JP2000219943A - Alloy ribbons for rare earth magnets, alloy fine powders and methods for producing them - Google Patents
Alloy ribbons for rare earth magnets, alloy fine powders and methods for producing themInfo
- Publication number
- JP2000219943A JP2000219943A JP11022902A JP2290299A JP2000219943A JP 2000219943 A JP2000219943 A JP 2000219943A JP 11022902 A JP11022902 A JP 11022902A JP 2290299 A JP2290299 A JP 2290299A JP 2000219943 A JP2000219943 A JP 2000219943A
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- alloy
- raw material
- fine powder
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0558—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Continuous Casting (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Hard Magnetic Materials (AREA)
Abstract
(57)【要約】
【課題】 低い温度で焼結体を高密度化することを可能
とする希土類永久磁石を製造するのに適した原料と、そ
の原料の調製方法を提供する。
【解決手段】 R−T−B系希土類永久磁石原料用の合
金溶湯をロール急冷法で急冷して、薄帯の厚さが30〜
1000μmであり、冷却面近傍に体積率で1〜30%
の粒径3μm以下のチル晶を有し、残部は、粒径3〜5
0μmの粒状結晶、及び短軸が3〜100μm、長軸が
20〜600μmの柱状結晶、平均粒径3μ以下のα−
Feの析出している部分からなるものとする。また、前
記永久磁石原料用合金薄帯を粗粉砕し、その粗粉砕粉末
を更に微粉砕して得られる微粉末であって、粒径3μm
以下の微粉末が1〜30%含まれ、残部の粒径が実質的
に3〜10μmであるものとする。粗粉砕する方法が、
永久磁石原料用合金薄帯に水素を吸蔵させた後脱水素化
を行う方法であり、かつ、微粉砕がジェットミルにより
行われることであることが好ましい。
PROBLEM TO BE SOLVED: To provide a raw material suitable for producing a rare earth permanent magnet capable of increasing the density of a sintered body at a low temperature, and a method for preparing the raw material. SOLUTION: An RTB-based rare-earth permanent magnet raw material alloy is quenched by a roll quenching method so that the thickness of the ribbon is 30 to 30 mm.
1000 μm, 1 to 30% by volume ratio near the cooling surface
Has a chill crystal with a particle size of 3 μm or less, and the rest has a particle size of 3 to 5
0 μm granular crystal, a columnar crystal having a minor axis of 3 to 100 μm and a major axis of 20 to 600 μm, α-
It is assumed to be composed of a portion where Fe is precipitated. A fine powder obtained by coarsely pulverizing the alloy ribbon for a raw material of permanent magnet and further finely pulverizing the coarsely pulverized powder, having a particle diameter of 3 μm
It is assumed that 1 to 30% of the following fine powder is contained, and the particle size of the remaining is substantially 3 to 10 μm. The method of coarse grinding is
It is a method of performing dehydrogenation after absorbing hydrogen in the alloy ribbon for a raw material of a permanent magnet, and it is preferable that the pulverization is performed by a jet mill.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気特性に優れた
希土類永久磁石を製造するのに適した原料とその原料の
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material suitable for producing a rare earth permanent magnet having excellent magnetic properties and a method for producing the raw material.
【0002】[0002]
【従来の技術】希土類永久磁石は、優れた磁気特性と経
済性のため電気・電子機器の分野で多用されており、近
年益々その高性能化が要求されている。これら希土類永
久磁石の内R−T−B系希土類永久磁石(RはNdを主
体とした希土類元素、TはFe、又はFe及びCoであ
る遷移金属)は、希土類コバルト磁石に比べたとき、主
要元素であるNdがSmより豊富に存在すること、高価
なCoを多用しないこと、から原材料費が安価であり、
磁気特性も希土類コバルト磁石を遙かに凌ぐ、極めて優
れた永久磁石である。従来、R−T−B系希土類永久磁
石原料用合金は、合金溶湯を金型に鋳造する金型鋳造法
により製造されてきた。この合金の冷却凝固過程におい
て初晶γ−Feが析出し、それが冷却後α−Feとして
偏析する。α−Feは永久磁石製造工程の中の微粉砕工
程において、その粉砕能力を悪化させ、焼結工程後の磁
石に残存すれば磁気特性の低下をもたらす。そのため、
高温で長時間にわたる均質化熱処理を施してα−Feを
消失させることが必要となるが、この均質化熱処理によ
り合金中の主相(R2 T14B)の結晶粒径が粗大化
し、磁気特性を低下させると共に、製造コストも上昇さ
せてしまう。そこで、ストリップキャスティング法等の
急冷技術を用いて、α−Feの偏析を抑制すると共に、
主相の結晶粒径を細かくした永久磁石原料用合金を製造
し、それを用いて永久磁石を製造することが報告されて
いる。2. Description of the Related Art Rare earth permanent magnets are widely used in the field of electric and electronic equipment because of their excellent magnetic properties and economical efficiency. Among these rare-earth permanent magnets, the RTB-based rare-earth permanent magnets (R is a rare-earth element mainly composed of Nd, T is Fe, or a transition metal such as Fe and Co) are mainly used as compared with rare-earth cobalt magnets. Since the element Nd is more abundant than Sm, and expensive Co is not heavily used, raw material costs are low,
It is an extremely excellent permanent magnet, with magnetic properties far superior to rare earth cobalt magnets. Conventionally, an RTB-based rare earth permanent magnet raw material alloy has been manufactured by a mold casting method of casting a molten alloy into a mold. Primary γ-Fe precipitates during the cooling and solidification process of this alloy, and after cooling, segregates as α-Fe. α-Fe deteriorates the pulverizing ability in the fine pulverizing step in the permanent magnet manufacturing step, and if it remains in the magnet after the sintering step, it lowers the magnetic properties. for that reason,
It is necessary to perform a homogenizing heat treatment at a high temperature for a long period of time to eliminate α-Fe. However, the homogenizing heat treatment increases the crystal grain size of the main phase (R 2 T 14 B) in the alloy, and reduces the magnetic field. The characteristics are lowered, and the manufacturing cost is increased. Therefore, using a rapid cooling technique such as a strip casting method, while suppressing the segregation of α-Fe,
It has been reported that an alloy for a raw material of a permanent magnet in which the crystal grain size of the main phase is reduced is manufactured, and a permanent magnet is manufactured using the alloy.
【0003】特許第2665590号では、主相(R2
T14B)結晶が短軸3〜20μmの均質な柱状結晶
であり、この永久磁石原料用合金を用いると保磁力(i
Hc)の高い磁石を製造できるとしている。特許第26
39609号では、冷却速度10〜500℃/秒で均一
に凝固させ、主相の結晶粒径が短軸0.1〜50μm、
長軸0.1〜100μmである永久磁石原料用合金を製
造し、これを用いることにより磁石の残留磁束密度(B
r)を上昇させている。特開平7−176414号で
は、平均粒径3〜50μmの柱状結晶の主相用母合金と
平均粒径0.1〜20μmの粒界用助剤とを混合し、水
素を吸蔵させる方法で磁気特性を上げ、更に粉砕性も上
げている。特開平9−170055号では、鋳造後の8
00〜600℃の冷却を10℃/秒以下に制御すること
で、主相の平均粒径が20〜100μmで、Ndリッチ
相間隔が15μm以下の合金をつくり、残留磁化を上昇
させている。これらどの報告においても、平均粒径の揃
った均質な原料用合金を用いて、粒度分布が均一な微粉
を得ることで、磁気特性を向上させているのが特徴であ
る。[0003] In Japanese Patent No. 2665590, the main phase (R 2
T 14 B) The crystal is a homogeneous columnar crystal having a minor axis of 3 to 20 μm, and the coercive force (i
It is stated that a magnet having a high Hc) can be manufactured. Patent No. 26
In 39609, solidification is uniformly performed at a cooling rate of 10 to 500 ° C./sec, and the crystal grain size of the main phase has a minor axis of 0.1 to 50 μm.
An alloy for a raw material of a permanent magnet having a major axis of 0.1 to 100 μm is manufactured, and by using this, the residual magnetic flux density (B
r) is increasing. JP-A-7-176414 discloses a method of mixing a columnar crystal main phase master alloy having an average particle size of 3 to 50 μm and a grain boundary auxiliary agent having an average particle size of 0.1 to 20 μm, and absorbing hydrogen by a method of absorbing hydrogen. The properties are improved, and the grindability is also improved. Japanese Patent Application Laid-Open No. 9-170055 discloses that after casting 8
By controlling the cooling at 00 to 600 ° C. to 10 ° C./second or less, an alloy having an average particle diameter of the main phase of 20 to 100 μm and an Nd-rich phase interval of 15 μm or less is produced, and the residual magnetization is increased. Each of these reports is characterized by improving the magnetic properties by obtaining a fine powder having a uniform particle size distribution by using a homogeneous raw material alloy having a uniform average particle size.
【0004】希土類永久磁石は、金型鋳造法、又は急冷
法によって製造された原料用合金を粉砕して得られた微
粉末を磁場中で加圧成型した後、真空中で焼結するとい
う粉末冶金工程で製造される。希土類永久磁石における
焼結工程は、液相焼結と言われるもので、微粉末の成型
体を約1100℃(組成によって違う)に加熱すること
で液相量が増え、収縮して密度が上がり、残留磁束密度
が上がることを利用している。焼結終了後に冷却する
と、液相にならなかった主相の周りを融点の低い相であ
るR(Nd)リッチ相が囲み、平均粒径3〜10μmの
主相が分散することで保磁力が発生する。残留磁束密度
を上げるには焼結密度を上げる必要があり、主相が完全
に液相になってしまう温度を上限として、焼結温度を高
くした方が良い。[0004] Rare earth permanent magnets are obtained by pulverizing a raw material alloy produced by a die casting method or a quenching method, press-molding a fine powder in a magnetic field, and then sintering in a vacuum. Manufactured in a metallurgical process. The sintering process for rare earth permanent magnets is called liquid phase sintering. Heating a fine powder compact to about 1100 ° C (depending on the composition) increases the amount of liquid phase, shrinks and increases the density. The fact that the residual magnetic flux density is increased is utilized. When cooled after completion of sintering, the R (Nd) -rich phase, which has a low melting point, surrounds the main phase that did not become a liquid phase, and the main phase having an average particle size of 3 to 10 μm is dispersed, thereby increasing coercive force. appear. In order to increase the residual magnetic flux density, it is necessary to increase the sintering density, and it is better to increase the sintering temperature up to the temperature at which the main phase becomes completely liquid.
【0005】一方、保磁力は、焼結温度を高くすればい
いというものではなく、一般的には残留磁束密度が最大
となる温度よりも約100℃低い温度で最大となってい
た。別の言い方をすると、保磁力は、焼結体密度が真密
度の約90%に上がったところで最も高くなり、それ以
上に加熱すると、主相が粒成長を起こして粒径が大きく
なり、主相の分散性が低下するので、保磁力は低下して
しまう。特に、真密度の99.5%を超える焼結体密度
になるまで加熱すると、主相が急激に粒成長して保磁力
が急激に低下すると共に、角型性も低下してしまう。そ
こで、一般的には、残留磁束密度と保磁力とのバランス
を考えて、焼結体密度が真密度の98〜99.5%にな
るような温度が最適焼結温度とされている。以上のこと
から、これまでの最適焼結温度と比較して低い温度で焼
結体密度を上げることが可能となれば、焼結体中の主相
の粒径を大きくさせないから、残留磁束密度の値を損な
うことなしに保磁力を大きくすることが可能となる、と
考えられる。On the other hand, the coercive force does not mean that the sintering temperature should be increased, but generally becomes maximum at a temperature about 100 ° C. lower than the temperature at which the residual magnetic flux density becomes maximum. In other words, the coercive force is highest when the density of the sintered body is increased to about 90% of the true density, and when the density is further increased, the main phase undergoes grain growth to increase the grain size. Since the dispersibility of the phase decreases, the coercive force decreases. In particular, when heating is performed until the sintered body density exceeds 99.5% of the true density, the main phase rapidly grows and the coercive force decreases sharply, and the squareness also decreases. Therefore, generally, in consideration of the balance between the residual magnetic flux density and the coercive force, the temperature at which the sintered body density becomes 98 to 99.5% of the true density is set as the optimum sintering temperature. From the above, if it is possible to increase the density of the sintered body at a lower temperature than the conventional optimum sintering temperature, the particle size of the main phase in the sintered body will not be increased, so the residual magnetic flux density It is considered that the coercive force can be increased without impairing the value of.
【0006】保磁力を大きくすることを目的として最適
焼結温度を下げるには、液相になり易い、融点の低い相
であるRリッチ相を増やす組成にする方法と、微粉末の
粒径を細かくする方法とがある。前者の場合、確かに焼
結温度が下がり保磁力が上昇するが、相対的に主相の割
合が低下してしまい、残留磁束密度が低下してしまうの
で好ましくない。後者の場合、微粉末の表面積が増える
ことにより、酸素濃度が増えてしまう。酸素はRと反応
してR2 O3 となり、Rリッチ相の量が減ってしまう
ので好ましくない。To lower the optimum sintering temperature for the purpose of increasing the coercive force, a method for increasing the R-rich phase, which is a phase that easily becomes a liquid phase and has a low melting point, and a method for reducing the particle size of the fine powder There is a way to make it finer. In the former case, the sintering temperature is lowered and the coercive force is increased, but the ratio of the main phase is relatively reduced, and the residual magnetic flux density is undesirably reduced. In the latter case, the oxygen concentration increases due to an increase in the surface area of the fine powder. Oxygen reacts with R to form R 2 O 3 , which is not preferable because the amount of the R-rich phase decreases.
【0007】[0007]
【発明が解決しようとする課題】本発明は、上に述べた
点を踏まえて、低い温度で焼結体を高密度化することを
可能とする希土類永久磁石を製造するのに適した原料
と、その原料の製造方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned points, and has been made based on a finding that a raw material suitable for producing a rare earth permanent magnet capable of densifying a sintered body at a low temperature is provided. And a method for producing the raw material.
【0008】[0008]
【課題を解決するための手段】本発明は、その目的を達
成するために、合金溶湯をロール急冷法で急冷して得ら
れる実質的にR2 T14B(Rは希土類元素、Tは遷
移金属を表す)からなる薄帯であって、薄帯の厚さが3
0〜1000μmであり、冷却面近傍に体積率で1〜3
0%の粒径3μm以下のチル晶を有し、かつ、平均粒径
3μm以下のα−Feの析出している部分が体積率で1
〜10%あり、残部は、粒径3〜50μmの粒状結晶、
及び短軸が3〜100μm、長軸が20〜600μmの
柱状結晶からなるものとする。また、前記永久磁石原料
用合金薄帯を粗粉砕し、その粗粉砕粉末を更に微粉砕し
て得られる微粉末であって、粒径3μm以下の微粉末が
1〜30vol%含まれ、残部の粒径が実質的に3〜1
0μmであるものとする。更に、永久磁石原料用合金薄
帯を粗粉砕し、別途粗粉砕した粒界用助剤と混合し、そ
の混合粗粉砕粉末を更に微粉砕して得られる微粉末であ
って、粒径3μm以下の微粉末が1〜30vol%含ま
れ、残部が粒径が実質的に3〜10μmであるものとす
る。また、永久磁石原料用合金微粉末を製造するため
に、永久磁石原料用合金薄帯を粗粉砕し、別途粗粉砕し
た粒界用助剤と混合しまたは混合しないで、粗粉砕粉末
を更に微粉砕する。永久磁石原料用合金薄帯を粗粉砕す
る方法が、永久磁石原料用合金薄帯に水素を吸蔵させた
後脱水素化を行う方法であり、かつ、微粉砕がジェット
ミルにより行われることであることが好ましい。According to the present invention, in order to achieve the object, substantially R 2 T 14 B (R is a rare earth element, T is a transition element) obtained by quenching a molten alloy by a roll quenching method. (Indicating metal), and the thickness of the ribbon is 3
0 to 1000 μm, and a volume ratio of 1 to 3 near the cooling surface.
0% has a chill crystal with a particle diameter of 3 μm or less, and a portion where α-Fe having an average particle diameter of 3 μm or less is precipitated is 1% by volume.
-10%, the balance being granular crystals with a particle size of 3-50 μm,
And a columnar crystal having a short axis of 3 to 100 μm and a long axis of 20 to 600 μm. The fine alloy powder for permanent magnet raw material is coarsely pulverized, and the coarsely pulverized powder is further finely pulverized. Fine powder having a particle size of 3 μm or less is contained in an amount of 1 to 30 vol%, and the remaining powder is contained. Particle size is substantially 3 to 1
It is assumed to be 0 μm. Further, the alloy ribbon for the raw material of the permanent magnet is coarsely pulverized, mixed with a separately coarsely pulverized auxiliary for grain boundaries, and the mixed coarsely pulverized powder is further finely pulverized, and has a particle size of 3 μm or less. Is contained in an amount of 1 to 30 vol%, and the remainder has a particle size of substantially 3 to 10 μm. In addition, in order to produce an alloy fine powder for a permanent magnet raw material, the alloy ribbon for a permanent magnet raw material is coarsely pulverized and mixed with or not mixed with a separately coarsely pulverized auxiliary for grain boundaries. Smash. The method of coarsely pulverizing the alloy ribbon for the raw material of the permanent magnet is a method of performing dehydrogenation after absorbing hydrogen in the alloy ribbon for the raw material of the permanent magnet, and the fine pulverization is performed by a jet mill. Is preferred.
【0009】[0009]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、チル晶と粒状結晶部分と柱状結晶部分とα−
Feの析出部分とが混在する結晶組織の永久磁石原料用
合金薄帯を用いることで、低い温度で焼結体を高密度化
することを可能とし、焼結体中の主相が粒成長すること
なく粒径を細かく保ち、高残留磁束密度で高保磁力のR
−T−B系希土類永久磁石を得ることができるとの知見
を基本としている。本発明者等は、ロール急冷法によれ
ば、冷却面近傍に体積率で1〜30%の粒径3μm以下
のチル晶を有し、かつ、平均粒径3μm以下のα−Fe
の析出している部分が体積率で1〜10%あり、残部は
粒径3〜50μmの粒状結晶、及び短軸3〜100μ
m、長軸20〜600μmの柱状結晶からなる永久磁石
原料用合金薄帯を得ることができること、また、その永
久磁石原料用合金薄帯を用いることで、平均粒径3μm
以下のものが1〜30%含まれ、残部の粒径が3〜10
μmである粒度分布を持ち、かつ、低融点なRリッチ相
とBリッチ相の多い微粉末を容易に得ることができ、そ
の微粉末を用いることで、従来の均一な粒度分布を持つ
微粉末を用いた時よりも20〜100℃低温で焼結でき
るようになり、保磁力が大きくなることを見出した。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present invention relates to a chill crystal, a granular crystal part, a columnar crystal part, and α-
By using an alloy ribbon for a raw material of a permanent magnet having a crystal structure in which Fe precipitated portions are mixed, it is possible to increase the density of the sintered body at a low temperature, and the main phase in the sintered body grows in grains. R with high residual magnetic flux density and high coercive force
-It is based on the knowledge that a TB rare earth permanent magnet can be obtained. According to the roll quenching method, the present inventors have found that α-Fe having a chill crystal having a particle size of 3 μm or less with a volume ratio of 1 to 30% near the cooling surface and having an average particle size of 3 μm or less.
Is a volume fraction of 1 to 10%, the remainder is granular crystals having a particle size of 3 to 50 μm, and a short axis of 3 to 100 μm.
m, an alloy ribbon for a permanent magnet material consisting of columnar crystals having a major axis of 20 to 600 μm can be obtained. Further, by using the alloy ribbon for a permanent magnet material, the average particle size is 3 μm.
The following are contained in an amount of 1 to 30%, and the remaining particle size is 3 to 10:
A fine powder having a particle size distribution of μm and having many low-melting point R-rich and B-rich phases can be easily obtained, and by using the fine powder, a fine powder having a conventional uniform particle size distribution can be obtained. It has been found that sintering can be performed at a lower temperature of 20 to 100 ° C. than in the case where is used, and that the coercive force increases.
【0010】微粉末の平均粒径を細かくする方法で最適
焼結温度を下げて保磁力を上昇させようとした場合、既
に述べたように、酸素濃度が上昇するために、磁石を高
特性化するのには限界があった。しかし、平均粒径を変
えずに、細かい粒径のものが含まれる微粉末を用いる
と、磁石を高特性化することができる。具体的には、粒
径3μm以下のものが1〜30%含まれ、残部の粒径が
3〜10μmである粒度分布を持った微粉末を用いる
と、粒径3μm以下の微粉末が存在するために最適焼結
温度は20〜100℃低くなり、保磁力が上昇する。こ
の場合、平均粒径がほぼ同じなので、酸素濃度の上昇は
ほとんどない。[0010] When the coercive force is increased by lowering the optimum sintering temperature by a method of reducing the average particle size of the fine powder, as described above, the oxygen concentration is increased, and thus the magnet is required to have higher characteristics. There was a limit to doing. However, if a fine powder containing fine particles is used without changing the average particle size, the magnet can be improved in characteristics. Specifically, when fine powder having a particle size distribution in which 1 to 30% of particles having a particle size of 3 μm or less are contained and the remaining particle size is 3 to 10 μm is used, fine powder having a particle size of 3 μm or less exists. Therefore, the optimum sintering temperature is lowered by 20 to 100 ° C., and the coercive force is increased. In this case, since the average particle diameters are almost the same, there is almost no increase in the oxygen concentration.
【0011】粒径3μm以下のものが1〜30%含ま
れ、残部の粒径が3〜10μmである粒度分布を持った
微粉末を製造するには、均一な結晶組織の原料用合金を
使っていたのでは難しい。理由は以下の通りである。 (1)均一な結晶組織の原料用合金を使うと、粉砕され
た微粉末は均一な粒度分布となり易い。 (2)微粉砕条件の変更により同じ平均粒径で粒径3μ
m以下の微粉末を増やそうとすれば、粒径10μm以上
の大きなものも混入してしまう。 (3)粒径3μm以下の微粉末と平均粒径3〜10μm
の微粉末とを別々に粉砕して混合する方法では、完全に
は混ざらない。また、微粉末は非常に酸化し易く、酸素
濃度が上昇してしまうので、Vブレンダー等を用いて混
合する工程を追加することは、好ましいものとは言えな
い。In order to produce a fine powder having a particle size distribution in which 1 to 30% of particles having a particle size of 3 μm or less is contained and the remaining particle size is 3 to 10 μm, a raw material alloy having a uniform crystal structure is used. It is difficult if you have been. The reason is as follows. (1) If a raw material alloy having a uniform crystal structure is used, the pulverized fine powder tends to have a uniform particle size distribution. (2) Particle size 3μ with the same average particle size by changing the pulverization conditions
If an attempt is made to increase the amount of fine powder having a particle size of m or less, a large powder having a particle size of 10 μm or more will be mixed. (3) Fine powder having a particle size of 3 μm or less and an average particle size of 3 to 10 μm
In the method of separately pulverizing and mixing the fine powder with the fine powder, the powder is not completely mixed. Further, since the fine powder is very easily oxidized and the oxygen concentration increases, it is not preferable to add a mixing step using a V blender or the like.
【0012】したがって、平均粒径3μm以下のものが
1〜30%含まれ、残部の粒径が3〜10μmである粒
度分布を持つ微粉末を製造するには、チル晶を含む複数
の相が混在した結晶組織の原料用合金を使えば良いこと
になる。チル晶を含む複数の相が混在した結晶組織を有
する永久磁石原料用合金は、合金溶湯をロール急冷法で
急冷して得られる薄帯によって実現される。原料用合金
薄帯は、単ロール法、又は双ロール法により溶湯を急激
に冷却して製造される。合金溶湯をロールに接触させて
冷却凝固させると合金薄帯ができるが、合金薄帯中の冷
却速度は一定ではない。例えば単ロール法の場合、合金
薄帯はロール接触面から非接触面へと順に冷却される
が、合金薄帯が冷却されると同時にその熱量がロールへ
と移動してロールの温度が上昇する。よって、合金薄帯
がロールと接触している間は合金薄帯とロールの温度差
が順次小さくなり、冷却速度が遅くなっていく。つま
り、合金薄帯のロール接触面は冷却速度が速いが、非接
触面は冷却速度が遅い。Therefore, in order to produce a fine powder having a particle size distribution in which 1 to 30% of particles having an average particle diameter of 3 μm or less is contained and the remaining particle diameter is 3 to 10 μm, a plurality of phases including chill crystals are required. It suffices to use a raw material alloy having a mixed crystal structure. An alloy for a raw material of a permanent magnet having a crystal structure in which a plurality of phases including a chill crystal are mixed is realized by a ribbon obtained by rapidly cooling a molten alloy by a roll rapid cooling method. The alloy ribbon for a raw material is manufactured by rapidly cooling a molten metal by a single roll method or a twin roll method. When the molten alloy is brought into contact with a roll and cooled and solidified, an alloy ribbon is formed, but the cooling rate in the alloy ribbon is not constant. For example, in the case of the single roll method, the alloy ribbon is sequentially cooled from the roll contact surface to the non-contact surface, but at the same time as the alloy ribbon is cooled, the calorific value moves to the roll, and the temperature of the roll rises. . Therefore, while the alloy ribbon is in contact with the roll, the temperature difference between the alloy ribbon and the roll gradually decreases, and the cooling rate decreases. In other words, the cooling speed of the roll contact surface of the alloy ribbon is high, but the cooling speed of the non-contact surface is low.
【0013】合金薄帯がロールから剥がれた後1回転す
る間にロールは冷却され、再び合金溶湯がロールに接触
して合金薄帯が製造される。ロールの材質、厚さ、直
径、回転数、冷却水温度、冷却水流量等を変えることで
冷却速度を変えることができ、それにより、複数の相が
混在した結晶組織を有する原料用合金を製造することが
できる。具体的には、ロール接触面近傍では約1000
0℃/秒以上の冷却速度で、粒径3μm以下のチル晶を
つくる。次の層では約1000℃/秒〜約10000℃
/秒の冷却速度で、粒径3〜50μmの粒状結晶をつく
る。次の層では約200℃/秒〜約1000℃/秒の冷
却速度で、短軸3〜100μm、長軸20〜600μm
の柱状結晶をつくる。次に約200℃/秒以下の冷却速
度でα−Feが析出する。ここで、長軸が短軸の2倍未
満のものを粒状結晶、2倍以上のものを柱状結晶とす
る。合金薄帯中の結晶相の量的割合は、冷却面近傍に体
積率で1〜30%の粒径3μm以下のチル晶を有し、か
つ、平均粒径3μm以下のα−Feの析出している部分
が体積率で1〜10%あり、残部は、粒径3〜50μm
の粒状結晶、及び短軸が3〜100μm、長軸が20〜
600μmの柱状結晶からなるようにする。また、チル
晶、粒状結晶、柱状結晶以外のものが存在しても、体積
率で1%以下であれば問題ない。チル晶の割合が体積率
で1%未満では、粒径3μm以下の微粉末の割合が少な
くなって、本発明の効果が得られない。また、30%を
超えると粒径3μm以下の微粉末の割合が増えて、酸素
濃度が上昇してしまうので好ましくない。The roll is cooled during one rotation after the alloy ribbon is peeled off the roll, and the molten alloy contacts the roll again to produce the alloy ribbon. The cooling rate can be changed by changing the material, thickness, diameter, rotation speed, cooling water temperature, cooling water flow rate, etc. of the roll, thereby producing a raw material alloy having a crystal structure in which multiple phases are mixed. can do. Specifically, about 1000 near the roll contact surface
Chill crystals having a particle size of 3 μm or less are formed at a cooling rate of 0 ° C./sec or more. For the next layer, about 1000 ° C / sec to about 10,000 ° C
At a cooling rate of 1 / sec, a granular crystal having a particle size of 3 to 50 μm is produced. In the next layer, a short axis of 3 to 100 μm and a long axis of 20 to 600 μm at a cooling rate of about 200 ° C./sec to about 1000 ° C./sec.
To make columnar crystals. Next, α-Fe precipitates at a cooling rate of about 200 ° C./second or less. Here, those having a major axis less than twice the minor axis are granular crystals, and those having a major axis more than twice are columnar crystals. The quantitative ratio of the crystal phase in the alloy ribbon is such that α-Fe having a chill crystal with a particle size of 3 μm or less with a volume ratio of 1 to 30% near the cooling surface and an average particle size of 3 μm or less is precipitated. Is 10 to 10% by volume, and the remainder is 3 to 50 μm in particle size.
And the short axis is 3 to 100 μm and the long axis is 20 to
It is made of columnar crystals of 600 μm. In addition, even if there is a substance other than chill crystals, granular crystals, and columnar crystals, there is no problem as long as the volume ratio is 1% or less. If the proportion of chill crystals is less than 1% by volume, the proportion of fine powder having a particle size of 3 μm or less decreases, and the effect of the present invention cannot be obtained. On the other hand, if it exceeds 30%, the proportion of fine powder having a particle diameter of 3 μm or less increases, and the oxygen concentration increases, which is not preferable.
【0014】α−Feの偏析と同時に偏析するRリッチ
相とBリッチ相は低融点な相であり、最適焼結温度を下
げる効果があることがわかった。つまり、Rリッチ相と
Bリッチ相は酸化し易い相であるので、酸素濃度を増加
させるというマイナスの効果もあるが、最適焼結温度を
下げるというプラスの効果もあり、α−Feの偏析して
いる部分が体積率で1〜10%ではプラスの効果の方が
大きいことが分かった。また、α−Feの平均粒径が微
粉砕粒径より細かい3μm以下であれば、α−Fe自身
が粉砕される必要がないので、微粉砕能力を悪化させる
こともない。そして、この場合は一つの微粉末中にα−
Feと主相が共存することになり、焼結工程時にその共
存する主相の結晶方向に従うために、配向度が落ちて残
留磁化が落ちることもない。以上の理由で、平均粒径3
μm以下のα−Feの偏析している部分が体積率で1〜
10%あることが望ましい。The R-rich phase and the B-rich phase that segregate at the same time as the segregation of α-Fe are low melting points, and have an effect of lowering the optimum sintering temperature. That is, since the R-rich phase and the B-rich phase are easily oxidized phases, they have a negative effect of increasing the oxygen concentration, but also have a positive effect of lowering the optimum sintering temperature. It was found that the positive effect was larger when the volume ratio was 1% to 10%. When the average particle size of α-Fe is 3 μm or less, which is finer than the finely pulverized particle size, α-Fe itself does not need to be pulverized, so that the pulverization ability does not deteriorate. And in this case, α-
Since Fe and the main phase coexist and follow the crystal direction of the coexisting main phase during the sintering step, the degree of orientation does not decrease and the residual magnetization does not decrease. For the above reasons, the average particle size is 3
The segregated portion of α-Fe of μm or less has a volume ratio of 1 to
Preferably, it is 10%.
【0015】得られた合金薄帯を粗粉砕する。粗粉砕
は、ブラウンミル等、通常の粉砕手段が採用され得る。
しかし、粗粉砕工程において、合金薄帯をブラウンミル
等で粗粉砕するのではなく、水素を吸蔵させた後に脱水
素化を行うという水素化粗粉砕を行うことがより好まし
い。これは、水素吸蔵により格子間隔が膨張してクラッ
クが発生し、粗粉末となるのであるが、これが好ましい
理由は、微粉砕のときに粗粉末が結晶組織の粒界で割れ
易くなるからである。また、脱水素化工程では真空中で
400〜700℃に加熱するが、加熱することで主相か
ら水素が十分に放出される。一合金法の場合には、得ら
れた粗粉末をジェットミル等により微粉砕する。また、
二合金法の場合には、別にブラウンミル等で粗粉砕した
粒界用助剤粗粉末と混合し、混合粗粉末をジェットミル
等により微粉砕を行う。The obtained alloy ribbon is coarsely pulverized. For the coarse pulverization, ordinary pulverization means such as a brown mill can be employed.
However, in the coarse pulverization step, it is more preferable to carry out hydrogenation coarse pulverization in which hydrogen is occluded and then dehydrogenation is performed instead of coarsely pulverizing the alloy ribbon with a Brown mill or the like. This is because the lattice spacing expands due to hydrogen occlusion, cracks occur, and coarse powder is formed. This is preferable because coarse powder easily breaks at the grain boundaries of the crystal structure during fine pulverization. . In the dehydrogenation step, heating is performed at 400 to 700 ° C. in a vacuum. By heating, sufficient hydrogen is released from the main phase. In the case of the one alloy method, the obtained coarse powder is finely pulverized by a jet mill or the like. Also,
In the case of the two-alloy method, it is mixed with an auxiliary coarse powder for grain boundaries which has been coarsely pulverized by a brown mill or the like, and the mixed coarse powder is finely pulverized by a jet mill or the like.
【0016】ジェットミルでの微粉砕において、粒径3
μm以下のチル晶は粒径3μm以下の微粉末に粉砕さ
れ、他の部分は粒径3〜10μmの微粉末になるまで粉
砕される。微粉末の粒径別の割合は、粒径3μm以下の
微粉末が1〜30vol%含まれ、残部の粒径が実質的
に3〜10μmであるようにする。粒径3μm以下の微
粉末が1vol%以下では、液相焼結の温度が高温にな
り、30vol%を超えると、酸素濃度が上昇してしま
って、必要な磁気特性が得られない。得られた微粉末
は、配向させるために磁場中で加圧成型する。その後、
成型体は真空中で、従来の方法で調製された微粉末を使
用したときと比べて20〜100℃低い温度で、焼結す
る。本発明について、薄帯内に複数の結晶組織がある場
合のその割合と、それによる効果について説明してきた
が、要するに、厚さ等を含めて薄帯内にばらつきがあっ
ても、全体として体積率で1〜30%の粒径3μm以下
のチル晶を有し、かつ、平均粒径3μm以下のα−Fe
の析出している部分が体積率で1〜10%あり、残部は
粒径3〜50μmの粒状結晶、及び短軸3〜100μ
m、長軸20〜600μmの柱状結晶からなっていれば
よい。これは薄帯の製造条件が広いという意味を持って
おり、製造を安定して続けていく上で、本発明の合金薄
帯を使うことは非常に好ましい。In the pulverization with a jet mill, the particle size is 3
Chill crystals having a particle size of not more than μm are pulverized into fine powder having a particle size of not more than 3 μm, and the other portions are pulverized into fine powder having a particle size of 3 to 10 μm. The ratio of the fine powder by particle size is such that 1 to 30 vol% of fine powder having a particle size of 3 μm or less is contained, and the particle size of the remaining portion is substantially 3 to 10 μm. When the volume of the fine powder having a particle diameter of 3 μm or less is 1 vol% or less, the temperature of the liquid phase sintering becomes high, and when it exceeds 30 vol%, the oxygen concentration increases and the required magnetic properties cannot be obtained. The obtained fine powder is subjected to pressure molding in a magnetic field for orientation. afterwards,
The molded body is sintered in a vacuum at a temperature lower by 20 to 100 ° C. than when a fine powder prepared by a conventional method is used. The present invention has been described in terms of the ratio when a plurality of crystal structures are present in a ribbon and the effects of the same. In short, even if there are variations in the ribbon including the thickness, etc., the overall volume Α-Fe having a chill crystal with a particle size of 3 μm or less at a rate of 1 to 30% and an average particle size of 3 μm or less
Is a volume fraction of 1 to 10%, the remainder is granular crystals having a particle size of 3 to 50 μm, and a short axis of 3 to 100 μm.
m and a columnar crystal having a major axis of 20 to 600 μm. This means that the production conditions of the ribbon are wide, and it is very preferable to use the alloy ribbon of the present invention in order to continue production stably.
【0017】[0017]
【実施例】以下、本発明を実施例を挙げて説明するが、
本発明はこれらに限定されるものではない。 [実施例1]組成式12.5Nd−6.0B−1.5C
o−80.0Fe(各原子%)の組成の金属溶湯を、A
r雰囲気中で単ロール法にて冷却して、合金薄帯を製造
した。この合金薄帯全体の平均として、厚さが約280
μmであり、冷却面近傍に体積率で11%のチル晶、そ
れから35%の粒径5〜30μmの粒状結晶、それから
48%の短軸5〜40μm、長軸50〜260μmの柱
状結晶、更に非冷却面側に体積率で6%の平均粒径1.
8μmのα−Feが偏析している部分からなっていた。
この合金薄帯の断面の代表的な偏光顕微鏡による組織写
真を図1に示す。断面写真の下部がロール接触面であ
り、ここにチル晶ができている。そして、図1の左上の
四角で囲んだ、偏光顕微鏡では結晶の大きさがよく分か
らない部分を、拡大した反射電子組成像が図2で、黒く
写っている部分がα−Feである。製造した合金薄帯
を、ブラウンミルによって平均粒径200μmに粗粉砕
して主相用母合金とし、これを90重量%、別途ブラウ
ンミルによって平均粒径200μmに粗粉砕した20.
0Nd−10.0Dy−6.0B−44.0Co−2
0.0Fe(各原子%)の組成の粒界用助剤を10重量
%、の割合で混合し、その後ジェットミルにより微粉砕
を行った。The present invention will be described below with reference to examples.
The present invention is not limited to these. [Example 1] Composition formula 12.5Nd-6.0B-1.5C
A metal melt having a composition of o-80.0Fe (atomic%)
The alloy ribbon was manufactured by cooling in a single roll method in an r atmosphere. The average thickness of the entire alloy ribbon is about 280.
11% of chill crystals near the cooling surface, and 35% of granular crystals having a particle size of 5 to 30 μm, and 48% of columnar crystals having a minor axis of 5 to 40 μm and a major axis of 50 to 260 μm. Average particle size of 6% by volume on the uncooled surface side
8 μm consisted of a segregated portion of α-Fe.
FIG. 1 shows a structure photograph of a cross section of the alloy ribbon by a typical polarizing microscope. The lower part of the cross-sectional photograph is the roll contact surface, where chill crystals are formed. FIG. 2 is an enlarged backscattered electron composition image of a portion surrounded by a square at the upper left of FIG. 1 where the crystal size is not well understood by the polarizing microscope, and α-Fe is a black portion. 20. The manufactured alloy ribbon was coarsely pulverized by a Brown mill to an average particle diameter of 200 μm to obtain a main phase master alloy, and 90% by weight of the alloy alloy was separately coarsely pulverized to an average particle diameter of 200 μm by a Brown mill.
0Nd-10.0Dy-6.0B-44.0Co-2
10 wt% of a grain boundary auxiliary having a composition of 0.0Fe (each atomic%) was mixed, and then finely pulverized by a jet mill.
【0018】得られた微粉末は、平均粒径4.5μmで
あり、その内粒径3μm以下のものが8%あり、その平
均粒径は1.9μmであった。この微粉末の粒度分布を
図3に示す。3μm以下にもう一つのピークが見られ
る。得られた微粉末を15kOeの磁場中で配向させな
がら、1ton/cm2 の圧力で加圧成型した。この
成型体を真空中で1040℃で2時間焼結し、その後A
r雰囲気中で1時間時効熱処理を行い、磁石合金を作製
した。The resulting fine powder had an average particle size of 4.5 μm, of which 8% had a particle size of 3 μm or less, and the average particle size was 1.9 μm. FIG. 3 shows the particle size distribution of this fine powder. Another peak is seen below 3 μm. The obtained fine powder was molded under pressure at a pressure of 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe. This molded body was sintered at 1040 ° C. for 2 hours in vacuum,
An aging heat treatment was performed for 1 hour in an r atmosphere to produce a magnet alloy.
【0019】[実施例2]実施例1と同じ合金薄帯を用
いて、水素化粗粉砕で粗粉砕した。水素化粗粉砕は、常
温で2時間水素吸蔵処理を行い、その後真空中で600
℃で2時間加熱して脱水素化処理を行った。その後は実
施例1と同様にして微粉末を得た。得られた微粉末の平
均粒径は4.5μmであり、その内粒径3μm以下のも
のが12%あり、その平均粒径は1.5μmであった。
この微粉末の粒度分布を図4に示す。3μm以下で見ら
れるもう一つのピークがより高くなった。この微粉末を
用いて、焼結温度を、実施例1より10℃低い、103
0℃にしたこと以外は実施例1と同じ方法で磁石合金を
作製した。この1030℃は、この例で用いた微粉末に
おける最適焼結温度である。Example 2 The same alloy ribbon as in Example 1 was roughly pulverized by hydrogenation coarse pulverization. In the hydrogenation coarse pulverization, a hydrogen storage treatment is performed at room temperature for 2 hours, and then 600
The mixture was heated at 2 ° C. for 2 hours to perform a dehydrogenation treatment. Thereafter, a fine powder was obtained in the same manner as in Example 1. The average particle size of the obtained fine powder was 4.5 μm, of which 12% had a particle size of 3 μm or less, and the average particle size was 1.5 μm.
FIG. 4 shows the particle size distribution of this fine powder. Another peak, seen below 3 μm, was higher. Using this fine powder, the sintering temperature was 103 ° C. lower than that of Example 1;
A magnet alloy was produced in the same manner as in Example 1 except that the temperature was set to 0 ° C. This 1030 ° C. is the optimum sintering temperature for the fine powder used in this example.
【0020】[比較例1]実施例1と同じ組成で、単ロ
ール法によって、平均厚さが約270μmであり、冷却
面近傍に体積率で4%の粒径5〜35μmの粒状結晶、
残部が短軸5〜35μm、長軸50〜270μmの柱状
結晶からなる原料用合金薄帯を製造した。その後、焼結
温度を実施例2より50℃高い、この合金の最適焼結温
度である1080℃にした以外は、実施例2と同じ方法
で磁石合金を作製した。途中得られた微粉末の平均粒径
は4.6μmであり、その内粒径3μm以下のものが2
%あり、その平均粒径は2.6μmであった。この微粉
末の粒度分布を図5に示す。3μm以下にピークは見ら
れない。[Comparative Example 1] A granular crystal having the same composition as in Example 1 and having an average thickness of about 270 µm and a volume ratio of 4% and a particle size of 5 to 35 µm near the cooling surface by a single roll method,
An alloy ribbon for a raw material was manufactured, the remainder of which was composed of columnar crystals having a short axis of 5 to 35 μm and a long axis of 50 to 270 μm. Thereafter, a magnet alloy was produced in the same manner as in Example 2, except that the sintering temperature was set to 1080 ° C., which is the optimum sintering temperature of this alloy, which was 50 ° C. higher than that of Example 2. The average particle size of the fine powder obtained on the way is 4.6 μm, of which 2
%, And the average particle size was 2.6 μm. FIG. 5 shows the particle size distribution of this fine powder. No peak is observed below 3 μm.
【0021】[比較例2]焼結温度を実施例2と同じ1
030℃にした以外は比較例1と同じ合金薄帯を用い
て、同じ方法で磁石合金を作製した。 [比較例3]実施例1と同じ組成で、単ロール法によっ
て主相用合金薄帯を製造した。得られた合金薄帯は、平
均厚さが約300μmであり、冷却面近傍に体積率で1
0%のチル晶を、それから15%の粒径5〜40μmの
粒状結晶、それから52%の短軸5〜40μm、長軸6
0〜280μmの柱状結晶、非冷却面側に体積率で23
%の平均粒径2.1μmのα- Feが偏析している部分
からなる合金薄帯であった。その後、焼結温度を、実施
例2より20℃高い、この合金薄帯を用いたときの最適
焼結温度である1050℃にした以外は、実施例2と同
じ方法で磁石合金を作製した。途中得られた微粉末の平
均粒径は4.5μmであり、その内粒径3μm以下のも
のが13%あり、その平均粒径は1.5μmであった。[Comparative Example 2] The same sintering temperature as in Example 2 was used.
A magnet alloy was produced in the same manner using the same alloy ribbon as in Comparative Example 1 except that the temperature was 030 ° C. Comparative Example 3 An alloy ribbon for a main phase was manufactured by the single roll method using the same composition as in Example 1. The obtained alloy ribbon has an average thickness of about 300 μm and a volume ratio of 1 near the cooling surface.
0% chill crystals, then 15% granular crystals with a particle size of 5-40 μm, then 52% short axes 5-40 μm, long axis 6
0 to 280 μm columnar crystal, 23 by volume ratio on the uncooled surface side
% Of 2.1-μm α-Fe segregated. Thereafter, a magnet alloy was produced in the same manner as in Example 2 except that the sintering temperature was set to 1050 ° C., which is 20 ° C. higher than that in Example 2, which is the optimum sintering temperature when this alloy ribbon was used. The average particle size of the fine powder obtained in the middle was 4.5 μm, of which 13% had a particle size of 3 μm or less, and the average particle size was 1.5 μm.
【0022】[比較例4]実施例1と同じ組成で単ロー
ル法により主相用合金薄帯を製造した。得られた合金薄
帯は、平均厚さが約1000μmであり、冷却面近傍に
体積率で6%の粒径5〜40μmの粒状結晶、それから
64%の短軸5〜45μm、長軸200〜700μmの
柱状結晶、非冷却面側に体積率で30%の平均粒径8.
2μmのα−Feが偏析している部分からなる合金薄帯
であった。その後、焼結温度を、実施例2より70℃高
い、この合金薄帯を用いたときの最適焼結温度である1
100℃にした以外は、実施例2と同じ方法で磁石合金
を作製した。途中得られた微粉末の平均粒径5.5μm
であり、その内粒径3μm以下のものが1%あり、その
平均粒径は2.8%である。Comparative Example 4 An alloy ribbon for a main phase was manufactured by the single roll method using the same composition as in Example 1. The obtained alloy ribbon has an average thickness of about 1000 μm, a granular crystal having a particle size of 5 to 40 μm with a volume ratio of 6% near the cooling surface, and a short axis of 5 to 45 μm and a major axis of 200 to 64%. 7. 700 μm columnar crystal, average particle size of 30% by volume on the uncooled surface side
The alloy ribbon was composed of a portion where 2 μm α-Fe was segregated. Thereafter, the sintering temperature was 70 ° C. higher than that in Example 2, which is the optimum sintering temperature when this alloy ribbon was used.
A magnet alloy was produced in the same manner as in Example 2 except that the temperature was changed to 100 ° C. The average particle size of the fine powder obtained during the process is 5.5 μm.
1% of which have a particle size of 3 μm or less, and the average particle size is 2.8%.
【0023】表1に、二合金法で磁石を作製した実施例
1〜2と比較例1〜4について、合金薄帯の厚さ、結晶
組織とその割合、水素化粗粉砕の有無、微粉末の平均粒
径と3μm以下の割合、得られた磁石合金の焼結温度、
主相の平均粒径、磁気特性(残留磁束密度Br、保磁力
iHc、最大エネルギー積(BH)max )、及び焼結体
密度ρを示す。Table 1 shows the thickness of the alloy ribbon, the crystal structure and its ratio, the presence or absence of hydrogenation coarse pulverization, and the fine powder for Examples 1 and 2 and Comparative Examples 1 to 4 in which magnets were produced by the two-alloy method. Average particle size and a ratio of 3 μm or less, the sintering temperature of the obtained magnet alloy,
The average particle size of the main phase, magnetic properties (residual magnetic flux density Br, coercive force iHc, maximum energy product (BH) max), and sintered density ρ are shown.
【0024】[0024]
【表1】 [Table 1]
【0025】チル晶も平均粒径3μm以下のα−Feも
存在しない合金薄帯を用いた比較例1は、焼結体密度を
十分に上昇させるためには、1080℃で焼結する必要
があった。それに対して、チル晶が存在している実施例
1及び2では、それぞれ1040℃、1030℃で焼結
体密度が十分に上昇しているため、比較例1と比べて焼
結体中の主相が粒成長せず、平均粒径が小さく保たれる
ために、iHcが高くなっている。また、実施例1より
も、水素化粗粉砕をした実施例2の方が、3μm以下の
微粉末の割合が多くなり、最適焼結温度が更に低くな
り、得られた磁石合金の特性においてもより望ましい結
果が得られた。比較例1と同じ合金薄帯を用いて同じ方
法で、焼結温度だけ実施例2と同じにしたのが比較例2
であるが、焼結体密度が低く、Br及び(BH)max が
低い結果となっている。In Comparative Example 1 using an alloy ribbon in which neither chill crystals nor α-Fe having an average particle size of 3 μm or less exist, it is necessary to sinter at 1080 ° C. in order to sufficiently increase the density of the sintered body. there were. On the other hand, in Examples 1 and 2 where chill crystals exist, the density of the sintered body was sufficiently increased at 1040 ° C. and 1030 ° C., respectively. The iHc is high because the phases do not grow and the average particle size is kept small. Further, in Example 2 in which the hydrogenation coarse pulverization was performed, the proportion of the fine powder having a particle size of 3 μm or less was larger than that in Example 1, and the optimum sintering temperature was further lowered. More desirable results were obtained. Comparative Example 2 was the same method as in Example 2 except that the same alloy ribbon was used as in Comparative Example 1 and the sintering temperature was the same as in Example 2.
However, the result is that the density of the sintered body is low and Br and (BH) max are low.
【0026】比較例3は、チル晶を有し、かつ、平均粒
径2.1μmのα−Feが偏析している部分が体積率で
23%ある合金薄帯の場合である。この場合、微粉末中
の粒径3μm以下の粒子の量が多くなり、その平均粒径
は小さくなるため、焼結体中の酸素濃度が高くなり、N
d2 O3 の量が増えてしまい、Rリッチ相の量が減
り、iHcが低くなってしまう。比較例4は、平均粒径
8.2μmのα−Feが偏析している部分が体積率で3
0%ある合金薄帯の場合である。この場合、酸素濃度が
高くなってしまうだけでなく、平均粒径8.2μmのα
−Feの存在のために微粉砕性が悪くなり、微粉末の平
均粒径が大きくなってしまうため、iHcが低くなって
しまう。以上のことから、チル晶を有し、平均粒径3μ
m以下のα−Feの析出している部分が体積率で1〜1
0%ある合金薄帯を用いて磁石合金を製造することは、
磁気特性の向上に有効であることが分かる。Comparative Example 3 is a case of an alloy ribbon having a chill crystal and a segregated portion of α-Fe having an average particle size of 2.1 μm and having a volume fraction of 23%. In this case, the amount of particles having a particle size of 3 μm or less in the fine powder increases, and the average particle size decreases, so that the oxygen concentration in the sintered body increases, and
The amount of d 2 O 3 increases, the amount of the R-rich phase decreases, and iHc decreases. In Comparative Example 4, a portion where α-Fe having an average particle size of 8.2 μm was segregated was 3% by volume.
This is the case of a 0% alloy ribbon. In this case, not only does the oxygen concentration increase, but also the α of the average particle size of 8.2 μm.
The presence of -Fe deteriorates the pulverizability and increases the average particle size of the fine powder, resulting in lower iHc. From the above, it has a chill crystal and an average particle size of 3 μm.
m or less of the precipitated α-Fe is 1 to 1 by volume ratio.
To produce a magnet alloy using 0% alloy ribbon,
It can be seen that this is effective for improving the magnetic characteristics.
【0027】次に、組成式13.2Nd−0.8Dy−
6.0B−4.5Co−75.5Fe(各原子%)の組
成で、一合金法により磁石合金を製造したものが実施例
3〜4と比較例5〜8であり、実施例3〜4と比較例5
〜8についての、表1と同様の項目の測定結果を、表2
に示す。一合金法での製造方法は、粒界用助剤を混合し
ない以外は二合金法と同じである。Next, the composition formula 13.2Nd-0.8Dy-
Examples 3 to 4 and Comparative Examples 5 to 8 were produced by using the alloy of 6.0B-4.5Co-75.5Fe (each atomic%) and producing a magnet alloy by a one-alloy method. And Comparative Example 5
Table 2 shows the measurement results of items similar to Table 1 for
Shown in The production method using the one-alloy method is the same as the two-alloy method except that no auxiliary material for grain boundaries is mixed.
【0028】[0028]
【表2】 [Table 2]
【0029】体積率で8%のチル晶を有し、平均粒径3
μm以下のα−Feの析出している部分が体積率で4%
ある合金薄帯を用いた実施例3及び4の磁気特性が高く
なっており、一合金法の場合においても、チル晶を有
し、平均粒径3μm以下のα−Feの析出している部分
が体積率で1〜10%ある合金薄帯を用いて磁石合金を
製造することは、磁気特性の向上に有効であることを示
している。It has chill crystals of 8% by volume and has an average particle size of 3%.
The portion where α-Fe of μm or less is precipitated is 4% by volume.
The magnetic properties of Examples 3 and 4 using a certain alloy ribbon are high, and even in the case of the one-alloy method, a portion having a chill crystal and having α-Fe having an average grain size of 3 μm or less is deposited. It has been shown that manufacturing a magnet alloy using an alloy ribbon having a volume ratio of 1 to 10% is effective for improving magnetic properties.
【0030】[0030]
【発明の効果】以上に説明したように、本発明の微粉末
を用いて磁石合金を製造すれば、残留磁束密度Br、最
大エネルギー積(BH)max を損なうことなく、焼結温
度を低めて保磁力iHcを高めることができる。また、
本発明の合金薄帯を用いることにより、平均粒径を変え
ることなしに粒径3μm以下の微粉末の割合を高めるこ
とができる。また、冷却面(ロール接触面)と非冷却面
(ロール非接触面)との間の全てにわたり均一な結晶粒
径を有する合金薄帯よりも、複数の相を持つ合金薄帯の
方が製造条件が広いので、製造を安定して続けていくこ
とが容易となり、本発明の合金薄帯を使うことは非常に
好ましい。As described above, when a magnetic alloy is manufactured using the fine powder of the present invention, the sintering temperature can be reduced without impairing the residual magnetic flux density Br and the maximum energy product (BH) max. The coercive force iHc can be increased. Also,
By using the alloy ribbon of the present invention, the ratio of the fine powder having a particle size of 3 μm or less can be increased without changing the average particle size. Also, an alloy ribbon having a plurality of phases is produced more than an alloy ribbon having a uniform crystal grain size over the entire area between the cooling surface (roll contact surface) and the non-cooling surface (roll non-contact surface). Since the conditions are wide, it is easy to continue the production stably, and it is very preferable to use the alloy ribbon of the present invention.
【図1】 実施例1における合金薄帯の偏光顕微鏡によ
る組織写真である。FIG. 1 is a micrograph of a structure of a thin alloy ribbon in Example 1 taken by a polarizing microscope.
【図2】 図2の左上四角部分を拡大した組織写真であ
る。FIG. 2 is a tissue photograph in which an upper left square portion of FIG. 2 is enlarged.
【図3】 実施例1における微粉末の粒度分布を示すグ
ラフである。FIG. 3 is a graph showing the particle size distribution of fine powder in Example 1.
【図4】 実施例2における微粉末の粒度分布を示すグ
ラフである。FIG. 4 is a graph showing the particle size distribution of fine powder in Example 2.
【図5】 比較例1における微粉末の粒度分布を示すグ
ラフである。FIG. 5 is a graph showing a particle size distribution of a fine powder in Comparative Example 1.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣田 晃一 福井県武生市北府2丁目1番5号 信越化 学工業株式会社磁性材料研究所内 (72)発明者 美濃輪 武久 福井県武生市北府2丁目1番5号 信越化 学工業株式会社磁性材料研究所内 Fターム(参考) 4E004 DB02 TA02 TA03 4K017 AA04 BA06 BB06 BB12 CA07 DA04 EA03 EA08 EC02 5E040 AA04 BD01 CA01 HB17 NN06 NN17 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Hirota 2-5-1-5 Kitafu, Takefu City, Fukui Prefecture Inside the Magnetic Materials Research Laboratory, Shin-Etsu Chemical Co., Ltd. (72) Inventor Takehisa Minowa 2-1-1 Kitafu, Takefu City, Fukui Prefecture No.5 Shin-Etsu Kagaku Kogyo Co., Ltd. Magnetic Materials Laboratory F-term (reference) 4E004 DB02 TA02 TA03 4K017 AA04 BA06 BB06 BB12 CA07 DA04 EA03 EA08 EC02 5E040 AA04 BD01 CA01 HB17 NN06 NN17
Claims (5)
れる実質的にR2 T14B(Rは希土類元素、Tは遷
移金属を表す)からなる薄帯であって、薄帯の厚さが3
0〜1000μmであり、冷却面近傍に体積率で1〜3
0%の粒径3μm以下のチル晶を有し、かつ、平均粒径
3μm以下のα−Feの析出している部分が体積率で1
〜10%あり、残部は、粒径3〜50μmの粒状結晶、
及び短軸が3〜100μm、長軸が20〜600μmの
柱状結晶からなることを特徴とする永久磁石原料用合金
薄帯。1. A thin strip substantially composed of R 2 T 14 B (R is a rare earth element and T is a transition metal) obtained by quenching a molten alloy by a roll quenching method. Saga 3
0 to 1000 μm, and a volume ratio of 1 to 3 near the cooling surface.
0% has a chill crystal with a particle diameter of 3 μm or less, and a portion where α-Fe having an average particle diameter of 3 μm or less is precipitated is 1% by volume.
-10%, the balance being granular crystals with a particle size of 3-50 μm,
An alloy ribbon for a raw material of a permanent magnet, comprising a columnar crystal having a short axis of 3 to 100 µm and a long axis of 20 to 600 µm.
を粗粉砕し、その粗粉砕粉末を更に微粉砕して得られる
微粉末であって、粒径3μm以下の微粉末が1〜30v
ol%含まれ、残部の粒径が実質的に3〜10μmであ
ることを特徴とする永久磁石原料用合金微粉末。2. A fine powder obtained by coarsely pulverizing the alloy ribbon for a permanent magnet raw material according to claim 1 and further finely pulverizing the coarsely pulverized powder, wherein the fine powder having a particle size of 3 μm or less is 1 to 3. 30v
%, and the remaining particle size is substantially 3 to 10 μm.
を粗粉砕し、別途粗粉砕した粒界用助剤と混合し、その
混合粗粉砕粉末を更に微粉砕して得られる微粉末であっ
て、粒径3μm以下の微粉末が1〜30vol%含ま
れ、残部の粒径が実質的に3〜10μmであることを特
徴とする永久磁石原料用合金微粉末。3. A fine powder obtained by coarsely pulverizing the alloy ribbon for raw material of a permanent magnet according to claim 1, mixing with a coarsely pulverized auxiliary for grain boundary, and further finely pulverizing the mixed coarsely pulverized powder. An alloy fine powder for use as a raw material for permanent magnets, characterized in that 1 to 30 vol% of fine powder having a particle size of 3 μm or less is contained and the remaining particle size is substantially 3 to 10 μm.
を粗粉砕し、別途粗粉砕した粒界用助剤と混合しまたは
混合しないで、粗粉砕粉末を更に微粉砕することを特徴
とする、請求項2または請求項3記載の永久磁石原料用
合金微粉末を製造する方法。4. The method according to claim 1, wherein the alloy ribbon for raw material of a permanent magnet according to claim 1 is coarsely pulverized, and the coarsely pulverized powder is further finely pulverized without mixing or mixing with a coarsely pulverized auxiliary for grain boundaries. The method for producing an alloy fine powder for a raw material of a permanent magnet according to claim 2 or 3.
原料用合金薄帯を粗粉砕する方法が、永久磁石原料用合
金薄帯に水素を吸蔵させた後脱水素化を行う方法であ
り、かつ、微粉砕がジェットミルにより行われることを
特徴とする、永久磁石原料用合金微粉末を製造する方
法。5. The method according to claim 4, wherein the method of coarsely pulverizing the alloy ribbon for a raw material of permanent magnet is a method of performing dehydrogenation after absorbing hydrogen in the alloy ribbon for a raw material of permanent magnet. A method for producing an alloy fine powder for a raw material of a permanent magnet, wherein the fine pulverization is performed by a jet mill.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02290299A JP3693839B2 (en) | 1999-01-29 | 1999-01-29 | Alloy ribbon for rare earth magnet, alloy fine powder, and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02290299A JP3693839B2 (en) | 1999-01-29 | 1999-01-29 | Alloy ribbon for rare earth magnet, alloy fine powder, and production method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000219943A true JP2000219943A (en) | 2000-08-08 |
JP3693839B2 JP3693839B2 (en) | 2005-09-14 |
Family
ID=12095585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02290299A Expired - Lifetime JP3693839B2 (en) | 1999-01-29 | 1999-01-29 | Alloy ribbon for rare earth magnet, alloy fine powder, and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3693839B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3231034B1 (en) | 2000-05-09 | 2001-11-19 | 住友特殊金属株式会社 | Rare earth magnet and manufacturing method thereof |
JP2002305122A (en) * | 2001-04-05 | 2002-10-18 | Sumitomo Special Metals Co Ltd | Method of manufacturing rare-earth sintered magnet |
WO2003052779A1 (en) * | 2001-12-19 | 2003-06-26 | Neomax Co., Ltd. | Rare earth element-iron-boron alloy, and magnetically anisotropic permanent magnet powder and method for production thereof |
JP3452561B2 (en) | 2000-11-08 | 2003-09-29 | 住友特殊金属株式会社 | Rare earth magnet and manufacturing method thereof |
US6648984B2 (en) | 2000-09-28 | 2003-11-18 | Sumitomo Special Metals Co., Ltd. | Rare earth magnet and method for manufacturing the same |
US6676773B2 (en) | 2000-11-08 | 2004-01-13 | Sumitomo Special Metals Co., Ltd. | Rare earth magnet and method for producing the magnet |
WO2004094090A1 (en) * | 2003-04-22 | 2004-11-04 | Neomax Co. Ltd. | Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet |
JP2012060139A (en) * | 2011-10-12 | 2012-03-22 | Inter Metallics Kk | Method of manufacturing ndfeb-based sintered magnet |
CN115148436A (en) * | 2021-03-30 | 2022-10-04 | Tdk株式会社 | Alloy for R-T-B-based permanent magnet and method for producing R-T-B-based permanent magnet |
-
1999
- 1999-01-29 JP JP02290299A patent/JP3693839B2/en not_active Expired - Lifetime
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002033206A (en) * | 2000-05-09 | 2002-01-31 | Sumitomo Special Metals Co Ltd | Rare-earth magnet and manufacturing method thereof |
US6491765B2 (en) | 2000-05-09 | 2002-12-10 | Sumitomo Special Metals Co., Ltd. | Rare earth magnet and method for manufacturing the same |
US6537385B2 (en) | 2000-05-09 | 2003-03-25 | Sumitomo Special Metals Co., Ltd. | Rare earth magnet and method for manufacturing the same |
JP3231034B1 (en) | 2000-05-09 | 2001-11-19 | 住友特殊金属株式会社 | Rare earth magnet and manufacturing method thereof |
US6648984B2 (en) | 2000-09-28 | 2003-11-18 | Sumitomo Special Metals Co., Ltd. | Rare earth magnet and method for manufacturing the same |
US6752879B2 (en) | 2000-09-28 | 2004-06-22 | Sumitomo Special Metals Co., Ltd. | Rare earth magnet and method for manufacturing the same |
US6676773B2 (en) | 2000-11-08 | 2004-01-13 | Sumitomo Special Metals Co., Ltd. | Rare earth magnet and method for producing the magnet |
JP3452561B2 (en) | 2000-11-08 | 2003-09-29 | 住友特殊金属株式会社 | Rare earth magnet and manufacturing method thereof |
US7138017B2 (en) | 2000-11-08 | 2006-11-21 | Neomax Co., Ltd. | Rare earth magnet and method for producing the magnet |
JP2002305122A (en) * | 2001-04-05 | 2002-10-18 | Sumitomo Special Metals Co Ltd | Method of manufacturing rare-earth sintered magnet |
WO2003052779A1 (en) * | 2001-12-19 | 2003-06-26 | Neomax Co., Ltd. | Rare earth element-iron-boron alloy, and magnetically anisotropic permanent magnet powder and method for production thereof |
US7550047B2 (en) | 2001-12-19 | 2009-06-23 | Hitachi Metals, Ltd. | Rare earth element-iron-boron alloy and magnetically anisotropic permanent magnet powder and method for production thereof |
US7892365B2 (en) | 2001-12-19 | 2011-02-22 | Hitachi Metals, Ltd. | Rare earth element-iron-boron alloy, and magnetically anisotropic permanent magnet powder and method for production thereof |
WO2004094090A1 (en) * | 2003-04-22 | 2004-11-04 | Neomax Co. Ltd. | Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet |
CN1310729C (en) * | 2003-04-22 | 2007-04-18 | 株式会社新王磁材 | Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet |
US7390369B2 (en) | 2003-04-22 | 2008-06-24 | Neomax Co., Ltd. | Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet |
JP2012060139A (en) * | 2011-10-12 | 2012-03-22 | Inter Metallics Kk | Method of manufacturing ndfeb-based sintered magnet |
CN115148436A (en) * | 2021-03-30 | 2022-10-04 | Tdk株式会社 | Alloy for R-T-B-based permanent magnet and method for producing R-T-B-based permanent magnet |
JP7645120B2 (en) | 2021-03-30 | 2025-03-13 | Tdk株式会社 | Alloy for R-T-B permanent magnet and method for producing R-T-B permanent magnet |
Also Published As
Publication number | Publication date |
---|---|
JP3693839B2 (en) | 2005-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3932143B2 (en) | Magnet manufacturing method | |
KR100452787B1 (en) | Manufacturing method of an anisotropic magnet powder, precursory anisotropic magnet powder and bonded magnet | |
JP3489741B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP4591633B2 (en) | Nanocomposite bulk magnet and method for producing the same | |
CN100414650C (en) | Rare earth magnet and manufacturing method thereof | |
EP1195779A2 (en) | Rare-earth sintered magnet and method of producing the same | |
JP3724513B2 (en) | Method for manufacturing permanent magnet | |
JP4389427B2 (en) | Sintered magnet using alloy powder for rare earth-iron-boron magnet | |
EP0924717B1 (en) | Rare earth-iron-boron permanent magnet and method for the preparation thereof | |
CN101370606A (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP4329318B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP3693838B2 (en) | Alloy ribbon for rare earth magnet, alloy fine powder, and production method thereof | |
JP2000219943A (en) | Alloy ribbons for rare earth magnets, alloy fine powders and methods for producing them | |
Liu et al. | Abnormal grain growth in sintered Nd‐Fe‐B magnets | |
Branagan et al. | Developing rare earth permanent magnet alloys for gas atomization | |
JP3452561B2 (en) | Rare earth magnet and manufacturing method thereof | |
JPH07130522A (en) | Manufacture of permanent magnet | |
JPH0682575B2 (en) | Rare earth-Fe-B alloy magnet powder | |
JP2745042B2 (en) | Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet | |
JP3815983B2 (en) | Rare earth magnet and manufacturing method thereof | |
JP3427765B2 (en) | Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder | |
JP2002083728A (en) | Method of manufacturing rare earth permanent magnet | |
JPS58186906A (en) | Permanent magnet and preparation thereof | |
JP2631380B2 (en) | Rare earth-iron permanent magnet manufacturing method | |
JPH08250312A (en) | Rare earth-iron permanent magnet and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050314 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050622 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080701 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110701 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |