JP2000212441A - Silicone solid - Google Patents
Silicone solidInfo
- Publication number
- JP2000212441A JP2000212441A JP11018016A JP1801699A JP2000212441A JP 2000212441 A JP2000212441 A JP 2000212441A JP 11018016 A JP11018016 A JP 11018016A JP 1801699 A JP1801699 A JP 1801699A JP 2000212441 A JP2000212441 A JP 2000212441A
- Authority
- JP
- Japan
- Prior art keywords
- silicone
- solidified
- heat
- volume
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001296 polysiloxane Polymers 0.000 title claims abstract description 55
- 239000007787 solid Substances 0.000 title 1
- 239000000853 adhesive Substances 0.000 claims abstract description 23
- 230000001070 adhesive effect Effects 0.000 claims abstract description 23
- 239000011231 conductive filler Substances 0.000 claims abstract description 14
- 238000007259 addition reaction Methods 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 125000006850 spacer group Chemical group 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 9
- 230000005855 radiation Effects 0.000 description 9
- 239000000843 powder Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 102100026827 Protein associated with UVRAG as autophagy enhancer Human genes 0.000 description 1
- 101710102978 Protein associated with UVRAG as autophagy enhancer Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- -1 polysiloxane Polymers 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
(57)【要約】
【課題】放熱スペーサー等のように高熱伝導性かつ高柔
軟性の放熱部材であっても、簡単な操作によって容易
に、その表面に非粘着処理の施されたものを提供する。
【解決手段】180nm以下の波長を含む紫外線、特に
エキシマランプを用いて発生させた紫外線によって非粘
着処理が施されてなることを特徴とするシリコーン固化
物であり、特にシリコ−ン固化物が、液状付加反応型シ
リコーン30〜80体積%と熱伝導性フィラー20〜7
0体積%を含む混合物の固化物であり、アスカーC硬度
が60以下でかつ熱伝導率が0.5W/mKであること
を特徴とするシリコーン固化物である。(57) [Problem] To provide a heat-dissipating member having high thermal conductivity and high flexibility, such as a heat-dissipating spacer, whose surface is easily subjected to a non-adhesive treatment by a simple operation. I do. The solidified silicone is characterized by being subjected to a non-adhesive treatment by ultraviolet rays having a wavelength of 180 nm or less, particularly ultraviolet rays generated by using an excimer lamp, and in particular, the silicone solidified substance is: 30-80% by volume of liquid addition reaction type silicone and heat conductive filler 20-7
It is a solidified mixture containing 0% by volume, and has a Asker C hardness of 60 or less and a thermal conductivity of 0.5 W / mK.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、180nm以下の
波長を含む紫外線によって非粘着処理の施されてなるシ
リコーン固化物に関する。本発明のシリコーン固化物
は、特に電子機器の放熱部材として好適なものである。[0001] The present invention relates to a solidified silicone material which has been subjected to a non-adhesive treatment with ultraviolet rays having a wavelength of 180 nm or less. The solidified silicone of the present invention is particularly suitable as a heat dissipating member for electronic devices.
【0002】[0002]
【従来の技術】トランジスタ、サイリスタ等の発熱性電
子部品においては、使用時に熱を発生するが、その熱を
除去するのが重要な問題となっている。従来、その発生
した熱の除去は、一般的には、発熱性電子部品を電気絶
縁性の熱伝導性シートを介して放熱フィンや金属板に取
り付けて行われている。このような熱伝導性シートとし
ては主にシリコーンゴムに熱伝導性フィラーの充填され
た放熱シートが使用されている。2. Description of the Related Art Heat-generating electronic components such as transistors and thyristors generate heat during use, but removing the heat is an important problem. Conventionally, removal of the generated heat is generally performed by attaching a heat-generating electronic component to a radiation fin or a metal plate via an electrically insulating heat conductive sheet. As such a heat conductive sheet, a heat radiating sheet in which a silicone rubber is filled with a heat conductive filler is mainly used.
【0003】一方、最近の電子機器の高密度化に伴い、
放熱フィン等を取り付けるスペースがない場合や、電子
機器が密閉されていてその内部にある放熱フィンから外
部への放熱が困難な場合等では、発熱性電子部品から発
生した熱を電子機器のケース等に直接伝熱する方式が取
られる場合がある。この伝熱を行うために、発熱性電子
部品とケースの間のスペースを埋めるだけの厚みを有し
た放熱スペーサーと呼ばれるシリコーン固化物が用いら
れる。On the other hand, with the recent increase in the density of electronic devices,
If there is no space to install the radiating fins, etc., or if the electronic device is sealed and it is difficult to radiate heat from the radiating fins inside to the outside, the heat generated from the heat-generating electronic components is transferred to the case of the electronic device. There is a case where a method of directly transferring heat is used. In order to perform the heat transfer, a solidified silicone material called a heat radiation spacer having a thickness sufficient to fill a space between the heat generating electronic component and the case is used.
【0004】また、IC化やLSI化された発熱性電子
部品がプリント基板に実装されている場合の放熱におい
ても、プリント基板と放熱フィンとの間に放熱スペーサ
ーが用いられることがある。[0004] Also, in the case of heat dissipation when a heat-generating electronic component formed into an IC or LSI is mounted on a printed board, a heat dissipation spacer may be used between the printed board and the heat dissipation fins.
【0005】通常、上記熱伝導シート、放熱スペーサー
等の放熱部材は、仮止め等の作業性を良好とするために
片面に粘着処理が施されている。その方法としては、両
面に粘着性のない放熱部材の場合には片面に粘着剤を塗
布することによって行われ、両面に粘着性がある放熱部
材の場合には片面を非粘着処理することによって行われ
ている。[0005] Usually, the heat dissipating members such as the heat conductive sheet and the heat dissipating spacer are subjected to an adhesive treatment on one side in order to improve workability such as temporary fixing. In the case of a heat dissipating member having no stickiness on both sides, the method is performed by applying an adhesive on one side, and in the case of a heat dissipating member having sticky on both sides, the heat treatment is performed by non-sticking one side. Have been done.
【0006】後者の非粘着処理は、表面の一部又は全部
に施され、その手段として、有機系樹脂膜による被覆、
離型粉の打粉、低圧水銀ランプによる紫外線照射等があ
る。紫外線照射法は、前二者に比較して被覆物や離型粉
が剥離して異物となる恐れがないので、電子機器の故障
を引き起こす心配はないが、放熱部材が放熱スペーサー
のように高柔軟性である場合には処理時間が著しく長く
なるという問題があった。また、場合によっては、十分
な非粘着処理を施すことができなかった。[0006] The latter non-adhesive treatment is performed on a part or the whole of the surface.
There are, for example, powdering of release powder and UV irradiation by a low-pressure mercury lamp. Compared to the former two methods, the UV irradiation method does not cause the failure of the electronic equipment because the coating and the release powder are not likely to peel off and become foreign matter, but there is no risk of causing failure of the electronic device. In the case of flexibility, there is a problem that the processing time becomes extremely long. In some cases, sufficient non-adhesive treatment could not be performed.
【0007】例えば、特開平7−238177号公報に
は、低圧水銀ランプを用い、波長が189.4nmと2
53.7nmの紫外線を特定の積算光量と放射照度で照
射することが記載されているが、この波長で高柔軟性を
有する放熱スペーサーの非粘着処理を行うには15分以
上の処理が必要となる。その理由は、紫外線照射による
非粘着処理は、照射により発生したO3の分解によって
生成した励起酸素によって行われるものであるが、低圧
水銀ランプでは、O3の発生に寄与する189.4nm
の波長が数%しかないことによる。For example, Japanese Patent Application Laid-Open No. 7-238177 discloses a low-pressure mercury lamp having a wavelength of 189.4 nm.
It is described that a 53.7 nm ultraviolet ray is irradiated with a specific integrated light amount and irradiance, but a non-adhesive treatment of a heat-radiating spacer having high flexibility at this wavelength requires a treatment of 15 minutes or more. Become. The reason is that the non-adhesive treatment by ultraviolet irradiation is performed by excited oxygen generated by the decomposition of O 3 generated by irradiation. In a low-pressure mercury lamp, 189.4 nm which contributes to generation of O 3 is used.
Is only a few percent.
【0008】本発明は上記に鑑みてなされたものであ
り、その目的は、放熱部材が高柔軟性を有する放熱スペ
ーサー等の場合であっても、容易に非粘着処理の施され
たシリコーン固化物を提供することである。[0008] The present invention has been made in view of the above, and an object thereof is to provide a silicone solidified material which is easily subjected to a non-adhesive treatment even when the heat radiation member is a heat radiation spacer having high flexibility. It is to provide.
【0009】[0009]
【課題を解決するための手段】すなわち、本発明は、1
80nm以下の波長を含む紫外線、特にエキシマランプ
を用いて発生させた紫外線によって非粘着処理が施され
てなることを特徴とするシリコーン固化物であり、特に
シリコ−ン固化物が、液状付加反応型シリコーン30〜
80体積%と熱伝導性フィラー20〜70体積%を含む
混合物の固化物であり、アスカーC硬度が60以下でか
つ熱伝導率が0.5W/mKであることを特徴とするシ
リコーン固化物である。That is, the present invention provides:
A silicone solidified material which has been subjected to a non-adhesive treatment with ultraviolet light having a wavelength of 80 nm or less, particularly an ultraviolet light generated using an excimer lamp, and in particular, a silicone solidified material is a liquid addition reaction type. Silicone 30 ~
It is a solidified product of a mixture containing 80% by volume and 20 to 70% by volume of a thermally conductive filler, and has a Asker C hardness of 60 or less and a thermal conductivity of 0.5 W / mK. is there.
【0010】[0010]
【発明の実施の形態】以下、更に詳しく本発明について
説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
【0011】本発明の非粘着処理シリコーン固化物は高
柔軟性を有するものであり、その具体例として付加反応
型シリコーンの固化物があげられる。付加反応型シリコ
ーンの具体例としては、一分子中にビニル基とH−Si
基の両方を有する一液性のシリコーン、又は末端あるい
は側鎖にビニル基を有するオルガノポリシロキサンと末
端あるいは側鎖に2個以上のH−Si基を有するオルガ
ノポリシロキサンとの二液性のシリコーンなどをあげる
ことができる。このような付加反応型シリコーンの市販
品としては、例えば東レダウコーニング社製、商品名
「SE−1885A/B」等を例示することができる。
シリコーン固化物の柔軟性は、付加反応によって形成さ
れる架橋密度やシリコーン固化物に含有せしめる熱伝導
性フィラー量によって調整することができる。The solidified non-adhesive silicone of the present invention has high flexibility, and specific examples thereof include solidified addition reaction type silicone. Specific examples of the addition reaction type silicone include a vinyl group and H-Si in one molecule.
One-part silicone having both groups, or two-part silicone consisting of an organopolysiloxane having a vinyl group at the terminal or side chain and an organopolysiloxane having two or more H-Si groups at the terminal or side chain And so on. Examples of commercially available products of such an addition reaction type silicone include, for example, “SE-1885A / B” (trade name, manufactured by Dow Corning Toray Co., Ltd.).
The flexibility of the solidified silicone can be adjusted by the cross-link density formed by the addition reaction and the amount of the thermally conductive filler contained in the solidified silicone.
【0012】本発明の非粘着処理シリコーン固化物に含
有されるシリコーンゲルの含有量は熱伝導性フィラーの
種類により異なるが、放熱スペーサー中に30〜80体
積%、特に40〜70体積%であることが望ましい。3
0体積%未満では放熱スペーサーの柔軟性が十分でなく
なり、また80体積%をこえると熱伝導性が低下する。[0012] The content of the silicone gel contained in the non-adhesion treated silicone solidified product of the present invention varies depending on the kind of the thermally conductive filler, but is 30 to 80% by volume, particularly 40 to 70% by volume in the heat radiation spacer. It is desirable. 3
If the amount is less than 0% by volume, the flexibility of the heat radiation spacer becomes insufficient, and if it exceeds 80% by volume, the thermal conductivity decreases.
【0013】本発明で使用される熱伝導性フィラーは、
シリコーン固化物に熱伝導性を付与するものであり、そ
の熱伝導性は熱伝導性フィラーの種類と含有量によって
調節される。熱伝導性フィラーとしては、例えば絶縁性
が必要な場合は窒化硼素、窒化珪素、窒化アルミニウ
ム、アルミナ、マグネシア等から選ばれた一種又は二種
以上が使用され、一方、絶縁性を問わない場合には、ア
ルミニウム、銅、銀等から選ばれた一種又は二種以上が
使用される。[0013] The thermally conductive filler used in the present invention comprises:
It imparts thermal conductivity to the solidified silicone, and the thermal conductivity is adjusted by the type and content of the thermally conductive filler. As the heat conductive filler, for example, when insulation is required, one or two or more kinds selected from boron nitride, silicon nitride, aluminum nitride, alumina, magnesia, and the like are used. Used is one or more selected from aluminum, copper, silver and the like.
【0014】熱伝導性フィラーの形状は球状、粉状、繊
維状、針状、鱗片状などが使用され、その粒度は、平均
粒径1〜100μm程度である。The shape of the heat conductive filler may be spherical, powdery, fibrous, needle-like, scale-like or the like, and the average particle size is about 1 to 100 μm.
【0015】熱伝導性フィラーの含有量は、熱伝導性フ
ィラーの種類により異なるが、シリコーン固化物に20
〜70体積%、好ましくは30〜60体積%である。2
0体積%未満では熱伝導性が十分でなくなり、特に10
体積%以下になると紫外線照射処理を行っても非粘着性
の付与効果が不十分となる。一方、70体積%をこえる
とシリコーン固化物の柔軟性が失われ、放熱部材が放熱
ペーサーである場合には、その機能が低下する。The content of the thermally conductive filler varies depending on the type of the thermally conductive filler.
7070% by volume, preferably 30-60% by volume. 2
If the content is less than 0% by volume, the thermal conductivity becomes insufficient, and
When the content is less than the volume%, the effect of imparting the non-adhesiveness becomes insufficient even when the ultraviolet irradiation treatment is performed. On the other hand, if the content exceeds 70% by volume, the flexibility of the solidified silicone material is lost, and when the heat radiation member is a heat radiation pacer, its function is reduced.
【0016】本発明のシリコーン固化物の熱伝導率には
特に制限はないが、0.5W/m・K以上、特に1.0
W/m・K以上であることが好ましい。Although the thermal conductivity of the solidified silicone of the present invention is not particularly limited, it is 0.5 W / m · K or more, especially 1.0 W / m · K.
It is preferably at least W / m · K.
【0017】本発明のシリコーン固化物を製造する方法
の一例を示すと、一液性のシリコーン又は末端あるいは
側鎖にビニル基を有するオルガノポリシロキサンと末端
あるいは側鎖に2個以上のH−Si基を有するオルガノ
ポリシロキサンとの二液性のシリコーンに、熱伝導性フ
ィラーを混合してスラリーを調製した後、それを放熱フ
ィン上に塗布し、所定形状の四フッ化エチレン樹脂等の
フッ素樹脂製の型枠を押し込み、加熱により硬化させた
後、型枠を取り外し、エキシマランプ等による紫外線を
照射して非粘着処理を施す方法である。One example of the method for producing the solidified silicone of the present invention is as follows. One-part silicone or an organopolysiloxane having a vinyl group at the terminal or side chain and two or more H-Si compounds at the terminal or side chain. After preparing a slurry by mixing a thermally conductive filler with a two-part silicone with an organopolysiloxane having a group, the slurry is applied on a radiation fin, and a fluororesin such as a tetrafluoroethylene resin having a predetermined shape is formed. After the mold is pressed into the mold and cured by heating, the mold is removed and irradiated with ultraviolet rays from an excimer lamp or the like to perform a non-adhesive treatment.
【0018】本発明で使用される紫外線は、180nm
以下の波長を含むものである。このような紫外線は、エ
キシマランプを使用し、充填するガスとしてXeガスを
使用すれば172nmの波長が得られ、Kr2ガスを充
填すれば146nmの波長が得られる。低圧水銀ランプ
から発生させた189.4nm、253.7nm等の1
80nmをこえる波長の紫外線は、本発明においては5
0%程度まで含ませることができる。従って、本発明で
は、エキシマランプと低圧水銀ランプとを併用すること
ができる。The ultraviolet light used in the present invention is 180 nm
It includes the following wavelengths. Such an ultraviolet ray has a wavelength of 172 nm when an excimer lamp is used and Xe gas is used as a filling gas, and a wavelength of 146 nm is obtained when Kr 2 gas is filled. 1 such as 189.4 nm and 253.7 nm generated from a low-pressure mercury lamp
Ultraviolet light of a wavelength exceeding 80 nm is 5 in the present invention.
It can be included up to about 0%. Therefore, in the present invention, an excimer lamp and a low-pressure mercury lamp can be used in combination.
【0019】本発明で使用される紫外線は、O3を効率
よく発生させることができ、しかも発生したO3は、1
80nm以下の波長の紫外線によって、速やかにO2と
O(励起酸素)に分解するものであるので、短時間にシ
リコーン固化物の非粘着処理を施すことが可能となる。
しかも、照射積算光量を調整することによって、表面層
のベタツキをなくすだけでなく、粘着力を自由に調整す
ることができ、更にはマスキングにより部分的に処理す
ることも、表面層のみの硬度を高めてハンドリング性を
向上させることもできる。The ultraviolet light used in the present invention can efficiently generate O 3 , and the generated O 3 is 1
Since it is rapidly decomposed into O 2 and O (excited oxygen) by ultraviolet light having a wavelength of 80 nm or less, it is possible to perform a non-adhesive treatment of the solidified silicone in a short time.
In addition, by adjusting the integrated amount of irradiation, not only can the surface layer be tacky, but also the adhesive strength can be freely adjusted. It can be raised to improve handling.
【0020】本発明で使用される紫外線の好適な照射条
件について説明すると、照射強度については、5〜50
mW/cm2が好ましい。5mW/cm2未満では強度が
不十分となり良好な非粘着処理を施すことができず、ま
た50mW/cm2をこえると強度が強すぎて表面にひ
び割れ等が生じるようになる。一方、積算光量は、60
0〜10000mJが好ましい。500mJ未満では十
分な非粘着処理効果が得られず、また10000mJを
こえると、シリコーンゲル表面に形成される粘着抑制膜
が厚くなりすぎて、表面にヒビが入り外観上好ましくな
いばかりでなく、表面を押した時に粘着抑制膜下の非粘
着処理面が露出し、粘着性が帯びるようになる。The preferred irradiation conditions of the ultraviolet light used in the present invention will be described.
mW / cm 2 is preferred. If it is less than 5 mW / cm 2 , the strength becomes insufficient and good anti-adhesion treatment cannot be performed, and if it exceeds 50 mW / cm 2 , the strength is too strong and cracks or the like are generated on the surface. On the other hand, the accumulated light amount is 60
0 to 10000 mJ is preferred. If it is less than 500 mJ, a sufficient anti-adhesion treatment effect cannot be obtained, and if it exceeds 10,000 mJ, the adhesion suppressing film formed on the surface of the silicone gel becomes too thick, cracks are formed on the surface, which is not preferable in appearance, and When the button is pressed, the non-adhesive treated surface under the adhesion suppressing film is exposed and becomes tacky.
【0021】上記製造方法において、シリコーン固化物
の成形方法には特に制限はないが、シリコーンと熱伝導
性フィラーとを含有するスラリーの流し込みやドクター
ブレード法によって成形する場合は、スラリー粘度は2
万cps以下の低粘度であることが望ましい。また、押
出し法で成形する場合にはスラリー粘度は10万cps
以上の粘度であることが望ましい。増粘に際しては、シ
リカ超微粉(例えばアエロジル)や十〜数百μmのシリ
コーンパウダー等が使用される。In the above production method, there is no particular limitation on the molding method of the silicone solidified product. However, when the slurry containing silicone and the thermally conductive filler is poured or molded by the doctor blade method, the slurry viscosity is 2%.
It is desirable that the viscosity be as low as 10,000 cps or less. In the case of extrusion molding, the slurry viscosity is 100,000 cps.
It is desirable that the viscosity is not less than the above. For thickening, ultrafine silica powder (for example, Aerosil) or tens to hundreds of μm silicone powder is used.
【0022】本発明のシリコーン固化物をシート状にし
た場合には、厚みとしては、一般的には0.3〜10m
mで、好ましくは0.5〜5mmである。また、その平
面ないしは断面の形状は特に制限はなく、例えば三角
形、四角形、五角形等の多角形、円形、楕円形等が採用
される。また、その表面が球面状であってもよい。When the silicone solidified product of the present invention is formed into a sheet, the thickness is generally 0.3 to 10 m.
m, preferably 0.5 to 5 mm. The shape of the plane or the cross section is not particularly limited, and for example, a polygon such as a triangle, a square, a pentagon, a circle, an ellipse, or the like is employed. Further, the surface may be spherical.
【0023】本発明のシリコーン固化物において、非粘
着処理が施されている箇所は、シリコーン固化物の少な
くとも一つの表面であり、例えば取り扱いの際に指と接
触する面であることが好ましい。具体的には、シリコー
ン固化物の表面の少なくとも二面であり、例えば上面と
側面、側面同士等である。この場合においては、各々の
面は全面又は一部に非粘着処理が施される。In the solidified silicone material of the present invention, the portion subjected to the non-adhesive treatment is at least one surface of the solidified silicone material, and is preferably, for example, a surface that comes into contact with a finger during handling. Specifically, it is at least two surfaces of the surface of the solidified silicone, for example, an upper surface and side surfaces, side surfaces, and the like. In this case, a non-adhesive treatment is applied to the entire surface or a part of each surface.
【0024】[0024]
【実施例】以下、実施例、比較例をあげて更に具体的に
本発明を説明する。The present invention will be described below more specifically with reference to examples and comparative examples.
【0025】実施例1〜7 比較例1〜3 A液(ビニル基を有するオルガノポリシロキサン)とB
液(H−Si基を有するオルガノポリシロキサン)の二
液性のシリコーンゲル(東レダウコーニング社製、商品
名「SE−1885」)をA液対B液の混合比を表1に
示す配合(体積%)で混合し、これに平均粒子径14μ
mのアルミナ粉(昭和電工社製、商品名「AS−4
0」)、平均粒子径15μmのBN粉(電気化学工業社
製、商品名「デンカボロンナイトライド」)、平均粒子
径18μmのマグネシア紛(協和化学工業社製、商品名
「パイロキスマ3320K」)を表1に示す割合(体積
%)で混合してスラリー(粘度:約8000cps)を
調製した後、それを四フッ化エチレン樹脂製型枠(50
×50×5mm)に流し込んだ。Examples 1 to 7 Comparative Examples 1 to 3 Liquid A (organopolysiloxane having a vinyl group) and B
A two-component silicone gel (organic polysiloxane having an H-Si group) (trade name "SE-1885" manufactured by Dow Corning Toray Co., Ltd.) was mixed with the mixture ratio of the A liquid to the B liquid as shown in Table 1 ( % By volume), and the average particle diameter is 14 μm.
m alumina powder (manufactured by Showa Denko KK, trade name "AS-4
0 "), BN powder having an average particle diameter of 15 μm (trade name“ Dencaboron Nitride ”manufactured by Denki Kagaku Kogyo Co., Ltd.), and magnesia powder having an average particle diameter of 18 μm (trade name“ Pyro Kisma 3320K ”manufactured by Kyowa Chemical Industry Co., Ltd.) After preparing a slurry (viscosity: about 8000 cps) by mixing at a ratio (volume%) shown in Table 1, it was mixed with a mold made of a tetrafluoroethylene resin mold (50%).
× 50 × 5 mm).
【0026】これを真空乾燥機に入れ、室温で10分脱
気後、150℃で1時間加熱してシリコーンを固化させ
てから型を取り外し、更に150℃で24時間加熱して
シリコーン固化物を製造した。次いで、このシリコーン
固化物の表面を表2に示す条件で紫外線照射を行い、非
粘着処理を施した。This was put into a vacuum dryer, degassed at room temperature for 10 minutes, heated at 150 ° C. for 1 hour to solidify the silicone, the mold was removed, and further heated at 150 ° C. for 24 hours to remove the silicone solidified product. Manufactured. Next, the surface of the solidified silicone was irradiated with ultraviolet light under the conditions shown in Table 2 to perform a non-adhesive treatment.
【0027】非粘着処理の施されたシリコーン固化物に
ついて、以下に従い、熱伝導率、硬度、粘着性を測定し
た。それらの結果を表1に示す。The thermal conductivity, hardness and tackiness of the solidified silicone material subjected to the non-adhesive treatment were measured in the following manner. Table 1 shows the results.
【0028】(1)熱伝導率 シリコーン固化物をTO−3型銅製ヒーターケースと銅
板との間にはさみ、トルクレンチにより締め付けトルク
200g−cmを掛けてセットした後、銅製ヒーターケ
ースに電力5Wをかけて4分間保持し、銅製ヒーターケ
ースと銅板との温度差(℃)を測定し、(1)式にて熱
抵抗(℃/W)を算出した。この熱抵抗値を用いて、
(2)式にて熱伝導率(W/m・K)を算出した。(1) Thermal Conductivity Silicon solidified product is sandwiched between a TO-3 type copper heater case and a copper plate, set with a torque wrench of 200 g-cm and set to a power of 5 W. The temperature difference (° C.) between the copper heater case and the copper plate was measured, and the thermal resistance (° C./W) was calculated by the equation (1). Using this thermal resistance value,
The thermal conductivity (W / m · K) was calculated by the equation (2).
【0029】[0029]
【数1】 (Equation 1)
【0030】[0030]
【数2】 (Equation 2)
【0031】(2)硬度 シリコーン固化物を数枚重ねて10mmとし、アスカー
C硬度計で硬度を測定した。(2) Hardness Several solidified silicones were stacked to a thickness of 10 mm, and the hardness was measured with an Asker C hardness meter.
【0032】(3)粘着性 シリコーン固化物の表面粘着性を指触により判定した。 ◎:指に粘着せず、試料が持ち上がらない。 ○:指にわずかに粘着するが、試料が持ち上がらない。 ×:指に粘着し、試料が持ち上がる。(3) Adhesion The surface adhesion of the solidified silicone was determined by finger touch. ◎: Does not stick to fingers and sample does not lift. :: The sample slightly adheres to the finger but does not lift. ×: The sample sticks up and the sample is lifted.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【表2】 [Table 2]
【0035】表1〜2より、本発明のシリコーン固化物
は、高熱伝導性かつ高柔軟性のものであっても、簡単な
操作によって容易に、その表面に非粘着処理が施されて
いるものであることがわかる。From Tables 1 and 2, it can be seen that the silicone solidified product of the present invention has a high thermal conductivity and high flexibility, but the surface of which is easily subjected to a non-adhesive treatment by a simple operation. It can be seen that it is.
【0036】[0036]
【発明の効果】本発明によれば、放熱スペーサー等のよ
うに高熱伝導性かつ高柔軟性の放熱部材であっても、簡
単な操作によって容易に、その表面に非粘着処理の施さ
れたものを提供することができる。According to the present invention, even a heat-radiating member having high thermal conductivity and high flexibility, such as a heat-radiating spacer, whose surface is easily subjected to a non-adhesive treatment by a simple operation. Can be provided.
Claims (3)
って非粘着処理が施されてなることを特徴とするシリコ
ーン固化物。1. A solidified silicone product which has been subjected to a non-adhesive treatment with ultraviolet light having a wavelength of 180 nm or less.
であることを特徴とする請求項1記載のシリコーン固化
物。2. The solidified silicone product according to claim 1, which is ultraviolet light generated by an excimer lamp.
リコーン30〜80体積%と熱伝導性フィラー20〜7
0体積%を含む混合物の固化物であり、アスカーC硬度
が60以下で、熱伝導率が0.5W/mK以上であるこ
とを特徴とする請求項1又は2記載のシリコーン固化
物。3. A silicone solidified product comprising 30 to 80% by volume of a liquid addition reaction type silicone and a heat conductive filler of 20 to 7%.
The solidified silicone according to claim 1 or 2, which is a solidified mixture containing 0% by volume, and has an Asker C hardness of 60 or less and a thermal conductivity of 0.5 W / mK or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11018016A JP2000212441A (en) | 1999-01-27 | 1999-01-27 | Silicone solid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11018016A JP2000212441A (en) | 1999-01-27 | 1999-01-27 | Silicone solid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000212441A true JP2000212441A (en) | 2000-08-02 |
Family
ID=11959886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11018016A Pending JP2000212441A (en) | 1999-01-27 | 1999-01-27 | Silicone solid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000212441A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000355654A (en) * | 1999-06-15 | 2000-12-26 | Denki Kagaku Kogyo Kk | Thermal conductive silicone molding and use thereof |
JP2015065330A (en) * | 2013-09-25 | 2015-04-09 | 信越化学工業株式会社 | Heat dissipation sheet, sheet-like cured product with high heat dissipation, and method for application of heat dissipation sheet |
JP2016092139A (en) * | 2014-10-31 | 2016-05-23 | シチズンホールディングス株式会社 | Method of manufacturing light emitting device |
EP3283683A1 (en) * | 2015-04-16 | 2018-02-21 | Dow Corning Corporation | Surface modification of silicones |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07238177A (en) * | 1994-02-25 | 1995-09-12 | Shinano Polymer Kk | Surface-modified silicone rubber molding |
JPH09296114A (en) * | 1996-04-30 | 1997-11-18 | Denki Kagaku Kogyo Kk | Silicone rubber composition and its use |
-
1999
- 1999-01-27 JP JP11018016A patent/JP2000212441A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07238177A (en) * | 1994-02-25 | 1995-09-12 | Shinano Polymer Kk | Surface-modified silicone rubber molding |
JPH09296114A (en) * | 1996-04-30 | 1997-11-18 | Denki Kagaku Kogyo Kk | Silicone rubber composition and its use |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000355654A (en) * | 1999-06-15 | 2000-12-26 | Denki Kagaku Kogyo Kk | Thermal conductive silicone molding and use thereof |
JP2015065330A (en) * | 2013-09-25 | 2015-04-09 | 信越化学工業株式会社 | Heat dissipation sheet, sheet-like cured product with high heat dissipation, and method for application of heat dissipation sheet |
JP2016092139A (en) * | 2014-10-31 | 2016-05-23 | シチズンホールディングス株式会社 | Method of manufacturing light emitting device |
EP3283683A1 (en) * | 2015-04-16 | 2018-02-21 | Dow Corning Corporation | Surface modification of silicones |
JP2018511687A (en) * | 2015-04-16 | 2018-04-26 | ダウ コーニング コーポレーションDow Corning Corporation | Surface modification of silicone |
JP2018511686A (en) * | 2015-04-16 | 2018-04-26 | ダウ コーニング コーポレーションDow Corning Corporation | Surface modification of silicone |
US10518468B2 (en) | 2015-04-16 | 2019-12-31 | Dow Silicones Corporation | Surface modification of silicones |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW549011B (en) | Dissipation of heat from a circuit board having bare silicon chips mounted thereon | |
JP3498823B2 (en) | Heat radiation spacer and its use | |
JP3976166B2 (en) | PDP panel | |
JP7066853B2 (en) | How to apply a thermally conductive composition on an electronic component | |
EP0805618B1 (en) | Heat dissipating spacer for electronic equipments | |
CN110959190A (en) | Low dielectric constant heat conductive heat dissipation member | |
JPH11199690A (en) | Method for reducing surface tackiness of low hardness thermally conductive silicone rubber sheet | |
JPH1177795A (en) | Production of rubber sheet | |
JP2001291680A (en) | Electrostatic chuck for ion implanter | |
JPH11156914A (en) | Rubber sheet manufacturing method | |
JP2000212441A (en) | Silicone solid | |
JP4446514B2 (en) | Thermally conductive silicone molded body heat dissipation member | |
JP2019131669A (en) | Resin composition and insulation heat conductive sheet | |
JP3092699B2 (en) | Heat radiation spacer, its use and silicone composition | |
JP4481019B2 (en) | Mixed powder and its use | |
JP3283454B2 (en) | Heat radiation spacer | |
JP4749631B2 (en) | Heat dissipation member | |
JP3183502B2 (en) | Heat radiation spacer | |
JPH1119948A (en) | Manufacture of radiation member for electronic part | |
JP3563590B2 (en) | Heat radiation spacer | |
JP2002280498A (en) | Heat radiation spacer | |
JP4101391B2 (en) | Heat dissipation member for electronic parts | |
JP2002167560A (en) | Thermally conductive resin sheet | |
JP6796569B2 (en) | Method for manufacturing a thermally conductive composite sheet | |
JP3640524B2 (en) | Heat dissipation spacer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080509 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090324 |