E162 CC00 FA00 FC02 4G012 PA11 PA24 PB06 PE03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】粉体原料である植物性繊維15〜60%、
機能材である無機粉体5〜30%、酸2〜10%、色素
2.5%程度からなる粉体混合物に、メタ珪酸ナトリウ
ム5〜80%のメタ珪酸ナトリウム水溶液を加えて形成
した混練物を、加圧成形するとともに乾燥してなる難燃
性ボード。
1 to 15% by weight of a vegetable fiber as a powder raw material;
A kneaded product formed by adding a sodium metasilicate aqueous solution of 5 to 80% sodium metasilicate to a powder mixture composed of about 5 to 30% of inorganic powder as a functional material, about 2 to 10% of acid, and about 2.5% of pigment. Flame-retardant board formed by pressing and drying.
【請求項2】粉体原料として径10〜300μm・長さ
50〜3000μmの植物性繊維15〜60%、機能材
として径0.3〜300μmの金属酸化物である無機粉
体5〜30%、0.5〜1000μmの酸2〜10%、
色素2.5%程度をよく混合して粉体混合物を形成し、
液体原料であるメタ珪酸ナトリウム5〜80%を水に加
え混合してメタ珪酸ナトリウム水溶液となし、前記粉体
混合物にメタ珪酸ナトリウム水溶液を加えて混練し均一
に分散させるとともに、混練したものを加圧成形し、乾
燥する工程からなる難燃性ボードの製造方法。
2. A powder raw material having a diameter of 10 to 300 .mu.m and a length of 50 to 3000 .mu.m, a vegetable fiber of 15 to 60%, and a functional material of a metal oxide having a diameter of 0.3 to 300 .mu.m, an inorganic powder of 5 to 30%. 2 to 10% of 0.5 to 1000 μm acid,
About 2.5% of pigment is mixed well to form a powder mixture,
A liquid raw material, sodium metasilicate, of 5 to 80% is added to water and mixed to form an aqueous sodium metasilicate solution. An aqueous sodium metasilicate solution is added to the powder mixture, kneaded and uniformly dispersed, and the kneaded mixture is added. A method for producing a flame-retardant board, comprising the steps of pressing and drying.
JP5622099A 1999-03-03 1999-03-03 Flame-retardant board and its production Pending JP2000247722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5622099A JP2000247722A (en) 1999-03-03 1999-03-03 Flame-retardant board and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5622099A JP2000247722A (en) 1999-03-03 1999-03-03 Flame-retardant board and its production

Publications (1)

Publication Number Publication Date
JP2000247722A true JP2000247722A (en) 2000-09-12

Family

ID=13021033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5622099A Pending JP2000247722A (en) 1999-03-03 1999-03-03 Flame-retardant board and its production

Country Status (1)

Country Link
JP (1) JP2000247722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105649226A (en) * 2016-01-29 2016-06-08 卓达新材料科技集团有限公司 Pre-oxidation fiber silicon-aluminum aerogel composite sandwich thermal-insulation fire-proof plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105649226A (en) * 2016-01-29 2016-06-08 卓达新材料科技集团有限公司 Pre-oxidation fiber silicon-aluminum aerogel composite sandwich thermal-insulation fire-proof plate

Similar Documents

Publication Publication Date Title
JP4237253B2 (en) Fiber web / airgel composites containing bicomponent fibers, their production and use
JP4338788B2 (en) Multilayer composite material having at least one airgel containing layer and at least one polyethylene terephthalate fiber containing layer, process for its production and use thereof
JP5549954B2 (en) Low density nonwoven material useful for acoustic effect ceiling tile products
US6866709B1 (en) Binder systems derived from amorphous silica and bases
KR102158443B1 (en) Eco-friendly inorganic paint composition with moisture absorption function, and manufacturing method thereof
JP2001509097A (en) Multilayer composite having at least one airgel-containing layer and at least one further layer, method for its production and use thereof
KR101468780B1 (en) Eco building interior boards and method for manufacturing thereof
CA2231538A1 (en) Composite material containing aerogel and an adhesive, a process for manufacturing the same, and the use thereof
CN108358589A (en) Waterproof high-strength weather-resistant flame-retardant environment-friendly heat-insulation board and preparation method thereof
US5911903A (en) Mixture and process for producing heat-insulating moldings
KR100798124B1 (en) Incombustible building panels
CN104929330B (en) A kind of novel wall paper capable of releasing negative ion
JP2000247722A (en) Flame-retardant board and its production
KR20050076271A (en) An incombustible construction mineral material having coating surface, and the manufacturing method
CA1332653C (en) Flame retardant vegetable fiber material and the process of the same
KR100282254B1 (en) Interior material using natural coconut fiber and its manufacturing method
KR102484574B1 (en) Incombustible board using styrofoam and manufacturing mehtod thereof
KR101835633B1 (en) Fragrant eco brick
JPH10502980A (en) Method of manufacturing interior plate board for building
JP3180036B2 (en) Non-combustible decorative board
CN110204210A (en) Mineral wool thermal insulation material, preparation process and application
CN115366214B (en) Moisture-regulating shaving board and manufacturing method thereof
JP6166965B2 (en) Method for producing moisture-conditioning building material and method for producing moisture-conditioning building material
JPH10273625A (en) Inorganic adhesive composition
CA2150600A1 (en) Light-weight, fire resistant aggregates and derived products