JP2000243404A - Electrode for fuel cell and its manufacture - Google Patents
Electrode for fuel cell and its manufactureInfo
- Publication number
- JP2000243404A JP2000243404A JP11041184A JP4118499A JP2000243404A JP 2000243404 A JP2000243404 A JP 2000243404A JP 11041184 A JP11041184 A JP 11041184A JP 4118499 A JP4118499 A JP 4118499A JP 2000243404 A JP2000243404 A JP 2000243404A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- carbon material
- fuel cell
- polymer electrolyte
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000002245 particle Substances 0.000 claims abstract description 53
- 239000003054 catalyst Substances 0.000 claims abstract description 52
- 239000005518 polymer electrolyte Substances 0.000 claims abstract description 49
- 239000005871 repellent Substances 0.000 claims abstract description 44
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 38
- 238000009792 diffusion process Methods 0.000 claims abstract description 18
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000007787 solid Substances 0.000 claims abstract description 10
- 239000003792 electrolyte Substances 0.000 claims abstract description 7
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 5
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 239000012528 membrane Substances 0.000 claims description 20
- 125000000524 functional group Chemical group 0.000 claims description 9
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 6
- 230000002209 hydrophobic effect Effects 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 2
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 claims description 2
- 125000000686 lactone group Chemical group 0.000 claims description 2
- 125000004151 quinonyl group Chemical group 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 230000002940 repellent Effects 0.000 abstract description 2
- 238000006555 catalytic reaction Methods 0.000 abstract 1
- 238000003475 lamination Methods 0.000 abstract 1
- 229920000642 polymer Polymers 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 75
- 229910052799 carbon Inorganic materials 0.000 description 51
- 239000007789 gas Substances 0.000 description 12
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000003411 electrode reaction Methods 0.000 description 6
- 125000001174 sulfone group Chemical group 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910020175 SiOH Inorganic materials 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000976 ink Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 125000005372 silanol group Chemical group 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical group FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000012196 polytetrafluoroethylene based material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高分子電解質型燃
料電池に関し、特にその構成要素である電極に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell, and more particularly to an electrode which is a component of the fuel cell.
【0002】[0002]
【従来の技術】高分子電解質型燃料電池は、近年、電気
自動車用の電源や分散型電源として注目されている。現
在、高分子電解質型燃料電池に用いられている高分子電
解質は、十分に水で湿潤している状態の時に、必要とす
るイオン伝導度が保たれる。一方、電池としての電極反
応は、触媒、高分子電解質、反応ガスの三相界面で生じ
る水の生成反応であり、供給するガス中の水蒸気や電極
反応で生じる生成水が速やかに排出されず、電極や拡散
層内に滞留すると、ガス拡散が悪くなり電池特性は逆に
低下してしまう。2. Description of the Related Art In recent years, polymer electrolyte fuel cells have attracted attention as power supplies for electric vehicles and distributed power supplies. At present, the required ionic conductivity of a polymer electrolyte used in a polymer electrolyte fuel cell is maintained when the polymer electrolyte is sufficiently wetted with water. On the other hand, the electrode reaction as a battery is a reaction for generating water generated at a three-phase interface of a catalyst, a polymer electrolyte, and a reaction gas. If the gas stays in the electrode or the diffusion layer, gas diffusion becomes worse, and the battery characteristics are deteriorated.
【0003】このような観点から、高分子電解質型燃料
電池に用いる電極には、高分子電解質の保湿と水の排出
を促進するための対策がとれれている。一般的な電極と
しては、触媒層となる貴金属を担持した炭素粉末を、ガ
ス拡散層となる多孔質導電性電極基材上に形成したもの
を用いる。多孔質導電性基材は、炭素繊維からなるカー
ボンペーパーやカーボンクロスなどが用いられる。これ
らの多孔性導電性基材は、予めポリテトラフルオロエチ
レン系材料の分散液などを用いて撥水処理を行い、電極
反応で生じた生成水の排出が速やかに行われるように
し、また高分子電解質膜や電極中の高分子電解質が適度
な湿潤状態になるようにするのが一般的である。また、
これ以外の方法として、電極触媒層中に撥水処理を施し
た炭素粒子を混合して、電極触媒層中の余分な生成水を
排出する対策もとられている。[0003] From such a viewpoint, for the electrodes used in the polymer electrolyte fuel cell, measures are taken to promote moisturization of the polymer electrolyte and discharge of water. As a general electrode, an electrode obtained by forming a carbon powder supporting a noble metal serving as a catalyst layer on a porous conductive electrode substrate serving as a gas diffusion layer is used. As the porous conductive substrate, carbon paper or carbon cloth made of carbon fiber is used. These porous conductive substrates are subjected to a water-repellent treatment using a dispersion liquid of a polytetrafluoroethylene-based material in advance, so that the water generated by the electrode reaction is quickly discharged, and Generally, the electrolyte membrane and the polymer electrolyte in the electrode are brought into a moderately wet state. Also,
As another method, a countermeasure for mixing water-repellent carbon particles into the electrode catalyst layer and discharging excess water from the electrode catalyst layer has been taken.
【0004】[0004]
【発明が解決しようとする課題】以上のように、従来の
高分子電解質型燃料電池に用いる電極は、ガス拡散層と
なる多孔質導電性基材に撥水処理したものが用いられて
いる。このため、ガス拡散層で水の排出性は向上する
が、触媒層内での水の排出性や、触媒層へのガス拡散性
が悪くなり、特に空気利用率が高い場合や大電流放電時
に電池特性が低下するという課題があった。As described above, the electrodes used in the conventional polymer electrolyte fuel cell are those obtained by subjecting a porous conductive substrate serving as a gas diffusion layer to a water-repellent treatment. For this reason, although the water discharge property is improved in the gas diffusion layer, the water discharge property in the catalyst layer and the gas diffusion property to the catalyst layer are deteriorated. There was a problem that the battery characteristics deteriorated.
【0005】また、電極触媒層中にサブミクロンオーダ
ーのポリテトラフルオロエチレン分散粒子を用いて撥水
処理をしたカーボンを導入した場合には、触媒層中の高
分子電解質が撥水処理された炭素粒子に多く吸着してし
まい、高分子電解質と触媒微粒子との接触度合が不十分
で不均一な状態となったり、触媒微粒子がPTFEで覆
われたりして、十分な三相界面が確保できないと言う課
題があった。さらに、触媒となる触媒微粒子を担持した
炭素粒子が撥水性を示すものであれば、高分子電解質膜
や電極触媒層中の高分子電解質の湿潤状態がより乾き方
向にシフトして電池特性が低下してしまう課題があっ
た。[0005] Further, when carbon which has been subjected to a water-repellent treatment using sub-micron-order polytetrafluoroethylene-dispersed particles is introduced into the electrode catalyst layer, the polymer electrolyte in the catalyst layer is subjected to the water-repellent carbon. If a large amount of particles are adsorbed and the degree of contact between the polymer electrolyte and the catalyst fine particles is insufficient and uneven, or if the catalyst fine particles are covered with PTFE, a sufficient three-phase interface cannot be secured. There was a problem to say. Furthermore, if the carbon particles carrying the catalyst fine particles serving as a catalyst exhibit water repellency, the wet state of the polymer electrolyte in the polymer electrolyte membrane or the electrode catalyst layer shifts to the drying direction, and the battery characteristics deteriorate. There was a problem to do.
【0006】このように電極触媒中に水が滞留すること
なく、しかも高分子電解質が適度な湿潤状態に保たれる
ような設計を施した高性能な電極が求められている。Thus, there is a need for a high-performance electrode designed so that water does not stay in the electrode catalyst and the polymer electrolyte is kept in an appropriate wet state.
【0007】[0007]
【課題を解決するための手段】以上の課題を解決するた
め本発明の燃料電池用電極は、水素イオン伝導性固体高
分子電解質膜と、前記水素イオン伝導性固体高分子電解
質膜を挟んだ触媒反応層を有する一対の電極と、前記電
極を挟んだ一対の拡散層とを積層した電極電解質接合体
を具備した燃料電池において、前記電極は、親水性炭素
材に触媒粒子を担持した触媒体と、水素イオン伝導性高
分子電解質と、撥水性炭素材とを少なくとも有すること
を特徴とする。In order to solve the above problems, an electrode for a fuel cell according to the present invention comprises a hydrogen ion conductive solid polymer electrolyte membrane and a catalyst sandwiching the hydrogen ion conductive solid polymer electrolyte membrane. In a fuel cell including a pair of electrodes having a reaction layer and an electrode-electrolyte assembly in which a pair of diffusion layers sandwiching the electrode are stacked, the electrode includes a catalyst in which catalyst particles are supported on a hydrophilic carbon material. , A hydrogen ion conductive polymer electrolyte and a water-repellent carbon material.
【0008】このとき、触媒粒子表面の一部もしくは全
面に、親水性を有する層を化学的に接合したことが有効
である。At this time, it is effective that a hydrophilic layer is chemically bonded to a part or the entire surface of the catalyst particles.
【0009】また、親水性炭素材に触媒粒子を担持した
触媒体を水素イオン伝導性高分子電解質膜側に選択的に
配置し、撥水性炭素材を拡散層側に選択的に配置したこ
とが望ましい。Further, the catalyst body in which the catalyst particles are supported on the hydrophilic carbon material is selectively disposed on the hydrogen ion conductive polymer electrolyte membrane side, and the water-repellent carbon material is selectively disposed on the diffusion layer side. desirable.
【0010】このとき、撥水性炭素材は、炭素材表面の
一部もしくは全面と、疎水部位を有するシランカップリ
ング剤とを化学結合した、単分子層を有することが有効
である。At this time, it is effective that the water-repellent carbon material has a monomolecular layer in which a part or the whole surface of the carbon material is chemically bonded to a silane coupling agent having a hydrophobic part.
【0011】また、親水性炭素材は、炭素材表面の一部
もしくは全面と、親水部位を有するシランカップリング
剤とを化学結合した、単分子層を有することが有効であ
る。It is effective that the hydrophilic carbon material has a monomolecular layer in which a part or the entire surface of the carbon material is chemically bonded to a silane coupling agent having a hydrophilic site.
【0012】以上では、フェノール性水酸基、カルボキ
シル基、ラクトン基、カルボニル基、キノン基または無
水カルボン酸より選ばれる少なくとも1つの官能基を介
して、炭素材とシランカップリング剤とを化学結合した
ことが有効である。In the above, the carbon material and the silane coupling agent are chemically bonded via at least one functional group selected from a phenolic hydroxyl group, a carboxyl group, a lactone group, a carbonyl group, a quinone group and a carboxylic anhydride. Is valid.
【0013】また、その製造方法は、触媒粒子もしくは
炭素材の少なくとも1種を、シランカップリング剤を含
有した溶媒に浸漬することで、前記触媒粒子表面もしく
は前記炭素材表面の少なくとも一部分にシランカップリ
ング剤を化学吸着させた後、前記触媒粒子表面もしくは
前記炭素材表面と、前記シランカップリング剤の分子中
のシリコン原子との化学結合を行うことで、親水性もし
くは撥水性を有する層を形成することを特徴とする。[0013] In addition, the method for producing a silane coupling agent includes immersing at least one of the catalyst particles or the carbon material in a solvent containing a silane coupling agent, so that at least a part of the surface of the catalyst particles or the carbon material has After chemically adsorbing the ring agent, the surface of the catalyst particles or the surface of the carbon material is chemically bonded to silicon atoms in the molecules of the silane coupling agent to form a layer having hydrophilicity or water repellency. It is characterized by doing.
【0014】[0014]
【発明の実施の形態】以上のように、本発明による燃料
電池用電極は、触媒層が、高分子電解質と、親水性炭素
材と、撥水性炭素材から構成されているため、電極反応
が生じる三相界面近傍付近では、親水性炭素材によって
水分が適度に保持され、余分に生成した水は隣接する撥
水性炭素材によって速やかに排出される。As described above, in the fuel cell electrode according to the present invention, since the catalyst layer is composed of the polymer electrolyte, the hydrophilic carbon material, and the water-repellent carbon material, the electrode reaction does not occur. In the vicinity of the generated three-phase interface, moisture is appropriately held by the hydrophilic carbon material, and excess water is quickly discharged by the adjacent water-repellent carbon material.
【0015】これにより燃料電池を比較的低電流密度で
作動させた場合でも、親水性炭素材により電極が一定の
保水力を保って高い特性が期待できる。また、比較的高
電流密度で作動させた場合では、余分な生成水が親水性
炭素材のごく近傍部に配置された撥水性炭素材によって
速やかに排出されフラッディング現象が起きにくくなり
電池性能が向上する。As a result, even when the fuel cell is operated at a relatively low current density, high characteristics can be expected while maintaining a constant water retention capacity of the electrode by the hydrophilic carbon material. In addition, when operated at a relatively high current density, excess water is quickly discharged by the water-repellent carbon material located very close to the hydrophilic carbon material, and the flooding phenomenon is less likely to occur, thereby improving battery performance. I do.
【0016】また、親水性炭素材を高分子電解質膜側
に、撥水性炭素材をガス拡散層側に配置した場合には、
より高分子電解質膜側が高加湿雰囲気になり、高分子電
解質膜のイオン導電性が向上して電池特性が向上する。When the hydrophilic carbon material is disposed on the polymer electrolyte membrane side and the water-repellent carbon material is disposed on the gas diffusion layer side,
The polymer electrolyte membrane side becomes more highly humidified atmosphere, the ionic conductivity of the polymer electrolyte membrane is improved, and the battery characteristics are improved.
【0017】また、本発明の燃料電池用電極は、炭素粒
子の表面において、疎水性部位を有するシランカップリ
ング剤の加水分解性基が、溶液中あるいは空気中の水
分、炭素表面の吸着水分により加水分解されて、活性な
シラノール基(≡SiOH)に変化し、炭素表面の官能基
と反応して強固な結合を形成する。これにより炭素粒子
表面に数nm〜数十nmの非常にミクロな単分子撥水層
が形成される。この撥水性炭素粒子を用いれば、親水性
触媒担持炭素粒子と混合して電極を構成しても、サブミ
クロンオーダーのPTFEディスパージョン粒子を用い
た場合のように、電極中の触媒粒子を被覆して反応ガス
の供給を妨げることがない。Further, in the fuel cell electrode of the present invention, on the surface of the carbon particles, the hydrolyzable group of the silane coupling agent having a hydrophobic part is formed by the water in the solution or the air, and the water adsorbed on the carbon surface. It is hydrolyzed to change into an active silanol group (≡SiOH) and reacts with a functional group on the carbon surface to form a strong bond. As a result, a very microscopic monomolecular water-repellent layer having a thickness of several nm to several tens nm is formed on the surface of the carbon particles. By using the water-repellent carbon particles, even if the electrode is formed by mixing with the hydrophilic catalyst-supporting carbon particles, the catalyst particles in the electrode are coated as in the case of using the submicron-order PTFE dispersion particles. And does not hinder the supply of the reaction gas.
【0018】さらに、本発明の燃料電池は、触媒粒子表
面あるいは触媒の担持されている炭素粒子の表面におい
て、シランカップリング剤の加水分解性基が、先と同様
に溶液中あるいは空気中の水分、炭素表面の吸着水分に
より加水分解されて、活性なシラノール基(≡SiOH)
に変化し、炭素表面の官能基と反応して強固な結合を形
成する。このシランカップリング剤にスルホン基やカル
ボキシル基などの親水性基を持たせることにより触媒表
面が親水性になり、三相界面付近の湿潤状態が保持され
る。Furthermore, in the fuel cell of the present invention, the hydrolyzable group of the silane coupling agent is formed on the surface of the catalyst particles or on the surface of the carbon particles carrying the catalyst, as described above, in the same manner as described above. Is hydrolyzed by water adsorbed on the carbon surface to form active silanol groups (≡SiOH)
And reacts with functional groups on the carbon surface to form strong bonds. By providing the silane coupling agent with a hydrophilic group such as a sulfone group or a carboxyl group, the catalyst surface becomes hydrophilic, and a wet state near the three-phase interface is maintained.
【0019】以上のことにより、本発明の電極を用いれ
ば、電極反応が生じる三相界面近傍付近では、親水性触
媒担持炭素粒子によって湿潤状態が適度に保持され、余
分に生成した水は隣接する撥水カーボンによって速やか
に排出されるので、従来よりも高性能な高分子電解質型
燃料電池を構成できる。As described above, when the electrode of the present invention is used, in the vicinity of the three-phase interface where an electrode reaction occurs, the wet state is appropriately maintained by the hydrophilic catalyst-carrying carbon particles, and excess water generated is adjacent. Since water is rapidly discharged by the water-repellent carbon, a polymer electrolyte fuel cell having higher performance than before can be constructed.
【0020】以下、本発明の燃料電池について図面を参
照して述べる。Hereinafter, the fuel cell of the present invention will be described with reference to the drawings.
【0021】[0021]
【実施例】(実施例1)まず、撥水性炭素材の作成方法
について記載する。炭素粉末の表面に、窒素ガス雰囲気
中で直接に化学吸着法により全面シランカップリング剤
を吸着させて、シランカップリング剤よりなる単分子膜
を形成した。シランカップリング剤としては、直鎖状の
ハイドロカーボン鎖を持つCH3−(CH2)n−SiC
l3(nは10以上で25以下の整数)を用い、1重量
%の濃度で溶解したヘキサン溶液を調整し、前記炭素粒
子を浸漬した。このとき用いた炭素粒子は、表面に、フ
ェノール水酸基とカルボキシル基とを残した易黒鉛性カ
ーボンを用い、この官能基と前述のシランカップリング
剤の−SiCl3とを脱塩酸反応し、シランカップリン
グ剤による単分子撥水膜を形成した。この様子を図1に
示した。EXAMPLES (Example 1) First, a method for producing a water-repellent carbon material will be described. The entire surface of the carbon powder was directly adsorbed with a silane coupling agent by a chemical adsorption method in a nitrogen gas atmosphere to form a monomolecular film composed of the silane coupling agent. The silane coupling agent, CH 3 having a linear hydrocarbon chain - (CH 2) n-SiC
Using l 3 (n is an integer of 10 or more and 25 or less), a hexane solution dissolved at a concentration of 1% by weight was prepared, and the carbon particles were immersed. The carbon particles used at this time were made of graphitizable carbon having a phenolic hydroxyl group and a carboxyl group remaining on the surface, and a dehydrochlorination reaction of this functional group with the above-mentioned silane coupling agent -SiCl 3 was carried out. A monomolecular water-repellent film was formed using a ring agent. This is shown in FIG.
【0022】図1において、1は炭素粒子、2は単分子
撥水膜である。単分子撥水膜2の厚みは2〜10nm程
度とした。ここで、単分子の分子量を変えることで、こ
の膜厚を1〜100nmとすることができた。また、化
学吸着の材料としては−OH基に対して結合性を有する
基、例えば≡SiCl基等を含んでいれば、この実施例
で用いたシラン系界面活性剤に限定されるものではな
い。In FIG. 1, 1 is a carbon particle, and 2 is a monomolecular water-repellent film. The thickness of the monomolecular water-repellent film 2 was about 2 to 10 nm. Here, by changing the molecular weight of the single molecule, this film thickness could be made 1 to 100 nm. The material for chemical adsorption is not limited to the silane-based surfactant used in this embodiment, as long as it contains a group having a binding property to an —OH group, for example, a ≡SiCl group.
【0023】次に、電極触媒となる白金を25重量%担
持した親水性炭素粉末と、前記撥水性炭素材とを混合
し、これに、−SO3H基ペンダントしたポリフルオロ
カーボン系高分子電解質を分散した溶液(FSS−1、
旭硝子製)と、ブターノールとを加えたインク化した。
このインクを、ガス拡散層となるカーボンペーパー(東
レ製、TGP-H-120、膜厚360μm)上に、スクリーン
印刷法により塗工した後、加熱乾燥によりブタノールを
除去し、本実施例の電極Aとした。Next, a hydrophilic carbon powder carrying 25% by weight of platinum as an electrode catalyst and the water-repellent carbon material were mixed, and a polyfluorocarbon polymer electrolyte pendant to -SO 3 H group was added thereto. Dispersed solution (FSS-1,
(Made by Asahi Glass) and butanol.
This ink was applied on carbon paper (TGP-H-120, manufactured by Toray, thickness: 360 μm) serving as a gas diffusion layer by a screen printing method, and then butanol was removed by heating and drying. A.
【0024】以上の行程において、白金を担持した炭素
粉末には、表面の官能基が多く、親水性を有するもの
(キャボット社製、VulcanXC72R)を使用し
た。また、単位面積あたりの白金量は0.5mg/cm
2とした。さらに、白金担持した親水性炭素粉末と、撥
水性炭素材と、ポリフルオロカーボン系高分子電解質と
の混合重量比は、仕上がり後、100:20:3とし
た。In the above process, a platinum powder-supporting carbon powder having a large number of functional groups on the surface and having a hydrophilic property (Vulcan XC72R, manufactured by Cabot Corporation) was used. The amount of platinum per unit area is 0.5 mg / cm
And 2 . Furthermore, the mixed weight ratio of the platinum-supported hydrophilic carbon powder, the water-repellent carbon material, and the polyfluorocarbon-based polymer electrolyte was 100: 20: 3 after finishing.
【0025】次に、比較用電極Bを作成した。比較用電
極Bは、従来より提案されている構成として、触媒とな
る貴金属を担持した炭素粉末と撥水剤とを、ガス拡散層
となる多孔質導電性電極基材上に形成したものを用い
た。多孔質導電性基材は、前述の電極Aで使用したもの
と同じカーボンペーパー(東レ製、TGP-H-120、膜厚3
60μm)を用い、これを予め−SO3H基ペンダント
したポリフルオロカーボン系高分子電解質を分散した溶
液(FSS−1、旭硝子製)を用いて撥水処理を行っ
た。以上の構成において、炭素粉末は、表面官能基が少
なく撥水性を示すもの(テ゛ンカフ゛ラック、電気化学工業製)を
用いた。また、撥水剤は、−SO3H基ペンダントした
ポリフルオロカーボン系高分子電解質を分散した溶液
(FSS−1、旭硝子製)を用いた。これ以外の構成
は、前述の電極Aと同一とした。Next, a comparative electrode B was prepared. The comparative electrode B has a conventionally proposed configuration in which a carbon powder supporting a noble metal serving as a catalyst and a water repellent are formed on a porous conductive electrode base material serving as a gas diffusion layer. Was. The porous conductive base material is the same carbon paper (TGP-H-120, Toray Co., Ltd.
60 μm) and subjected to a water-repellent treatment using a solution (FSS-1, manufactured by Asahi Glass) in which a polyfluorocarbon-based polymer electrolyte preliminarily pendant to an —SO 3 H group was dispersed. In the above configuration, a carbon powder having a small surface functional group and exhibiting water repellency (Tenka Perak, manufactured by Denki Kagaku Kogyo) was used. Further, the water-repellent agent was used a solution prepared by dispersing the -SO 3 H groups pendent polyfluorocarbon polymer electrolyte (FSS-1, manufactured by Asahi Glass). The other configuration was the same as the electrode A described above.
【0026】このようにして作製した本実施例の電極A
と比較例の電極Bとを、高分子電解質膜(Dupon
製、Nafion112)の両側に配してホットプレス
を行い電極−電解質接合体を作製した。これを図2に示
した単電池測定用の装置にセットして単電池を構成し
た。図2において、3、4、5が前記の電極−電解質接
合体である。The electrode A of the present embodiment thus manufactured
And the electrode B of the comparative example were connected to a polymer electrolyte membrane (Dupon).
And Nafion 112) and hot pressed to produce an electrode-electrolyte assembly. This was set in the unit for cell measurement shown in FIG. 2 to form a unit cell. In FIG. 2, reference numerals 3, 4, and 5 indicate the electrode-electrolyte junctions.
【0027】これらの単電池は、燃料極に水素ガスを空
気極に空気を流し、電池温度を75℃、燃料利用率を8
0%、空気利用率を30%、ガス加湿は水素ガスを75
℃、空気を65℃の露点になるように調整した。この時
の電池の電流−電圧特性を図3示した。In these cells, hydrogen gas is supplied to the fuel electrode, air is supplied to the air electrode, the cell temperature is 75 ° C., and the fuel utilization is 8%.
0%, air utilization rate 30%, gas humidification 75% hydrogen gas
° C and air were adjusted to a dew point of 65 ° C. FIG. 3 shows the current-voltage characteristics of the battery at this time.
【0028】図3において、本実施例の電極Aを用いた
ものが、従来より提案されている構成の電極Bに比べ
て、優れた特性を示すことが確認された。この原因は、
シランカップリング剤で処理した撥水性炭素粉末を用い
た場合には、サブミクロンオーダーのPTFEディスパ
ージョン粒子を用いたPTFE担持炭素粉末の場合のよ
うに、電極中の触媒微粒子を被覆して反応ガスの供給を
妨げることがないことによるものと考える。In FIG. 3, it was confirmed that the electrode using the electrode A of the present example exhibited superior characteristics as compared with the electrode B having a conventionally proposed configuration. This is because
When a water-repellent carbon powder treated with a silane coupling agent is used, as in the case of a PTFE-supported carbon powder using PTFE dispersion particles on the order of submicrons, the catalyst fine particles in the electrode are coated and reacted gas. It is thought that it is because it does not hinder the supply of
【0029】(実施例2)本実施例では、電極触媒層を
高分子電解質膜側に、撥水性炭粒子を拡散層側に配した
電極を作成し、その特性を評価した。まず、実施例1で
示した触媒担持炭素粉末と、シランカップリング剤を用
いて処理した撥水性炭素粉末とを、別々のインクにして
塗工し、電極を構成した。これを図4に示した。まず、
撥水性炭素粉末(テ゛ンカフ゛ラック、電気化学工業製)をブタノ
ールを用いてインク化し、カーボンペーパー(東レ製、
TGP-H-120、膜厚360μm)上にスクリーン印刷し
た。乾燥後、触媒担持炭素粉末6を、高分子電解質溶液
の−SO3H基ペンダントしたポリフルオロカーボン系
高分子電解質を分散した溶液(FSS−1、旭硝子製)
とブターノールを用いてインク化し、先の撥水性炭素粉
末7を塗工したカーボンペーパー8上に、スクリーン印
刷法により塗工し電極を作製した。Example 2 In this example, an electrode was prepared in which the electrode catalyst layer was disposed on the polymer electrolyte membrane side and the water-repellent carbon particles were disposed on the diffusion layer side, and the characteristics were evaluated. First, the catalyst-supporting carbon powder shown in Example 1 and the water-repellent carbon powder treated with the silane coupling agent were applied as separate inks to form electrodes. This is shown in FIG. First,
Water-repellent carbon powder (Tenka Purac, manufactured by Denki Kagaku Kogyo) is made into ink using butanol, and carbon paper (manufactured by Toray,
(TGP-H-120, film thickness: 360 μm). After drying, the catalyst-carrying carbon powder 6, the solution containing dispersed -SO 3 H groups pendent polyfluorocarbon polymer electrolyte of the polymer electrolyte solution (FSS-1, manufactured by Asahi Glass)
Then, the ink was formed using butanol, and then applied on the carbon paper 8 coated with the water-repellent carbon powder 7 by a screen printing method to produce an electrode.
【0030】このように作製した電極を用いて、電極−
電解質接合体を作製し、実施例1と同じく図2に示した
単電池を構成した。この単電池に、700mA/cm2
の電流を流したときの、電池電圧を表1に示した。表1
には、前記実施例1で作成した電極A及び電極Bによる
電池の特性も、併せて表記した。表1において、本実施
例2で採用した電極触媒層を高分子電解質膜側に、撥水
性炭粒子を拡散層側に配した電極を用いることにより、
実施例1のシランカップリング剤で処理した炭素粉末を
混合して用いたものと同等の性能を示すことが分かっ
た。これより電極触媒層を高分子電解質膜側に、撥水性
炭粒子を拡散層側に配した電極を用いると、更に優れた
特性の電池を構成できることを見いだした。Using the electrode thus fabricated, an electrode
An electrolyte joined body was prepared, and the unit cell shown in FIG. 700 mA / cm 2
Table 1 shows the battery voltage when a current of? Table 1
In Table 2, the characteristics of the battery using the electrodes A and B prepared in Example 1 are also shown. In Table 1, by using an electrode in which the electrode catalyst layer employed in Example 2 was provided on the polymer electrolyte membrane side and water-repellent carbon particles were provided on the diffusion layer side,
It was found that the same performance as that obtained by mixing and using the carbon powder treated with the silane coupling agent of Example 1 was exhibited. From this, it has been found that a battery having more excellent characteristics can be constituted by using an electrode in which the electrode catalyst layer is disposed on the polymer electrolyte membrane side and the water-repellent carbon particles are disposed on the diffusion layer side.
【0031】[0031]
【表1】 [Table 1]
【0032】(実施例3)次に、触媒担持炭素粉末に、
シランカップリング剤を用いて処理した場合について図
5を用いて示す。実施例1で用いた白金担持炭素粉末を
用い、実施例1で使用したシランカップリング剤に変え
て、ハイドロカーボン鎖とフルオロカーボン鎖とを主鎖
に持ち、スルホン基を末端に持つ、ClSO2−(C
H2)n−(CF2)m−SiCl3(n、mは、10以
上で25以下の整数)を用い、水蒸気との反応により、
白金粒子9の表面と、炭素粒子1の表面に、スルホン基
を有する単分子膜10を形成した。この単分子膜は末端
にスルホン基があるため親水性を示す。また、シランカ
ップリング剤は、親水性を示す部位が含まれるものであ
れば、実施例で示したシラン系界面活性剤に限定される
ものではない。(Example 3) Next, the catalyst-carrying carbon powder was
FIG. 5 shows a case where treatment is performed using a silane coupling agent. Using the platinum-supported carbon powder used in Example 1, instead of the silane coupling agent used in Example 1, ClSO 2 − having a hydrocarbon chain and a fluorocarbon chain in the main chain and having a sulfone group at the terminal. (C
H 2) n- (CF 2) m-SiCl 3 (n, m are used 25 an integer) in 10 above, by reaction with water vapor,
A monomolecular film 10 having a sulfone group was formed on the surface of the platinum particles 9 and the surface of the carbon particles 1. This monomolecular film exhibits hydrophilicity due to the presence of a sulfone group at the terminal. Further, the silane coupling agent is not limited to the silane-based surfactant shown in the examples as long as it contains a site exhibiting hydrophilicity.
【0033】このように親水処理した白金担持炭素粉末
と実施例1で用いたシランカップリング剤で処理した撥
水性炭素粉末を混合し、実施例1と同様に電極を作製
し、これを用いて図2に示した単電池を作成した。The platinum-supported carbon powder subjected to the hydrophilic treatment and the water-repellent carbon powder treated with the silane coupling agent used in Example 1 were mixed, and an electrode was prepared in the same manner as in Example 1 and used. The unit cell shown in FIG. 2 was prepared.
【0034】この電池の特性を実施例1と同じ条件で評
価したところ、電流密度700mA/cm2時の電圧が
720mVであった。これは、実施例1で作製した電池
よりも高い特性であり、これは、触媒微粒子を担持した
炭素粉末をシランカップリング剤を用いて親水処理する
ことにより、より三相界面付近の濡れ性が向上したこと
によるものと考える。When the characteristics of this battery were evaluated under the same conditions as in Example 1, the voltage at a current density of 700 mA / cm 2 was 720 mV. This is a characteristic higher than that of the battery prepared in Example 1. This is because the wettability near the three-phase interface is improved by performing hydrophilic treatment on the carbon powder supporting the catalyst fine particles using a silane coupling agent. I think it is due to the improvement.
【0035】本発明では、シランカップリング剤にスル
ホン基を有するクロロシラン系界面活性剤を使用した
が、親水性部位を有するものであれば、例えばカルボキ
シル基などのような部位を持つものであれば、どんなも
のでも構わない。また、今回は触媒微粒子と炭素粒子の
両方に処理を行ったが本発明が適応出来れば、一方だけ
に処理することもできる。さらに、使用した炭素粉末、
触媒担持炭素粉末にしても本発明が適用できるものであ
れば、本実施例に限定されるものではない。In the present invention, a chlorosilane-based surfactant having a sulfone group is used as the silane coupling agent. However, as long as the silane coupling agent has a hydrophilic site, for example, it has a site such as a carboxyl group. Anything is fine. In this case, both the catalyst fine particles and the carbon particles are treated, but if the present invention can be applied, only one of them can be treated. In addition, the carbon powder used,
The present invention is not limited to this embodiment as long as the present invention can be applied to the catalyst-supporting carbon powder.
【0036】[0036]
【発明の効果】以上、実施例の説明から明らかなよう
に、本発明による燃料電池は、触媒層が、高分子電解質
と、親水性触媒担持炭素粒子と、撥水性炭素粒子から構
成されているため、電極反応が生じる三相界面近傍付近
では、親水性触媒担持炭素粒子によって湿潤状態が適度
に保持され、余分に生成した水は隣接する撥水カーボン
によって速やかに排出される。As is apparent from the above description of the embodiments, in the fuel cell according to the present invention, the catalyst layer is composed of the polymer electrolyte, the hydrophilic catalyst-carrying carbon particles, and the water-repellent carbon particles. Therefore, in the vicinity of the three-phase interface where an electrode reaction occurs, the wet state is appropriately maintained by the hydrophilic catalyst-carrying carbon particles, and excess water is quickly discharged by the adjacent water-repellent carbon.
【0037】また、親水性触媒担持炭素粒子が高分子電
解質膜側に、撥水性炭素粒子がガス拡散層側に配置した
場合には、より高分子電解質膜側が高加湿雰囲気にな
り、高分子電解質膜のイオン導電性が向上して電池特性
が向上する。When the hydrophilic catalyst-carrying carbon particles are arranged on the polymer electrolyte membrane side and the water-repellent carbon particles are arranged on the gas diffusion layer side, the polymer electrolyte membrane side becomes a highly humidified atmosphere and the polymer electrolyte membrane becomes more humidified. The ionic conductivity of the membrane is improved, and the battery characteristics are improved.
【0038】また、本発明の燃料電池は、炭素粒子の表
面において、疎水性部位を有するシランカップリング剤
の加水分解性基が、溶液中あるいは空気中の水分、炭素
表面の吸着水分により加水分解されて、活性なシラノー
ル基(≡SiOH)に変化し、炭素表面の官能基と反応し
て強固な結合を形成する。これにより炭素粒子表面に数
nm〜数十nmの非常にミクロな単分子撥水層が形成さ
れる。この撥水性炭素粒子を用いれば、親水性触媒担持
炭素粒子と混合して電極を構成しても、サブミクロンオ
ーダーのPTFEディスパージョン粒子を用いた場合の
ように、電極中の触媒微粒子を被覆して反応ガスの供給
を妨げることがない。Further, in the fuel cell of the present invention, on the surface of the carbon particles, the hydrolyzable group of the silane coupling agent having a hydrophobic site is hydrolyzed by water in solution or air, and water adsorbed on the carbon surface. Then, it is converted into an active silanol group (≡SiOH) and reacts with a functional group on the carbon surface to form a strong bond. As a result, a very microscopic monomolecular water-repellent layer having a thickness of several nm to several tens nm is formed on the surface of the carbon particles. By using the water-repellent carbon particles, even if the electrode is formed by mixing with the hydrophilic catalyst-carrying carbon particles, the catalyst fine particles in the electrode are coated as in the case of using PTFE dispersion particles of submicron order. And does not hinder the supply of the reaction gas.
【0039】さらに、本発明の燃料電池は、触媒粒子表
面あるいは触媒の担持されている炭素粒子の表面におい
て、シランカップリング剤の加水分解性基が、先と同様
に溶液中あるいは空気中の水分、炭素表面の吸着水分に
より加水分解されて、活性なシラノール基(≡SiOH)
に変化し、炭素表面の官能基と反応して強固な結合を形
成する。このシランカップリング剤にスルホン基やカル
ボキシル基などの親水性基を持たせることにより触媒表
面が親水性になり、三相界面付近の湿潤状態が保持され
る。Further, in the fuel cell of the present invention, the hydrolyzable group of the silane coupling agent is formed on the surface of the catalyst particles or on the surface of the carbon particles carrying the catalyst in the same manner as described above. Is hydrolyzed by water adsorbed on the carbon surface to form active silanol groups (≡SiOH)
And reacts with functional groups on the carbon surface to form strong bonds. By providing the silane coupling agent with a hydrophilic group such as a sulfone group or a carboxyl group, the catalyst surface becomes hydrophilic, and a wet state near the three-phase interface is maintained.
【0040】以上のことにより、本発明の電極を用いれ
ば、電極反応が生じる三相界面近傍付近では、親水性触
媒担持炭素粒子によって湿潤状態が適度に保持され、余
分に生成した水は隣接する撥水カーボンによって速やか
に排出されるので、従来よりも高性能な高分子電解質型
燃料電池を構成できる。As described above, when the electrode of the present invention is used, in the vicinity of the three-phase interface where the electrode reaction occurs, the wet state is appropriately maintained by the hydrophilic catalyst-carrying carbon particles, and excess water generated is adjacent. Since water is rapidly discharged by the water-repellent carbon, a polymer electrolyte fuel cell having higher performance than before can be constructed.
【図1】本発明の第1の実施例で用いた炭素粒子表面の
構成を示した概念図FIG. 1 is a conceptual diagram showing a configuration of a carbon particle surface used in a first embodiment of the present invention.
【図2】本発明の第1の実施例である燃料電池単セルの
電流と電圧の関係を示した図FIG. 2 is a diagram showing a relationship between current and voltage of a single fuel cell according to the first embodiment of the present invention;
【図3】本発明の第2の実施例である触媒担持炭素粒子
の構成を示した概念図FIG. 3 is a conceptual diagram showing the configuration of a catalyst-carrying carbon particle according to a second embodiment of the present invention.
【図4】本発明の第2の実施例である電極の構成を示し
た概念図FIG. 4 is a conceptual diagram showing a configuration of an electrode according to a second embodiment of the present invention.
【図5】本発明の第3の実施例である触媒担持炭素粒子
の構成を示した概念図FIG. 5 is a conceptual diagram showing the configuration of a catalyst-carrying carbon particle according to a third embodiment of the present invention.
1 炭素粒子 2 単分子撥水膜 3 固体高分子電解質膜 4 負極 5 正極 6 触媒担持炭素粉末 7 撥水性炭素粉末 8 カーボンペーパー REFERENCE SIGNS LIST 1 carbon particles 2 monomolecular water-repellent film 3 solid polymer electrolyte membrane 4 negative electrode 5 positive electrode 6 catalyst-supporting carbon powder 7 water-repellent carbon powder 8 carbon paper
───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅原 靖 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 森田 純司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 行天 久朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小野 之良 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 武部 安男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小原 英夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 羽藤 一仁 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西田 和史 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 酒井 修 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H018 AA06 AS01 BB05 BB16 CC06 DD08 EE03 EE05 EE19 5H026 AA06 BB03 BB10 CX04 EE02 EE05 EE19 5H027 AA06 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasushi Sugawara 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. 72) Inventor Hisao Gyoten 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. Male 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Hideo Ohara 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 1006 Matsushita Electric Industrial Co., Ltd. (72) Kazufumi Nishida, Inventor Kazuma Kadoma, Osaka Prefecture 1006 Matsushita Electric (72) Inventor Osamu Sakai 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Teruhito Kanbara 1006 Odama Kadoma, Kadoma City, Osaka Matsushita Electric Industrial F Reference) 5H018 AA06 AS01 BB05 BB16 CC06 DD08 EE03 EE05 EE19 5H026 AA06 BB03 BB10 CX04 EE02 EE05 EE19 5H027 AA06
Claims (7)
と、前記水素イオン伝導性固体高分子電解質膜を挟んだ
一対の電極と、前記電極を挟んだ一対の拡散層とを積層
した電極電解質接合体を具備した燃料電池において、前
記電極は、親水性炭素材に触媒粒子を担持した触媒体
と、水素イオン伝導性高分子電解質と、撥水性炭素材と
を少なくとも有することを特徴とする燃料電池用電極。1. An electrode electrolyte junction comprising a hydrogen ion conductive solid polymer electrolyte membrane, a pair of electrodes sandwiching the hydrogen ion conductive solid polymer electrolyte membrane, and a pair of diffusion layers sandwiching the electrode. A fuel cell, comprising: a catalyst body having catalyst particles supported on a hydrophilic carbon material; a hydrogen ion conductive polymer electrolyte; and a water-repellent carbon material. Electrodes.
性を有する層を化学的に接合したことを特徴とする請求
項1記載の燃料電池用電極。2. The fuel cell electrode according to claim 1, wherein a hydrophilic layer is chemically bonded to at least a part of the surface of the catalyst particles.
体を、水素イオン伝導性高分子電解質膜側に選択的に配
置し、撥水性炭素材を拡散層側に選択的に配置したこと
を特徴とする請求項1または2記載の燃料電池用電極。3. A catalyst body in which catalyst particles are supported on a hydrophilic carbon material is selectively disposed on a hydrogen ion conductive polymer electrolyte membrane side, and a water-repellent carbon material is selectively disposed on a diffusion layer side. 3. The electrode for a fuel cell according to claim 1, wherein:
くは全面と、疎水部位を有するシランカップリング剤と
を化学結合した、単分子層を有することを特徴とする請
求項1、2または3記載の燃料電池用電極。4. The water-repellent carbon material has a monomolecular layer in which a part or the entire surface of the carbon material is chemically bonded to a silane coupling agent having a hydrophobic part. Or the electrode for a fuel cell according to 3.
くは全面と、親水部位を有するシランカップリング剤と
を化学結合した層を有することを特徴とする請求項1、
2、3または4記載の燃料電池用電極。5. The hydrophilic carbon material has a layer in which a part or the whole surface of the carbon material is chemically bonded to a silane coupling agent having a hydrophilic part.
5. The electrode for a fuel cell according to 2, 3 or 4.
ラクトン基、カルボニル基、キノン基または無水カルボ
ン酸より選ばれる少なくとも1つの官能基を介して、炭
素材とシランカップリング剤とを化学結合したことを特
徴とする請求項4または5記載の燃料電池用電極。6. A phenolic hydroxyl group, a carboxyl group,
The fuel cell according to claim 4, wherein the carbon material and the silane coupling agent are chemically bonded via at least one functional group selected from a lactone group, a carbonyl group, a quinone group, and a carboxylic anhydride. Electrodes.
種を、シランカップリング剤を含有した溶媒に浸漬する
ことで、前記触媒粒子表面もしくは前記炭素材表面の少
なくとも一部分にシランカップリング剤を化学吸着させ
た後、前記触媒粒子表面もしくは前記炭素材表面と、前
記シランカップリング剤の分子中のシリコン原子との化
学結合を行うことで、親水性もしくは撥水性を有する層
を形成することを特徴とする請求項1、2、3、4、5
または6記載の燃料電池用電極の製造方法。7. At least one of catalyst particles or carbon material
By immersing the seed in a solvent containing a silane coupling agent, the silane coupling agent is chemically adsorbed on at least a part of the catalyst particle surface or the carbon material surface, and then the catalyst particle surface or the carbon material surface And forming a layer having hydrophilicity or water repellency by forming a chemical bond with silicon atoms in the molecules of the silane coupling agent.
7. A method for producing a fuel cell electrode according to item 6.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04118499A JP3565077B2 (en) | 1999-02-19 | 1999-02-19 | Electrode for fuel cell and method for producing the same |
US09/719,664 US6746793B1 (en) | 1998-06-16 | 1999-06-10 | Polymer electrolyte fuel cell |
CNA2003101239308A CN1516311A (en) | 1998-06-16 | 1999-06-10 | polymer electrolyte fuel cell |
PCT/JP1999/003123 WO1999066578A1 (en) | 1998-06-16 | 1999-06-10 | Polymer electrolyte fuel cell |
EP99925304A EP1096587A4 (en) | 1998-06-16 | 1999-06-10 | FUEL CELL COMPRISING A POLYMER ELECTROLYTE |
CNB998074764A CN1159788C (en) | 1998-06-16 | 1999-06-10 | polymer electrolyte fuel cell |
CNA2003101239312A CN1516312A (en) | 1998-06-16 | 1999-06-10 | polymer electrolyte fuel cell |
KR10-2000-7014308A KR100413645B1 (en) | 1998-06-16 | 1999-06-10 | Polymer electrolyte fuel cell |
US10/797,676 US20040170885A1 (en) | 1998-06-16 | 2004-03-10 | Polymer electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04118499A JP3565077B2 (en) | 1999-02-19 | 1999-02-19 | Electrode for fuel cell and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000243404A true JP2000243404A (en) | 2000-09-08 |
JP3565077B2 JP3565077B2 (en) | 2004-09-15 |
Family
ID=12601344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04118499A Expired - Fee Related JP3565077B2 (en) | 1998-06-16 | 1999-02-19 | Electrode for fuel cell and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3565077B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002047190A1 (en) * | 2000-12-05 | 2002-06-13 | Matsushita Electric Industrial Co., Ltd. | Polyelectrolyte type fuel cell, and operation method therefor |
US6847518B2 (en) | 2002-12-04 | 2005-01-25 | Honda Motor Co., Ltd. | Membrane electrode assembly for polymer electrolyte fuel cell |
JP2005150002A (en) * | 2003-11-19 | 2005-06-09 | Konica Minolta Holdings Inc | Fuel cell |
JP2005527957A (en) * | 2002-05-23 | 2005-09-15 | コロンビアン ケミカルズ カンパニー | Proton conductive carbonaceous material |
EP1615279A2 (en) * | 2004-07-08 | 2006-01-11 | Samsung SDI Co., Ltd. | Supported catalyst and fuel cell using the same |
JP2006344553A (en) * | 2005-06-10 | 2006-12-21 | Shin Etsu Chem Co Ltd | Electrode catalyst for fuel cell |
JP2006351265A (en) * | 2005-06-14 | 2006-12-28 | Tokai Carbon Co Ltd | Separator material for fuel cell and manufacturing method thereof |
JP2007294401A (en) * | 2006-03-31 | 2007-11-08 | Mitsubishi Heavy Ind Ltd | Solid polymer electrolyte membrane electrode assembly and method for producing the same |
JP2008192337A (en) * | 2007-02-01 | 2008-08-21 | Mitsubishi Heavy Ind Ltd | Solid polymer electrolyte membrane-electrode assembly and its manufacturing method |
JP2009081064A (en) * | 2007-09-26 | 2009-04-16 | Toshiba Corp | Catalyst layer, manufacturing method of catalyst layer, fuel cell, and manufacturing method of fuel cell |
US7569302B2 (en) | 2002-11-05 | 2009-08-04 | Panasonic Corporation | Fuel cell for generating electric power |
US7662505B2 (en) | 2002-10-31 | 2010-02-16 | Panasonic Corporation | Porous electrode, and electrochemical element made using the same |
WO2011152111A1 (en) * | 2010-05-31 | 2011-12-08 | 株式会社エクォス・リサーチ | Apparatus for production of catalyst layer for fuel cell, and method for production of catalyst layer for fuel cell |
JP2016192399A (en) * | 2015-03-30 | 2016-11-10 | 東洋インキScホールディングス株式会社 | Paste composition for ful cell, and fuel cell |
US9786925B2 (en) | 2004-04-22 | 2017-10-10 | Nippon Steel & Sumitomo Metal Corporation | Fuel cell and fuel cell use gas diffusion electrode |
KR101824650B1 (en) * | 2015-07-29 | 2018-02-01 | 연세대학교 산학협력단 | Carbon support for platinum catalyst and method for preparing the same |
JP2020061249A (en) * | 2018-10-09 | 2020-04-16 | 凸版印刷株式会社 | Membrane-electrode assembly for fuel cell, and solid polymer electrolyte fuel cell |
WO2020075777A1 (en) * | 2018-10-09 | 2020-04-16 | 凸版印刷株式会社 | Membrane-electrode assembly for fuel cells and solid polymer fuel cell |
JP2020061247A (en) * | 2018-10-09 | 2020-04-16 | 凸版印刷株式会社 | Membrane-electrode assembly for fuel cell, and solid polymer electrolyte fuel cell |
JP2020061248A (en) * | 2018-10-09 | 2020-04-16 | 凸版印刷株式会社 | Membrane-electrode assembly for fuel cell, and solid polymer electrolyte fuel cell |
-
1999
- 1999-02-19 JP JP04118499A patent/JP3565077B2/en not_active Expired - Fee Related
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1293661C (en) * | 2000-12-05 | 2007-01-03 | 松下电器产业株式会社 | Polyelectrolyte type fuel cell and operation method therefor |
EP1349224A1 (en) * | 2000-12-05 | 2003-10-01 | Matsushita Electric Industrial Co., Ltd. | Polyelectrolyte type fuel cell, and operation method therefor |
EP1349224A4 (en) * | 2000-12-05 | 2007-05-16 | Matsushita Electric Ind Co Ltd | Polyelectrolyte type fuel cell, and operation method therefor |
WO2002047190A1 (en) * | 2000-12-05 | 2002-06-13 | Matsushita Electric Industrial Co., Ltd. | Polyelectrolyte type fuel cell, and operation method therefor |
JP2005527957A (en) * | 2002-05-23 | 2005-09-15 | コロンビアン ケミカルズ カンパニー | Proton conductive carbonaceous material |
US7662505B2 (en) | 2002-10-31 | 2010-02-16 | Panasonic Corporation | Porous electrode, and electrochemical element made using the same |
US7569302B2 (en) | 2002-11-05 | 2009-08-04 | Panasonic Corporation | Fuel cell for generating electric power |
US6847518B2 (en) | 2002-12-04 | 2005-01-25 | Honda Motor Co., Ltd. | Membrane electrode assembly for polymer electrolyte fuel cell |
JP2005150002A (en) * | 2003-11-19 | 2005-06-09 | Konica Minolta Holdings Inc | Fuel cell |
US9786925B2 (en) | 2004-04-22 | 2017-10-10 | Nippon Steel & Sumitomo Metal Corporation | Fuel cell and fuel cell use gas diffusion electrode |
EP1615279A3 (en) * | 2004-07-08 | 2008-04-23 | Samsung SDI Co., Ltd. | Supported catalyst and fuel cell using the same |
EP1615279A2 (en) * | 2004-07-08 | 2006-01-11 | Samsung SDI Co., Ltd. | Supported catalyst and fuel cell using the same |
JP2006344553A (en) * | 2005-06-10 | 2006-12-21 | Shin Etsu Chem Co Ltd | Electrode catalyst for fuel cell |
JP2006351265A (en) * | 2005-06-14 | 2006-12-28 | Tokai Carbon Co Ltd | Separator material for fuel cell and manufacturing method thereof |
JP2007294401A (en) * | 2006-03-31 | 2007-11-08 | Mitsubishi Heavy Ind Ltd | Solid polymer electrolyte membrane electrode assembly and method for producing the same |
JP2008192337A (en) * | 2007-02-01 | 2008-08-21 | Mitsubishi Heavy Ind Ltd | Solid polymer electrolyte membrane-electrode assembly and its manufacturing method |
JP2009081064A (en) * | 2007-09-26 | 2009-04-16 | Toshiba Corp | Catalyst layer, manufacturing method of catalyst layer, fuel cell, and manufacturing method of fuel cell |
WO2011152111A1 (en) * | 2010-05-31 | 2011-12-08 | 株式会社エクォス・リサーチ | Apparatus for production of catalyst layer for fuel cell, and method for production of catalyst layer for fuel cell |
JP2012015090A (en) * | 2010-05-31 | 2012-01-19 | Equos Research Co Ltd | Apparatus and method for producing fuel cell catalyst layer |
JP2016192399A (en) * | 2015-03-30 | 2016-11-10 | 東洋インキScホールディングス株式会社 | Paste composition for ful cell, and fuel cell |
KR101824650B1 (en) * | 2015-07-29 | 2018-02-01 | 연세대학교 산학협력단 | Carbon support for platinum catalyst and method for preparing the same |
JP2020061249A (en) * | 2018-10-09 | 2020-04-16 | 凸版印刷株式会社 | Membrane-electrode assembly for fuel cell, and solid polymer electrolyte fuel cell |
WO2020075777A1 (en) * | 2018-10-09 | 2020-04-16 | 凸版印刷株式会社 | Membrane-electrode assembly for fuel cells and solid polymer fuel cell |
JP2020061247A (en) * | 2018-10-09 | 2020-04-16 | 凸版印刷株式会社 | Membrane-electrode assembly for fuel cell, and solid polymer electrolyte fuel cell |
JP2020061248A (en) * | 2018-10-09 | 2020-04-16 | 凸版印刷株式会社 | Membrane-electrode assembly for fuel cell, and solid polymer electrolyte fuel cell |
JP7131275B2 (en) | 2018-10-09 | 2022-09-06 | 凸版印刷株式会社 | Membrane electrode assembly for fuel cell and polymer electrolyte fuel cell |
JP7131274B2 (en) | 2018-10-09 | 2022-09-06 | 凸版印刷株式会社 | Membrane electrode assembly for fuel cell and polymer electrolyte fuel cell |
JP7131276B2 (en) | 2018-10-09 | 2022-09-06 | 凸版印刷株式会社 | Membrane electrode assembly for fuel cell and polymer electrolyte fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP3565077B2 (en) | 2004-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3565077B2 (en) | Electrode for fuel cell and method for producing the same | |
KR100413645B1 (en) | Polymer electrolyte fuel cell | |
US8652985B2 (en) | Electrode catalyst layer for use in fuel cell | |
EP1944819B1 (en) | Method for producing membrane electrode assembly for solid polymer fuel cell | |
JP3992866B2 (en) | FUEL CELL ELECTRODE AND METHOD FOR PRODUCING THE SAME | |
KR20130016228A (en) | Process for production of cathode catalyst layer for fuel cell, cathode catalyst layer, and membrane electrode assembly for solid polymer fuel cell | |
CN104541395A (en) | Microporous layer with hydrophilic additives | |
WO2000011741A1 (en) | Fuel cell and method of menufacture thereof | |
US6638659B1 (en) | Membrane electrode assemblies using ionic composite membranes | |
JP2004192950A (en) | Solid polymer fuel cell and its manufacturing method | |
US20020197524A1 (en) | Manufacturing method of fuel cell electrode and fuel cell using thereof | |
WO2003088396A1 (en) | Solid polymer electrolyte fuel battery having improved performance and reliability and manufacturing method thereof | |
JP2012074331A (en) | Membrane electrode assembly and fuel cell | |
JP2005026207A (en) | Electrode for solid polymer type fuel cell, and its manufacturing method | |
CN101411013A (en) | Fuel cell electrode catalyst with reduced noble metal amount and solid polymer fuel cell comprising the same | |
KR102720277B1 (en) | Composition for forming electrode of fuel cell and electrode of fuel cell comprising the same | |
JPH0644984A (en) | Electrode for solid high polymer electrolyte fuel cell | |
JP2012212661A (en) | Electrode catalyst layer for fuel cell, manufacturing method of electrode catalyst layer, membrane electrode assembly for fuel cell, and solid polymer fuel cell | |
JP2004185900A (en) | Electrode for fuel cell, film/catalyst layer junction, fuel cell, and manufacturing method of them | |
JP4506165B2 (en) | Membrane electrode assembly and method of using the same | |
JP2008204950A (en) | Solid polymer fuel cell and its manufacturing method | |
JP3599044B2 (en) | Fuel cell catalyst electrode, fuel cell using the same, and methods of manufacturing the same | |
JP5454050B2 (en) | POLYMER ELECTROLYTE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY CONTAINING THE POLYMER ELECTROLYTE, AND METHOD FOR PRODUCING THE SAME | |
JP5569093B2 (en) | Method for producing electrode catalyst layer for fuel cell | |
JP2003317736A (en) | Fuel cell, solid electrolyte film for fuel cell and catalyst electrode for fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110618 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120618 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |