JP2000233916A - Spherical-granular active carbon and its production - Google Patents
Spherical-granular active carbon and its productionInfo
- Publication number
- JP2000233916A JP2000233916A JP11327392A JP32739299A JP2000233916A JP 2000233916 A JP2000233916 A JP 2000233916A JP 11327392 A JP11327392 A JP 11327392A JP 32739299 A JP32739299 A JP 32739299A JP 2000233916 A JP2000233916 A JP 2000233916A
- Authority
- JP
- Japan
- Prior art keywords
- spherical
- activated carbon
- granular
- oil
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 162
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229910052799 carbon Inorganic materials 0.000 title abstract description 10
- 239000005011 phenolic resin Substances 0.000 claims abstract description 79
- 230000000903 blocking effect Effects 0.000 claims abstract description 36
- 229920001568 phenolic resin Polymers 0.000 claims abstract description 29
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000010000 carbonizing Methods 0.000 claims abstract description 12
- 230000003213 activating effect Effects 0.000 claims abstract description 11
- 239000002245 particle Substances 0.000 claims description 52
- 230000004913 activation Effects 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 abstract description 32
- 239000003921 oil Substances 0.000 abstract description 30
- 238000000034 method Methods 0.000 abstract description 12
- 239000012071 phase Substances 0.000 abstract description 6
- 239000008187 granular material Substances 0.000 abstract description 5
- 230000002265 prevention Effects 0.000 abstract description 4
- 239000007791 liquid phase Substances 0.000 abstract description 3
- 239000002480 mineral oil Substances 0.000 abstract description 2
- 235000010446 mineral oil Nutrition 0.000 abstract description 2
- 229920005989 resin Polymers 0.000 abstract 6
- 239000011347 resin Substances 0.000 abstract 6
- 239000005539 carbonized material Substances 0.000 abstract 3
- 235000019198 oils Nutrition 0.000 description 26
- 238000003763 carbonization Methods 0.000 description 21
- 238000001179 sorption measurement Methods 0.000 description 18
- 239000000843 powder Substances 0.000 description 16
- 239000003245 coal Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 8
- 239000011630 iodine Substances 0.000 description 8
- 229910052740 iodine Inorganic materials 0.000 description 8
- 238000005299 abrasion Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229920003261 Durez Polymers 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- 244000060011 Cocos nucifera Species 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 102100031102 C-C motif chemokine 4 Human genes 0.000 description 1
- 102100034871 C-C motif chemokine 8 Human genes 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101100321670 Fagopyrum esculentum FA18 gene Proteins 0.000 description 1
- 101000777471 Homo sapiens C-C motif chemokine 4 Proteins 0.000 description 1
- 101000946794 Homo sapiens C-C motif chemokine 8 Proteins 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010689 synthetic lubricating oil Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、球状活性炭、特
には流動床に好適な球状活性炭とその製造方法に関す
る。The present invention relates to a spherical activated carbon, particularly to a spherical activated carbon suitable for a fluidized bed and a method for producing the same.
【0002】[0002]
【従来の技術】従来、活性炭は脱臭、脱色、不純物除去
等のための吸着剤、触媒あるいはその担体として使用さ
れている。また、その使用形態としては、固定床、流動
床(流動層とも称される)、移動床式装置等がある。特
に流動床式の脱臭装置あるいは吸着装置等において、排
気ガスの除去や有機溶剤蒸気からの溶剤回収等に使用さ
れる活性炭は、流体との接触を良好にして活性炭の高い
吸着性能または担持する触媒の高い触媒作用を得られる
ようにするため、粒状のものが使用される。このような
粒状活性炭として、従来は、破砕炭からなるものや、粉
末活性炭を粒状にしたものが主に用いられている。2. Description of the Related Art Conventionally, activated carbon has been used as an adsorbent, a catalyst or its carrier for deodorization, decolorization, removal of impurities, and the like. In addition, as a usage form, there are a fixed bed, a fluidized bed (also referred to as a fluidized bed), a moving bed type device, and the like. In particular, activated carbon used in fluidized bed deodorizers or adsorbers to remove exhaust gas or recover solvents from organic solvent vapors is a catalyst that has good contact with the fluid and has high adsorption performance of activated carbon or supports it. In order to obtain a high catalytic action, a granular material is used. Conventionally, as such granular activated carbon, those made of crushed carbon and those obtained by granulating powdered activated carbon are mainly used.
【0003】しかし、前記破砕炭からなるものは、破砕
時に発生した微粉を破砕炭表面から完全に除去し難く、
その製造効率が悪いのみならず、破砕炭の表面が角張っ
ているため、流動床での使用中に破砕炭同士が擦れあっ
て角が削れ、微粉を発生し易い。その結果、活性炭の性
能低下を生じたり、装置配管内の汚染及び閉塞によるト
ラブル発生等で吸着装置等に悪影響を与える等の問題が
ある。また、流動床式装置等においては、活性炭の流動
性が高い程、吸着性能あるいは担持する触媒の作用が高
まる。前記流動性には粒子の形状及び粒度分布が影響
し、角張った形状より球状の方が流動性は良くなる。と
ころが、破砕炭からなるものはその表面の角張った形状
によって流動性が劣るため、優れた吸着性能や触媒作用
を発揮し難い問題もある。However, in the case of the above-mentioned crushed coal, it is difficult to completely remove fine powder generated during crushing from the crushed coal surface.
Not only the production efficiency is poor, but also because the surface of the crushed coal is angular, the crushed coal rubs against each other during use in a fluidized bed, and the corners are shaved, and fine powder is easily generated. As a result, there is a problem that the performance of the activated carbon is deteriorated, and the adsorption device and the like are adversely affected due to troubles due to contamination and blockage in the piping of the device. Further, in a fluidized bed apparatus or the like, the higher the fluidity of the activated carbon, the higher the adsorption performance or the action of the supported catalyst. The fluidity is affected by the shape and particle size distribution of the particles, and a spherical shape has better fluidity than an angular shape. However, those made of crushed coal have poor fluidity due to the angular shape of the surface, and thus have a problem that it is difficult to exhibit excellent adsorption performance and catalytic action.
【0004】また、流動床式装置等に用いられる活性炭
の粒径は、活性炭を液相で使用する場合にはそれ程制約
を受けず、2mm程度のものまで使用可能であるが、気
相の場合には平均粒径100μm以下のものが要求され
ることがある。しかし、前記破砕炭は粒子径を小さくす
る程収率が低下するため、効率良く量産しようとする
と、最小でも平均粒子径150μmが限度であり、それ
以上粒子径を小さくすると破砕炭の収率が極端に低下す
る。従って、前記気相で要求されるような平均粒子径の
小さな破砕炭を得るのは現実的ではなかった。The particle size of activated carbon used in a fluidized bed apparatus or the like is not so limited when activated carbon is used in a liquid phase, and can be used up to about 2 mm. May have a mean particle size of 100 μm or less. However, since the yield of the crushed coal decreases as the particle diameter decreases, the average particle diameter is at least 150 μm at the minimum when mass-producing efficiently, and the yield of the crushed coal decreases when the particle diameter is further reduced. Extremely low. Therefore, it was not realistic to obtain a crushed coal having a small average particle diameter as required in the gas phase.
【0005】他方、前記粉末活性炭の成型品からなるも
のは、粉末活性炭をバインダーで粒状に結合させている
ため、得られる粒状活性炭は表面がバインダーで被覆さ
れたものとなっていて、活性炭本来の吸着性能が阻害さ
れる問題がある。On the other hand, in the case of a molded product of the above-mentioned powdered activated carbon, the powdered activated carbon is bound in a granular form with a binder. There is a problem that the adsorption performance is hindered.
【0006】さらに、従来、破砕炭や粉末活性炭の成型
品には、オガ粉、ヤシ殻、石炭等の天然物質が使用され
ているため、炭素の純度が低く、高純度が要求される分
野での使用は好ましいものではなかった。[0006] Further, conventionally, since natural materials such as sawdust, coconut shell, and coal are used in molded products of crushed carbon and powdered activated carbon, the carbon purity is low and the carbon purity is high in fields where high purity is required. Was not preferred.
【0007】[0007]
【発明が解決しようとする課題】この発明は、上記問題
に鑑みて提案されたものであって、微粉を生じ難く、流
動性に優れ、しかも気相にも適する小さな平均粒径のも
のを容易に得られる高純度球状活性炭およびその製造方
法を提供しようとするものである。DISCLOSURE OF THE INVENTION The present invention has been proposed in view of the above-mentioned problems, and is intended to provide a powder having a small average particle size which is hard to generate fine powder, has excellent fluidity, and is suitable for a gas phase. And to provide a method for producing the high-purity spherical activated carbon.
【0008】[0008]
【0009】請求項1の発明は、球状フェノール樹脂を
炭化、賦活してなる平均粒径20〜200μmの球状活
性炭からなるものである。また、請求項2の発明は、球
状フェノール樹脂をブロッキング防止しながら炭化させ
た後、賦活してなる平均粒径20〜200μmの球状活
性炭に係る。The invention of claim 1 comprises spherical activated carbon having an average particle diameter of 20 to 200 μm obtained by carbonizing and activating a spherical phenol resin. The invention of claim 2 relates to a spherical activated carbon having an average particle diameter of 20 to 200 μm, which is obtained by carbonizing a spherical phenol resin while preventing blocking, and then activating the carbonized carbon.
【0010】また、請求項3ないし8の発明は、球状活
性炭の製造方法に関するものである。まず請求項3の発
明は、球状フェノール樹脂をブロッキング防止しながら
炭化させた後、賦活することを特徴とする。[0010] The invention of claims 3 to 8 relates to a method for producing spherical activated carbon. First, the invention of claim 3 is characterized in that the spherical phenol resin is activated after carbonization while preventing blocking.
【0011】請求項4の発明は、球状フェノール樹脂を
流動あるいは振動させながら炭化させた後、賦活するこ
とを特徴とし、請求項5の発明は、球状フェノール樹脂
に油を付着させた後当該球状フェノール樹脂を炭化し、
賦活することを特徴とし、請求項6の発明は、球状フェ
ノール樹脂に油を付着させ、該油付着後の球状フェノー
ル樹脂を流動あるいは振動させながら炭化させた後、賦
活することによって、ブロッキング防止効果を高めるこ
とを特徴とし、請求項7の発明は、前記油として、球状
フェノール樹脂の完全硬化時の温度で分解せず、かつ賦
活時の温度で分解する油を使用することを特徴とする。[0011] The invention of claim 4 is characterized in that the spherical phenol resin is activated while being carbonized while flowing or vibrating. The invention of claim 5 is characterized in that after the oil is attached to the spherical phenol resin, the spherical phenol resin is activated. Carbonized phenolic resin,
The invention according to claim 6 is characterized in that the oil is adhered to the spherical phenolic resin, and the spherical phenolic resin after the oil adhesion is carbonized while flowing or vibrating, and then activated, whereby the blocking prevention effect is obtained. The invention of claim 7 is characterized in that an oil which does not decompose at the temperature at the time of complete curing of the spherical phenolic resin but decomposes at the temperature at the time of activation is used as the oil.
【0012】また、請求項8の発明は、請求項3ないし
7の発明における球状フェノール樹脂の平均粒径が50
〜300μm、球状活性炭の平均粒径が20〜200μ
mであることを特徴とする。The invention of claim 8 is the invention of claim 3 to claim 7, wherein the spherical phenolic resin has an average particle diameter of 50.
~ 300μm, average particle size of spherical activated carbon is 20 ~ 200μ
m.
【0013】[0013]
【発明の実施の形態】以下この発明を詳細に説明する。
この発明の球状活性炭は、フェノール樹脂を炭化、賦活
して球状としたもの、好ましくは後記するように球状フ
ェノール樹脂をブロッキング防止しながら炭化させた
後、賦活したもので、触媒の担体や吸着剤等として用い
られ、特に流動床式の装置に好適なものである。この球
状活性炭の平均粒径は、流動床式装置において気相に対
し好適なように20〜200μmが好ましい。なお、こ
の明細書における平均粒径は体積累積分布平均粒径のこ
とをいい、粒度分布測定機等で測定される。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The spherical activated carbon of the present invention is obtained by carbonizing and activating a phenol resin to form a sphere, preferably by carbonizing the spherical phenol resin while preventing blocking as described below, and then activating the catalyst. It is particularly suitable for a fluidized bed type apparatus. The average particle size of the spherical activated carbon is preferably 20 to 200 μm so as to be suitable for the gas phase in a fluidized bed apparatus. In this specification, the average particle size refers to a volume cumulative distribution average particle size, which is measured by a particle size distribution measuring device or the like.
【0014】使用するフェノール樹脂としては、球状フ
ェノール樹脂が好ましい。球状フェノール樹脂は、フェ
ノール樹脂の表面が球状に成形されたものであって、芳
香族の構造をしているため、炭化率を高くすることがで
き、さらに賦活により表面積の大きな活性炭が得られる
ので、この球状フェノール樹脂から製造される本発明の
球状活性炭の吸着性能は優れたものになる。The phenol resin used is preferably a spherical phenol resin. Spherical phenolic resin is a phenolic resin whose surface is molded into a spherical shape and has an aromatic structure, so that the carbonization rate can be increased and activated carbon with a large surface area can be obtained by activation. The adsorption performance of the spherical activated carbon of the present invention produced from this spherical phenol resin is excellent.
【0015】さらに、前記球状フェノール樹脂は、破砕
炭とは異なり、球状に成形されたものであるため、その
炭化、賦活により得られた本発明の球状活性炭は、表面
に角張った部分がないので、輸送等の際のみならず、流
動床式装置に使用された際に、活性炭粒子表面の角部が
擦られて微粉を生じるおそれがなく、その微粉による装
置への悪影響が無く、しかも活性炭粒子表面の微細孔が
壊れず、吸着性能等が低下することがない。Further, since the spherical phenolic resin is formed into a spherical shape, unlike crushed charcoal, the spherical activated carbon of the present invention obtained by its carbonization and activation has no angular portions on the surface. When used in a fluidized bed apparatus as well as during transportation, etc., there is no danger that the corners of the activated carbon particles will be rubbed and fine powder will be generated. The micropores on the surface are not broken, and the adsorption performance and the like do not decrease.
【0016】前記球状フェノール樹脂としては、公知の
ものを使用できるが、平均粒径50〜300μmのもの
を用いるのが好ましい。この範囲の平均粒径のものを用
いることによって、気相にも適する20〜200μmの
平均粒径からなる本発明の球状活性炭を得ることができ
る。勿論、前記球状フェノール樹脂は、目的とする球状
活性炭の平均粒径に応じて、前記フェノール樹脂の平均
粒径50〜300μmの範囲内から適宜選択される。前
記範囲の平均粒径を有する公知の球状フェノール樹脂の
例として、商品名PR−FSD(住友デユレズ(株)
製)、AH−3a(群栄化学工業(株)製)等を挙げる
ことができる。As the spherical phenol resin, known ones can be used, but those having an average particle diameter of 50 to 300 μm are preferably used. By using an average particle diameter in this range, the spherical activated carbon of the present invention having an average particle diameter of 20 to 200 μm suitable for the gas phase can be obtained. Needless to say, the spherical phenolic resin is appropriately selected from the range of the average particle diameter of the phenolic resin of 50 to 300 μm according to the desired average particle diameter of the spherical activated carbon. As an example of a known spherical phenol resin having an average particle diameter in the above range, PR-FSD (trade name, manufactured by Sumitomo Duyres Co., Ltd.)
And AH-3a (manufactured by Gunei Chemical Industry Co., Ltd.).
【0017】次に前記球状活性炭の製造方法について説
明する。前記球状活性体の製造は、前記球状フェノール
樹脂をブロッキング防止しながら炭化させた後、賦活す
ることによって行われる。その際、球状フェノール樹脂
として、前記のように平均粒径50〜300μmのもの
を用い、得られる球状活性炭が流動床式装置に適する、
平均粒径20〜200μmのものになるようにするのが
好ましい。Next, a method for producing the spherical activated carbon will be described. The production of the spherical active substance is carried out by carbonizing the spherical phenol resin while preventing blocking, and then activating the carbonized phenol resin. At that time, as the spherical phenolic resin, the one having an average particle diameter of 50 to 300 μm as described above is used, and the obtained spherical activated carbon is suitable for a fluidized bed apparatus.
It is preferable that the average particle diameter is 20 to 200 μm.
【0018】球状フェノール樹脂の炭化は、球状フェノ
ール樹脂を加熱炉等に収容し、フェノール樹脂が炭化す
る温度で所要時間加熱することによって行われる。その
際の温度は加熱時間等によって異なるが、通常、加熱時
間が1〜3時間程度とされる場合、500〜700℃に
設定される。なお、この炭化を効率よく行うため、炭化
作業に先立ち、前記炭化温度よりも低い温度で球状フェ
ノール樹脂を乾燥させるのが好ましい。また、通常、球
状フェノール樹脂には未硬化部分が残存しているのが一
般的であり、その未硬化部分については、前記炭化工程
時の加熱で完全に硬化した後に炭化が行われる。The carbonization of the spherical phenol resin is carried out by placing the spherical phenol resin in a heating furnace or the like and heating the phenol resin at a temperature at which the phenol resin carbonizes for a required time. The temperature at that time depends on the heating time and the like, but is usually set to 500 to 700 ° C. when the heating time is about 1 to 3 hours. In order to efficiently perform the carbonization, it is preferable to dry the spherical phenol resin at a temperature lower than the carbonization temperature before the carbonization operation. Generally, an uncured portion generally remains in the spherical phenol resin, and the uncured portion is carbonized after being completely cured by heating in the carbonizing step.
【0019】また、炭化する際に球状フェノール樹脂同
士が結合し賦活後もそのまま残って整粒されていない塊
状の活性炭になる(このことをブロッキングと称す
る。)と、使用時に流動性が阻害されるようになる。そ
のため、本発明では、次の2つのブロッキング防止方法
を単独または好ましくは併用することによってブロッキ
ングを防止している。Further, if the spherical phenolic resins are bonded to each other during carbonization and remain as they are after activation to form a non-sized granulated activated carbon (this is called blocking), the fluidity is impaired during use. Become so. Therefore, in the present invention, blocking is prevented by using the following two blocking prevention methods alone or preferably in combination.
【0020】第一のブロッキング防止方法では、炭化工
程における加熱炉内で球状フェノール樹脂が静置されて
いるとブロッキングを生じ易いため、加熱炉内に気体を
下方より吹き込んだり加熱炉装置自体を回転あるいは振
動させる等により球状フェノール樹脂を流動あるいは振
動させながら加熱し、炭化させることによりブロッキン
グを生じないようにする。さらに好ましくは、炭化後の
賦活工程においても球状フェノール樹脂を流動あるいは
振動させながら加熱を行う。In the first blocking prevention method, if the spherical phenol resin is left standing in the heating furnace in the carbonization step, blocking tends to occur. Therefore, gas is blown into the heating furnace from below or the heating furnace device itself is rotated. Alternatively, the spherical phenol resin is heated while being flown or vibrated by vibrating or the like, and carbonized to prevent blocking. More preferably, in the activation step after carbonization, heating is performed while the spherical phenol resin is flowed or vibrated.
【0021】第二のブロッキング防止方法では、球状フ
ェノール樹脂の表面に未硬化部分が残存していると、そ
の球状フェノール樹脂同士が炭化工程で互いに接触して
加熱されることにより完全硬化する際にブロッキングを
生じるため、球状フェノール樹脂に油を付着させて、そ
の油で球状フェノール樹脂の表面を被覆し、球状フェノ
ール樹脂同士の表面が互いに直接接触しないようにす
る。In the second method for preventing blocking, if an uncured portion remains on the surface of the spherical phenolic resin, the spherical phenolic resins are completely cured by being brought into contact with each other and heated in the carbonization step. In order to cause blocking, oil is adhered to the spherical phenol resin, and the surface of the spherical phenol resin is coated with the oil so that the surfaces of the spherical phenol resins do not directly contact each other.
【0022】前記第二の方法で使用される油は、炭化工
程時に球状フェノール樹脂の未硬化部分が完全に硬化す
るまで球状フェノール樹脂表面を被覆しており、しかも
賦活工程終了後の球状活性炭表面には残存していないも
のが好ましい。そのような油としては、油の分解温度が
球状フェノール樹脂の完全硬化時の温度よりも高く、賦
活工程時の温度以下のものが適する。この範囲の分解温
度を有する油であれば、フェノール樹脂の前記未硬化部
分が完全に硬化するまでの間、分解することなく球状フ
ェノール樹脂の表面に存在して球状フェノール樹脂同士
の表面が直接接触するのを阻止し、ブロッキングの発生
を防止でき、かつ賦活工程では分解して燃焼消失するた
め、その後に油の除去処理を行う必要がない。なお、球
状フェノール樹脂の完全硬化温度は炭化工程における最
高温度よりも低いため、便宜的には、分解温度が前記炭
化工程時の最高温度よりも高く、しかも賦活工程時の温
度以下である油を用いてもよい。また、油の種類は適宜
のものが用いられるが、例として鉱物油(特に高沸点の
重質油)、動植物油、合成潤滑油を示すことができる。The oil used in the second method covers the surface of the spherical phenol resin until the uncured portion of the spherical phenol resin is completely cured during the carbonization step, and furthermore, the surface of the spherical activated carbon after the activation step is completed. Is preferably not remaining. As such an oil, those having a decomposition temperature of the oil higher than the temperature at the time of complete curing of the spherical phenol resin and lower than the temperature at the time of the activation step are suitable. If the oil has a decomposition temperature in this range, the oil is present on the surface of the spherical phenolic resin without being decomposed until the uncured portion of the phenolic resin is completely cured, and the surfaces of the spherical phenolic resins are in direct contact with each other. This can prevent the occurrence of blocking, and can prevent the occurrence of blocking. Further, in the activation step, it is decomposed and burnt and disappears, so that there is no need to subsequently perform an oil removal treatment. Incidentally, since the complete curing temperature of the spherical phenolic resin is lower than the maximum temperature in the carbonization step, for convenience, an oil whose decomposition temperature is higher than the maximum temperature in the carbonization step and is equal to or lower than the temperature in the activation step is used. May be used. As the type of oil, an appropriate one is used, and examples thereof include mineral oil (particularly heavy oil having a high boiling point), animal and vegetable oil, and synthetic lubricating oil.
【0023】賦活は、球状フェノール樹脂の炭化後、そ
の表面を微細孔(ポーラス)状態にして、表面積を高め
る処理方法であり、種々の方法が知られている。例え
ば、賦活対象物を、炭酸ガス、酸素を主体とするガス雰
囲気中において、数分〜数時間加熱する方法、アルカリ
金属の水酸化物により処理する方法等などがある。本発
明では、空気中で高温加熱する賦活方法が簡単で好適で
ある。Activation is a treatment method in which the surface of the spherical phenolic resin is increased after carbonization of the spherical phenolic resin to increase the surface area, and various methods are known. For example, there are a method of heating the object to be activated in a gas atmosphere mainly containing carbon dioxide gas and oxygen for several minutes to several hours, a method of treating with an alkali metal hydroxide, and the like. In the present invention, an activation method of heating at a high temperature in the air is simple and suitable.
【0024】[0024]
【実施例】次に本発明の実施例1〜7及び比較例1につ
いて示す。さらに、実施例6及び7では、製造条件によ
るブロッキング率の変化についても調べた。ブロッキン
グ率は、使用する球状フェノール樹脂の粒度分布から、
同球状フェノール樹脂粒子の90%が通過できる径(以
下、90%通過径と称する。)を求め、その90%通過
径以上であって、その90%通過径に最も近い目開きか
らなるJIS規格の篩を用いて測定対象物を篩別し、篩
上に残った物質について該測定対象物に対する重量分率
を計算し、その計算値をブロッキング率とした。また、
実施例及び比較例に対し、平均粒径、ヨウ素吸着性能、
耐摩耗性、微粉値、吸水率、強熱残分を測定した。その
結果及び前記ブロッキング率を表1,2に示す。なお、
それらの測定方法は次に示すとおりである。Next, Examples 1 to 7 of the present invention and Comparative Example 1 will be described. Further, in Examples 6 and 7, the change in the blocking ratio depending on the manufacturing conditions was also examined. Blocking rate, from the particle size distribution of the spherical phenolic resin used,
A diameter that allows 90% of the spherical phenolic resin particles to pass through (hereinafter referred to as a 90% passage diameter) is determined, and is a JIS standard having an opening that is equal to or larger than the 90% passage diameter and closest to the 90% passage diameter. The object to be measured was sieved using the sieve described above, the weight fraction of the substance remaining on the sieve relative to the object to be measured was calculated, and the calculated value was defined as the blocking ratio. Also,
For Examples and Comparative Examples, average particle size, iodine adsorption performance,
The abrasion resistance, fine powder value, water absorption and ignition residue were measured. The results and the blocking ratio are shown in Tables 1 and 2. In addition,
The measuring method is as follows.
【0025】・平均粒径:レーザー式粒度分布測定機
(セイシン企業製PRO−7000)を使用して測定し
た。 ・ヨウ素吸着性能および強熱残分:JIS K 147
4活性炭試験方法により測定した。ヨウ素吸着性能の値
が大きい程吸着性能が高く、また強熱残分の値が大であ
る程不純物が多い。 ・耐摩耗性(微粉の発生し難さ):レーザー式粒度分布
測定機(セイシン企業製PRO−7000)を使用して
試料(活性炭)約0.2gをポンプで循環させ、60分
後における10μm以下の粒子の増加量から耐摩耗性を
測定した。表の数値が示す100%は、10μm以下の
粒子の増加量が0であることを示し、数値が下がるほど
10μm以下の粒子が増加したことを示す。 ・微粉値:試料(活性炭)5.0gを5.0%エタノー
ル水溶液100mlが入った200mlのビーカーに加
え、30分間、振とう機を用いて激しく振った。その後
5分以内に、分光光度計を用いて650nm、10mm
セルにて吸光度を測定し、その吸光度の測定数値をその
まま微粉値とした。この微粉値が大である程微粉が多い
ことを示す。 ・吸水率:試料(活性炭)5.0gに徐々にピペットで
水を滴下して攪拌し、目視で活性炭がべたつき始める直
前の時点までに滴下した水の量を測定し、その水の滴下
量(g)より活性炭1g当たりの吸水率を求めた。な
お、滴下の際、水が吸収熱で蒸発しないように活性炭を
冷却しながら測定を行った。 ・ブロッキング率:試料(球状フェノール樹脂単独、ま
たは球状フェノール樹脂に油を混合したもの)を500
℃で3時間炭化した後、炭化物を前記ブロッキング率で
定義した試験篩を用いて10分間篩別する。篩別後、篩
上に残った炭化物の重量分率を求め、その値をブロッキ
ング率(%)として表す。Average particle size: Measured using a laser type particle size distribution analyzer (PRO-7000 manufactured by Seishin Enterprise).・ Iodine adsorption performance and ignition residue: JIS K147
4 Measured by the activated carbon test method. The larger the value of the iodine adsorption performance, the higher the adsorption performance, and the larger the value of the residue on ignition, the more impurities. Abrasion resistance (hardness of generation of fine powder): Approximately 0.2 g of a sample (activated carbon) was circulated by a pump using a laser type particle size distribution analyzer (PRO-7000 manufactured by Seishin Enterprise), and 10 μm after 60 minutes. The abrasion resistance was measured from the following increase in particles. 100% indicated in the numerical values in the table indicates that the amount of increase of the particles of 10 μm or less is 0, and indicates that as the numerical value decreases, the particles of 10 μm or less increase. Fine powder value: 5.0 g of the sample (activated carbon) was added to a 200 ml beaker containing 100 ml of a 5.0% aqueous ethanol solution, and the mixture was shaken vigorously for 30 minutes using a shaker. Within 5 minutes thereafter, use a spectrophotometer at 650 nm, 10 mm
The absorbance was measured in the cell, and the measured value of the absorbance was directly used as the fine powder value. The greater the value of this fine powder, the more fine powder. Water absorption: 5.0 g of a sample (activated carbon) was slowly dropped with a pipette and stirred, and the amount of water dropped by the time immediately before the activated carbon started to stick was measured, and the amount of the dropped water ( g) to determine the water absorption per 1 g of activated carbon. At the time of dropping, the measurement was performed while cooling the activated carbon so that water did not evaporate due to the heat of absorption. -Blocking ratio: 500 (sample of spherical phenol resin alone or mixture of spherical phenol resin and oil)
After carbonization at 3 ° C. for 3 hours, the carbide is sieved for 10 minutes using a test sieve defined by the above-mentioned blocking ratio. After sieving, the weight fraction of the carbide remaining on the sieve was determined, and the value was expressed as a blocking rate (%).
【0026】(実施例1)平均粒径150μmの球状フ
ェノール樹脂(商品名:PR−FSD−1、住友デュレ
ズ(株)製)100gに油(商品名:SF/CC SA
E 10W−30、カストロール(株)製)を10g混
合した後、金属製レトルト容器(内容量13リットル)
に収容して加熱炉内で120℃、1時間乾燥させた後、
同じ加熱炉内で容器を15rpmで回転させながら、5
00℃で1時間加熱し、炭化させた。炭化後、同加熱炉
内で容器を1rpmで回転させながら900℃、1時間
加熱することによって賦活し、球状活性炭を得た。得ら
れた球状活性炭は、平均粒径110μmの球状からな
り、活性炭特性として測定したヨウ素吸着性能が102
0mg/gであった。また、耐摩耗性の測定結果は10
μm以下の微粒子の増加がなく、耐摩耗性に優れている
ことが判明した。(Example 1) Oil (trade name: SF / CC SA) was added to 100 g of a spherical phenol resin (trade name: PR-FSD-1, manufactured by Sumitomo Durez Co., Ltd.) having an average particle size of 150 μm.
E 10W-30, manufactured by Castrol Co., Ltd., 10 g, and then mixed with a metal retort container (content 13 liter)
After drying at 120 ° C for 1 hour in a heating furnace,
While rotating the container at 15 rpm in the same heating furnace, 5
It was heated at 00 ° C. for 1 hour and carbonized. After the carbonization, the container was activated by heating at 900 ° C. for 1 hour while rotating the container at 1 rpm in the same heating furnace to obtain a spherical activated carbon. The obtained spherical activated carbon has a spherical shape with an average particle size of 110 μm, and has an iodine adsorption performance of 102 as measured as activated carbon characteristics.
It was 0 mg / g. The measurement result of the wear resistance is 10
It was found that there was no increase in the fine particles of μm or less, and the wear resistance was excellent.
【0027】(実施例2)実施例1と同一の球状フェノ
ール樹脂100gに対し、実施例1と同様に油10gを
混合し、乾燥後に容器を15rpmで回転させながら炭
化した後、容器を1rpmで回転させながら900℃、
2時間加熱することによって賦活し、球状活性炭を得
た。得られた球状活性炭は、平均粒径100μmの球状
で、ヨウ素吸着性能1180mg/gであった。また、
耐摩耗性も実施例1と同一結果が得られ優れたものであ
った。Example 2 100 g of the same spherical phenol resin as in Example 1 was mixed with 10 g of oil in the same manner as in Example 1, dried, carbonized while rotating the container at 15 rpm, and then the container was cooled at 1 rpm. 900 ° C while rotating,
Activated by heating for 2 hours to obtain spherical activated carbon. The obtained spherical activated carbon was spherical with an average particle diameter of 100 μm, and had an iodine adsorption performance of 1180 mg / g. Also,
The same results as in Example 1 were obtained and the abrasion resistance was excellent.
【0028】(実施例3)平均粒径130μmの球状フ
ェノール樹脂(商品名:PR−FSD、住友デュレズ
(株)製)100gに対し、実施例1と同様に油10g
を混合してレトルト容器に収容し、加熱炉内で120
℃、1時間乾燥した後、同加熱炉内で容器を15rpm
で回転させながら500℃、1時間加熱し炭化させた。
炭化後、同加熱炉内で容器を1rpmで回転させながら
900℃、3時間加熱することによって賦活し、球状活
性炭を得た。得られた球状活性炭は平均粒径80μmの
球状で、ヨウ素吸着性能が1280mg/gであった。
また、耐摩耗性は、実施例1及び2と同一の結果が得ら
れ優れたものであった。Example 3 10 g of oil in the same manner as in Example 1 for 100 g of a spherical phenol resin (trade name: PR-FSD, manufactured by Sumitomo Durez) having an average particle diameter of 130 μm
And mixed in a retort container,
After drying at ℃ for 1 hour, the container was kept at 15 rpm in the heating furnace.
While being rotated at 500 ° C. for 1 hour to carbonize.
After carbonization, the container was activated by heating at 900 ° C. for 3 hours while rotating the container at 1 rpm in the same heating furnace to obtain a spherical activated carbon. The obtained spherical activated carbon was spherical with an average particle diameter of 80 μm, and had an iodine adsorption performance of 1280 mg / g.
Further, the abrasion resistance was excellent because the same results as in Examples 1 and 2 were obtained.
【0029】(実施例4)実施例3と同一の球状フェノ
ール樹脂を、実施例3と同様にして炭化した後、加熱炉
で容器を1rpmで回転させながら900℃、4時間加
熱することによって賦活し、球状活性炭を得た。得られ
た球状活性炭は、平均粒径70μmの球状で、ヨウ素吸
着性能が1350mg/gであった。また、耐摩耗性の
測定値は99.9%であり、優れた耐摩耗性を示した。Example 4 The same spherical phenol resin as in Example 3 was carbonized in the same manner as in Example 3, and activated by heating at 900 ° C. for 4 hours while rotating the vessel at 1 rpm in a heating furnace. Then, spherical activated carbon was obtained. The obtained spherical activated carbon was spherical with an average particle size of 70 μm, and had an iodine adsorption performance of 1350 mg / g. The measured value of the wear resistance was 99.9%, indicating excellent wear resistance.
【0030】(実施例5)平均粒径300μmの球状フ
ェノール樹脂(商品名:PR−FSD、住友デュレズ
(株)製)100gに実施例1と同様に油10gを混合
してレトルト容器に入れ、加熱炉内で120℃、1時間
乾燥した後、同加熱炉内で容器を15rpmで回転させ
ながら500℃、1時間加熱し炭化させた。炭化後、同
加熱炉内で容器を1rpmで回転させながら900℃、
2時間加熱することによって賦活し、平均粒径200μ
mの球状活性炭を得た。その球状活性炭に対して同様の
測定を行った。結果は、耐摩耗性については実施例1〜
4と同等であったが、微粉値が大きい点で実施例1〜4
よりも劣っていた。Example 5 10 g of oil was mixed with 100 g of a spherical phenol resin (trade name: PR-FSD, manufactured by Sumitomo Durez Co., Ltd.) having an average particle diameter of 300 μm and put in a retort container in the same manner as in Example 1. After drying in a heating furnace at 120 ° C. for 1 hour, the container was heated at 500 ° C. for 1 hour in the same heating furnace while rotating at 15 rpm to carbonize. After carbonization, 900 ° C while rotating the vessel at 1 rpm in the same heating furnace.
Activated by heating for 2 hours, average particle size 200μ
m of spherical activated carbon was obtained. The same measurement was performed on the spherical activated carbon. The results are shown in Examples 1 to 3 for the wear resistance.
Examples 4 to 5 were equivalent to Example 4, but the fine powder value was large.
Was inferior.
【0031】(実施例6)平均粒径80μmの球状フェ
ノール樹脂(商品名:PR−FSD、住友デュレズ
(株)製)100gに油(商品名:SF/CC SAE
10W−30、カストロール(株)製)を表2の割合
で混合し、実施例1と同様のレトルト容器に収容し、加
熱炉内で120℃、1時間乾燥した後、同じ加熱炉内で
静置のまま500℃で3時間加熱し、炭化させた。得ら
れた炭化物は、平均粒径70μmの球状であった。ブロ
ッキング率は、油添加量5重量%のとき3.0%であ
り、油添加率0%の時のブロッキング率20.0%と比
較して明らかに低下している。なお、油添加量の限界で
ある25重量%ではブロッキング率が1.1%であっ
た。Example 6 Oil (trade name: SF / CC SAE) was added to 100 g of a spherical phenol resin (trade name: PR-FSD, manufactured by Sumitomo Durez Co., Ltd.) having an average particle size of 80 μm.
10W-30, manufactured by Castrol Co., Ltd.) were mixed in the proportions shown in Table 2, placed in the same retort container as in Example 1, dried in a heating furnace at 120 ° C. for 1 hour, and then statically heated in the same heating furnace. The mixture was heated at 500 ° C. for 3 hours and carbonized. The obtained carbide was spherical with an average particle size of 70 μm. The blocking ratio was 3.0% when the oil addition amount was 5% by weight, and was clearly lower than the blocking ratio 20.0% when the oil addition ratio was 0%. The blocking rate was 1.1% at 25% by weight, which is the limit of the amount of oil added.
【0032】また、前記実施例6で得られた炭化物につ
いて、炭化時と同じ加熱炉内で容器を1rpmで回転さ
せながら900℃、2時間加熱することにより賦活し、
球状活性炭を得た。得られた球状活性炭は平均粒径70
μmの球状で、ヨウ素吸着性能が1190mg/gであ
った。この得られた球状活性炭について、実施例1と同
様に対摩耗性を測定したところ、10μm以下の微粒子
の増加がなく、優れたものであった。The carbide obtained in Example 6 was activated by heating at 900 ° C. for 2 hours while rotating the vessel at 1 rpm in the same heating furnace as in the carbonization.
A spherical activated carbon was obtained. The obtained spherical activated carbon has an average particle size of 70.
It was spherical with a diameter of μm and had an iodine adsorption performance of 1190 mg / g. When the abrasion resistance of the obtained spherical activated carbon was measured in the same manner as in Example 1, there was no increase in fine particles of 10 μm or less, and it was excellent.
【0033】(実施例7)実施例6と同様にして油の混
合、乾燥工程まで行った実施例6と同一の球状フェノー
ル樹脂に対し、同じ加熱炉で容器を15rpmで回転さ
せながら500℃で3時間加熱し、炭化させた。この炭
化物に対し、ブロッキング率を測定した。この実施例7
と実施例6の場合のブロッキング率を比較すると、実施
例7の炭化物の方がブロッキング率の少ないのがわか
る。これは、実施例7では、油の効果と球状フェノール
樹脂の流動(回転)効果の両効果によってブロッキング
の発生を効果的に防止できるからであり、これによりブ
ロッキング率を1%以下に抑えることが可能となった。(Example 7) The same spherical phenol resin as in Example 6, which was subjected to the oil mixing and drying steps in the same manner as in Example 6, was heated at 500 ° C while rotating the vessel at 15 rpm in the same heating furnace. Heated for 3 hours and carbonized. The blocking ratio of the carbide was measured. Example 7
Comparing the blocking rates of Example 6 and Example 6, it is clear that the carbide of Example 7 has a lower blocking rate. This is because in Example 7, the occurrence of blocking can be effectively prevented by both the effect of the oil and the flow (rotation) effect of the spherical phenol resin, whereby the blocking rate can be suppressed to 1% or less. It has become possible.
【0034】(比較例1)ヤシ殻を原料とした破砕炭か
ら平均粒径110μmの活性炭を篩い分けにより製造し
た。この活性炭に対し、実施例1と同様の測定を行い、
各種性能を比較した。その結果、耐摩耗性及び微粉値
が、本発明品の実施例1〜7に比べて悪く、しかも強熱
残分も本発明品である実施例1〜7に比べて極めて大き
な値を示した。Comparative Example 1 Activated carbon having an average particle size of 110 μm was produced from crushed coal made from coconut shell as a raw material by sieving. The same measurement as in Example 1 was performed on this activated carbon,
Various performances were compared. As a result, the abrasion resistance and the fine powder value were worse than those of Examples 1 to 7 of the product of the present invention, and the residue on ignition showed an extremely large value as compared with Examples 1 to 7 of the product of the present invention. .
【0035】[0035]
【表1】 [Table 1]
【0036】[0036]
【表2】 (ブロッキング率の測定には83メッシュの篩を使用)[Table 2] (Use an 83 mesh sieve to measure the blocking ratio)
【0037】[0037]
【発明の効果】以上説明したように、この発明は、球状
フェノール樹脂をブロッキング防止しながら炭化、賦活
して球状活性炭としているため、その形状を球状にする
ことができる。従って、本発明の球状活性炭を流動床式
装置の吸着剤や触媒及びその担体として使用した際に
は、球状活性炭の優れた流動性によって悪臭や化学物質
等に対する高い吸着性を発揮し、また、触媒反応や装置
の運転安定性を十分に発揮させることができる。さら
に、前記活性炭が球状からなるため、流動床における使
用等の際に破砕炭のように表面の角が削れて微粉を生じ
る問題がなく、その微粉によって装置への悪影響(配管
汚染及び閉塞)や活性炭の性能低下のおそれがない。し
かも本発明の球状活性炭は、粉末活性体をバインダーで
結合したものと異なり、表面がバインダーで覆われてい
ないため、活性炭含有率が高くなり、吸着性能や触媒性
能が阻害されることもない。As described above, according to the present invention, the spherical phenol resin is carbonized and activated while preventing the spherical phenol resin from blocking, thereby forming a spherical activated carbon. Therefore, the shape can be made spherical. Therefore, when the spherical activated carbon of the present invention is used as an adsorbent or a catalyst of a fluidized bed type device and a carrier thereof, the spherical activated carbon exerts a high adsorptivity to odors and chemical substances due to the excellent fluidity of the spherical activated carbon, The catalyst reaction and the operation stability of the apparatus can be sufficiently exhibited. Further, since the activated carbon has a spherical shape, there is no problem that the corner of the surface is shaved and fine powder is generated as in the case of crushed carbon when used in a fluidized bed, and the fine powder has an adverse effect on the apparatus (contamination of pipes and blockage) and There is no risk of performance degradation of activated carbon. In addition, unlike the spherical activated carbon of the present invention in which the powdered active substance is bound with a binder, the surface is not covered with the binder, so that the activated carbon content is increased, and the adsorption performance and catalyst performance are not hindered.
【0038】また、本発明では、芳香族構造のフェノー
ル樹脂から球状活性炭を製造しているため、ヤシ殻やオ
ガ粉等の天然原料からなる活性炭と比べて活性炭の炭化
率が高く、これによっても吸着性能や触媒性能の向上効
果が得られる。さらに、本発明では、球状活性炭の平均
粒径が20〜200μmであるため、液相のみならず気
相に対しても好適に使用できる。In the present invention, since spherical activated carbon is produced from a phenolic resin having an aromatic structure, the carbonization rate of activated carbon is higher than activated carbon made of natural raw materials such as coconut shells and sawdust powder. The effect of improving the adsorption performance and the catalyst performance can be obtained. Furthermore, in the present invention, the spherical activated carbon has an average particle size of 20 to 200 μm, so that it can be suitably used not only for the liquid phase but also for the gas phase.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲田 直 岐阜県美濃加茂市御門町2−2−62 二村 化学工業株式会社岐阜工場内 (72)発明者 高阪 務 岐阜県美濃加茂市御門町2−2−62 二村 化学工業株式会社岐阜工場内 (72)発明者 伊藤 浩文 神奈川県横浜市西区みなとみらい2−3− 1 日揮株式会社内 Fターム(参考) 4G046 HA03 HB02 HB05 HC14 HC21 4G066 AA05B AC25A BA09 BA20 BA35 BA36 BA38 CA31 FA18 FA21 FA23 4G069 AA01 AA08 BA08A BA08B BA22A BA22B BA22C DA08 EA02X EA02Y ED03 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nao Inada 2-262 Mimoncho, Minokamo-shi, Gifu Pref. Nimura Chemical Industry Co., Ltd. Gifu Plant (72) Inventor Tsukasa Takasaka 2 Mimoncho, Minokamo-shi, Gifu -2-62 Nimura Chemical Industry Co., Ltd. Gifu Factory (72) Inventor Hirofumi Ito 2-3-1 Minatomirai, Nishi-ku, Yokohama-shi, Kanagawa Prefecture JGC Corporation F-term (reference) 4G046 HA03 HB02 HB05 HC14 HC21 4G066 AA05B AC25A BA09 BA20 BA35 BA36 BA38 CA31 FA18 FA21 FA23 4G069 AA01 AA08 BA08A BA08B BA22A BA22B BA22C DA08 EA02X EA02Y ED03
Claims (8)
る平均粒径20〜200μmの球状活性炭。1. A spherical activated carbon having an average particle diameter of 20 to 200 μm obtained by carbonizing and activating a spherical phenol resin.
しながら炭化させた後、賦活してなる平均粒径20〜2
00μmの球状活性炭。2. An average particle diameter of 20 to 2 obtained by carbonizing the spherical phenol resin while preventing blocking, and then activating.
00 μm spherical activated carbon.
しながら炭化させた後、賦活することを特徴とする球状
活性炭の製造方法。3. A method for producing a spherical activated carbon, wherein a spherical phenol resin is carbonized while preventing blocking, and then activated.
させながら炭化させた後、賦活することを特徴とする球
状活性炭の製造方法。4. A method for producing a spherical activated carbon, characterized in that a spherical phenol resin is carbonized while flowing or vibrating, and then activated.
当該球状フェノール樹脂を炭化し、賦活することを特徴
とする球状活性炭の製造方法。5. A method for producing a spherical activated carbon, comprising: adhering an oil to a spherical phenol resin; and carbonizing and activating the spherical phenol resin.
油付着後の球状フェノール樹脂を流動あるいは振動させ
ながら炭化させた後、賦活することを特徴とする球状活
性炭の製造方法。6. A method for producing a spherical activated carbon, comprising: adhering oil to a spherical phenol resin; carbonizing the spherical phenol resin after the oil adhesion while flowing or vibrating; and activating the activated carbon.
で分解せず、かつ賦活時の温度で分解する油を使用する
ことを特徴とする請求項5または6記載の球状活性炭の
製造方法。7. The method for producing spherical activated carbon according to claim 5, wherein an oil which does not decompose at the temperature at the time of complete curing of the spherical phenolic resin and decomposes at the temperature at the time of activation is used.
300μm、球状活性炭の平均粒径が20〜200μm
であることを特徴とする請求項3ないし7のいずれかに
記載の球状活性炭の製造方法。8. The spherical phenolic resin having an average particle size of 50 to 50.
300 μm, average particle size of spherical activated carbon is 20-200 μm
The method for producing a spherical activated carbon according to any one of claims 3 to 7, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32739299A JP4046914B2 (en) | 1998-12-18 | 1999-11-17 | Method for producing spherical activated carbon |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-360912 | 1998-12-18 | ||
JP36091298 | 1998-12-18 | ||
JP32739299A JP4046914B2 (en) | 1998-12-18 | 1999-11-17 | Method for producing spherical activated carbon |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000233916A true JP2000233916A (en) | 2000-08-29 |
JP4046914B2 JP4046914B2 (en) | 2008-02-13 |
Family
ID=26572493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32739299A Expired - Fee Related JP4046914B2 (en) | 1998-12-18 | 1999-11-17 | Method for producing spherical activated carbon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4046914B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100515593B1 (en) * | 2001-04-17 | 2005-09-16 | 주식회사 엘지화학 | Spherical carbons and method for preparing the same |
US7651974B2 (en) | 2002-11-01 | 2010-01-26 | Kureha Chemical Industry Co., Ltd. | Adsorbent for oral administration |
US8357366B2 (en) | 2004-04-02 | 2013-01-22 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8440228B2 (en) | 2004-04-02 | 2013-05-14 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8920796B2 (en) | 2003-10-22 | 2014-12-30 | Kureha Corporation | Adsorbent for oral administration, and agent for treating or preventing renal or liver disease |
WO2016117153A1 (en) * | 2015-01-22 | 2016-07-28 | 株式会社エム・イー・ティー | Scrub and method for using same |
CN111777066A (en) * | 2020-08-04 | 2020-10-16 | 上海欧亚合成材料股份有限公司 | Preparation process of phenolic resin-based spherical activated carbon |
WO2022003928A1 (en) * | 2020-07-03 | 2022-01-06 | 株式会社大木工藝 | Multipurpose antibacterial sheet |
-
1999
- 1999-11-17 JP JP32739299A patent/JP4046914B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100515593B1 (en) * | 2001-04-17 | 2005-09-16 | 주식회사 엘지화학 | Spherical carbons and method for preparing the same |
US7651974B2 (en) | 2002-11-01 | 2010-01-26 | Kureha Chemical Industry Co., Ltd. | Adsorbent for oral administration |
US8309130B2 (en) | 2002-11-01 | 2012-11-13 | Kureha Corporation | Adsorbent for oral administration |
US8920796B2 (en) | 2003-10-22 | 2014-12-30 | Kureha Corporation | Adsorbent for oral administration, and agent for treating or preventing renal or liver disease |
US8865161B2 (en) | 2004-04-02 | 2014-10-21 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8518447B2 (en) | 2004-04-02 | 2013-08-27 | Kureha Corporation | Method for treating or preventing renal or liver disease |
US8440228B2 (en) | 2004-04-02 | 2013-05-14 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8357366B2 (en) | 2004-04-02 | 2013-01-22 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
WO2016117153A1 (en) * | 2015-01-22 | 2016-07-28 | 株式会社エム・イー・ティー | Scrub and method for using same |
KR101858461B1 (en) | 2015-01-22 | 2018-05-16 | 가부시키가이샤 엠이티 | Scrub and method for using same |
WO2022003928A1 (en) * | 2020-07-03 | 2022-01-06 | 株式会社大木工藝 | Multipurpose antibacterial sheet |
CN111777066A (en) * | 2020-08-04 | 2020-10-16 | 上海欧亚合成材料股份有限公司 | Preparation process of phenolic resin-based spherical activated carbon |
CN111777066B (en) * | 2020-08-04 | 2024-03-29 | 上海欧亚合成材料股份有限公司 | Preparation process of phenolic resin-based spherical activated carbon |
Also Published As
Publication number | Publication date |
---|---|
JP4046914B2 (en) | 2008-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2960143B2 (en) | Activated carbon production method | |
JP5773647B2 (en) | Chemical activated carbon and method for its preparation | |
László et al. | Characterization of activated carbons from waste materials by adsorption from aqueous solutions | |
EP0643014B1 (en) | Deodorant comprising metal oxide-carrying activated carbon | |
JP2001152025A (en) | Coated active carbon | |
US20140037536A1 (en) | Production of catalytically active activated carbons | |
US5736053A (en) | Method of eliminating mercury from liquid hydrocarbons | |
Hadi et al. | Fabrication of activated carbon from pomegranate husk by dual consecutive chemical activation for 4-chlorophenol adsorption | |
JPH0566886B2 (en) | ||
JPH0999233A (en) | Sorption agent composition | |
JP2003502263A (en) | Method for producing shaped activated carbon | |
US5736481A (en) | Shaped lignocellulosic-based activated carbon | |
JPS5945914A (en) | Preparation of carbonaceous molecular sieve | |
US20080063592A1 (en) | Spherical Active Carbon And Process For Producing The Same | |
JP2000233916A (en) | Spherical-granular active carbon and its production | |
US5736485A (en) | Shaped lignocellulosic-based activated carbon | |
JP7453463B1 (en) | Carbonaceous material and its manufacturing method, and adsorption filter | |
JP7453462B1 (en) | Carbonaceous materials and their manufacturing methods, adsorption filters, water purifier cartridges, water purifiers, and water purification equipment | |
JP2003190783A (en) | Adsorbent for solvent vapor and method for preparing the same | |
AU738621B2 (en) | Shaped lignocellulosic-based activated carbon | |
WO2019208646A1 (en) | Metahalloysite powder and production method therefor | |
JPH10501174A (en) | Air purification in enclosed space | |
JPH11128737A (en) | Bromine-bearing activated carbon and production of bromine-bearing activated carbon | |
JP4199028B2 (en) | Method for producing powdered carbide | |
KR820000986B1 (en) | Process for producing spherical particles of activated carbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040617 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070814 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071121 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131130 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |