[go: up one dir, main page]

JP2000237858A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JP2000237858A
JP2000237858A JP11038101A JP3810199A JP2000237858A JP 2000237858 A JP2000237858 A JP 2000237858A JP 11038101 A JP11038101 A JP 11038101A JP 3810199 A JP3810199 A JP 3810199A JP 2000237858 A JP2000237858 A JP 2000237858A
Authority
JP
Japan
Prior art keywords
water
temperature
slab
air
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11038101A
Other languages
Japanese (ja)
Other versions
JP4217847B2 (en
Inventor
Toru Kato
徹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP03810199A priority Critical patent/JP4217847B2/en
Publication of JP2000237858A publication Critical patent/JP2000237858A/en
Application granted granted Critical
Publication of JP4217847B2 publication Critical patent/JP4217847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

(57)【要約】 【課題】鋳片を気水ミストにより二次冷却する際に、同
一の気水ミストノズルを用いて、鋳片表面の温度をいっ
たんA3 変態点未満に低下させるような冷却やA3 変態
点未満に低下させないような冷却が可能な鋼の連続鋳造
方法の提供。 【解決手段】ノズル内の水と空気の混合部からノズルの
先端までの長さを100〜300mmとし、鋳片の矯正
位置までの間で、鋳片表面の温度をいったんA3 変態点
未満に低下させた後、A3 変態点以上に復熱させる場合
には、A3 変態点未満までの冷却条件を、常温常圧にお
ける水Wと空気Aの混合比A/W(体積割合)を5〜1
5、水量密度を0.03〜0.09リットル/cm2 ・分と
し、鋳片表面の温度をA3 変態点未満に低下させない場
合には、常温常圧における水Wと空気Aの混合比A/W
(体積割合)を50〜200、水量密度を0.005〜
0.015リットル/cm2 ・分とする。
(57) Abstract: The present invention relates billet when secondary cooling by air-water mist, with the same air-water mist nozzles, that decreases once A less than 3 transformation point temperature of the slab surface Provided is a continuous casting method of steel capable of cooling and cooling so as not to lower the temperature below the A 3 transformation point. A from the mixing portion of the water and air within the nozzle to the tip of the nozzle length and 100 to 300 mm, between the up correction position of the slab, the temperature of the slab surface once below A 3 transformation point In the case where the temperature is reduced to a value higher than the A 3 transformation point, the cooling condition until the temperature becomes lower than the A 3 transformation point is determined by setting the mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure to 5%. ~ 1
5. Mixing ratio of water W and air A at normal temperature and normal pressure when the water density is 0.03-0.09 liter / cm 2 · min and the temperature of the slab surface is not lowered below the A 3 transformation point. A / W
(Volume ratio) 50-200, water density 0.005-
0.015 liter / cm 2 · min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳型から引き抜か
れた鋳片を気水ミストにより二次冷却する鋼の連続鋳造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for steel in which a slab drawn from a mold is secondarily cooled by steam-water mist.

【0002】[0002]

【従来の技術】近年、厚板製品などにおいて、機械的性
質上の要求からNb、V、Ni、Cuなどの合金元素を
含有させた低合金鋼が多く用いられている。これら低合
金鋼を湾曲型や垂直曲げ型の連続鋳造機を用いて鋳造す
る場合には、鋳片表面に横割れ、横ひび割れと呼ばれる
割れが発生しやすい。鋳片が矯正されるとき、鋳片表面
に働く矯正応力が、これら低合金鋼に固有の限界応力を
超えるために、鋳片表面に横割れや横ひび割れが発生す
る。
2. Description of the Related Art In recent years, low alloy steels containing alloying elements such as Nb, V, Ni, and Cu have been widely used for thick plate products and the like due to demands on mechanical properties. When casting these low alloy steels using a curved or vertical bending type continuous casting machine, cracks called horizontal cracks and horizontal cracks are likely to occur on the slab surface. When a slab is straightened, since the straightening stress acting on the slab surface exceeds the limit stress inherent in these low alloy steels, lateral cracks and lateral cracks occur on the slab surface.

【0003】Nb、V、Ni、Cuなどの合金元素を含
有する低合金鋼の鋳片が横割れなどを発生しやすい理由
をさらに説明すると、次のとおりである。すなわち、こ
れら低合金鋼の鋳片の熱間延性が、鋳片の凝固組織がγ
相からα相に変態するA3 変態点の温度近傍、すなわ
ち、約600〜850℃程度の温度領域で、著しく低下
する。さらに、これら低合金鋼の鋳片では、鋳型から引
き抜かれた後の二次冷却過程で、AlNやNbCなどが
γ相粒界に析出しやすい。AlNやNbCなどが析出し
たγ相粒界は割れやすい。したがって、上記のような温
度領域で低合金鋼の鋳片が矯正されると、矯正応力によ
りγ相粒界が割れやすく、そのため鋳片表面に横割れや
横ひび割れなどが発生するのである。
The reason why low alloy steel slabs containing alloying elements such as Nb, V, Ni, and Cu tend to cause lateral cracks and the like will be further described as follows. That is, the hot ductility of the cast slab of these low alloy steels indicates that the solidification structure of the cast slab is γ.
Temperature near the A 3 transformation point to transformation from phase to α-phase, i.e., at a temperature range of about 600 to 850 ° C., significantly reduced. Furthermore, in these low-alloy steel slabs, AlN, NbC, and the like are likely to precipitate at the γ-phase grain boundaries in the secondary cooling process after being drawn from the mold. The γ-phase grain boundaries on which AlN, NbC, etc. are precipitated are easily cracked. Therefore, when a low-alloy steel slab is corrected in the above temperature range, the γ-phase grain boundary is easily cracked by the correction stress, and thus a lateral crack or a lateral crack is generated on the surface of the slab.

【0004】そこで、これら低合金鋼の鋳片を矯正する
際に、上記のA3 変態点の温度近傍、いわゆる脆化温度
域よりも、さらに低温の温度領域で鋳片を矯正する試み
があるが、上述したようにAlNやNbCなどがすでに
γ相粒界に析出しているために、鋳片の割れ感受性が高
く、単に脆化温度域より低温の温度領域で矯正するだけ
では、横割れなどの発生を防止できない。
[0004] Therefore, when correcting the slab of low alloy steel, the temperature near the above A 3 transformation point, than the so-called brittle temperature range, there is a further attempt to correct the cast piece at low temperature region However, since AlN and NbC are already precipitated at the γ phase grain boundary as described above, the susceptibility of the slab to cracking is high, and simply correcting in a temperature region lower than the embrittlement temperature region results in lateral cracking. Cannot be prevented.

【0005】また、鋳片が鋳型から引き抜かれて矯正さ
れるまでの間に、鋳片表面の凝固組織がγ相からα相に
変態しないよう、鋳片表面の温度をA3 変態点より高温
に保持し、脆化温度域よりも高温の温度領域で、鋳片を
矯正する試みがある。しかし、この場合も横割れなどが
発生しやすい。鋳片表面の凝固組織のγ相が変態してい
ないので、γ相の結晶粒は大きい。したがって、鋳片表
面が矯正応力によって割れやすい。
In order to prevent the solidified structure on the surface of the slab from transforming from the γ phase to the α phase before the slab is pulled out of the mold and corrected, the temperature of the slab surface is set higher than the A 3 transformation point. There is an attempt to correct the slab in a temperature range higher than the embrittlement temperature range. However, also in this case, horizontal cracks and the like are likely to occur. Since the γ phase of the solidified structure on the slab surface is not transformed, the crystal grains of the γ phase are large. Therefore, the slab surface is easily cracked by the correction stress.

【0006】特開平9−47854号公報では、鋳型か
ら引き抜かれた直後の鋳片を気水ミストノズルを用いて
強冷却し、鋳片表面の温度をいったんA3 変態点以下の
850℃程度の温度に冷却し、その後、鋳片を矯正する
までに、鋳片表面の温度をA3 変態点を超えて900℃
程度に復熱させる方法が開示されている。
In Japanese Patent Application Laid-Open No. 9-47854, a slab immediately after being extracted from a mold is strongly cooled using a steam-water mist nozzle, and the temperature of the slab surface is once reduced to about 850 ° C. below the A 3 transformation point. After cooling to a temperature and then straightening the slab, raise the temperature of the slab surface to 900 ° C. above the A 3 transformation point.
A method of recuperating to a degree is disclosed.

【0007】この方法では、鋳片表面の凝固組織が、い
ったんγ相からα相に変態し、その後、復熱によりγ相
に変態する。そのため、鋳片が矯正されるときの鋳片表
面のγ相の結晶粒は小さくなっており、また、A3 変態
点以上の高温で鋳片が矯正されるので、鋳片表面に横割
れなどが発生しにくい。
In this method, the solidified structure on the surface of the slab is transformed from the γ phase to the α phase, and then transformed to the γ phase by reheating. Therefore, crystal grains of the γ-phase of the slab surface when the slab is corrected is reduced. In addition, since pieces cast at a high temperature of at least A 3 transformation point is corrected, transverse cracks on the cast slab surface, etc. Is less likely to occur.

【0008】しかし、前述の特開平9−47854号公
報で提案されているような鋳片の凝固組織をγ相からα
相にいったん変態させる気水ミストノズルを備えた連続
鋳造機において、割れ感受性の低い一般的な炭素鋼を鋳
造する場合に、鋳片表面の温度をA3 変態点より低下さ
せないような冷却を行うと、鋳片表面に横割れではなく
て、縦割れが発生する場合がある。このような気水ミス
トノズルを用いて、鋳片表面の温度をA3 変態点より低
下させないようにすると、鋳片の幅方向での水量分布が
不均一になるため、鋳片表面の温度が幅方向で不均一に
なる。そのため、割れ感受性の低い鋼でも鋳片表面に縦
割れが発生しやすくなる。鋳片表面の温度をA3 変態点
より低下させない理由は、近年多く用いられているよう
に連続鋳造機の後段に配置された熱間圧延設備に、でき
るだけ高温状態の鋳片を供給し、鋼製品製造の際のエネ
ルギーの節減を図るためである。
However, the solidification structure of the cast slab as proposed in the above-mentioned Japanese Patent Application Laid-Open No. 9-47854 is changed from the γ phase to the α phase.
In continuous casting machine having a air-water mist nozzles for temporarily transformed into phase, when casting with low crack susceptibility common carbon steel, for cooling so as not to lower than A 3 transformation point temperature of the slab surface In this case, vertical cracks may occur instead of horizontal cracks on the slab surface. Using such steam-water mist nozzles, when the temperature of the slab surface so as not to lower than A 3 transformation point, because the water content distribution in the width direction of the slab is not uniform, the temperature of the slab surface It becomes uneven in the width direction. Therefore, even if the steel has low cracking susceptibility, longitudinal cracks are likely to occur on the surface of the slab. Reason for the temperature of the slab surface not lower than A 3 transformation point, recently many used are hot-rolling equipment in which is disposed downstream of the continuous casting machine as, as much as possible supply slab of high temperature, steel This is to save energy during product manufacturing.

【0009】[0009]

【発明が解決しようとする課題】前述したように、従来
用いられているような、鋳片表面の温度をいったんA3
態点未満の温度に冷却し、その後鋳片を矯正するまで
に、鋳片表面の温度をA3変態点以上の温度に復熱させ
るための気水ミストノズルでは、低合金鋼の横割れや横
ひび割れの発生の防止には効果があるが、次にまとめて
示すような問題点がある。すなわち、 このような気水ミストノズルを用いた場合に、同一の
気水ミストノズルでは、冷却水の量を減らすことが困難
で、たとえ量を減らしても、鋳片の幅方向での水量分布
が不均一になる。 したがって、上記と同一の気水ミストノズルを用い
て、割れ感受性の低い一般的な炭素鋼を鋳造し、できる
だけ高温状態の鋳片を得ようとする場合に、鋳片表面に
縦割れが発生する場合がある。冷却水量を減らしたとき
に、鋳片の幅方向での水量分布が不均一になるためであ
る。
As described above, the temperature of the slab surface is temporarily reduced to A 3 as used in the prior art.
Cooled to a temperature below state point, before correcting the subsequently cast piece, with the air-water mist nozzles for causing recuperation temperature of the slab surface to A 3 transformation point or above the temperature, Ya transverse cracks in low alloy steels Although effective in preventing the occurrence of lateral cracks, it has the following problems. That is, in the case of using such an air / water mist nozzle, it is difficult to reduce the amount of cooling water with the same air / water mist nozzle, and even if the amount is reduced, the water amount distribution in the width direction of the slab is reduced. Becomes uneven. Therefore, using the same air-water mist nozzle as described above, when casting a general carbon steel having a low crack sensitivity and trying to obtain a slab in a high temperature state as much as possible, vertical cracks occur on the slab surface. There are cases. This is because when the cooling water amount is reduced, the water amount distribution in the width direction of the slab becomes non-uniform.

【0010】本発明は、鋳型から引き抜かれた鋳片を気
水ミストにより二次冷却する際に、同一の気水ミストノ
ズルを用いて、鋳片表面の温度を、いったんA3 変態点
未満の温度に低下させ、その後、A3 変態点以上に復熱
させるような冷却やA3 変態点未満の温度に低下させな
いような二次冷却が可能な鋼の連続鋳造方法の提供を目
的とする。
According to the present invention, when the cast slab drawn out of the mold is subjected to secondary cooling by steam-water mist, the same steam-water mist nozzle is used to reduce the temperature of the cast slab surface once to below the A 3 transformation point. lowering the temperature, then for the sole purpose of providing cooling and a 3 continuous casting method of the secondary cooling is available steels, such as not to lower the temperature below the transformation point, such as to recuperation or more a 3 transformation point.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、鋳型か
ら引き抜かれた鋳片を気水ミストにより二次冷却する際
に、ノズル内の水と空気の混合部からノズルの先端まで
の長さを100〜300mmとし、鋳型出口から鋳片の
矯正位置までの間で、鋳片表面の温度をいったんA3
態点未満に低下させた後、A3 変態点以上に復熱させる
場合には、A3変態点未満までの冷却条件を、常温常圧
における水Wと空気Aの混合比A/W(体積割合)を5
〜15、水量密度を0.03〜0.09リットル/cm2
分とし、鋳片表面の温度をA3 変態点未満に低下させな
い場合には、常温常圧における水Wと空気Aの混合比A
/W(体積割合)を50〜200、水量密度を0.00
5〜0.015リットル/cm2 ・分とする鋼の連続鋳造方
法にある。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a method for cooling a slab drawn from a mold by a steam-water mist after secondary cooling from a mixed portion of water and air in the nozzle to a tip of the nozzle. and 100~300mm a is, between the mold exit to a correction position of the slab, after lowering once a less than 3 transformation point temperature of the slab surface, in the case of recuperation or more a 3 transformation point , The cooling condition to below the A 3 transformation point, the mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure is 5
-15, water density 0.03-0.09 liter / cm 2 ·
And the temperature of the slab surface is not lowered below the A 3 transformation point, the mixing ratio A of water W and air A at normal temperature and normal pressure is
/ W (volume ratio) 50 to 200, water volume density 0.00
It is a method of continuously casting steel at a rate of 5 to 0.015 liter / cm 2 · minute.

【0012】本発明の方法が対象とする連続鋳造機は、
鋳造された湾曲状の鋳片が矯正される湾曲型または垂直
曲げ型の連続鋳造機である。また、Nb、V、Ni、C
uなどの合金元素を含む割れ感受性の高い低合金鋼と上
記のような合金元素を含まず割れ感受性の低い炭素鋼等
とが、同じ連続鋳造機により、同一の気水ミストノズル
を用いて鋳造されるような操業を行う連続鋳造機を対象
とする。
The continuous casting machine to which the method of the present invention is directed is:
This is a curved or vertical bending type continuous casting machine in which a cast curved slab is straightened. Also, Nb, V, Ni, C
Low alloy steel with high crack susceptibility containing alloy elements such as u and carbon steel with low crack susceptibility without the above alloy elements are cast by the same continuous casting machine using the same steam-water mist nozzle. It is intended for a continuous casting machine that operates as described below.

【0013】本発明者は、前述した従来の気水ミストノ
ズルの問題点を次のようにして解決した。すなわち、本
発明の方法では、水と空気の混合部からノズルの先端ま
での長さを100〜300mmとする気水ミストノズル
を用いる。さらに水Wと空気Aの混合比A/Wを適正に
選択することにより、同一の気水ミストノズルを用い
て、鋳片表面の温度をいったんA3 変態点未満の温度に
低下させるように冷却水量を多くしても、逆に、鋳片を
矯正するまでに鋳片表面の温度をA3 変態点未満の温度
に低下させないように冷却水量を低減しても、いずれの
場合にも、鋳片の幅方向での均一な水量分布、均一な鋳
片表面の温度分布が得られる。したがって、低合金鋼の
鋳片の横割れの発生を防止でき、また、同一の気水ミス
トノズルを用いて、炭素鋼の鋳片の縦割れなどの発生を
防止でき、かつ高温の鋳片を得ることができる。
The present inventor has solved the above-mentioned problems of the conventional air / water mist nozzle as follows. That is, in the method of the present invention, an air / water mist nozzle having a length from the mixing portion of water and air to the tip of the nozzle of 100 to 300 mm is used. Furthermore, by properly selecting the mixing ratio A / W of water W and the air A, cooling using the same air-water mist nozzles, once to reduce the temperature below A 3 transformation point temperature of the slab surface even by increasing the amount of water, on the contrary, even if reduced amount of cooling water to the temperature of the slab surface not lowered to a temperature lower than a 3 transformation point before correcting slab, in any case, cast A uniform water amount distribution in the width direction of the slab and a uniform temperature distribution on the slab surface can be obtained. Therefore, it is possible to prevent the occurrence of lateral cracks in the slab of low alloy steel, and to prevent the occurrence of vertical cracks and the like in the slab of carbon steel using the same steam mist nozzle, and to remove the high-temperature slab. Obtainable.

【0014】本発明の方法でいう鋳片表面の温度とは、
たとえば、放射温度計により測定することのできる温度
であり、鋳片の表面から表皮直下までの温度を意味す
る。また、この鋳片表面の温度は、凝固伝熱解析による
計算によっても求めることができる。すなわち、鋼の種
類、鋳片のサイズ、鋳造速度、鋳片の二次冷却条件など
の条件が決まれば、溶鋼メニスカスからの距離に応じた
鋳片表面の温度を計算で求めることができる。また、表
面熱伝達係数を適切に選択することにより、この計算で
求めた鋳片表面の温度は実測の温度を良く一致する。鋳
片の横割れや縦割れは、鋳片表面および表皮直下に発生
するので、鋳片表面の温度を管理することにより、鋳片
の割れを抑制できる。
The temperature of the slab surface in the method of the present invention is
For example, it is a temperature that can be measured by a radiation thermometer, and means a temperature from the surface of the slab to just below the skin. Further, the temperature of the slab surface can also be obtained by calculation by solidification heat transfer analysis. That is, if conditions such as the type of steel, the size of the slab, the casting speed, and the secondary cooling condition of the slab are determined, the temperature of the slab surface according to the distance from the molten steel meniscus can be calculated. Further, by appropriately selecting the surface heat transfer coefficient, the temperature of the slab surface obtained by this calculation is in good agreement with the actually measured temperature. Since horizontal cracks and vertical cracks of the slab occur on the slab surface and immediately below the skin, cracking of the slab can be suppressed by controlling the temperature of the slab surface.

【0015】[0015]

【発明の実施の形態】図1は、本発明の方法に用いる気
水ミストノズルの構造の例を概念的に示す図である。気
水ミストノズル1は、水と空気の混合部2−1または2
−2および気水ミストを鋳片に噴霧するノズル先端部3
と、混合部2−1または2−2に水を送り込む管5(こ
の管への配管は図示していない)と、空気を送り込む管
6(この管への配管は図示していない)とで構成され
る。また、ノズル先端部3の先端には、ノズルチップ7
を備える。
FIG. 1 is a view conceptually showing an example of the structure of a steam-water mist nozzle used in the method of the present invention. The air / water mist nozzle 1 is provided with a water / air mixing section 2-1 or 2
-2 and nozzle tip 3 for spraying steam mist onto slab
And a pipe 5 for sending water to the mixing section 2-1 or 2-2 (a pipe to this pipe is not shown), and a pipe 6 for sending air (the pipe to this pipe is not shown). Be composed. In addition, a nozzle tip 7 is provided at the tip of the nozzle tip 3.
Is provided.

【0016】本発明の方法で規定する水と空気の混合部
からノズルの先端までの長さとは、図1(a)に示す例
のように、水と空気を混合する混合部2−1の形状が、
その他の部分より大きい場合には、その混合部2−1と
ノズル先端部3の境界からノズルチップの先端4までの
長さh−1である。図1(b)に示す例のように、水と
空気を混合する混合部2−2がノズル先端部3とほぼ同
じ大きさの場合には、水を送り込む管5または空気を送
り込む管6の内、ノズル先端部3に近い方の管のノズル
先端部側の端から、ノズルチップの先端4までの長さh
−2である。
The length from the mixing portion of water and air to the tip of the nozzle specified by the method of the present invention is, as shown in FIG. 1A, the mixing portion 2-1 for mixing water and air. The shape is
If it is larger than the other portions, the length is h-1 from the boundary between the mixing section 2-1 and the nozzle tip 3 to the tip 4 of the nozzle tip. When the mixing section 2-2 that mixes water and air is substantially the same size as the nozzle tip 3 as in the example shown in FIG. 1B, the pipe 5 for sending water or the pipe 6 for sending air is used. The length h from the nozzle tip side end of the tube closer to the nozzle tip 3 to the nozzle tip 4
-2.

【0017】ノズルチップには、通常用いられる気水ミ
ストノズル用のノズルチップを用いることができる。ま
た、冷却する鋳片の表面に対する気水ミストノズルの配
置方法、たとえば、鋳片の幅方向で配置する間隔、鋳造
方向で配置する間隔と配置する位置の範囲、鋳片表面と
ノズル先端との距離などは、連続鋳造機のロール配置な
どの構造、鋳片の最大幅、ノズルチップの種類、最大の
鋳造速度等により決めればよい。
As the nozzle tip, a nozzle tip for a commonly used air / water mist nozzle can be used. In addition, the method of arranging the air / water mist nozzle with respect to the surface of the slab to be cooled, for example, the interval to be arranged in the width direction of the slab, the interval to be arranged in the casting direction and the range of the arrangement position, the distance between the slab surface and the nozzle tip The distance and the like may be determined according to the structure such as the roll arrangement of the continuous casting machine, the maximum width of the slab, the type of the nozzle tip, the maximum casting speed, and the like.

【0018】たとえば、最大の鋳片幅2300mm、最
大の鋳造速度2m/分の鋳造条件の場合では、鋳型出口
から鋳造方向の2〜3m先までの間に、200〜300
mm程度の間隔の位置に相当するロールとロールの間の
位置に、鋳片の冷却面とノズル先端との距離を80〜2
00mmとし、鋳片幅方向に120〜300mmの間隔
で、気水ミストノズルを配置するのがよい。この程度に
気水ミストノズルを配置することにより、鋳片表面の温
度をいったんA3 変態点未満の温度に低下させることが
でき、また、これらの気水ミストノズルの位置よりも鋳
造方向で下流側の二次冷却条件の冷却水量を、上記気水
ミストノズルの冷却水量よりも減らすことにより、鋳片
が矯正される前に、鋳片表面の温度をA3 変態点以上に
復熱させることもできる。
For example, under the casting conditions of a maximum slab width of 2300 mm and a maximum casting speed of 2 m / min, 200 to 300 m from the mold exit to a point 2 to 3 m ahead in the casting direction.
The distance between the cooling surface of the slab and the tip of the nozzle is set to 80 to 2 at a position between the rolls corresponding to a position having an interval of about mm.
It is preferable to arrange the steam-water mist nozzle at an interval of 120 to 300 mm in the slab width direction. By arranging the air-water mist nozzles to the extent it is possible to reduce the temperature of the once A less than 3 transformation point temperature of the slab surface and, downstream in the casting direction than the position of these gas-water mist nozzles the amount of cooling water of the secondary cooling conditions sides, by reducing of the cooling water of the steam-water mist nozzle, before the slab is corrected, thereby recuperation temperature of the slab surface than a 3 transformation point Can also.

【0019】鋳片の冷却面とノズル先端との距離を80
mm未満とすると、気水ミストが広角に広がるノズルが
必要となり、このときには水量分布が不均一になりやす
い。また、この距離が200mmを超えると、隣接する
ノズルの気水ミストの水量分布と重複しやすく、水量分
布が不均一になりやすい。鋳片幅方向のノズル間隔を1
20mm未満にすると、ノズルの本数が増加し、設備費
および保守費用が増加する。また、この間隔が300m
mを超えると、鋳片幅方向で水量分布が不均一になりや
すい。
The distance between the cooling surface of the slab and the tip of the nozzle is 80
If the diameter is less than mm, a nozzle for widening the air-water mist is required, and at this time, the water amount distribution tends to be non-uniform. On the other hand, if this distance exceeds 200 mm, the water amount distribution of the air-water mist of the adjacent nozzle tends to overlap, and the water amount distribution tends to be non-uniform. Nozzle spacing in the slab width direction is 1
If it is less than 20 mm, the number of nozzles increases, and equipment costs and maintenance costs increase. Also, this interval is 300m
If it exceeds m, the water distribution tends to be uneven in the slab width direction.

【0020】本発明の方法では、水と空気の混合部から
ノズルの先端までの長さが100〜300mmとする気
水ミストノズルを用いる。以下に、その理由を説明す
る。図2は、水量分布の幅方向均一度(%)に及ぼす水
と空気の混合部からノズルの先端までの長さの影響を示
す図である。水量分布の幅方向均一度(%)は、次のよ
うにして調査した。すなわち、幅方向に150mmの間
隔で3本の気水ミストノズルを水槽の上部150mmの
高さの位置に設置し、同一の気水ミストノズルを用い
て、0.008リットル/cm2 ・分および0.05リットル/
cm2 ・分の水量密度で気水ミストを噴霧する。水量密
度が0.008リットル/cm2 ・分のときの常温常圧にお
ける水Wと空気Aの混合比A/W(体積割合)を10、
水量密度が0.05リットル/cm2 ・分のときの常温常圧
における水Wと空気Aの混合比A/W(体積割合)を1
00とした。
In the method of the present invention, a steam-water mist nozzle having a length of 100 to 300 mm from the mixing portion of water and air to the tip of the nozzle is used. The reason will be described below. FIG. 2 is a diagram showing the influence of the length from the water / air mixing portion to the tip of the nozzle on the width direction uniformity (%) of the water amount distribution. The width direction uniformity (%) of the water amount distribution was investigated as follows. That is, three air / water mist nozzles are installed at a height of 150 mm above the water tank at intervals of 150 mm in the width direction, and the same air / water mist nozzle is used to obtain 0.008 liter / cm 2 · min. 0.05 liter /
Spray water-mist at a water density of cm 2 · min. The mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure when the water volume density is 0.008 liter / cm 2 · min is 10,
The mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure when the water volume density is 0.05 liter / cm 2 · min is 1
00.

【0021】水槽は縦300mm、横、すなわち幅方向
500mm、深さ500mmの大きさの水槽で、幅方向
に20mm間隔に仕切り板を入れ、噴霧時間1分間に、
それぞれの仕切り板間の部分に貯まった水量を調査す
る。このとき、仕切り板間の部分に貯まった水量の内、
最大量となった部分の水量に対する最小量となった部分
の水量の割合を気水ミストノズルの水量分布の幅方向均
一度(%)として評価した。一般的に、均一な幅方向の
水量分布のときの水量分布の幅方向均一度(%)は80
%以上である。なお、0.008リットル/cm2 ・分の水
量密度とは、鋳片表面の温度が、鋳片の矯正位置までの
間でA3 変態点未満の温度に低下しない程度の弱い冷却
に相当し、また、0.05リットル/cm2 ・分の水量密度
とは、鋳片表面を強く冷却し、鋳片表面の温度をA3
態点未満の温度に急冷することができるような場合の冷
却に相当する。
The water tank is a water tank having a length of 300 mm and a width of 500 mm in the width direction and a depth of 500 mm. Partition plates are placed at intervals of 20 mm in the width direction, and the spray time is 1 minute.
Investigate the amount of water stored in the area between each partition. At this time, of the amount of water stored in the portion between the partition plates,
The ratio of the minimum amount of water to the maximum amount of water was evaluated as the widthwise uniformity (%) of the water amount distribution of the steam mist nozzle. Generally, the uniformity (%) in the width direction of the water amount distribution in the case of the uniform water amount distribution in the width direction is 80.
% Or more. The water density of 0.008 liter / cm 2 · min is equivalent to weak cooling such that the temperature of the slab surface does not drop below the A 3 transformation point until the slab correction position. Further, the water density of 0.05 liter / cm 2 · min. Refers to the cooling when the slab surface can be strongly cooled and the temperature of the slab surface can be rapidly cooled to a temperature lower than the A 3 transformation point. Is equivalent to

【0022】図2に示すように、水と空気の混合部から
ノズルの先端までの長さが100mm未満の場合には、
0.05リットル/cm2 ・分の水量密度で噴霧する際の水
量分布の幅方向均一度(%)は80%以上となり、均一
な水量分布になるが、0.008リットル/cm2 ・分の水
量密度で噴霧する際には、水量分布の幅方向均一度
(%)は80%より小さく、水量分布の均一性が悪い。
一方、水と空気の混合部からノズルの先端までの長さが
100mm以上の場合には、水量密度が0.05および
0.008リットル/cm2 ・分の両方ともに、均一な水量
分布になる。150mm以上にするのがより望ましい。
しかし、水と空気の混合部からノズルの先端までの長さ
が300mmを超えると、気水ミストノズルが長くなっ
て、ノズル設備全体が長くなり、鋳片を支えるロール設
備から突出するようになり、設備上不利である。さら
に、気水ミストの液滴が粗大化し、水量分布が不均一に
なりやすい。したがって、水と空気の混合部からノズル
の先端までの長さは100〜300mmとする。150
〜300がより望ましい。
As shown in FIG. 2, when the length from the mixing portion of water and air to the tip of the nozzle is less than 100 mm,
The uniformity (%) in the width direction of the water amount distribution when spraying at a water amount density of 0.05 liter / cm 2 · min is 80% or more, and a uniform water amount distribution is obtained, but 0.008 liter / cm 2 · min When the spraying is performed at the water density, the uniformity (%) in the width direction of the water amount distribution is smaller than 80%, and the uniformity of the water amount distribution is poor.
On the other hand, when the length from the mixed portion of water and air to the tip of the nozzle is 100 mm or more, the water volume density is uniform at both 0.05 and 0.008 l / cm 2 · minute. . More desirably, it is 150 mm or more.
However, if the length from the water-air mixing section to the tip of the nozzle exceeds 300 mm, the steam-water mist nozzle becomes longer, the entire nozzle equipment becomes longer, and it protrudes from the roll equipment that supports the slab. Disadvantageous on equipment. Further, the droplets of the steam-water mist are coarsened, and the water amount distribution tends to be non-uniform. Therefore, the length from the mixing portion of water and air to the tip of the nozzle is set to 100 to 300 mm. 150
~ 300 is more desirable.

【0023】本発明の方法では、鋳片表面の温度をいっ
たんA3 変態点未満の温度に低下させる場合には、常温
常圧における水Wと空気Aの混合比A/W(体積割合)
を5〜15、水量密度を0.03〜0.09リットル/cm
2 ・分とする。図3は、水量分布の幅方向均一度(%)
に及ぼす常温常圧における水Wと空気Aの混合比A/W
(体積割合)および水量密度の影響を示す図である。水
と空気の混合部からノズルの先端までの長さを150m
mとした気水ミストノズルを、150mmの間隔に3本
設置して、水Wと空気Aの混合比A/W(体積割合)お
よび水量密度を変更し、水量分布の幅方向均一度(%)
を前述した方法で調査した。
In the method of the present invention, when the temperature of the slab surface is once reduced to a temperature lower than the A 3 transformation point, the mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure is used.
5-15, water density 0.03-0.09 liter / cm
2 minutes. Fig. 3 shows the uniformity (%) in the width direction of the water distribution.
Mixing Ratio A / W of Water W and Air A at Normal Temperature and Normal Pressure
It is a figure which shows the influence of (volume ratio) and water amount density. The length from the water / air mixing section to the tip of the nozzle is 150m
The air / water mist nozzles having a width of 150 m were installed at intervals of 150 mm to change the mixing ratio A / W (volume ratio) of the water W and the air A and the water density, and the width direction uniformity (%) of the water distribution. )
Was investigated in the manner described above.

【0024】図3に斜線部の領域1として示すように、
常温常圧における水Wと空気Aの混合比A/W(体積割
合)が5〜15で、水量密度が0.03〜0.09リットル
/cm2 ・分の場合には、水量分布の幅方向均一度
(%)が80%以上となり、ほぼ均一な水量分布が得ら
れる。水Wと空気Aの混合比A/W(体積割合)が5〜
15であっても、水量密度が0.03リットル/cm2 ・分
未満の場合には、水量分布の幅方向均一度(%)が80
%未満になる。また、水Wと空気Aの混合比A/W(体
積割合)が5〜15であっても、水量密度が0.09リッ
トル/cm2 ・分を超えると、水量密度が大きすぎて、鋳
片を矯正する位置までに、鋳片表面の温度がγ相に変態
するA3 変態点以上にまで復熱できない。また、水量密
度が0.03〜0.09リットル/cm2 ・分であっても、
水Wと空気Aの混合比A/W(体積割合)が5未満で
は、水量分布の幅方向均一度(%)が80%未満になる
場合があり、また、この混合比A/W(体積割合)が1
5を超えると、水量分布の幅方向均一度(%)に対する
効果が飽和する。したがって、鋳片表面の温度をいった
んA3 変態点未満に低下させる場合には、常温常圧にお
ける水Wと空気Aの混合比A/W(体積割合)で5〜1
5、水量密度を0.03〜0.09リットル/cm2 ・分と
する。
As shown as a hatched area 1 in FIG.
If the mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure is 5 to 15 and the water density is 0.03 to 0.09 liter / cm 2 · min, the width of the water distribution The directional uniformity (%) becomes 80% or more, and a substantially uniform water amount distribution is obtained. Mixing ratio A / W (volume ratio) of water W and air A is 5
Even when the water amount density is less than 0.03 liter / cm 2 · min, the width direction uniformity (%) of the water amount distribution is 80
%. Even if the mixing ratio A / W (volume ratio) of water W and air A is 5 to 15, if the water density exceeds 0.09 liter / cm 2 · minute, the water density becomes too large, until a position of correcting the strip, can not recuperator to more than a 3 transformation point temperature of the cast slab surface is transformed into γ phase. Further, even if the water density is 0.03 to 0.09 liter / cm 2 · minute,
If the mixing ratio A / W (volume ratio) of water W and air A is less than 5, the width direction uniformity (%) of the water amount distribution may be less than 80%, and the mixing ratio A / W (volume) Is 1)
If it exceeds 5, the effect on the width direction uniformity (%) of the water amount distribution is saturated. Thus, when lowered to temporarily A less than 3 transformation point temperature of the slab surface, a mixing ratio A / W of water W and the air A in the normal temperature and pressure (volume) 5 to 1
5. The water density is 0.03 to 0.09 liter / cm 2 · min.

