JP2000204931A - Exhaust emission control device for internal combustion engine - Google Patents
Exhaust emission control device for internal combustion engineInfo
- Publication number
- JP2000204931A JP2000204931A JP11010303A JP1030399A JP2000204931A JP 2000204931 A JP2000204931 A JP 2000204931A JP 11010303 A JP11010303 A JP 11010303A JP 1030399 A JP1030399 A JP 1030399A JP 2000204931 A JP2000204931 A JP 2000204931A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- sub
- exhaust
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 14
- 239000003054 catalyst Substances 0.000 claims abstract description 196
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 30
- 230000004913 activation Effects 0.000 claims description 19
- 238000000746 purification Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims 2
- 230000006866 deterioration Effects 0.000 abstract description 4
- 238000002844 melting Methods 0.000 abstract description 4
- 230000008018 melting Effects 0.000 abstract description 4
- 238000005245 sintering Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 111
- 239000003507 refrigerant Substances 0.000 description 16
- 230000001105 regulatory effect Effects 0.000 description 16
- 239000000498 cooling water Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 5
- 238000004378 air conditioning Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】本発明は、排気通路に排気ガスを浄化する
触媒を配設してなる内燃機関の排気ガス浄化装置に関す
る。[0001] The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine in which a catalyst for purifying exhaust gas is disposed in an exhaust passage.
【0002】[0002]
【従来の技術】一般に、ガソリン,軽油,ガスを燃料と
する内燃機関(以下、エンジンと記す)では、排気ガス
の浄化を図るために排気通路に触媒を配置するようにし
ている。この触媒は排気ガス温度により活性開始温度ま
で上昇したときに浄化機能を発揮することから、走行中
に排出される排気ガスの温度に合わせて触媒の活性開始
温度を設定するのが一般的である。2. Description of the Related Art Generally, in an internal combustion engine (hereinafter, referred to as an engine) using gasoline, light oil, or gas as a fuel, a catalyst is disposed in an exhaust passage to purify exhaust gas. Since this catalyst exhibits a purification function when it rises to the activation start temperature due to the exhaust gas temperature, it is general to set the activation start temperature of the catalyst in accordance with the temperature of the exhaust gas discharged during traveling. .
【0003】ところで従来の一般的な触媒の場合、活性
開始温度が高いため、特にエンジン始動時(コールドス
タート)に触媒担体の温度が直ちに活性温度に上昇しな
いことから、排気ガスの浄化がほとんど行われない場合
がある。このため、例えばHCが多量に排出されるエン
ジンでは、触媒を構成する貴金属量を増やして活性開始
温度を低く設定したり,あるいは触媒を排気ガス温度が
高いエンジン近傍に配置したりしてエンジン始動時の排
気ガス浄化を行うようにする場合がある。However, in the case of a conventional general catalyst, since the activation start temperature is high, and especially when the engine is started (cold start), the temperature of the catalyst carrier does not immediately rise to the activation temperature, so that the exhaust gas is almost completely purified. May not be. For this reason, in an engine that emits a large amount of HC, for example, the amount of noble metal constituting the catalyst is increased to set the activation start temperature low, or the catalyst is arranged near the engine having a high exhaust gas temperature to start the engine. Sometimes, exhaust gas purification is performed.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述の
ようにエンジン近傍に触媒を配置すると、触媒が活性化
した後には、排気ガス温度に触媒の反応熱が加わって触
媒温度が大きく上昇し、場合によっては触媒が溶損する
という懸念がある。However, when the catalyst is arranged near the engine as described above, after the catalyst is activated, the reaction heat of the catalyst is added to the exhaust gas temperature, so that the catalyst temperature rises significantly. In some cases, there is a concern that the catalyst may be melted.
【0005】また上記従来の触媒の貴金属量を増やして
活性開始温度を低くする方法では、高温時にシンタリン
グ(熱歪による金属同士の結合)が生じ易くなり、触媒
の劣化が早くなるという懸念がある。[0005] Further, in the conventional method of increasing the amount of noble metal of the catalyst to lower the activation start temperature, there is a concern that sintering (bonding of metals due to thermal strain) is likely to occur at a high temperature, and the deterioration of the catalyst is accelerated. is there.
【0006】本発明は、上記従来の実情に鑑みてなされ
たもので、エンジン始動時の排気ガス浄化を確実に行う
ことができ、しかも触媒が異常昇温することによって生
じる溶損の問題やシンタリングによる触媒の劣化の問題
を回避できる内燃機関の排気ガス浄化装置を提供するこ
とを目的としている。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and it is possible to reliably purify exhaust gas at the time of starting an engine. An object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine that can avoid the problem of catalyst deterioration due to a ring.
【0007】[0007]
【課題を解決するための手段】請求項1の発明は、排気
通路に排気ガスを浄化する触媒を配設した内燃機関の排
気ガス浄化装置において、上記排気通路の途中に、主触
媒と該主触媒より活性開始温度が低い副触媒とを配設
し、該副触媒を通過する排気ガス流量を、該副触媒の温
度が高いときより低いときの方が多くなるように調整す
るガス流量調整手段を設けたことを特徴としている。According to a first aspect of the present invention, there is provided an exhaust gas purifying apparatus for an internal combustion engine in which a catalyst for purifying exhaust gas is disposed in an exhaust passage. Gas flow adjusting means for disposing a sub-catalyst whose activation start temperature is lower than that of the catalyst, and for adjusting the flow rate of exhaust gas passing through the sub-catalyst so that the flow rate is higher when the temperature of the sub-catalyst is lower than when it is higher It is characterized by having provided.
【0008】請求項2の発明は、請求項1において、上
記副触媒を上流側に、主触媒を下流側に配設し、上記ガ
ス流量調整手段は、上記副触媒に排気ガスが通り抜ける
貫通孔を形成し、該貫通孔の排気ガス流通面積を調整す
る調整弁を配設し、上記副触媒の温度が高いときより低
いときの上記排気ガス流通面積が狭くなるように上記調
整弁を開閉駆動するように構成されていることを特徴と
している。According to a second aspect of the present invention, in the first aspect, the sub-catalyst is disposed on the upstream side and the main catalyst is disposed on the downstream side, and the gas flow rate adjusting means includes a through-hole through which exhaust gas passes through the sub-catalyst. Forming an adjustment valve for adjusting the exhaust gas flow area of the through hole, and opening and closing the adjustment valve so as to reduce the exhaust gas flow area when the temperature of the sub-catalyst is lower than when it is high. It is characterized by being constituted so that.
【0009】請求項3の発明は、請求項2において、上
記ガス流量調整手段は、上記副触媒の上流側端面を覆う
閉位置と露出させる開位置との間で開閉する遮蔽弁を備
え、該遮蔽弁は上記調整弁が上記貫通孔を閉じたときに
は開位置に、該貫通孔を開けたときには閉位置に位置す
るように開閉駆動されることを特徴としている。According to a third aspect of the present invention, in the second aspect, the gas flow rate adjusting means includes a shut-off valve that opens and closes between a closed position covering the upstream end face of the sub-catalyst and an open position exposing the same. The shut-off valve is driven to open and close so as to be at an open position when the regulating valve closes the through-hole and at a closed position when opening the through-hole.
【0010】請求項4の発明は、請求項1において、上
記主触媒及び副触媒を、それぞれが排気通路の一部を塞
ぐ形状とするとともに、排気ガス流れ方向に沿って直列
に配置し、上記ガス流量調整手段を、主触媒用排気流切
換弁と、副触媒用排気流切換弁とで構成したことを特徴
としている。According to a fourth aspect of the present invention, in the first aspect, the main catalyst and the sub-catalyst each have a shape that closes a part of an exhaust passage and are arranged in series along an exhaust gas flow direction. The gas flow rate adjusting means is constituted by an exhaust flow switching valve for the main catalyst and an exhaust flow switching valve for the sub-catalyst.
【0011】請求項5の発明は、請求項1において、主
触媒及び副触媒を、両触媒により排気通路を塞ぐ形状と
するとともに、並列に配置し、上記ガス流量調整手段
を、排気流を主触媒側又は副触媒側に切り換える切換弁
により構成したことを特徴としている。According to a fifth aspect of the present invention, in the first aspect, the main catalyst and the sub-catalyst have a shape in which the exhaust passage is closed by the two catalysts, and are arranged in parallel. It is characterized by comprising a switching valve for switching to the catalyst side or the auxiliary catalyst side.
【0012】なお、請求項4の発明は、副触媒を主触媒
より上流側又は下流側に配置した場合の両方を含む。The invention of claim 4 includes both cases where the sub-catalyst is disposed upstream or downstream of the main catalyst.
【0013】[0013]
【発明の作用効果】請求項1の発明に係る排気ガス浄化
装置によれば、主触媒より活性開始温度の低い副触媒を
配設し、該副触媒を通過する排気ガス流量を調整するガ
ス流量調整手段を設け、該ガス流量調整手段により該副
触媒の温度が低いときの排気ガス通過量を高いときより
も多くするようにしたので、エンジンのコールドスター
ト時には、副触媒の温度が低いことから該副触媒を通過
する排気ガス流量がガス流量調整手段により増加され、
これにより該副触媒が直ちに活性化し、排気ガスの浄化
が行われる。また副触媒の温度が高くなると該副触媒を
通過する排気ガス流量がガス流量調整手段により減少さ
れ、該副触媒の温度上昇が抑制され、該副触媒の溶損が
防止される。According to the exhaust gas purifying apparatus of the present invention, a sub-catalyst having an activation start temperature lower than that of the main catalyst is provided, and a gas flow rate for adjusting the flow rate of exhaust gas passing through the sub-catalyst is provided. An adjusting means is provided, and the gas flow rate adjusting means increases the amount of exhaust gas passing when the temperature of the sub-catalyst is low than when the temperature of the sub-catalyst is high. The flow rate of exhaust gas passing through the sub-catalyst is increased by gas flow rate adjusting means,
As a result, the sub-catalyst is immediately activated, and the exhaust gas is purified. When the temperature of the sub-catalyst rises, the flow rate of the exhaust gas passing through the sub-catalyst is reduced by the gas flow rate adjusting means, so that the temperature rise of the sub-catalyst is suppressed and the melting of the sub-catalyst is prevented.
【0014】請求項2の発明によれば、排気通路の主触
媒の上流側、即ちエンジンの排気ポートに近くで、従っ
て排気ガス温度の高い部位に副触媒を配設し、上記ガス
流量調整手段を、上記副触媒に形成した貫通孔の排気ガ
ス流通面積を調整する調整弁を配設し、上記副触媒の温
度が高いときより低いときの上記排気ガス流通面積が狭
くなるように上記調整弁を開閉駆動するようにしたの
で、例えば、エンジン始動時には調整弁が貫通孔を閉
じ、多量の排気ガスが副触媒内を通過し、これにより該
副触媒が直ちに活性化し、排気ガスを浄化する。また副
触媒の温度が高くなると調整弁が貫通孔を開け、大部分
の排気ガスは貫通孔内を通り抜け、副触媒の温度上昇が
抑制され、該副触媒の溶損が防止される。According to the second aspect of the present invention, the sub-catalyst is disposed upstream of the main catalyst in the exhaust passage, that is, near the exhaust port of the engine, and therefore at a portion where the exhaust gas temperature is high, and A regulating valve for adjusting the exhaust gas flow area of the through-hole formed in the sub-catalyst is provided, and the control valve is arranged such that the exhaust gas flow area becomes narrower when the temperature of the sub-catalyst is lower than when it is high. For example, when the engine is started, the regulating valve closes the through hole, and a large amount of exhaust gas passes through the sub-catalyst, whereby the sub-catalyst is immediately activated and purifies the exhaust gas. When the temperature of the sub-catalyst rises, the regulating valve opens a through-hole, most of the exhaust gas passes through the through-hole, and the temperature rise of the sub-catalyst is suppressed, so that the melting of the sub-catalyst is prevented.
【0015】請求項3の発明によれば、上記副触媒の上
流側端面に遮蔽弁を配設し、上記調整弁が貫通孔を閉じ
たときには遮蔽弁を開いて副触媒の端面を露出させ、上
記貫通孔を開いたときには該端面を遮蔽弁で覆うように
したので、低温時には排気ガスが副触媒内を確実に流れ
るようにし、高温時には排気ガスが副触媒内を流れるの
を確実に防止でき、上記低温時の排気ガス浄化及び高温
時の副触媒の溶損や劣化の問題を確実に防止できる。こ
れにより副触媒の活性開始温度をさらに低く設定するこ
とが可能となり、エンジン始動時の排気ガス浄化をより
一層確実に行うことができる。According to the third aspect of the present invention, a shut-off valve is disposed on the upstream end face of the sub-catalyst, and when the regulating valve closes the through hole, the shut-off valve is opened to expose the end face of the sub-catalyst, When the through-hole is opened, the end face is covered with the shielding valve, so that the exhaust gas can surely flow through the sub-catalyst at a low temperature, and can reliably prevent the exhaust gas from flowing through the sub-catalyst at a high temperature. In addition, it is possible to reliably prevent the exhaust gas purification at a low temperature and the melting and deterioration of the sub-catalyst at a high temperature. As a result, the activation start temperature of the sub-catalyst can be set further lower, and the exhaust gas can be more reliably purified when the engine is started.
【0016】請求項4の発明によれば、主,副触媒を直
列配置し、主,副触媒用排気流切換弁を配設したので、
排気ガスの浄化を確実に行なうことができ、かつ触媒の
溶損を防止できる。According to the fourth aspect of the present invention, the main and sub-catalysts are arranged in series and the main and sub-catalyst exhaust flow switching valves are provided.
Exhaust gas can be reliably purified, and the catalyst can be prevented from being melted.
【0017】請求項5の発明によれば、主,副触媒を並
列配置し、排気流切換弁を設けたので、排気ガスの浄化
を確実に行なうことができるとともに、触媒の溶損を防
止できる。According to the fifth aspect of the present invention, since the main and sub-catalysts are arranged in parallel and the exhaust flow switching valve is provided, the exhaust gas can be reliably purified and the catalyst can be prevented from being melted. .
【0018】[0018]
【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて説明する。図1ないし図6は、請求項1
〜3の発明の第1実施形態によるGHP用エンジンの排
気ガス浄化装置を説明するための図であり、図1は排気
ガス浄化装置を備えたエンジン駆動式空気調和装置の構
成図、図2〜図4は排気ガス浄化装置の断面図平面,平
面図,断面正面図、図5,図6は排気ガス浄化装置の断
面平面図である。Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 to FIG.
FIG. 1 is a diagram for explaining an exhaust gas purifying apparatus for a GHP engine according to the first embodiment of the inventions of FIGS. 1 to 3; FIG. 1 is a configuration diagram of an engine-driven air conditioner equipped with the exhaust gas purifying apparatus; FIG. 4 is a sectional plan view, a plan view, and a sectional front view of the exhaust gas purifying apparatus, and FIGS. 5 and 6 are sectional plan views of the exhaust gas purifying apparatus.
【0019】図において、1はエンジン駆動式空気調和
装置であり、これは室内空調ユニット2と、室外空調ユ
ニット3とで構成されている。上記室内空調ユニット2
は主として冷媒用室内熱交換器4,及び減圧用の膨張弁
5を備えている。また上記室外空調ユニット3は、主と
してエンジン6,圧縮機7,アキュムレータ8,冷媒用
室外熱交換器9,及び四方弁10を備えている。In FIG. 1, reference numeral 1 denotes an engine-driven air conditioner, which comprises an indoor air conditioning unit 2 and an outdoor air conditioning unit 3. The indoor air conditioning unit 2
Is mainly provided with a refrigerant indoor heat exchanger 4 and an expansion valve 5 for reducing pressure. The outdoor air conditioning unit 3 mainly includes an engine 6, a compressor 7, an accumulator 8, a refrigerant outdoor heat exchanger 9, and a four-way valve 10.
【0020】上記エンジン6は4サイクル水冷式ガス燃
料エンジンであり、該エンジン6のクランク軸6aには
始動クラッチ11を介して始動モータ12が接続されて
おり、また該エンジン6の出力軸6bには出力クラッチ
13を介して上記圧縮機7が接続されている。The engine 6 is a four-stroke water-cooled gas-fueled engine. A starting motor 12 is connected to a crankshaft 6a of the engine 6 via a starting clutch 11, and the engine 6 is connected to an output shaft 6b. Is connected to the compressor 7 via an output clutch 13.
【0021】上記圧縮機7の吐出口7aは冷媒管14
a,冷房運転位置に切り換えられた四方弁10,冷媒管
14bを介して冷媒用室外熱交換器9に接続され、さら
に該室外熱交換器9から冷媒管14c,膨張弁5を介し
て冷媒用室内熱交換器4に接続されている。またこの室
内熱交換器4は冷媒管14d,四方弁10,冷媒管14
e,アキュムレータ8の熱交換部8a,冷媒管14fを
介して圧縮機7の吸込口7bに接続されている。The outlet 7a of the compressor 7 is connected to a refrigerant pipe 14
a, which is connected to the refrigerant outdoor heat exchanger 9 via the four-way valve 10 and the refrigerant pipe 14b switched to the cooling operation position, and from the outdoor heat exchanger 9 via the refrigerant pipe 14c and the expansion valve 5, It is connected to the indoor heat exchanger 4. The indoor heat exchanger 4 includes a refrigerant pipe 14d, a four-way valve 10, a refrigerant pipe 14d.
e, connected to the suction port 7b of the compressor 7 via the heat exchange section 8a of the accumulator 8 and the refrigerant pipe 14f.
【0022】上記エンジン6の吸気ポート15には吸気
管16が接続され、該吸気管16にはスロットル弁1
7,及びこれより上流側にはエアクリーナ18が介設さ
れており、該吸気管16の上流端開口部16aは外部に
開口している。また上記スロットル弁17は上記クラン
ク軸6aの動力を利用したガバナ装置20によりスロッ
トル弁開度が設定エンジン回転数となるように開閉駆動
され、該エンジン回転数はヒートポンプの熱負荷が大き
くなるほど冷媒循環量を増加させるために、高く設定さ
れている。An intake pipe 16 is connected to an intake port 15 of the engine 6, and the throttle valve 1 is connected to the intake pipe 16.
An air cleaner 18 is provided on the upstream side of the intake pipe 7, and an upstream end opening 16a of the intake pipe 16 is open to the outside. The throttle valve 17 is driven to open and close by a governor device 20 using the power of the crankshaft 6a so that the throttle valve opening becomes the set engine speed. The engine speed is increased as the heat load of the heat pump increases. Set high to increase volume.
【0023】上記吸気管16のスロットル弁17とエア
クリーナ18との間にはベンチュリ部21が設けられて
おり、該ベンチュリ部21には燃料ガス源22に接続さ
れた燃料供給管23が連通接続されている。この燃料供
給管23には上流側から順にそれぞれ2つの開閉バルブ
24,25,ゼロガバナ(減圧器)26,燃料ガスに含
まれている付臭剤を除去するための付臭剤除去装置2
7,及び流量制御弁28が介設されている。A venturi section 21 is provided between the throttle valve 17 and the air cleaner 18 of the intake pipe 16, and a fuel supply pipe 23 connected to a fuel gas source 22 is connected to the venturi section 21. ing. The fuel supply pipe 23 has two opening / closing valves 24 and 25, a zero governor (decompressor) 26, and an odorant removing device 2 for removing an odorant contained in the fuel gas in order from the upstream side.
7, and a flow control valve 28 are interposed.
【0024】上記エンジン6の排気ポート30には排気
管31が接続され、該排気管31の途中には排気ガス熱
交換器32,及びこれより下流側にはマフラ33が介設
されており、排気管31の下流端端開口部31aは外部
に開口している。An exhaust pipe 31 is connected to the exhaust port 30 of the engine 6, and an exhaust gas heat exchanger 32 is provided in the exhaust pipe 31 and a muffler 33 is provided downstream of the exhaust heat exchanger 32. The downstream end opening 31a of the exhaust pipe 31 is open to the outside.
【0025】上記エンジン6には冷却水循環回路35が
設けられている。この冷却水循環回路35は、冷却水温
度が所定値以下の暖機運転時には該エンジン6の冷却水
ジャケット36,サーモスタット37,第1冷却水ポン
プ38を循環する第1循環経路を備えている。また第2
冷却水ポンプ42,排気ガス熱交換器32,リニア三方
弁40からラジエータ41を経て、又はアキュムレータ
8内の熱交換部8bを経て循環する第2循環経路を備え
ている。The engine 6 is provided with a cooling water circulation circuit 35. The cooling water circulation circuit 35 includes a first circulation path for circulating the cooling water jacket 36, the thermostat 37, and the first cooling water pump 38 of the engine 6 during a warm-up operation in which the temperature of the cooling water is equal to or lower than a predetermined value. Also the second
A second circulation path circulating from the cooling water pump 42, the exhaust gas heat exchanger 32, the linear three-way valve 40 via the radiator 41 or via the heat exchange part 8 b in the accumulator 8 is provided.
【0026】また、冷却水温度が上記所定値を越えたと
きには、上記第2冷却水ポンプ42からの冷却水の一部
が第1冷却水ポンプ38,エンジン6の冷却水ジャケッ
ト36,サーモスタット37を通り、排気ガス熱交換器
32を通過した冷却水と合流し、三方弁40からラジエ
ータ41を経て、又はアキュムレータ8内の熱交換部8
bを経て循環する第3循環路が構成される。When the cooling water temperature exceeds the predetermined value, a part of the cooling water from the second cooling water pump 42 is supplied to the first cooling water pump 38, the cooling water jacket 36 of the engine 6, and the thermostat 37. As described above, the cooling water passes through the exhaust gas heat exchanger 32, merges with the cooling water, passes through the radiator 41 from the three-way valve 40, or the heat exchange unit 8 in the accumulator 8.
A third circulation path circulating through b is formed.
【0027】上記空気調和装置1において、冷房運転時
には四方弁10が室外熱交換器9側に切り換えられる。
上記圧縮機7によって圧縮されて高温,高圧となった冷
媒ガスは四方弁10を介して室外熱交換器9に供給さ
れ、ここで外気により冷却されて液化する。この液化し
た高圧の冷媒液は膨張弁5によって減圧される。この減
圧された低圧の冷媒液は室内熱交換器4で室内空気から
熱を奪って蒸発し、この蒸発熱により冷却効果が生じて
室内の冷房が行われる。蒸発した冷媒ガスは四方弁10
を通り、アキュムレータ8を経て圧縮機7に戻り、同様
のサイクルが繰り返される。In the air conditioner 1, the four-way valve 10 is switched to the outdoor heat exchanger 9 during the cooling operation.
The high-temperature, high-pressure refrigerant gas compressed by the compressor 7 is supplied to the outdoor heat exchanger 9 via the four-way valve 10, where it is cooled by outside air and liquefied. The liquefied high-pressure refrigerant liquid is decompressed by the expansion valve 5. The decompressed low-pressure refrigerant liquid evaporates by removing heat from the indoor air in the indoor heat exchanger 4, and the evaporated heat causes a cooling effect to cool the room. The evaporated refrigerant gas is supplied to the four-way valve 10.
And returns to the compressor 7 via the accumulator 8, and the same cycle is repeated.
【0028】暖房運転時には、四方弁10が室内熱交換
器4側に切り換えられ、圧縮機7からの高温,高圧冷媒
ガスは、室内熱交換器4に供給され、ここで室内空気に
よって冷却されて液化し、この場合の凝縮熱によって室
内空気が暖められ、暖房効果が得られる。この液化した
冷媒液は膨張弁5で減圧される。この減圧された低圧の
冷媒液は室外熱交換器9にて外気の熱を奪うことにより
蒸発し、アキュムレータ8を介して圧縮機7に戻り、同
様のサイクルが繰り返される。During the heating operation, the four-way valve 10 is switched to the indoor heat exchanger 4 side, and the high-temperature, high-pressure refrigerant gas from the compressor 7 is supplied to the indoor heat exchanger 4, where it is cooled by the indoor air. It liquefies, and the indoor air is warmed by the condensation heat in this case, and a heating effect is obtained. The liquefied refrigerant liquid is decompressed by the expansion valve 5. The decompressed low-pressure refrigerant liquid evaporates by removing the heat of the outside air in the outdoor heat exchanger 9, returns to the compressor 7 via the accumulator 8, and the same cycle is repeated.
【0029】そして上記エンジン6には本実施形態の特
徴をなす排気ガス浄化装置が配設されている。この排気
ガス浄化装置は、主として排気管31のマフラ33の上
流側に配設された主触媒50と、排気ガス熱交換器32
の上流側の排気ポート30の近傍に配設された副触媒5
1とから構成されている。なお、上記排気ガス熱交換器
32がエンジンの暖機中には水を流さないように構成さ
れている場合には、上記副触媒51を該排気ガス熱交換
器32の下流側に配設してもよい。The engine 6 is provided with an exhaust gas purifying device which is a feature of the present embodiment. This exhaust gas purifying device mainly includes a main catalyst 50 disposed upstream of a muffler 33 of an exhaust pipe 31 and an exhaust gas heat exchanger 32.
Catalyst 5 disposed near the exhaust port 30 on the upstream side of the
And 1. When the exhaust gas heat exchanger 32 is configured not to allow water to flow during warm-up of the engine, the auxiliary catalyst 51 is disposed downstream of the exhaust gas heat exchanger 32. You may.
【0030】上記主触媒50は円筒状のケーシング52
内に装填されており、上記排気管31より大径にかつ円
筒状に形成された収容部31a内に収納配置されてい
る。また上記副触媒51は矩形筒状のケーシング53内
に装填されており、上記排気官31より大径にかつ矩形
筒状に形成された収容部31b内に収容配置されてい
る。なお上記収容部31bをエンジン6の排気口に直接
接続してもよい。The main catalyst 50 has a cylindrical casing 52.
And is accommodated and arranged in an accommodating portion 31 a formed in a cylindrical shape with a larger diameter than the exhaust pipe 31. The sub-catalyst 51 is loaded in a rectangular cylindrical casing 53, and is accommodated in an accommodating portion 31b having a larger diameter than the exhauster 31 and formed in a rectangular cylindrical shape. The housing 31b may be directly connected to the exhaust port of the engine 6.
【0031】上記主,副触媒50,51は酸化触媒であ
り、該酸化触媒はPt,Rh,Pdの貴金属のうち少な
くとも1種以上を含むγ−Al2 O3 により構成されて
いる。上記副触媒51の貴金属含有量は主触媒50の貴
金属含有量よりも多くなっており、これにより副触媒5
1の活性開始温度は主触媒50よりも低く設定されてい
る。具体的には、副触媒51の活性開始温度は180℃
以下、好ましくは120〜150℃に設定されており、
主触媒50の活性開始温度は200℃以上、好ましくは
250〜300℃に設定されている。なお、上記主,副
触媒50,51は酸化触媒に限られるものではなく、上
記Pt,Rh,Pd/γ−Al2 O3 にCeO2 を加え
てなる酸化還元触媒により構成してもよい。The main and sub-catalysts 50 and 51 are oxidation catalysts, and the oxidation catalyst is composed of γ-Al 2 O 3 containing at least one of Pt, Rh and Pd noble metals. The precious metal content of the sub-catalyst 51 is larger than the precious metal content of the main catalyst 50, whereby the sub-catalyst 5
The activation start temperature of No. 1 is set lower than that of the main catalyst 50. Specifically, the activation start temperature of the sub-catalyst 51 is 180 ° C.
Hereinafter, preferably set to 120 ~ 150 ℃,
The activation start temperature of the main catalyst 50 is set to 200 ° C. or higher, preferably 250 to 300 ° C. The main and sub-catalysts 50 and 51 are not limited to oxidation catalysts, but may be constituted by redox catalysts obtained by adding CeO 2 to Pt, Rh, Pd / γ-Al 2 O 3 .
【0032】上記副触媒51の軸心には排気ガスが流通
する矩形状の貫通孔51aが形成されている。この貫通
孔51aの上流側の排気ガス流入口51bには矩形板状
の調整弁55が配設されており、該調整弁55はガス流
れ方向に見たとき上記排気ガス流入口51aを覆う全閉
位置と、該流入口51bを露出させる全開位置との間で
回動可能となっている。この調整弁55に固着された弁
軸55aの両端部は大径部31bを貫通して外方に突出
しており、該大径部31bに気密に軸支されている。A rectangular through hole 51a through which exhaust gas flows is formed in the axis of the sub-catalyst 51. A rectangular plate-shaped adjusting valve 55 is provided at the exhaust gas inlet 51b on the upstream side of the through hole 51a. The adjusting valve 55 covers the exhaust gas inlet 51a when viewed in the gas flow direction. It is rotatable between a closed position and a fully open position exposing the inflow port 51b. Both ends of the valve shaft 55a fixed to the adjustment valve 55 penetrate the large-diameter portion 31b and protrude outward, and are air-tightly supported by the large-diameter portion 31b.
【0033】また上記調整弁55の両側方にはそれぞれ
遮蔽弁56,56が配設されている。この各遮断弁56
は、ガス流れ方向に正面から見て上記副触媒51の上流
側端面51cを露出させる全開位置と、該上流側端面5
1cを覆いかつ排気ガスaを上記貫通孔51aに案内す
るように傾斜する全閉位置との間で回動可能となってい
る。この各遮断弁56に固着された弁軸56a両端部は
上記大形部31bを貫通して外方に突出しており、該大
径部31bに気密に軸支されている。On both sides of the regulating valve 55, shut-off valves 56, 56 are provided, respectively. Each of the shut-off valves 56
Is a fully open position that exposes the upstream end face 51c of the sub-catalyst 51 when viewed from the front in the gas flow direction;
1c, and is rotatable between a fully closed position and an inclined position to guide the exhaust gas a to the through hole 51a. Both ends of the valve shaft 56a fixed to each of the shut-off valves 56 penetrate the large portion 31b and protrude outward, and are air-tightly supported by the large diameter portion 31b.
【0034】そして上記調整弁55及び各遮蔽弁56は
駆動機構により開閉駆動される。この駆動機構は、上記
調整弁55の弁軸55aの一端部に駆動プーリ57及び
扇状の駆動ギヤ58を固着し、他端部に駆動モータ59
を接続する。また上記一方の遮蔽弁56の弁軸56aに
従動プーリ61を固着してこれを上記駆動プーリ57に
ベルト60により連結し、他方の遮蔽弁56の弁軸56
aに扇状の従動ギヤ62を固着しこれを上記駆動ギヤ5
8に噛合させた構造のものである。そして上記駆動モー
タ59が調整弁55を全閉位置に回動させると各遮蔽弁
56は全開位置に一体に回動し、調整弁55を全開位置
に回動させると各遮蔽弁56は全閉位置に一体に回動す
る。The adjusting valve 55 and each of the shut-off valves 56 are opened and closed by a driving mechanism. The drive mechanism has a drive pulley 57 and a fan-shaped drive gear 58 fixed to one end of a valve shaft 55a of the adjustment valve 55, and a drive motor 59 fixed to the other end.
Connect. Further, a driven pulley 61 is fixedly connected to a valve shaft 56a of the one shielding valve 56 and connected to the driving pulley 57 by a belt 60, and the valve shaft 56 of the other shielding valve 56 is fixed.
a, a fan-shaped driven gear 62 is fixed to the drive gear 5.
8 is of a structure that is meshed. When the drive motor 59 rotates the adjusting valve 55 to the fully closed position, each shielding valve 56 is integrally rotated to the fully open position, and when the adjusting valve 55 is rotated to the fully open position, each shielding valve 56 is fully closed. Pivots into position.
【0035】上記排気管31の副触媒51の上流側近
傍,下流側近傍,及び主触媒50の上流側近傍にはそれ
ぞれ排気ガス温度センサ63a,63b,63cが配設
されており、上記主触媒50の上流側近傍には酸素セン
サ64及びNOX センサ65が配設されている。Exhaust gas temperature sensors 63a, 63b, and 63c are disposed near the upstream side and downstream side of the sub-catalyst 51 of the exhaust pipe 31 and near the upstream side of the main catalyst 50, respectively. the vicinity of the upstream side of 50 oxygen sensor 64 and the NO X sensor 65 is arranged.
【0036】そして上記調整弁55は不図示の開閉制御
手段としてのECUにより制御される。このECUはエ
ンジン6の冷間始動時のように上記副触媒51上流側近
傍の温度が所定値以下の場合には上記駆動モータ59に
閉信号を出力する。すると調整弁55が全閉位置に回動
して貫通孔51aを閉塞するとともに、各遮蔽弁56が
開いて副触媒51の上流側端面51cを排気通路内に露
出させる。これによりエンジン6からの排出された排気
ガスは副触媒51内に導入される。The regulating valve 55 is controlled by an ECU (not shown) as an open / close control means. This ECU outputs a close signal to the drive motor 59 when the temperature near the upstream side of the sub-catalyst 51 is equal to or lower than a predetermined value, such as during a cold start of the engine 6. Then, the adjustment valve 55 is rotated to the fully closed position to close the through hole 51a, and the respective shielding valves 56 are opened to expose the upstream end surface 51c of the sub-catalyst 51 into the exhaust passage. As a result, the exhaust gas discharged from the engine 6 is introduced into the auxiliary catalyst 51.
【0037】この場合、該副触媒51がエンジンの排気
ポート近傍に位置しており、流入する排気ガス温度が比
較的高い点、及び副触媒51の活性開始温度が低く設定
されている点から、該副触媒51は直ちに活性化して排
気ガスの浄化を行う。また排気ガスの浄化作用より副触
媒51を通過する排気ガス温度が上昇し、主触媒50に
流入する排気ガス温度が上昇する。In this case, since the auxiliary catalyst 51 is located near the exhaust port of the engine, the temperature of the exhaust gas flowing in is relatively high, and the activation start temperature of the auxiliary catalyst 51 is set low, The sub-catalyst 51 is immediately activated to purify the exhaust gas. Further, the temperature of the exhaust gas passing through the sub-catalyst 51 increases due to the purifying action of the exhaust gas, and the temperature of the exhaust gas flowing into the main catalyst 50 increases.
【0038】そして暖機が進み、副触媒51に流入する
排気ガス温度が所定値を越えると、上記ECUが上記駆
動モータ59に開信号を出力する。すると調整弁55が
全開位置に回動して貫通孔51aを開くとともに、各遮
蔽弁56が閉じて副触媒51の上流側端面51cを閉塞
する。これにより排気ガスは副触媒51内はほとんど通
らずに上記貫通孔51a内を通過して主触媒50に導入
され、該主触媒50にて排気ガス浄化が行われる。When the temperature of the exhaust gas flowing into the sub-catalyst 51 exceeds a predetermined value, the ECU outputs an open signal to the drive motor 59. Then, the adjustment valve 55 is rotated to the fully open position to open the through hole 51 a, and each shielding valve 56 is closed to close the upstream end surface 51 c of the sub-catalyst 51. As a result, the exhaust gas passes through the through-hole 51a without passing through the sub-catalyst 51, and is introduced into the main catalyst 50, where the main catalyst 50 purifies the exhaust gas.
【0039】ここで、上記各遮蔽板56は貫通孔51a
側に傾斜しているので、排気ガスをスムーズに貫通孔5
1aに導くことができる。なお、上記調整弁55の制御
にあたっては、排気ガス温度に限ることはなく、例えば
エンジン始動から所定時間は調整弁55を閉とし、所定
時間経過した後は該調整弁55を開けるようにしても良
い。また排気ガス中の酸素量,あるいはNOX 量に基づ
いて開閉弁を開けるようにしてもよい。Here, each shielding plate 56 has a through hole 51a.
The exhaust gas smoothly through the through-hole 5
1a. The control of the adjustment valve 55 is not limited to the exhaust gas temperature. For example, the adjustment valve 55 may be closed for a predetermined time after the engine is started, and the adjustment valve 55 may be opened after a predetermined time has elapsed. good. The may be the amount of oxygen in the exhaust gas, or based on the amount of NO X opens the on-off valve.
【0040】このように本実施形態によれば、排気管3
1の主触媒50の上流側に該主触媒50より活性開始温
度の低い副触媒51を配設し、該副触媒51の軸心に貫
通孔51aをするとともに、該貫通孔51aの排気ガス
流入口51bが該流入口51bを開閉する調整弁55を
配設したので、エンジン始動時には調整弁55を閉じる
ことにより貫通孔51aが閉じ、もって排気ガスaはそ
の全量が副触媒51を通過することから、該副触媒51
にて直ちに排気ガス浄化を行うことができ、始動時のH
C量の排出を低減できる。As described above, according to the present embodiment, the exhaust pipe 3
A sub-catalyst 51 having an activation start temperature lower than that of the main catalyst 50 is disposed upstream of the main catalyst 50, a through-hole 51a is formed in the axis of the sub-catalyst 51, and an exhaust gas flow through the through-hole 51a is formed. Since the inlet 51b is provided with the regulating valve 55 for opening and closing the inflow port 51b, when the engine is started, by closing the regulating valve 55, the through hole 51a is closed, so that the entire amount of the exhaust gas a passes through the sub-catalyst 51. From the secondary catalyst 51
The exhaust gas can be purified immediately at
Emission of C amount can be reduced.
【0041】そして上記副触媒51の温度が所定値以上
に達した場合には、調整弁55が全開して貫通孔51a
を開けるので、排気ガスaは貫通孔51a内を通り、副
触媒内を通ることなく上記主触媒50に導入されるの
で、副触媒51が異常昇温することはなく、該副触媒5
1の溶損,寿命低下を防止できる。またこの時点では主
触媒50は十分に活性化しており、該主触媒50で排気
ガスの浄化が行われることとなる。このようにしてエン
ジン始動時から通常運転の全領域に渡って排気ガス浄化
を確実に行える。When the temperature of the sub-catalyst 51 reaches a predetermined value or more, the regulating valve 55 is fully opened and the through-hole 51a
The exhaust gas a passes through the through-hole 51a and is introduced into the main catalyst 50 without passing through the sub-catalyst, so that the sub-catalyst 51 does not abnormally rise in temperature, and
1 can be prevented from being melted down or shortened in life. At this time, the main catalyst 50 is sufficiently activated, and the main catalyst 50 purifies the exhaust gas. In this way, the exhaust gas can be reliably purified over the entire range of the normal operation from the start of the engine.
【0042】また本実施形態では、上記調整弁55の両
側方に副触媒51の上流側端面51cを開閉する遮蔽弁
56を配設し、上記調整弁55が貫通孔51aを開けた
ときには副触媒51を閉塞するようにしたので、高温の
排気ガスが副触媒51内流れるのを確実に防止でき、該
副触媒51が過熱して溶損したり,シンタリングにより
劣化したりするのを確実に防止でき、副触媒51の寿命
を向上できる。In this embodiment, a shielding valve 56 for opening and closing the upstream end face 51c of the sub-catalyst 51 is provided on both sides of the regulating valve 55. When the regulating valve 55 opens the through hole 51a, the sub-catalyst is opened. Since the block 51 is closed, high-temperature exhaust gas can be reliably prevented from flowing in the sub-catalyst 51, and the sub-catalyst 51 can be reliably prevented from being overheated and melted or deteriorated by sintering. As a result, the life of the sub-catalyst 51 can be improved.
【0043】図7は、本実施形態の効果を確認するため
に行った実験結果を示す特性図である。図中、曲線A,
Bはそれぞれ副触媒を備えていない場合,備えている場
合の主触媒出側排気ガスのHC浄化率とエンジン始動か
らの経過時間の関係を示す。同図からも明らかなよう
に、副触媒を備えている場合(曲線B参照)は、エンジ
ン始動後排気ガス温度が副触媒の活性開始温度(T1)
に上昇するまでには時間(t1 )はほとんどかからない
ことから該副触媒が直ちに活性化し、該副触媒の触媒作
用により排気ガス中のHC成分が短時間で浄化する。ま
た酸化反応により主触媒に流入する排気ガス温度が上昇
し、これにより副触媒が無い場合より短時間(t2 −t
1 )で主触媒活性開始温度に上昇する。これにより全体
の浄化率が短時間で上昇する。一方、副触媒を備えてい
ない場合(曲線A参照)は、主触媒に流入する排気ガス
温度が主触媒活性開始温度(T2 )になるまでにかなり
の時間(t2 )がかかり、結局全体の浄化率が低いまま
の時間が長くなる。図2に示す様に副触媒51を配置す
る場合、エンジン始動後HC浄化率がほぼ100%とな
る時間(ta )より僅かに経過する時間(tb )まで
は、遮蔽弁56を開,調整弁55を閉とし、それ以降は
遮蔽弁56を閉,調整弁55を開とする。FIG. 7 is a characteristic diagram showing the results of an experiment performed to confirm the effect of the present embodiment. In the figure, curve A,
B shows the relationship between the HC purification rate of the exhaust gas on the main catalyst outlet side and the elapsed time from the start of the engine when the auxiliary catalyst is not provided and when the auxiliary catalyst is provided. As is clear from the figure, when the auxiliary catalyst is provided (see the curve B), the exhaust gas temperature after the start of the engine becomes the activation start temperature (T 1 ) of the auxiliary catalyst.
Since the time (t 1 ) hardly takes time until the temperature rises, the sub-catalyst is immediately activated, and the catalytic action of the sub-catalyst purifies HC components in the exhaust gas in a short time. Further, the temperature of the exhaust gas flowing into the main catalyst rises due to the oxidation reaction, and as a result, a shorter time (t 2 -t
In 1 ), the main catalyst activation temperature rises. This increases the overall purification rate in a short time. On the other hand, when the secondary catalyst is not provided (see curve A), it takes a considerable time (t 2 ) for the temperature of the exhaust gas flowing into the main catalyst to reach the main catalyst activation start temperature (T 2 ). The time that the purification rate remains low is prolonged. When the sub-catalyst 51 is arranged as shown in FIG. 2, the shielding valve 56 is opened and closed until a time (t b ) slightly elapses from a time (t a ) at which the HC purification rate becomes almost 100% after the engine is started. The regulating valve 55 is closed, and thereafter, the shielding valve 56 is closed and the regulating valve 55 is opened.
【0044】なお、上記実施形態では、調整弁55の両
側方に副触媒51の上流側端51cを開閉する遮蔽弁5
6を配設した場合を説明したが、本発明では、遮蔽弁は
必ずしも設ける必要はなく、調整弁単体で排気ガスの流
れを制御するようにしてもよい。この調整弁単体で行う
場合には、副触媒の活性開始温度を少し高めの150℃
〜200℃程度に設定するのが望ましい。これにより排
気ガスの一部が高温時にも副触媒中を流れることによる
温度上昇があっても副触媒の溶損を防止でき、必要な寿
命を確保できる。In the above embodiment, the shut-off valve 5 for opening and closing the upstream end 51c of the sub-catalyst 51 is provided on both sides of the regulating valve 55.
Although the case where 6 is provided has been described, in the present invention, the shut-off valve is not necessarily provided, and the flow of exhaust gas may be controlled by the adjusting valve alone. When the control valve is used alone, the activation start temperature of the sub-catalyst is raised slightly to 150 ° C.
It is desirable to set to about 200 ° C. Thereby, even when a part of the exhaust gas is at a high temperature, even if there is a temperature rise due to the flow in the sub-catalyst, the sub-catalyst can be prevented from being melted, and a necessary life can be secured.
【0045】また、上記実施形態では、ガス燃料エンジ
ンを例に説明したが、本発明はこれに限られるものでは
なく、ガソリンエンジン,あるいはディゼルエンジンに
も適用でき、また2サイクルエンジンにも勿論適用でき
る。In the above embodiment, a gas fuel engine has been described as an example. However, the present invention is not limited to this. The present invention can be applied to a gasoline engine or a diesel engine. it can.
【0046】図8は、自動車,自動二輪車用ガソリンエ
ンジンの排気ガス浄化装置を示し、このエンジン80
は、燃料噴射式4サイクル4気筒エンジンであり、該エ
ンジン80の排気通路は、各気筒の排気ポートに排気マ
ニホールド81の分岐管81aを接続し、これを1つの
排気管82に合流させた構造のものである。そして上記
排気管82の下流部にはマフラ83が介設されている。
該排気管82のマフラ83の上流側には主触媒50が配
設されており、該主触媒50の上流側の上記合流部には
副触媒51が配設されている。このエンジン80におい
ても上記実施形態と同様の効果が得られる。FIG. 8 shows an exhaust gas purifying apparatus for a gasoline engine for an automobile or a motorcycle.
Is a fuel injection type four-cycle four-cylinder engine. An exhaust passage of the engine 80 has a structure in which a branch pipe 81a of an exhaust manifold 81 is connected to an exhaust port of each cylinder, and the branch pipe 81a is joined to one exhaust pipe 82. belongs to. A muffler 83 is provided downstream of the exhaust pipe 82.
A main catalyst 50 is disposed on the upstream side of the muffler 83 of the exhaust pipe 82, and a sub-catalyst 51 is disposed on the merging portion on the upstream side of the main catalyst 50. The same effects as those of the above embodiment can be obtained in the engine 80.
【0047】図9(a)は請求項4の発明に係る第2実
施形態における排気ガス浄化装置を示す。本第2実施形
態では、主触媒50と副触媒51とをそれぞれ排気通路
の一部を塞ぐように、かつ直列に配置し、上流側となる
主触媒50の前方に排気流aの方向を該主触媒50側又
は側路50a側に切り換る主触媒用排気流切換弁100
と、副触媒51の前方に排気流の方向を該副触媒51側
又は側路51a側に切り換る副触媒用排気流切換弁20
0とを配置した例である。FIG. 9A shows an exhaust gas purifying apparatus according to a second embodiment of the present invention. In the second embodiment, the main catalyst 50 and the sub-catalyst 51 are respectively arranged in series so as to close a part of the exhaust passage, and the direction of the exhaust flow a is set forward of the main catalyst 50 on the upstream side. Exhaust flow switching valve 100 for the main catalyst that switches to the main catalyst 50 side or the side path 50a side
And a sub-catalyst exhaust flow switching valve 20 for switching the direction of the exhaust flow forward of the sub-catalyst 51 to the side of the sub-catalyst 51 or the side path 51a.
This is an example in which 0 is arranged.
【0048】本第2実施形態では、排気ガス温センサ1
10aが低温時には、主触媒用排気流切換弁100が1
00b位置、副触媒用排気流切換弁200が200b位
置とされ、排気ガス温センサ110aが第1の所定値以
上、あるいは副触媒下流排気ガス温センサ110bが第
1の所定温度より高い第2の所定温度以上となる時、主
触媒用排気流切換弁100が100c位置、副触媒用排
気流切換弁200が200c位置とされる。以上の構成
により図2〜図6に示す最初の実施形態と同様の作用・
効果を有する。In the second embodiment, the exhaust gas temperature sensor 1
When 10a is at a low temperature, the main catalyst exhaust flow switching valve 100
00b position, the sub-catalyst exhaust flow switching valve 200 is at the 200b position, and the exhaust gas temperature sensor 110a is at or above the first predetermined value, or the sub-catalyst downstream exhaust gas temperature sensor 110b is at or above the second predetermined temperature. When the temperature is equal to or higher than the predetermined temperature, the main catalyst exhaust flow switching valve 100 is set to the position 100c, and the auxiliary catalyst exhaust flow switching valve 200 is set to the position 200c. With the above configuration, the same operation and effect as those of the first embodiment shown in FIGS.
Has an effect.
【0049】さらにまた、主触媒下流排気ガス温センサ
110cが上記第2の所定温度より高い第3の所定温度
以上となる時、スロットル弁が絞られエンジン出力が制
限され、このようにして主媒体50の保護がなされる。Further, when the temperature of the main catalyst downstream exhaust gas temperature sensor 110c becomes equal to or higher than the third predetermined temperature higher than the second predetermined temperature, the throttle valve is throttled to limit the engine output. Fifty protections are provided.
【0050】図9(b)は請求項5の発明の第3実施形
態を示す図である。本第3実施形態では、主媒体50と
副触媒51とが、両者で排気通路を塞ぐように、かつ並
列に配置されている。また両触媒50,51の境界部上
流端には、排気流aの方向を主触媒50側とするか副触
媒51側とするか何れかに切り換える排気流切換弁30
0が配置されている。FIG. 9B is a diagram showing a third embodiment of the present invention. In the third embodiment, the main medium 50 and the sub-catalyst 51 are arranged in parallel such that both of them block the exhaust passage. At the upstream end of the boundary between the two catalysts 50 and 51, an exhaust flow switching valve 30 for switching the direction of the exhaust flow a to either the main catalyst 50 side or the auxiliary catalyst 51 side.
0 is arranged.
【0051】本実施形態では排気ガス温センサ110a
が低温時には、切換弁300が300b位置とされ、排
気ガス温センサ110aが第1の所定値以上、あるいは
副触媒下流排気ガス温センサ110bが第2の所定温度
以上となる時、切換弁300が300c位置とされる。
この場合も同様に、以上の構成により図2〜図6に示す
最初の実施形態と同様の作用・効果を有する。In this embodiment, the exhaust gas temperature sensor 110a
When the temperature is low, the switching valve 300 is set to the 300b position, and when the exhaust gas temperature sensor 110a becomes equal to or higher than the first predetermined value or the auxiliary catalyst downstream exhaust gas temperature sensor 110b becomes equal to or higher than the second predetermined temperature, the switching valve 300 is turned on. The position is 300c.
In this case, similarly, the above configuration has the same operation and effect as the first embodiment shown in FIGS.
【0052】さらにまた主触媒下流排気ガス温センサ1
10cが上記第2の所定温度より高い第3の所定温度以
上となる時、スロットル弁が絞られエンジン出力が制限
され、これにより主触媒50の保護がなされる。Further, an exhaust gas temperature sensor 1 downstream of the main catalyst
When 10c becomes equal to or higher than the third predetermined temperature higher than the second predetermined temperature, the throttle valve is throttled to limit the engine output, thereby protecting the main catalyst 50.
【図1】請求項1〜3の発明に係る第1実施形態による
排気ガス浄化装置が配設されたエンジン駆動式空気調和
装置の構成図である。FIG. 1 is a configuration diagram of an engine-driven air conditioner provided with an exhaust gas purifying device according to a first embodiment of the present invention.
【図2】上記排気ガス浄化装置の断面平面図である。FIG. 2 is a cross-sectional plan view of the exhaust gas purification device.
【図3】上記排気ガス浄化装置の副触媒の駆動機構を示
す平面図である。FIG. 3 is a plan view showing a drive mechanism of a sub-catalyst of the exhaust gas purifying device.
【図4】上記副触媒の駆動機構を示す断面正面図(図3
のIV-IV 線断面図) である。FIG. 4 is a cross-sectional front view showing a driving mechanism of the auxiliary catalyst (FIG. 3)
FIG. 4 is a sectional view taken along line IV-IV of FIG.
【図5】上記副触媒の開閉弁の閉状態を示す断面平面図
である。FIG. 5 is a cross-sectional plan view showing a closed state of the on-off valve of the auxiliary catalyst.
【図6】上記副触媒の開閉弁の開状態を示す断面平面図
である。FIG. 6 is a cross-sectional plan view showing an open state of the on-off valve of the auxiliary catalyst.
【図7】上記排気ガス浄化装置の効果を示す特性図であ
る。FIG. 7 is a characteristic diagram showing an effect of the exhaust gas purification device.
【図8】上記排気ガス浄化装置を自動車,自動二輪車用
エンジンの概略図である。FIG. 8 is a schematic view of an engine for an automobile and a motorcycle using the exhaust gas purifying apparatus.
【図9】請求項4,5の発明に係る第2,第3実施形態
による排気ガス浄化装置を示す図である。FIG. 9 is a view showing an exhaust gas purifying apparatus according to second and third embodiments according to the fourth and fifth aspects of the present invention.
6 エンジン(内燃機関) 31 排気管 50 主触媒 51 副触媒 51a 貫通孔 51b 排気ガス流入口 51c 上流側端面 55 調整弁 56 遮蔽弁 100,200 副,主触媒用排気流切換弁 300 切換弁 Reference Signs List 6 engine (internal combustion engine) 31 exhaust pipe 50 main catalyst 51 sub-catalyst 51a through hole 51b exhaust gas inlet 51c upstream end face 55 regulating valve 56 shielding valve 100, 200 exhaust flow switching valve for auxiliary and main catalyst 300 switching valve
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G091 AA02 AA03 AA06 AA15 AA17 AA18 AA19 AA23 AB02 AB03 BA04 BA07 BA08 BA15 BA32 CA07 CA12 CA13 CB07 DA05 DB10 EA01 EA17 EA30 EA33 EA34 GB05W GB06W GB07W HA08 HA36 HA37 HA42 HB03 ────────────────────────────────────────────────── ─── Continued on the front page F-term (reference)
Claims (5)
設した内燃機関の排気ガス浄化装置において、上記排気
通路の途中に、主触媒と該主触媒より活性開始温度が低
い副触媒とを配設し、該副触媒を通過する排気ガス流量
を、該副触媒の温度が高いときより低いときの方が多く
なるように調整するガス流量調整手段を設けたことを特
徴とする内燃機関の排気ガス浄化装置。In an exhaust gas purifying apparatus for an internal combustion engine, wherein a catalyst for purifying exhaust gas is disposed in an exhaust passage, a main catalyst and a sub-catalyst whose activation start temperature is lower than that of the main catalyst are provided in the exhaust passage. A gas flow rate adjusting means for adjusting the flow rate of the exhaust gas passing through the sub-catalyst when the temperature of the sub-catalyst is lower than when the temperature of the sub-catalyst is higher. Exhaust gas purification device.
に、主触媒を下流側に配設し、上記ガス流量調整手段
は、上記副触媒に排気ガスが通り抜ける貫通孔を形成
し、該貫通孔の排気ガス流通面積を調整する調整弁を配
設し、上記副触媒の温度が高いときより低いときの上記
排気ガス流通面積が狭くなるように上記調整弁を開閉駆
動するように構成されていることを特徴する内燃機関の
排気ガス浄化装置。2. The method according to claim 1, wherein the sub-catalyst is disposed upstream and the main catalyst is disposed downstream, and the gas flow rate adjusting means forms a through hole through which exhaust gas passes through the sub-catalyst. An adjustment valve for adjusting the exhaust gas flow area of the through hole is provided, and the control valve is configured to open and close so that the exhaust gas flow area becomes narrower when the temperature of the auxiliary catalyst is lower than when the temperature is high. An exhaust gas purifying device for an internal combustion engine, comprising:
段は、上記副触媒の上流側端面を覆う閉位置と露出させ
る開位置との間で開閉する遮蔽弁を備え、該遮蔽弁は上
記調整弁が貫通孔を閉じたときには開位置に、該貫通孔
を開けたときには閉位置に位置するように開閉駆動され
ることを特徴とする内燃機関の排気ガス浄化装置。3. The gas flow adjusting device according to claim 2, wherein the gas flow rate adjusting means includes a shut-off valve that opens and closes between a closed position that covers an upstream end surface of the sub-catalyst and an open position that exposes the auxiliary catalyst. An exhaust gas purifying device for an internal combustion engine, wherein the valve is driven to open and close so as to be at an open position when the valve closes the through hole and at a closed position when the valve opens the through hole.
媒を、それぞれが排気通路の一部を塞ぐ形状とするとと
もに、排気ガス流れ方向に沿って直列に配置し、上記ガ
ス流量調整手段を、主触媒用排気流切換弁と、副触媒用
排気流切換弁とで構成したことを特徴とする内燃機関の
排気ガス浄化装置。4. The gas flow control device according to claim 1, wherein the main catalyst and the sub-catalyst each have a shape that closes a part of an exhaust passage, and are arranged in series along an exhaust gas flow direction. An exhaust gas purifying apparatus for an internal combustion engine, comprising an exhaust flow switching valve for a main catalyst and an exhaust flow switching valve for a sub-catalyst.
を、両触媒により排気通路を塞ぐ形状とするとともに、
並列に配置し、上記ガス流量調整手段を、排気流を主触
媒側又は副触媒側に切り換える切換弁により構成したこ
とを特徴とする内燃機関の排気ガス浄化装置。5. The method according to claim 1, wherein the main catalyst and the sub-catalyst have a shape in which an exhaust passage is closed by both catalysts.
An exhaust gas purifying apparatus for an internal combustion engine, wherein the exhaust gas purifying device is arranged in parallel, and the gas flow rate adjusting means is constituted by a switching valve for switching an exhaust flow to a main catalyst side or a sub-catalyst side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11010303A JP2000204931A (en) | 1999-01-19 | 1999-01-19 | Exhaust emission control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11010303A JP2000204931A (en) | 1999-01-19 | 1999-01-19 | Exhaust emission control device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000204931A true JP2000204931A (en) | 2000-07-25 |
Family
ID=11746495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11010303A Pending JP2000204931A (en) | 1999-01-19 | 1999-01-19 | Exhaust emission control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000204931A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002040215A1 (en) * | 2000-11-17 | 2002-05-23 | Ngk Insulators, Ltd. | Assembly method utilizing display information, and assembly fabricated by the assembly method |
WO2005103460A1 (en) * | 2004-04-27 | 2005-11-03 | Koenigsegg Automotive Ab | An exhaust-cleaning device for internal combustion engines besides a vehicle comprising such an exhaust-cleaning device and an extension for exhaust-cleaning devices |
CN1294345C (en) * | 2002-10-29 | 2007-01-10 | 本田技研工业株式会社 | Exhauster of I.C. engine |
JP2009144678A (en) * | 2007-12-18 | 2009-07-02 | Toyota Motor Corp | Catalyst bypass control device |
JP2014084822A (en) * | 2012-10-25 | 2014-05-12 | Isuzu Motors Ltd | Exhaust gas cleaning system and exhaust gas cleaning method |
WO2016098618A1 (en) * | 2014-12-16 | 2016-06-23 | フタバ産業株式会社 | Exhaust heat recovery device |
-
1999
- 1999-01-19 JP JP11010303A patent/JP2000204931A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002040215A1 (en) * | 2000-11-17 | 2002-05-23 | Ngk Insulators, Ltd. | Assembly method utilizing display information, and assembly fabricated by the assembly method |
WO2002040216A1 (en) * | 2000-11-17 | 2002-05-23 | Ngk Insulators, Ltd. | Assembly method utilizing display information, and assembly fabricated by the assembly method |
US6948243B2 (en) | 2000-11-17 | 2005-09-27 | Ngk Insulators, Ltd. | Assembly method using marked information and assembly assembled by said assembling method |
US7721438B2 (en) | 2000-11-17 | 2010-05-25 | Ngk Insulators, Ltd. | Assembling method using marked information and assembly assembled by said assembling method |
CN1294345C (en) * | 2002-10-29 | 2007-01-10 | 本田技研工业株式会社 | Exhauster of I.C. engine |
WO2005103460A1 (en) * | 2004-04-27 | 2005-11-03 | Koenigsegg Automotive Ab | An exhaust-cleaning device for internal combustion engines besides a vehicle comprising such an exhaust-cleaning device and an extension for exhaust-cleaning devices |
JP2009144678A (en) * | 2007-12-18 | 2009-07-02 | Toyota Motor Corp | Catalyst bypass control device |
JP2014084822A (en) * | 2012-10-25 | 2014-05-12 | Isuzu Motors Ltd | Exhaust gas cleaning system and exhaust gas cleaning method |
WO2016098618A1 (en) * | 2014-12-16 | 2016-06-23 | フタバ産業株式会社 | Exhaust heat recovery device |
JP2016113979A (en) * | 2014-12-16 | 2016-06-23 | フタバ産業株式会社 | Exhaust heat recovery device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4486963B2 (en) | Exhaust device for internal combustion engine | |
KR100446843B1 (en) | Emission Control System Of Internal Combustion Engine | |
EP0591677B1 (en) | Engine cooling system | |
JP3514230B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH05231138A (en) | Exhaust gas purification equipment for automobiles | |
JP2000204931A (en) | Exhaust emission control device for internal combustion engine | |
JP2002030930A (en) | Internal combustion engine having a combustion heater | |
JP3774910B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3558019B2 (en) | Abnormality detection device for reducing agent supply device | |
JP2002122019A (en) | Exhaust gas purification device for internal combustion engine | |
JP2800579B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH108943A (en) | Exhaust system cooling device | |
JP7472846B2 (en) | Engine System | |
JP3248290B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH0988563A (en) | Exhaust device for internal combustion engine | |
JP2004211649A (en) | EGR cooler system | |
JP3463095B2 (en) | Gas engine with deodorizer | |
JPH11141331A (en) | Emission control device of engine with turbo charger | |
JP2021116793A (en) | Internal combustion engine with exhaust turbo supercharger | |
JP3520477B2 (en) | Gas engine with deodorizer | |
JP2006037931A (en) | Intake air heating device for internal combustion engine | |
JP2001132553A (en) | EGR gas cooling device | |
JP2882736B2 (en) | Air introduction device in exhaust pipe of internal combustion engine | |
JP2002115535A (en) | Exhaust emission control device for internal combustion engine | |
JPH10299464A (en) | Engine with exhaust emission controlling catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090512 |