【0025】また、本発明の方法では、鋳片表面の温度
をA3 変態点未満の温度に低下させない場合には、常温
常圧における水Wと空気Aの混合比A/W(体積割合)
を50〜200、水量密度を0.005〜0.015リッ
トル/cm2 ・分とする。図3に斜線部の領域2として示
すように、常温常圧における水Wと空気Aの混合比A/
W(体積割合)が50〜200、水量密度が0.005
〜0.015リットル/cm2 ・分の場合には、水量分布の
幅方向均一度(%)が80%以上となり、ほぼ均一な水
量分布が得られる。水Wと空気Aの混合比A/W(体積
割合)が50〜200であっても、水量密度が0.00
5リットル/cm2 ・分未満の場合には、水量分布の幅方向
均一度(%)が80%未満になる場合があり、水量密度
が0.015リットル/cm2 ・分を超えると、水量分布の
幅方向均一度(%)に対する効果が飽和することに加え
て、鋳片表面の温度がA3 変態点未満の温度に低下する
場合がある。水量密度が0.005〜0.015リットル/
cm2 ・分であっても、水Wと空気Aの混合比A/W
(体積割合)が50未満では、水量分布の幅方向均一度
(%)が80%未満になる場合があり、この混合比A/
Wが200を超えると、水量分布の幅方向均一度(%)
に対する効果が飽和する。したがって、鋳片表面の温度
をA3 変態点未満の温度に低下させない場合には、常温
常圧における水Wと空気Aの混合比A/W(体積割合)
を50〜200、水量密度を0.005〜0.015リッ
トル/cm2 ・分とする。
In the method of the present invention, when the temperature of the slab surface is not lowered to a temperature lower than the A 3 transformation point, the mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure is used.
And the water density is 0.005 to 0.015 liter / cm 2 · min. As shown as a shaded region 2 in FIG. 3, the mixing ratio A /
W (volume ratio) 50 to 200, water density 0.005
In the case of 0.010.015 liter / cm 2 · minute, the uniformity (%) in the width direction of the water amount distribution becomes 80% or more, and a substantially uniform water amount distribution can be obtained. Even if the mixing ratio A / W (volume ratio) of water W and air A is 50 to 200, the water density is 0.00
In the case of less than 5 l / cm 2 · min, may widthwise uniformity of water distribution (%) is less than 80%, the water amount density is more than 2 · min 0.015 l / cm, water in addition to effects on widthwise uniformity of distribution (%) is saturated, the temperature of the cast slab surface is reduced to a temperature lower than a 3 transformation point. Water density is 0.005 to 0.015 liter /
cm 2 · min, mixing ratio A / W of water W and air A
When the (volume ratio) is less than 50, the width direction uniformity (%) of the water amount distribution may be less than 80%, and the mixing ratio A /
If W exceeds 200, the width direction uniformity of water amount distribution (%)
Effect saturates. Therefore, when the temperature of the slab surface is not reduced to a temperature lower than the A 3 transformation point, the mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure is used.
And the water density is 0.005 to 0.015 liter / cm 2 · min.

【0026】[0026]

【実施例】湾曲部の曲率半径10mの湾曲型で機長23
mの連続鋳造機を用いて、断面形状が、厚み235m
m、幅2300mmの鋳片を、速度0.75〜1.1m
/分で鋳造した。気水ミストノズルを、鋳型出口から鋳
造方向の1.2m先までの間に、200〜250mm程
度の間隔の位置に相当するロールとロールの間の位置
に、鋳片との距離を約150mmとして、鋳片幅方向に
約300mm間隔で配置した。気水ミストノズルの水と
空気の混合部からノズルの先端までの長さと、常温常圧
における水と空気の混合比の体積割合および水量密度を
変化させて試験した。表1に、用いた鋼を示す。鋼A
は、Cu、NiおよびNbを含む低合金鋼であり、とく
に鋳片の矯正時に横割れの発生しやすい鋼である。鋼B
は、一般的な炭素鋼であり、横割れや横ひび割れの割れ
感受性は小さい。ただし、鋳片表面の幅方向の冷却が不
均一な場合には、縦割れが発生することがある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
m using a continuous casting machine with a thickness of 235 m
m, a slab having a width of 2300 mm, a speed of 0.75 to 1.1 m
/ Min. The steam-water mist nozzle is placed at a position between the rolls corresponding to a position at an interval of about 200 to 250 mm between the mold outlet and 1.2 m ahead in the casting direction, at a distance of about 150 mm from the cast slab. The slabs were arranged at intervals of about 300 mm in the width direction. The test was conducted by changing the length from the water / air mixing portion of the air / water mist nozzle to the tip of the nozzle, the volume ratio of the mixing ratio of water and air at normal temperature and normal pressure, and the water density. Table 1 shows the steels used. Steel A
Is a low-alloy steel containing Cu, Ni and Nb, and is a steel that is liable to cause lateral cracks particularly when straightening a slab. Steel B
Is a common carbon steel and has low cracking susceptibility to side cracks and side cracks. However, if the cooling in the width direction of the slab surface is not uniform, vertical cracks may occur.

【0027】[0027]

【表1】 [Table 1]

【0028】各鋳造試験では、鋼Aに続けて鋼Bを鋳造
した。このとき、鋼Aの鋳造では、鋳片表面の温度をい
ったんA3 変態点未満の850℃程度の温度に冷却し、
850℃程度になった鋳片以降の位置では、二次冷却条
件の冷却水量を減らし、鋳片表面の温度を復熱させ、矯
正時点での鋳片表面の温度をA3 変態点以上の900℃
程度とした。引き続き、鋼Bの鋳造では、鋳型出口から
矯正位置まで、鋳片表面の温度をA3 変態点以上の90
0℃以上に保持して、鋳片を矯正した。鋳片表面の温度
は、鋳型出口の直下および矯正位置近傍で、それぞれ放
射温度計で測定し、上記の範囲の温度になっていること
を確認した。
In each casting test, steel B was cast after steel A. At this time, in the casting of steel A, the temperature of the slab surface is once cooled to a temperature of about 850 ° C. below the A 3 transformation point,
At the position after the slab at about 850 ° C., the amount of cooling water under the secondary cooling condition is reduced, the temperature of the slab surface is re-heated, and the temperature of the slab surface at the time of straightening is raised to 900 degrees above the A 3 transformation point. ° C
Degree. Subsequently, in the casting of steel B, the temperature of the slab surface from the mold exit to the straightening position is set to 90 degrees or more at the A 3 transformation point or higher.
While maintaining the temperature at 0 ° C. or higher, the slab was straightened. The temperature of the slab surface was measured with a radiation thermometer immediately below the mold outlet and near the correction position, and it was confirmed that the temperature was in the above range.

【0029】得られた鋳片の表面を目視で観察し、鋳片
表面の割れの発生状況を調査した。試験条件と試験結果
を表2に示す。
The surface of the obtained slab was visually observed to examine the occurrence of cracks on the slab surface. Table 2 shows the test conditions and test results.

【0030】[0030]

【表2】 [Table 2]

【0031】本発明例の試験No.1およびNo.2で
は、本発明で規定する条件を満足する水と空気の混合部
からノズルの先端までの長さ150mm、常温常圧にお
ける水Wと空気Aの混合比A/W(体積割合)、すなわ
ち鋼Aでは、10〜12の範囲、鋼Bでは、125〜1
50の範囲、さらに、水量密度、すなわち、鋼Aでは、
0.05〜0.08リットル/cm2 ・分、鋼Bでは、0.
008〜0.010リットル/cm2 ・分の各条件で試験し
た。上述したように、鋼Aの鋳片表面の温度は、A3
態点未満の850℃程度に冷却し、その後、A3 変態点
以上の900℃以上に復熱させて鋳片を矯正した。鋼B
の鋳片表面の温度は、矯正位置までA3変態点以上の9
00℃以上に保持して、そのまま鋳片を矯正した。得ら
れた鋼Aおよび鋼Bの鋳片では、鋳片表面に割れの発生
は認められなかった。
Test No. of the present invention example 1 and No. In No. 2, the length from the mixing portion of water and air satisfying the conditions defined in the present invention to the tip of the nozzle is 150 mm, the mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure, that is, steel In the case of A, the range is 10 to 12, and in the case of steel B, 125 to 1
In the range of 50, and also for the water density, ie steel A,
0.05 to 0.08 liter / cm 2 · min.
The test was performed under the conditions of 008 to 0.010 liter / cm 2 · minute. As described above, the temperature of the surface of the slab of steel A was cooled to about 850 ° C. below the A 3 transformation point, and then reheated to 900 ° C. or higher above the A 3 transformation point to correct the slab. Steel B
9 of the temperature of the cast slab surface is more than A 3 transformation point to correct position
While maintaining the temperature at 00 ° C. or higher, the slab was straightened. In the obtained slabs of steel A and steel B, no crack was observed on the slab surface.

【0032】比較例の試験No.3では、本発明で規定
する水と空気の混合部からノズルの先端までの長さの下
限を外れる条件の80mmの長さで試験した。常温常圧
における水Wと空気Aの混合比A/W(体積割合)およ
び水量密度については、本発明で規定する条件を満足す
る範囲で試験した。鋼Aの鋳片には、割れは発生しなか
ったが、鋼Bの鋳片には、著しい縦割れが発生した。鋳
片表面の手入れをしてから熱間圧延する必要がある程度
の縦割れであった。水と空気の混合部からノズルの先端
までの長さが短いため、とくに、水量密度が0.008
リットル/cm2 ・分と少ない場合に、気水ミストの幅方向
の均一性が悪くなった。したがって、鋼Bの場合のみ、
鋳片の幅方向での水量分布が不均一になり、鋳片に縦割
れが発生した。
Test No. of Comparative Example In No. 3, the test was conducted at a length of 80 mm under a condition that the length from the mixed portion of water and air specified in the present invention to the tip of the nozzle deviated from the lower limit. The mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure and the water density were tested within a range satisfying the conditions specified in the present invention. No cracks occurred in the slab of steel A, but significant vertical cracks occurred in the slab of steel B. It was necessary to clean the surface of the slab and then hot-roll it, which was a certain degree of vertical cracking. Since the length from the water / air mixing section to the tip of the nozzle is short, the water density is particularly low
When the amount was as small as 1 liter / cm 2 · minute, the uniformity of the air-water mist in the width direction became poor. Therefore, only in the case of steel B,
The water distribution in the width direction of the slab became uneven, and vertical cracks occurred in the slab.

【0033】比較例の試験No.4では、本発明で規定
する水と空気の混合部からノズルの先端までの長さの1
50mmで試験し、鋼Aでは、常温常圧における水Wと
空気Aの混合比A/W(体積割合)および水量密度につ
いては、本発明で規定する条件を満足する範囲で試験
し、鋼Bでは、これらを本発明で規定する条件の下限を
外れる条件で試験した。鋼Aの鋳片には、割れは発生し
なかったが、鋼Bの鋳片には、著しい縦割れが発生し
た。鋼Bの試験では、水Wと空気Aの混合比A/W(体
積割合)が30と小さく、かつ、水量密度が0.002
リットル/cm2 ・分と少ないために、鋳片の幅方向での水
量分布の均一性が悪くなり、鋳片に縦割れが発生した。
Test No. of Comparative Example In No. 4, the length from the water-air mixing section defined in the present invention to the tip of the nozzle is 1
The test was conducted at 50 mm. For steel A, the mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure and the water mass density were tested within a range satisfying the conditions specified in the present invention. Then, these were tested under conditions outside the lower limit of the conditions defined in the present invention. No cracks occurred in the slab of steel A, but significant vertical cracks occurred in the slab of steel B. In the test of steel B, the mixing ratio A / W (volume ratio) of water W and air A was as small as 30, and the water density was 0.002.
Since it was as small as 1 liter / cm 2 · minute, the uniformity of the water distribution in the width direction of the slab was poor, and the slab had vertical cracks.

【0034】比較例の試験No.5では、本発明で規定
する水と空気の混合部からノズルの先端までの長さの1
50mmで試験し、鋼Bでは、常温常圧における水Wと
空気Aの混合比A/W(体積割合)および水量密度につ
いては、本発明で規定する条件を満足する範囲で試験
し、鋼Aでは、これらを本発明で規定する条件の下限を
外れる条件で試験した。鋼Bの鋳片には、割れは発生し
なかったが、鋼Aの鋳片には、著しい横割れが鋳片表面
に部分的に発生した。鋳片表面の手入れをしてから熱間
圧延する必要がある程度の横割れであった。鋼Aの試験
では、水Wと空気Aの混合比A/W(体積割合)が3と
小さく、かつ、水量密度が0.02リットル/cm2 ・分と
少ないために、鋳片の幅方向での水量分布の均一性が悪
くなり、鋳型出口の直下での鋳片表面の温度にばらつき
が見られ、A3 変態点未満の温度に低下しない鋳片表面
の部分が存在した。したがって、部分的に鋳片表面に横
割れが発生した。
Test No. of Comparative Example In No. 5, the length from the water / air mixing section defined in the present invention to the tip of the nozzle is 1
The test was conducted at 50 mm. For steel B, the mixing ratio A / W (volume ratio) of water W and air A at normal temperature and normal pressure and the water mass density were tested within a range satisfying the conditions specified in the present invention. Then, these were tested under conditions outside the lower limit of the conditions defined in the present invention. No cracks occurred in the slab of steel B, but significant lateral cracks partially occurred in the slab of the slab of steel A. It was necessary to clean the slab surface and then perform hot rolling, which was a certain degree of lateral cracking. In the test of steel A, the mixing ratio A / W (volume ratio) of water W and air A was as small as 3 and the water density was as small as 0.02 liter / cm 2 · min. uniformity of water distribution is deteriorated in, variation was observed in the temperature of the slab surface at just under the mold exit, the portion of the slab surface not lowered to a temperature lower than a 3 transformation point was present. Therefore, lateral cracks partially occurred on the slab surface.

【0035】[0035]

【発明の効果】本発明の方法の適用により、鋳型から引
き抜かれた鋳片を気水ミストにより二次冷却する際に、
同一の気水ミストノズルを用いて、鋳片表面の温度を、
いったんA3 変態点未満に低下させるような冷却やA3
変態点未満に低下させないような冷却が可能となる。こ
れにより、同一の気水ミストノズルを用いて、Nb、
V、Ni、Cuなどの合金元素を含有する低合金鋼の鋳
片の横割れや炭素鋼などの縦割れなどの発生を防止でき
る。
According to the method of the present invention, when the slab drawn from the mold is secondarily cooled by steam-water mist,
Using the same steam mist nozzle, the temperature of the slab surface,
Cooling or A 3 once lowering below the A 3 transformation point
Cooling that does not lower the temperature below the transformation point is possible. Thus, using the same air / water mist nozzle, Nb,
It is possible to prevent the occurrence of horizontal cracks in the slab of low alloy steel containing alloy elements such as V, Ni, and Cu and vertical cracks in carbon steel and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法の気水ミストノズルの構造の例を
概念的に示す図である。
FIG. 1 is a view conceptually showing an example of the structure of a gas-water mist nozzle of the method of the present invention.

【図2】水量分布の幅方向均一度(%)に及ぼす混合部
からノズルの先端までの長さの影響を示す図である。
FIG. 2 is a diagram showing the influence of the length from the mixing section to the tip of the nozzle on the widthwise uniformity (%) of the water amount distribution.

【図3】水量分布の幅方向均一度(%)に及ぼす常温常
圧における水に対する空気の混合体積割合および水量密
度の影響を示す図である。
FIG. 3 is a diagram showing the influence of the mixed volume ratio of air to water and the water density at normal temperature and normal pressure on the width direction uniformity (%) of the water distribution.

【符号の説明】[Explanation of symbols]

1:気水ミストノズル 2−1、2−2:混合部 3:ノズル先端部 4:ノズルチップの
先端 5:水を送り込む管 6:空気を送り込む
管 7:ノズルチップ h−1、h−2:混合部からノズルの先端までの長さ
1: Steam-water mist nozzle 2-1 2-2: Mixing section 3: Nozzle tip 4: Tip of nozzle tip 5: Pipe for feeding water 6: Pipe for sending air 7: Nozzle tip h-1, h-2 : Length from the mixing section to the tip of the nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋳型から引き抜かれた鋳片を気水ミストに
より二次冷却する際に、ノズル内の水と空気の混合部か
らノズルの先端までの長さを100〜300mmとし、
鋳型出口から鋳片の矯正位置までの間で、鋳片表面の温
度をいったんA3 変態点未満に低下させた後、A3 変態
点以上に復熱させる場合には、A3 変態点未満までの冷
却条件を、常温常圧における水Wと空気Aの混合比A/
W(体積割合)を5〜15、水量密度を0.03〜0.
09リットル/cm2 ・分とし、鋳片表面の温度をA3 変態
点未満に低下させない場合には、常温常圧における水W
と空気Aの混合比A/W(体積割合)を50〜200、
水量密度を0.005〜0.015リットル/cm2 ・分と
することを特徴とする鋼の連続鋳造方法。
When the slab drawn from the mold is subjected to secondary cooling by steam-water mist, the length from the water / air mixing portion in the nozzle to the tip of the nozzle is 100 to 300 mm,
In between the mold exit to a correction position of the slab, after lowering once A less than 3 transformation point temperature of the slab surface, in the case of recuperation or more A 3 transformation point, to less than A 3 transformation point The cooling condition is a mixing ratio A / of water W and air A at normal temperature and normal pressure.
W (volume ratio) is 5 to 15, and the water density is 0.03 to 0.
09 l / cm 2 · min and, if not to lower the temperature of the slab surface to below A 3 transformation point, the water W in the normal temperature and pressure
The mixing ratio A / W (volume ratio) of
A continuous casting method for steel, wherein the water density is 0.005 to 0.015 liter / cm 2 · minute.
JP03810199A 1999-02-17 1999-02-17 Continuous casting method Expired - Fee Related JP4217847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03810199A JP4217847B2 (en) 1999-02-17 1999-02-17 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03810199A JP4217847B2 (en) 1999-02-17 1999-02-17 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2000237858A true JP2000237858A (en) 2000-09-05
JP4217847B2 JP4217847B2 (en) 2009-02-04

Family

ID=12516094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03810199A Expired - Fee Related JP4217847B2 (en) 1999-02-17 1999-02-17 Continuous casting method

Country Status (1)

Country Link
JP (1) JP4217847B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009140737A1 (en) * 2008-05-23 2009-11-26 Bluescope Steel Limited Method and apparatus for controlling temperature of thin cast strip
US8002016B2 (en) 2008-03-19 2011-08-23 Nucor Corporation Strip casting apparatus with casting roll positioning
JP2013158803A (en) * 2012-02-06 2013-08-19 Kobe Steel Ltd Continuous casting method
US8631853B2 (en) 2008-03-19 2014-01-21 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
JP2017018961A (en) * 2015-07-07 2017-01-26 新日鐵住金株式会社 CONTINUOUS CASTING METHOD FOR STEEL CONTAINING Ni
WO2020122061A1 (en) * 2018-12-10 2020-06-18 日本製鉄株式会社 Continuous casting method for steel
CN113198987A (en) * 2021-05-13 2021-08-03 铜陵有色兴铜机电制造有限公司 Copper alloy casting crystallization device
CN113458352A (en) * 2020-03-30 2021-10-01 日本碍子株式会社 Method for manufacturing Cu-Ni-Sn alloy and cooler used for same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002016B2 (en) 2008-03-19 2011-08-23 Nucor Corporation Strip casting apparatus with casting roll positioning
US8631853B2 (en) 2008-03-19 2014-01-21 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US8875777B2 (en) 2008-03-19 2014-11-04 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US9120147B2 (en) 2008-03-19 2015-09-01 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
WO2009140737A1 (en) * 2008-05-23 2009-11-26 Bluescope Steel Limited Method and apparatus for controlling temperature of thin cast strip
JP2013158803A (en) * 2012-02-06 2013-08-19 Kobe Steel Ltd Continuous casting method
JP2017018961A (en) * 2015-07-07 2017-01-26 新日鐵住金株式会社 CONTINUOUS CASTING METHOD FOR STEEL CONTAINING Ni
WO2020122061A1 (en) * 2018-12-10 2020-06-18 日本製鉄株式会社 Continuous casting method for steel
CN113165060A (en) * 2018-12-10 2021-07-23 日本制铁株式会社 Method for continuously casting steel
JPWO2020122061A1 (en) * 2018-12-10 2021-09-27 日本製鉄株式会社 Continuous steel casting method
JP7020568B2 (en) 2018-12-10 2022-02-16 日本製鉄株式会社 Continuous steel casting method
CN113458352A (en) * 2020-03-30 2021-10-01 日本碍子株式会社 Method for manufacturing Cu-Ni-Sn alloy and cooler used for same
CN113458352B (en) * 2020-03-30 2023-11-24 日本碍子株式会社 Method for producing Cu-Ni-Sn alloy and cooler for use in same
CN113198987A (en) * 2021-05-13 2021-08-03 铜陵有色兴铜机电制造有限公司 Copper alloy casting crystallization device

Also Published As

Publication number Publication date
JP4217847B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
KR100206504B1 (en) Stainless Steel Strip Manufacturing Equipment
KR100976758B1 (en) Cooling device and method of hot rolled steel strip
EP2450117B9 (en) Use of a cooling device, manufacturing device, and manufacturing method for hot-rolled steel sheet
US20090095438A1 (en) Method and Apparatus for Continuous Casting
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JP4055440B2 (en) Direct-rolling method for continuous cast slabs
JP2000042700A (en) Water cooling method for billets and water tank for water cooling
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP3622687B2 (en) Steel continuous casting method
JP5742550B2 (en) Method and apparatus for producing slab by continuous casting
EP0760397B1 (en) Equipment for manufacturing stainless steel strip
JP2010253481A (en) Method for preventing surface cracks in continuous cast slabs
JP4217847B2 (en) Continuous casting method
JP2002086252A (en) Continuous casting method
JP3802830B2 (en) Steel sheet descaling method and equipment
JP2001138019A (en) Continuous casting method
JP2002307149A (en) Continuous casting method
JP3994582B2 (en) Steel sheet descaling method
JP3412418B2 (en) Slab secondary cooling device
JP3331860B2 (en) Hot rolling material descaling equipment
JP7644344B2 (en) Continuous casting method for slabs
JP7355285B1 (en) Continuous steel casting method
TWI784570B (en) continuous casting method
JP2001137901A (en) Hot charge rolling method for continuous cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees