JP2000195885A - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereofInfo
- Publication number
- JP2000195885A JP2000195885A JP10367526A JP36752698A JP2000195885A JP 2000195885 A JP2000195885 A JP 2000195885A JP 10367526 A JP10367526 A JP 10367526A JP 36752698 A JP36752698 A JP 36752698A JP 2000195885 A JP2000195885 A JP 2000195885A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor device
- electrode
- barrier metal
- solder
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
Landscapes
- Wire Bonding (AREA)
Abstract
(57)【要約】
【課題】 Pbフリーはんだで半導体素子と回路基板を
フリップチップ接合してなる半導体装置において、信頼
性の高いはんだ接合を実現すると共に、電極/バリヤメ
タル層の膜厚の制御を不要とし、製造コストの削減に寄
与することを目的とする。
【解決手段】 半導体素子11の上にNi−Cr、Ni
−Mo又はNi−Wの合金膜を第1の電極/バリヤメタ
ル層13aとして無電解メッキにより形成し、回路基板
21の上にもNi−Cr、Ni−Mo又はNi−Wの合
金膜を第2の電極/バリヤメタル層24aとして無電解
メッキにより形成し、第1の電極/バリヤメタル層13
a上にPbフリーはんだのはんだバンプ15aを形成
し、はんだバンプ15aを第2の電極/バリヤメタル層
24aに押し付けてフリップチップ接合を行う。
PROBLEM TO BE SOLVED: To realize a highly reliable solder joint and to control the thickness of an electrode / barrier metal layer in a semiconductor device in which a semiconductor element and a circuit board are flip-chip joined with Pb-free solder. The purpose is to make it unnecessary and to contribute to the reduction of manufacturing costs. SOLUTION: Ni-Cr, Ni is formed on a semiconductor element 11.
-Mo or Ni-W alloy film is formed as the first electrode / barrier metal layer 13a by electroless plating, and the Ni-Cr, Ni-Mo or Ni-W alloy film is also formed on the circuit board 21 as the second electrode. The first electrode / barrier metal layer 13a is formed by electroless plating as an electrode / barrier metal layer 24a.
A solder bump 15a of Pb-free solder is formed on a, and the solder bump 15a is pressed against the second electrode / barrier metal layer 24a to perform flip chip bonding.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体装置に係
り、特に、錫(Sn)を主成分とする鉛(Pb)フリー
はんだで半導体素子と回路基板をフリップチップ接合し
てなる半導体装置においてはんだ接合の際に用いる電極
の形成技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device in which a semiconductor element and a circuit board are flip-chip bonded with lead (Pb) -free solder containing tin (Sn) as a main component. The present invention relates to a technique for forming an electrode used for bonding.
【0002】[0002]
【従来の技術】近年、電子部品の高密度実装化に伴い、
入出力端子数の多端子化及び端子間のピッチの微細化が
進行し、LSIチップと基板の接合方法として、従来の
ワイヤボンディング法から、配線長が短く一括接合が可
能なフリップチップ接合方法が主流となっている。2. Description of the Related Art In recent years, with the high-density mounting of electronic components,
As the number of input / output terminals has increased and the pitch between terminals has been reduced, a flip-chip bonding method, which has a shorter wiring length and can perform collective bonding, has been used as a bonding method between an LSI chip and a substrate. It has become mainstream.
【0003】フリップチップ接合では、LSIチップの
電極(パッド)に形成された金属のバンプ(典型的には
はんだバンプ)を回路基板上の対応する電極(パッド)
に押し付けることで半導体素子のベア・チップと基板を
直接接合している。このはんだバンプを構成する材料と
しては、これまでにPbとSnの合金、とりわけPbを
主成分とするはんだ(以下、便宜上「Pb系はんだ」と
いう。)が多く使用されていた。かかるPb系はんだを
用いた一例が図1に示される。In flip chip bonding, a metal bump (typically, a solder bump) formed on an electrode (pad) of an LSI chip is connected to a corresponding electrode (pad) on a circuit board.
To directly bond the bare chip of the semiconductor element and the substrate. As a material for forming the solder bump, an alloy of Pb and Sn, particularly a solder containing Pb as a main component (hereinafter, referred to as “Pb-based solder” for convenience) has been often used. One example using such a Pb-based solder is shown in FIG.
【0004】図1は従来例に係る半導体装置におけるフ
リップチップ接合部の構成を断面図の形で模式的に示し
たものである。FIG. 1 schematically shows a configuration of a flip chip bonding portion in a semiconductor device according to a conventional example in the form of a sectional view.
【0005】図中、11は半導体チップの本体を構成す
るシリコン(Si)基板上に形成された半導体素子、1
2はチタン(Ti)膜、13はニッケル(Ni)膜、1
4はPb系はんだ(例えばPb−5%Sn)のはんだバ
ンプ、21はアルミナ、窒化アルミニウム(AlN)又
は樹脂からなる回路基板、22はクロム(Cr)膜、2
3は銅(Cu)膜、24はNi膜、25は金(Au)膜
を示す。In the figure, reference numeral 11 denotes a semiconductor element formed on a silicon (Si) substrate constituting a main body of a semiconductor chip;
2 is a titanium (Ti) film, 13 is a nickel (Ni) film, 1
4 is a Pb-based solder (for example, Pb-5% Sn) solder bump, 21 is a circuit board made of alumina, aluminum nitride (AlN) or resin, 22 is a chromium (Cr) film, 2
Reference numeral 3 denotes a copper (Cu) film, 24 denotes a Ni film, and 25 denotes a gold (Au) film.
【0006】図示のように、半導体素子11と回路基板
21の間ではんだ接合を行うのに用いる電極層は、半導
体素子11については、そのSi基板上のアルミニウム
(Al)電極(図示せず)上から順にTi膜12及びN
i膜13の膜構成となっており、回路基板21について
は、その配線層を構成するCr/Cu膜22,23上に
順にNi膜24及びAu膜25の膜構成となっている。As shown in the figure, an electrode layer used for soldering between the semiconductor element 11 and the circuit board 21 is an aluminum (Al) electrode (not shown) on the Si substrate of the semiconductor element 11. Ti film 12 and N
The i-film 13 has a film configuration, and the circuit board 21 has a Ni film 24 and an Au film 25 on the Cr / Cu films 22 and 23 constituting the wiring layer in this order.
【0007】かかる半導体装置を作製するプロセスとし
ては、先ず半導体素子11と回路基板21に対してそれ
ぞれ電極層を形成し、次いで半導体素子11上の電極層
の上にはんだバンプ14を形成し、このはんだバンプ1
4を太い矢印で示すように回路基板21上の電極層に押
し付けることでフリップチップ接合を行う。この際、フ
リップチップ接合に用いるはんだ材料(はんだバンプ1
4)に含まれるSnの含有量は重量比にして5%程度で
あるため、つまり、殆どがPbで構成されているため、
フリップチップ接合を行った場合に良好なはんだ接合部
を形成することができる。As a process for manufacturing such a semiconductor device, first, an electrode layer is formed on each of the semiconductor element 11 and the circuit board 21, and then a solder bump 14 is formed on the electrode layer on the semiconductor element 11. Solder bump 1
4 is pressed against the electrode layer on the circuit board 21 as indicated by a thick arrow to perform flip chip bonding. At this time, the solder material (solder bump 1) used for flip chip bonding is used.
Since the content of Sn contained in 4) is about 5% by weight, that is, most of the composition is Pb,
A good solder joint can be formed when flip-chip joining is performed.
【0008】しかし、Pbは多くの同位体が存在し、こ
れら同位体はウラン(U)、トリウム(Th)の崩壊系
列中の中間生成物或いは最終生成物であり、崩壊の際に
ヘリウム(He)原子を放出するα崩壊を伴うことか
ら、はんだ中のPbよりα線を生じる。そして、そのα
線が半導体素子(CMOS素子)に到達してソフトエラ
ーを発生することが近年報告されている。また、Pbは
土壌に流出すると酸性雨によって溶け出し環境に影響を
及ぼすことがわかっており、環境の面からもPbを使用
しないはんだ(以下、「Pbフリーはんだ」という。)
が強く求められている。However, Pb has many isotopes, and these isotopes are intermediate products or final products in the decay series of uranium (U) and thorium (Th), and helium (He) ) Α-rays are generated from Pb in the solder due to the α-decay that releases atoms. And that α
It has recently been reported that lines reach semiconductor devices (CMOS devices) and cause soft errors. Further, it is known that Pb melts out due to acid rain when it flows into the soil, which affects the environment. Therefore, solder that does not use Pb also from an environmental point of view (hereinafter, referred to as “Pb-free solder”).
Is strongly required.
【0009】そこで、かかるPbフリーはんだの一例と
して、放射性不純物の比較的少ないSnを主成分とする
はんだ(以下、便宜上「Sn系はんだ」という。)が使
われ始めている。このSn系はんだは、Snに銀(A
g)、ビスマス(Bi)、アンチモン(Sb)、亜鉛
(Zn)、インジウム(In)等が混合又は添加され
る。この混合される量又は添加される量は、使用するは
んだ材料の温度階層によって異なるが、CMOS素子等
のはんだ接合においては、Snの組成比が90%以上含
まれる、200℃以上の比較的高融点のはんだ材料が用
いられている。Therefore, as an example of such a Pb-free solder, a solder containing Sn as a main component having a relatively small amount of radioactive impurities (hereinafter referred to as "Sn-based solder" for convenience) has begun to be used. This Sn-based solder uses silver (A
g), bismuth (Bi), antimony (Sb), zinc (Zn), indium (In) and the like are mixed or added. The amount to be mixed or added differs depending on the temperature hierarchy of the solder material to be used. However, in a solder joint of a CMOS element or the like, a relatively high temperature of 200 ° C. or more containing 90% or more of the Sn composition ratio is included. A melting point solder material is used.
【0010】なお、以下の記述において、特に定義しな
い限り、「%」とは『重量%』を指すものとする。In the following description, "%" means "% by weight" unless otherwise specified.
【0011】[0011]
【発明が解決しようとする課題】しかしながら、Snの
組成比が90%以上のSn系はんだを使用した場合、上
述した従来例(図1参照)で示すような電極層の膜構成
/膜厚ではんだ接合を行うと、各電極層を構成している
材料のNi(13,24)やCu(23)は、はんだ接
合の際の温度サイクル中にはんだバンプ14中のSnと
反応し、はんだ中に拡散すると共に、Ni−Sn、Cu
−Snといった金属間化合物を形成する。その結果、半
導体素子11上の電極層において最も膜厚の大きいNi
膜13の膜厚が特に減少し、接合強度が低下したり、バ
ンプ欠けや破断等が生じたり、また熱サイクル試験等の
信頼性試験の際に接合不良や導通不可等の障害が生じ
て、はんだ接合の信頼性が低下するといった問題があっ
た。However, when an Sn-based solder having a composition ratio of Sn of 90% or more is used, the film configuration / film thickness of the electrode layer as shown in the above-described conventional example (see FIG. 1). When solder bonding is performed, Ni (13, 24) or Cu (23) of the material constituting each electrode layer reacts with Sn in the solder bumps 14 during the temperature cycle at the time of solder bonding, so that the material in the solder is removed. And Ni-Sn, Cu
An intermetallic compound such as -Sn is formed. As a result, the Ni layer having the largest film thickness in the electrode layer on the semiconductor element 11 is formed.
In particular, the thickness of the film 13 is reduced, the bonding strength is reduced, bumps are broken or broken, and failures such as poor bonding and non-conduction are caused during a reliability test such as a thermal cycle test. There has been a problem that the reliability of the solder joint is reduced.
【0012】本件出願人は、かかる問題点に対処するた
めの技術を以前に提案した(例えば特開平10−413
03号公報参照)。この提案された技術では、電極層を
構成している材料のNiがはんだ材料中へ拡散するのを
遅らせるか或いは阻止するようにしており、そのための
手段として、Ni膜とCr膜を層状に形成したものを電
極/バリヤメタル層として用い、この電極/バリヤメタ
ル層を真空蒸着法或いはスパッタ法により形成し、さら
にCr膜の膜厚を薄く(200〜2000Å)してい
る。つまり、Cr膜が存在することで、NiがSn系は
んだ中に拡散するのを抑制することができる。また、S
nとCrは固溶せず金属間化合物を形成しないという特
性を利用し、Cr膜の膜厚を薄くすることで、はんだ接
合の信頼性を損なうことなくバリヤメタルとしての機能
を保つことができる。The present applicant has previously proposed a technique for addressing such a problem (for example, Japanese Patent Application Laid-Open No. H10-413).
No. 03). In this proposed technique, the diffusion of Ni of the material constituting the electrode layer into the solder material is delayed or prevented. As a means for this, a Ni film and a Cr film are formed in layers. This is used as an electrode / barrier metal layer, and this electrode / barrier metal layer is formed by a vacuum deposition method or a sputtering method, and the Cr film is made thinner (200 to 2000 °). That is, the presence of the Cr film can suppress Ni from diffusing into the Sn-based solder. Also, S
By making use of the characteristic that n and Cr do not form a solid solution and do not form an intermetallic compound, and by reducing the thickness of the Cr film, the function as a barrier metal can be maintained without impairing the reliability of the solder joint.
【0013】しかし、この提案された技術では、電極/
バリヤメタル層は積層構造で形成されているため、Ni
膜やCr膜を最適な膜厚に制御する必要があり、そのた
めの処理等が煩雑であるといった不利がある。また、電
極/バリヤメタル層を真空蒸着法により形成しているた
め、真空装置を必要とし、そのために製造コストがかか
るといった不利もある。よって、改善の余地が残されて
いる。However, in this proposed technique, the electrode /
Since the barrier metal layer is formed in a laminated structure, Ni
It is necessary to control the thickness of the film or the Cr film to an optimum thickness, and there is a disadvantage that the processing for that is complicated. In addition, since the electrode / barrier metal layer is formed by a vacuum deposition method, a vacuum device is required, and there is a disadvantage that the manufacturing cost is increased. Therefore, there is room for improvement.
【0014】本発明は、上述した従来技術における課題
に鑑み創作されたもので、信頼性の高いはんだ接合を実
現すると共に、電極/バリヤメタル層の膜厚の制御を不
要とし、製造コストの削減に寄与することができる半導
体装置及びその製造方法を提供することを目的とする。The present invention has been made in view of the above-mentioned problems in the prior art, and realizes a highly reliable solder joint, eliminates the need for controlling the thickness of the electrode / barrier metal layer, and reduces the manufacturing cost. It is an object of the present invention to provide a semiconductor device and a manufacturing method thereof that can contribute.
【0015】[0015]
【課題を解決するための手段】上記の課題を解決するた
め、本発明によれば、Snを主成分とするPbフリーは
んだで半導体素子と回路基板をフリップチップ接合して
なる半導体装置を製造する方法であって、前記半導体素
子の上にNiを主成分とするNi−Cr、Ni−Mo又
はNi−Wの合金膜を第1の電極/バリヤメタル層とし
て無電解メッキにより形成し、前記回路基板の上にNi
を主成分とするNi−Cr、Ni−Mo又はNi−Wの
合金膜を第2の電極/バリヤメタル層として無電解メッ
キにより形成し、前記第1の電極/バリヤメタル層上に
前記Pbフリーはんだのはんだバンプを形成し、前記は
んだバンプを前記第2の電極/バリヤメタル層に押し付
けて前記フリップチップ接合を行うことを特徴とする半
導体装置の製造方法が提供される。According to the present invention, there is provided, according to the present invention, a semiconductor device in which a semiconductor element and a circuit board are flip-chip bonded with Pb-free solder containing Sn as a main component. Forming a Ni-Cr, Ni-Mo or Ni-W alloy film containing Ni as a main component on the semiconductor element by electroless plating as a first electrode / barrier metal layer; Ni on
Is formed by electroless plating as a second electrode / barrier metal layer, and the Pb-free solder is formed on the first electrode / barrier metal layer. A method for manufacturing a semiconductor device is provided, wherein a solder bump is formed, and the flip-chip bonding is performed by pressing the solder bump against the second electrode / barrier metal layer.
【0016】本発明の方法によれば、フリップチップ接
合されるべき半導体素子及び回路基板の各々の電極/バ
リヤメタル層として無電解メッキによるNi−Cr、N
i−Mo又はNi−Wの合金膜を設けているので、以下
の効果が期待される。According to the method of the present invention, each electrode / barrier metal layer of a semiconductor element to be flip-chip bonded and a circuit board is made of Ni--Cr, N by electroless plating.
Since the i-Mo or Ni-W alloy film is provided, the following effects are expected.
【0017】先ず、図1に示す従来技術に見られたよう
なNi膜単層の膜構成では、はんだ付けの際に、Niが
Ni−Sn金属間化合物を形成した後、更にはんだ中に
下層の新規のNiが供給されて新たにNi−Snの金属
間化合物層が成長することが繰り返される。このため、
数回はんだの融点以上に加熱されるとNi−Sn層はま
すます成長し、その結果、プロセス終了後にはNi層が
消失するといった不都合が生じる。First, in the single-layer Ni film structure as shown in the prior art shown in FIG. 1, Ni forms a Ni--Sn intermetallic compound at the time of soldering, and then further forms a lower layer in the solder. Is supplied, and a new growth of a Ni—Sn intermetallic compound layer is repeated. For this reason,
When heated several times above the melting point of the solder, the Ni-Sn layer grows more and more, resulting in the disadvantage that the Ni layer disappears after the process is completed.
【0018】これに対し本発明では、Ni−Cr、Ni
−Mo又はNi−Wの合金膜としており、Cr,Mo,
W等の金属は、Niと全率固溶型の2元合金状態図を示
す材料であることから、本発明のようにNiを主成分と
する組成比では合金中においてNiと共に均一に混ざり
合った状態で存在する。他方、はんだの主成分であるS
nは、上記の金属(Cr,Mo,W)とは融点以上(1
000℃以上)の温度まで加熱しても反応せず混ざり合
わない。この結果、これらの電極に対してはんだ付けを
行うと、はんだ付けの加熱の際、電極とはんだバンプの
反応の間、Ni−Snの金属間化合物を形成するもの
の、その後、合金膜中のCr,Mo,WがNiの拡散を
抑制する効果があって、Niのはんだ中への拡散速度が
低下し、はんだ付け終了後もNi層は拡散によって消失
しない。つまり、NiがSn系はんだ(Pbフリーはん
だ)中に拡散するのを抑制することで、信頼性の高いは
んだ接合を実現することが可能となる。On the other hand, in the present invention, Ni—Cr, Ni
-Mo or Ni-W alloy film, Cr, Mo,
Since the metal such as W is a material showing a binary alloy phase diagram of a total solid solution type with Ni, the metal is uniformly mixed with Ni in the alloy at a composition ratio containing Ni as a main component as in the present invention. Exists in a state where On the other hand, S which is the main component of solder
n is equal to or higher than the melting point of the above metal (Cr, Mo, W) (1
(000 ° C. or higher), they do not react and do not mix. As a result, when soldering is performed on these electrodes, an Ni-Sn intermetallic compound is formed during the reaction between the electrodes and the solder bumps during heating of the soldering. , Mo, and W have the effect of suppressing the diffusion of Ni, the diffusion rate of Ni into the solder decreases, and the Ni layer does not disappear due to diffusion even after the soldering is completed. That is, by suppressing the diffusion of Ni into the Sn-based solder (Pb-free solder), it is possible to realize a highly reliable solder joint.
【0019】また、第1及び第2の電極/バリヤメタル
層(合金膜)を無電解メッキにより形成しているので、
金属(Ni,Cr,Mo,W)が膜中に均等に分布し、
従来技術(特開平10−41303号公報)に見られた
ような積層構造とはならないため、その膜厚の制御が不
要となる。Further, since the first and second electrodes / barrier metal layers (alloy films) are formed by electroless plating,
Metals (Ni, Cr, Mo, W) are evenly distributed in the film,
Since the layered structure does not have the structure as in the prior art (Japanese Patent Application Laid-Open No. 10-41303), it is not necessary to control the film thickness.
【0020】さらに、第1及び第2の電極/バリヤメタ
ル層(合金膜)を無電解メッキにより形成しているの
で、従来技術(特開平10−41303号公報)に見ら
れたような真空装置が不要となり、製造コストの削減を
図ることができる。Further, since the first and second electrodes / barrier metal layers (alloy films) are formed by electroless plating, a vacuum apparatus as disclosed in the prior art (Japanese Patent Application Laid-Open No. 10-41303) is used. This is unnecessary, and the manufacturing cost can be reduced.
【0021】なお、合金膜の成膜方法に関して、通常の
電解メッキでは膜の組成の制御が難しく、また特開平1
0−41303号公報に記載されている真空蒸着法やス
パッタ法では膜の組成が積層構造となり、Niが全ては
んだ中に拡散した後、Cr,Mo,W各単独層がSnと
接触することになり、はんだ材料(この場合、はんだの
主成分であるSn)がはじかれてバンプ欠けを生じると
いった問題があるが、本発明のように「無電解メッキ」
とすることで、かかる問題は解消され得る。Regarding the method of forming an alloy film, it is difficult to control the composition of the film by ordinary electrolytic plating.
In the vacuum deposition method and the sputtering method described in Japanese Patent Application Laid-Open No. 0-41303, the composition of the film becomes a laminated structure, and after all of Ni is diffused into the solder, each single layer of Cr, Mo, and W comes into contact with Sn. However, there is a problem that the solder material (in this case, Sn, which is a main component of the solder) is repelled to cause chipping of the bumps.
By doing so, such a problem can be solved.
【0022】また、本発明の好適な実施形態によれば、
Pbフリーはんだのはんだバンプを転写バンプ形成法に
より形成している。この方法は、はんだペーストからは
んだバンプを形成したり、はんだ合金を蒸着法で所定の
電極に作製してはんだバンプを形成するものであり、他
の方法と比較して、アセンブリ工程中にはんだが溶解す
る時間が長く、電極/バリヤメタル層の金属がより拡散
し易い状況において効果が大きいというメリットがあ
る。According to a preferred embodiment of the present invention,
Pb-free solder bumps are formed by a transfer bump forming method. In this method, solder bumps are formed from a solder paste, or a solder alloy is formed on a predetermined electrode by a vapor deposition method to form a solder bump. There is a merit that the effect is great in a situation where the melting time is long and the metal of the electrode / barrier metal layer is more easily diffused.
【0023】[0023]
【発明の実施の形態】図2は本発明の一実施形態に係る
半導体装置におけるフリップチップ接合部の構成を断面
図の形で模式的に示したものである。FIG. 2 is a cross-sectional view schematically showing a configuration of a flip chip joint in a semiconductor device according to an embodiment of the present invention.
【0024】図中、11は半導体チップの本体を構成す
るSi基板上に形成された半導体素子、12はTi膜、
13aは本発明の特徴をなす電極/バリヤメタル層(N
iを主成分とするNi−Cr、Ni−Mo又はNi−W
の合金膜)、14はAu膜、15aはSn系はんだ(P
bフリーはんだ)のはんだバンプ、21はアルミナ、A
lN又は樹脂からなる回路基板、22はCr膜、23は
Cu膜、24aは本発明の特徴をなす電極/バリヤメタ
ル層(Niを主成分とするNi−Cr、Ni−Mo又は
Ni−Wの合金膜)、25はAu膜を示す。In the figure, reference numeral 11 denotes a semiconductor element formed on a Si substrate constituting a main body of a semiconductor chip, 12 denotes a Ti film,
13a is an electrode / barrier metal layer (N
Ni-Cr, Ni-Mo or Ni-W containing i as a main component
Alloy film), 14 is an Au film, 15a is a Sn-based solder (P
b free solder) solder bump, 21 is alumina, A
1N or resin circuit board, 22 is a Cr film, 23 is a Cu film, 24a is an electrode / barrier metal layer (Ni-Cr, Ni-Mo or Ni-W alloy containing Ni as a main component) which is a feature of the present invention. Film), 25 denotes an Au film.
【0025】本実施形態に係る半導体装置は、基本的な
プロセスとして、半導体素子11の上に電極/バリヤメ
タル層13aを無電解メッキにより形成し、回路基板2
1の上に電極/バリヤメタル層24aを無電解メッキに
より形成し、電極/バリヤメタル層13aにはんだバン
プ15aを形成した後、はんだバンプ15aを電極/バ
リヤメタル層24aに押し付けてフリップチップ接合を
行うことで作製され得る。In the semiconductor device according to the present embodiment, as a basic process, an electrode / barrier metal layer 13a is formed on a semiconductor element 11 by electroless plating.
An electrode / barrier metal layer 24a is formed on the electrode / barrier metal layer 13a by electroless plating, and a solder bump 15a is formed on the electrode / barrier metal layer 13a. Can be made.
【0026】[0026]
【実施例】次に、図2の実施形態に基づく具体的な実施
例について、以下に示す表1、表2及び表3を参照しな
がら説明する。なお、各表1〜3は、第1〜第3実施例
について、電極/バリヤメタル層13a,24aを構成
する合金膜におけるCr、Mo又はWの含有量を5%、
20%及び40%(Wの場合、35%)とした時の各サ
ンプルに対する、はんだバンプ15aを構成する各金属
材料(Sn、Ag、Bi、Sb、Zn、In)の組成
と、フリップチップ接合後に行った熱サイクル試験の結
果及び接合状態の関係を、従来例の場合と対比させて示
している。EXAMPLE Next, a specific example based on the embodiment of FIG. 2 will be described with reference to Tables 1, 2 and 3 shown below. Tables 1 to 3 show that the content of Cr, Mo, or W in the alloy film forming the electrode / barrier metal layers 13a and 24a is 5% for the first to third examples.
The composition of each metal material (Sn, Ag, Bi, Sb, Zn, In) constituting the solder bump 15a and the flip-chip bonding with respect to each sample at 20% and 40% (35% in the case of W) The relationship between the result of the heat cycle test performed later and the bonding state is shown in comparison with the case of the conventional example.
【0027】 第1実施例 表1 サンプル はんだの組成 熱サイクル 接合部 Ni残存膜厚 No. (μm) Cr-5-1 Sn-57Bi-1Ag 300以上 良 4 Cr-5-2 Sn-3.5Ag-5Zn 300以上 良 4 Cr-5-3 Sn-5Sb 300以上 良 4 Cr-5-4 Sn-3.5Ag 300以上 良 4 Cr-5-5 Sn-3.5Ag-5In 300以上 良 4 Cr-20-1 Sn-57Bi-1Ag 300以上 良 4 本実施例 Cr-20-2 Sn-3.5Ag-5Zn 300以上 良 4 Cr-20-3 Sn-5Sb 300以上 良 4 Cr-20-4 Sn-3.5Ag 300以上 良 4 Cr-20-5 Sn-3.5Ag-5In 300以上 良 4 Cr-40-1 Sn-57Bi-1Ag 300 良 4 Cr-40-2 Sn-3.5Ag-5Zn 300 良 4 Cr-40-3 Sn-5Sb 300 良 4 Cr-40-4 Sn-3.5Ag 300 良 4 Cr-40-5 Sn-3.5Ag-5In 300 良 4 Ni-1 Sn-3.5Ag 200 可 0〜1 Ni-2 Sn-48Bi-1Ag 100 可 0 従来例 Ni-3 Sn-5Sb 200 可 0〜1 Ni-4 Sn-3.5Ag-5Zn 150 可 0 Ni-5 Sn-3.5Ag-5In 150 可 0 半導体素子11に対しては、Ti膜12を1000Å程
度形成し、次いでCrの含有量が5%、20%及び40
%となるようなNi−Cr合金膜(電極/バリヤメタル
層13a)を無電解メッキにより6μm程度形成した。
そして、Au膜14を500Å程度形成した後、転写バ
ンプ形成法の一種である Dimple Plate(DP)法によ
り表1に示す各組成のはんだバンプ15aを電極上に形
成した。この時、合金中のSn中の不純物におけるPb
の存在比は1ppm以下とした。また、Sn中のα線量
は0.01cph/cm2 以下のものを使用した。な
お、cphはカウント/時間を表している。 First Embodiment Table 1 Sample Solder Composition Thermal Cycle Joint Ni Residual Film No. ( Μm ) Cr-5-1 Sn-57Bi-1Ag 300 or more good 4 Cr-5-2 Sn-3.5Ag-5Zn 300 or more good 4 Cr-5-3 Sn-5Sb 300 or more good 4 Cr-5-4 Sn -3.5Ag 300 or more good 4 Cr-5-5 Sn-3.5Ag-5In 300 or more good 4 Cr-20-1 Sn-57Bi-1Ag 300 or more good 4 Cr-20-2 Sn-3.5Ag-5Zn 300 or more good 4 Cr-20-3 Sn-5Sb 300 or more good 4 Cr-20-4 Sn-3.5Ag 300 or more good 4 Cr-20-5 Sn-3.5Ag-5In 300 or more good 4 Cr-40-1 Sn -57Bi-1Ag 300 Good 4 Cr-40-2 Sn-3.5Ag-5Zn 300 Good 4 Cr-40-3 Sn-5Sb 300 Good 4 Cr-40-4 Sn-3.5Ag 300 Good 4 Cr-40-5 Sn -3.5Ag-5In 300 Good 4 Ni-1 Sn-3.5Ag 200 OK 0-1 Ni-2 Sn-48Bi-1Ag 100 OK 0 Conventional example Ni-3 Sn-5Sb 200 OK 0-1 Ni-4 Sn-3.5 Ag-5Zn 150 OK 0 Ni-5 Sn-3.5Ag-5In 150 OK 0 For the semiconductor element 11, a Ti film 12 is formed to about 1000 ° , and then the Cr content is 5%, 20% and 40%.
% Of Ni-Cr alloy film (electrode / barrier metal layer 13a) was formed by electroless plating to a thickness of about 6 μm.
Then, after forming the Au film 14 at about 500 °, solder bumps 15a having the respective compositions shown in Table 1 were formed on the electrodes by the Dimple Plate (DP) method, which is one type of transfer bump formation method. At this time, Pb in the impurities in Sn in the alloy
Was set to 1 ppm or less. Further, the α dose in Sn used was 0.01 cph / cm 2 or less. Note that cph represents count / time.
【0028】他方、回路基板21に対しては、半導体素
子11の場合と同様にして、配線層を構成するCr/C
u膜22,23上に、各組成のNi−Cr合金膜(電極
/バリヤメタル層24a)を無電解メッキにより6μm
程度形成し、さらにAu膜25を500Å程度形成し
た。On the other hand, in the same manner as in the case of the semiconductor element 11, the Cr / C
Ni-Cr alloy films (electrode / barrier metal layer 24a) of each composition are formed on the u films 22 and 23 by electroless plating to a thickness of 6 μm.
The Au film 25 was formed to about 500 °.
【0029】次いで、半導体素子11と回路基板21の
位置合わせを行った後、はんだバンプ15aにフラック
スを塗布し、窒素雰囲気中のコンベア炉内(250℃〜
300℃)で半導体素子11と回路基板21のフリップ
チップ接合を行った。Next, after the semiconductor element 11 and the circuit board 21 are aligned, a flux is applied to the solder bumps 15a, and the solder bumps 15a are placed in a conveyor furnace in a nitrogen atmosphere (250 ° C.
The semiconductor element 11 and the circuit board 21 were flip-chip bonded at 300 ° C.).
【0030】なお、はんだバンプ15aの径は70〜1
00μmとし、バンプ間のピッチは150〜210μm
とした。The diameter of the solder bump 15a is 70 to 1
00 μm, pitch between bumps is 150 to 210 μm
And
【0031】また、信頼性の評価は、接合直後の初期抵
抗を測定し、熱サイクル試験(−55℃〜125℃)を
50サイクル毎に抵抗測定を行いながら300サイクル
まで継続することにより、行った。The reliability was evaluated by measuring the initial resistance immediately after bonding and continuing the heat cycle test (-55 ° C. to 125 ° C.) up to 300 cycles while measuring the resistance every 50 cycles. Was.
【0032】その結果、Crの含有量が5%又は20%
の時は300サイクル以上の寿命をもつはんだ接合部
を、Crの含有量が40%の時は300サイクルの寿命
をもつはんだ接合部を形成することができた。また、は
んだ付け後のNiの膜厚(残存膜厚)を従来例に比べて
3倍以上に、つまりNiの拡散量を従来の1/3以下に
低減することができた。As a result, the content of Cr was 5% or 20%.
In the case of (1), a solder joint having a life of 300 cycles or more could be formed, and when the content of Cr was 40%, a solder joint having a life of 300 cycles could be formed. Further, the film thickness of Ni (remaining film thickness) after soldering could be reduced to three times or more as compared with the conventional example, that is, the diffusion amount of Ni could be reduced to one third or less of the conventional example.
【0033】 第2実施例 表2 サンプル はんだの組成 熱サイクル 接合部 Ni残存膜厚 No. (μm) Mo-5-1 Sn-57Bi-1Ag 300以上 良 4 Mo-5-2 Sn-3.5Ag-5Zn 300以上 良 4 Mo-5-3 Sn-5Sb 300以上 良 4 Mo-5-4 Sn-3.5Ag 300以上 良 4 Mo-5-5 Sn-3.5Ag-5In 300以上 良 4 Mo-20-1 Sn-57Bi-1Ag 300以上 良 4 本実施例 Mo-20-2 Sn-3.5Ag-5Zn 300以上 良 4 Mo-20-3 Sn-5Sb 300以上 良 4 Mo-20-4 Sn-3.5Ag 300以上 良 4 Mo-20-5 Sn-3.5Ag-5In 300以上 良 4 Mo-40-1 Sn-57Bi-1Ag 300 良 4 Mo-40-2 Sn-3.5Ag-5Zn 300 良 4 Mo-40-3 Sn-5Sb 300 良 4 Mo-40-4 Sn-3.5Ag 300 良 4 Mo-40-5 Sn-3.5Ag-5In 300 良 4 Ni-1 Sn-3.5Ag 200 可 0〜1 Ni-2 Sn-48Bi-1Ag 100 可 0 従来例 Ni-3 Sn-5Sb 200 可 0〜1 Ni-4 Sn-3.5Ag-5Zn 150 可 0 Ni-5 Sn-3.5Ag-5In 150 可 0 半導体素子11に対しては、Ti膜12を1000Å程
度形成し、次いでMoの含有量が5%、20%及び40
%となるようなNi−Mo合金膜(電極/バリヤメタル
層13a)を無電解メッキにより6μm程度形成した。
そして、Au膜14を500Å程度形成した後、DP法
により表2に示す各組成のはんだバンプ15aを電極上
に形成した。この時、合金中のSn中の不純物における
Pbの存在比は1ppm以下とした。また、Sn中のα
線量は0.01cph/cm2 以下のものを使用した。 Second Embodiment Table 2 Sample Solder Composition Thermal Cycle Joint Ni Residual Film No. ( Μm ) Mo-5-1 Sn-57Bi-1Ag 300 or more good 4 Mo-5-2 Sn-3.5Ag-5Zn 300 or more good 4 Mo-5-3 Sn-5Sb 300 or more good 4 Mo-5-4 Sn -3.5Ag 300 or more good 4 Mo-5-5 Sn-3.5Ag-5In 300 or more good 4 Mo-20-1 Sn-57Bi-1Ag 300 or more good 4 This example Mo-20-2 Sn-3.5Ag-5Zn 300 or more good 4 Mo-20-3 Sn-5Sb 300 or more good 4 Mo-20-4 Sn-3.5Ag 300 or more good 4 Mo-20-5 Sn-3.5Ag-5In 300 or more good 4 Mo-40-1 Sn -57Bi-1Ag 300 Good 4 Mo-40-2 Sn-3.5Ag-5Zn 300 Good 4 Mo-40-3 Sn-5Sb 300 Good 4 Mo-40-4 Sn-3.5Ag 300 Good 4 Mo-40-5 Sn -3.5Ag-5In 300 Good 4 Ni-1 Sn-3.5Ag 200 OK 0-1 Ni-2 Sn-48Bi-1Ag 100 OK 0 Conventional example Ni-3 Sn-5Sb 200 OK 0-1 Ni-4 Sn-3.5 Ag-5Zn 150 OK 0 Ni-5 Sn-3.5Ag-5In 150 OK 0 For the semiconductor element 11, a Ti film 12 is formed on the order of 1000 ° , and then the Mo content is 5%, 20% and 40%.
% Of a Ni-Mo alloy film (electrode / barrier metal layer 13a) was formed to a thickness of about 6 μm by electroless plating.
Then, after forming the Au film 14 at about 500 °, solder bumps 15a having the respective compositions shown in Table 2 were formed on the electrodes by the DP method. At this time, the content ratio of Pb in the impurities in Sn in the alloy was set to 1 ppm or less. Also, α in Sn
The dose was 0.01 cph / cm 2 or less.
【0034】他方、回路基板21に対しては、半導体素
子11の場合と同様にして、配線層を構成するCr/C
u膜22,23上に、各組成のNi−Mo合金膜(電極
/バリヤメタル層24a)を無電解メッキにより6μm
程度形成し、さらにAu膜25を500Å程度形成し
た。On the other hand, in the same manner as in the case of the semiconductor element 11, the Cr / C
Ni-Mo alloy films (electrode / barrier metal layer 24a) of each composition are formed on the u films 22 and 23 by electroless plating to a thickness of 6 μm.
The Au film 25 was formed to about 500 °.
【0035】次いで、半導体素子11と回路基板21の
位置合わせを行った後、はんだバンプ15aにフラック
スを塗布し、窒素雰囲気中のコンベア炉内(250℃〜
300℃)で半導体素子11と回路基板21のフリップ
チップ接合を行った。Next, after aligning the semiconductor element 11 with the circuit board 21, a flux is applied to the solder bumps 15a, and the solder bumps 15a are placed in a conveyor furnace in a nitrogen atmosphere (250 ° C.
The semiconductor element 11 and the circuit board 21 were flip-chip bonded at 300 ° C.).
【0036】なお、はんだバンプ15aの径は70〜1
00μmとし、バンプ間のピッチは150〜210μm
とした。The diameter of the solder bump 15a is 70-1.
00 μm, pitch between bumps is 150 to 210 μm
And
【0037】また、信頼性の評価は、接合直後の初期抵
抗を測定し、熱サイクル試験(−55℃〜125℃)を
50サイクル毎に抵抗測定を行いながら300サイクル
まで継続することにより、行った。The reliability was evaluated by measuring the initial resistance immediately after bonding and continuing the heat cycle test (-55 ° C. to 125 ° C.) up to 300 cycles while measuring the resistance every 50 cycles. Was.
【0038】その結果、Moの含有量が5%又は20%
の時は300サイクル以上の寿命をもつはんだ接合部
を、Moの含有量が40%の時は300サイクルの寿命
をもつはんだ接合部を形成することができた。また、は
んだ付け後のNiの膜厚(残存膜厚)を従来例に比べて
3倍以上に、つまりNiの拡散量を従来の1/3以下に
低減することができた。As a result, the content of Mo was 5% or 20%.
When the Mo content was 40%, a solder joint having a life of 300 cycles or more could be formed, and when the Mo content was 40%, a solder joint having a life of 300 cycles could be formed. Further, the film thickness of Ni (remaining film thickness) after soldering could be reduced to three times or more as compared with the conventional example, that is, the diffusion amount of Ni could be reduced to one third or less of the conventional example.
【0039】 第3実施例 表3 サンプル はんだの組成 熱サイクル 接合部 Ni残存膜厚 No. (μm) W-5-1 Sn-57Bi-1Ag 300以上 良 4 W-5-2 Sn-3.5Ag-5Zn 300以上 良 4 W-5-3 Sn-5Sb 300以上 良 4 W-5-4 Sn-3.5Ag 300以上 良 4 W-5-5 Sn-3.5Ag-5In 300以上 良 4 W-20-1 Sn-57Bi-1Ag 300以上 良 4 本実施例 W-20-2 Sn-3.5Ag-5Zn 300以上 良 4 W-20-3 Sn-5Sb 300以上 良 4 W-20-4 Sn-3.5Ag 300以上 良 4 W-20-5 Sn-3.5Ag-5In 300以上 良 4 W-35-1 Sn-57Bi-1Ag 300 良 4 W-35-2 Sn-3.5Ag-5Zn 300 良 4 W-35-3 Sn-5Sb 300 良 4 W-35-4 Sn-3.5Ag 300 良 4 W-35-5 Sn-3.5Ag-5In 300 良 4 Ni-1 Sn-3.5Ag 200 可 0〜1 Ni-2 Sn-48Bi-1Ag 100 可 0 従来例 Ni-3 Sn-5Sb 200 可 0〜1 Ni-4 Sn-3.5Ag-5Zn 150 可 0 Ni-5 Sn-3.5Ag-5In 150 可 0 半導体素子11に対しては、Ti膜12を1000Å程
度形成し、次いでWの含有量が5%、20%及び35%
となるようなNi−W合金膜(電極/バリヤメタル層1
3a)を無電解メッキにより6μm程度形成した。そし
て、Au膜14を500Å程度形成した後、DP法によ
り表3に示す各組成のはんだバンプ15aを電極上に形
成した。この時、合金中のSn中の不純物におけるPb
の存在比は1ppm以下とした。また、Sn中のα線量
は0.01cph/cm2 以下のものを使用した。 Third Example Table 3 Sample Solder Composition Thermal Cycle Joint Ni Residual Film No. ( Μm ) W-5-1 Sn-57Bi-1Ag 300 or more good 4 W-5-2 Sn-3.5Ag-5Zn 300 or more good 4 W-5-3 Sn-5Sb 300 or more good 4 W-5-4 Sn -3.5Ag 300 or more good 4 W-5-5 Sn-3.5Ag-5In 300 or more good 4 W-20-1 Sn-57Bi-1Ag 300 or more good 4 Example W-20-2 Sn-3.5Ag-5Zn 300 or more good 4 W-20-3 Sn-5Sb 300 or more good 4 W-20-4 Sn-3.5Ag 300 or more good 4 W-20-5 Sn-3.5Ag-5In 300 or more good 4 W-35-1 Sn -57Bi-1Ag 300 Good 4 W-35-2 Sn-3.5Ag-5Zn 300 Good 4 W-35-3 Sn-5Sb 300 Good 4 W-35-4 Sn-3.5Ag 300 Good 4 W-35-5 Sn -3.5Ag-5In 300 Good 4 Ni-1 Sn-3.5Ag 200 OK 0-1 Ni-2 Sn-48Bi-1Ag 100 OK 0 Conventional example Ni-3 Sn-5Sb 200 OK 0-1 Ni-4 Sn-3.5 Ag-5Zn 150 OK 0 Ni-5 Sn-3.5Ag-5In 150 OK 0 For the semiconductor element 11, a Ti film 12 is formed to about 1000 ° , and then the W content is 5%, 20% and 35%.
Ni-W alloy film (electrode / barrier metal layer 1)
3a) was formed about 6 μm by electroless plating. Then, after forming the Au film 14 at about 500 °, the solder bumps 15a having the respective compositions shown in Table 3 were formed on the electrodes by the DP method. At this time, Pb in the impurities in Sn in the alloy
Was set to 1 ppm or less. Further, the α dose in Sn used was 0.01 cph / cm 2 or less.
【0040】他方、回路基板21に対しては、半導体素
子11の場合と同様にして、配線層を構成するCr/C
u膜22,23上に、各組成のNi−W合金膜(電極/
バリヤメタル層24a)を無電解メッキにより6μm程
度形成し、さらにAu膜25を500Å程度形成した。On the other hand, in the same manner as in the case of the semiconductor element 11, the Cr / C
On the u films 22 and 23, Ni—W alloy films of each composition (electrode /
A barrier metal layer 24a) was formed by electroless plating to a thickness of about 6 μm, and an Au film 25 was formed to a thickness of about 500 °.
【0041】次いで、半導体素子11と回路基板21の
位置合わせを行った後、はんだバンプ15aにフラック
スを塗布し、窒素雰囲気中のコンベア炉内(250℃〜
300℃)で半導体素子11と回路基板21のフリップ
チップ接合を行った。Next, after the semiconductor element 11 and the circuit board 21 are aligned, a flux is applied to the solder bumps 15a, and the solder bumps 15a are placed in a conveyor furnace in a nitrogen atmosphere (250 ° C.
The semiconductor element 11 and the circuit board 21 were flip-chip bonded at 300 ° C.).
【0042】なお、はんだバンプ15aの径は70〜1
00μmとし、バンプ間のピッチは150〜210μm
とした。The diameter of the solder bump 15a is 70 to 1
00 μm, pitch between bumps is 150 to 210 μm
And
【0043】また、信頼性の評価は、接合直後の初期抵
抗を測定し、熱サイクル試験(−55℃〜125℃)を
50サイクル毎に抵抗測定を行いながら300サイクル
まで継続することにより、行った。The reliability was evaluated by measuring the initial resistance immediately after bonding and continuing the heat cycle test (-55 ° C. to 125 ° C.) up to 300 cycles while measuring the resistance every 50 cycles. Was.
【0044】その結果、Wの含有量が5%又は20%の
時は300サイクル以上の寿命をもつはんだ接合部を、
Wの含有量が35%の時は300サイクルの寿命をもつ
はんだ接合部を形成することができた。また、はんだ付
け後のNiの膜厚(残存膜厚)を従来例に比べて3倍以
上に、つまりNiの拡散量を従来の1/3以下に低減す
ることができた。As a result, when the W content is 5% or 20%, a solder joint having a life of 300 cycles or more is obtained.
When the W content was 35%, a solder joint having a life of 300 cycles could be formed. Further, the film thickness of Ni (remaining film thickness) after soldering could be reduced to three times or more as compared with the conventional example, that is, the diffusion amount of Ni could be reduced to one third or less of the conventional example.
【0045】図3は上述した第1〜第3実施例により作
製した半導体装置の一適用例を概略的に示したもので、
図示の例では、半導体パッケージ30の形態で作製され
た半導体装置の断面構造が示されている。FIG. 3 schematically shows an application example of the semiconductor device manufactured according to the first to third embodiments.
In the illustrated example, a cross-sectional structure of a semiconductor device manufactured in the form of a semiconductor package 30 is shown.
【0046】図示のように、この半導体パッケージ30
は、はんだバンプ15aで半導体チップ(半導体素子の
ベア・チップ)10を回路基板21(配線層を構成する
Cr/Cu膜22,23)にフリップチップ接合した
後、キャップ31で封止し、さらに配線層(22,2
3)につながる外部リード32を回路基板21に接続し
て構成されている。As shown in FIG.
Is a method in which a semiconductor chip (bare chip of a semiconductor element) 10 is flip-chip bonded to a circuit board 21 (Cr / Cu films 22 and 23 constituting a wiring layer) with solder bumps 15a, and then sealed with a cap 31. Wiring layer (22, 2
The external lead 32 connected to 3) is connected to the circuit board 21.
【0047】図4は上述した第1〜第3実施例により作
製した半導体装置の他の適用例を概略的に示したもの
で、図示の例では、マルチチップモジュール40の形態
で作製された半導体装置の外観構成が示されている。FIG. 4 schematically shows another application example of the semiconductor device manufactured according to the above-described first to third embodiments. In the illustrated example, the semiconductor device manufactured in the form of a multi-chip module 40 is shown. The external configuration of the device is shown.
【0048】図示のように、このマルチチップモジュー
ル40は、はんだバンプ15aで複数個の半導体チップ
10を回路基板21上に搭載して構成されている。As shown in the figure, the multi-chip module 40 is configured by mounting a plurality of semiconductor chips 10 on a circuit board 21 with solder bumps 15a.
【0049】[0049]
【発明の効果】以上説明したように本発明によれば、P
bフリー化に対応したSn系のはんだでフリップチップ
接合を行うに際し、信頼性の高いはんだ接合を実現する
ことができ、また、電極/バリヤメタル層の膜厚の制御
を不要とすると共に、製造コストの削減を図ることが可
能となる。As described above, according to the present invention, P
When performing flip-chip bonding with Sn-based solder compatible with b-free soldering, highly reliable solder bonding can be realized, and the control of the film thickness of the electrode / barrier metal layer is not required, and the manufacturing cost is reduced. Can be reduced.
【図1】従来例に係る半導体装置におけるフリップチッ
プ接合部の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a configuration of a flip chip bonding portion in a semiconductor device according to a conventional example.
【図2】本発明の一実施形態に係る半導体装置における
フリップチップ接合部の構成を模式的に示す断面図であ
る。FIG. 2 is a cross-sectional view schematically illustrating a configuration of a flip chip bonding portion in a semiconductor device according to an embodiment of the present invention.
【図3】図2の実施形態に係る半導体装置の一適用例を
概略的に示す図である。FIG. 3 is a diagram schematically showing an application example of the semiconductor device according to the embodiment of FIG. 2;
【図4】図2の実施形態に係る半導体装置の他の適用例
を概略的に示す図である。FIG. 4 is a diagram schematically showing another application example of the semiconductor device according to the embodiment of FIG. 2;
10…半導体チップ 11…半導体素子 12…Ti膜 13a…電極/バリヤメタル層(Ni−Cr、Ni−M
o又はNi−W) 14…Au膜 15a…はんだバンプ 21…回路基板(アルミナ、AlN又は樹脂) 22…Cr膜 23…Cu膜 24a…電極/バリヤメタル層(Ni−Cr、Ni−M
o又はNi−W) 25…Au膜 30…半導体パッケージ 40…マルチチップモジュールDESCRIPTION OF SYMBOLS 10 ... Semiconductor chip 11 ... Semiconductor element 12 ... Ti film 13a ... Electrode / barrier metal layer (Ni-Cr, Ni-M
o ... Ni-W) 14 ... Au film 15a ... Solder bump 21 ... Circuit board (alumina, AlN or resin) 22 ... Cr film 23 ... Cu film 24a ... Electrode / barrier metal layer (Ni-Cr, Ni-M)
o or Ni-W) 25 ... Au film 30 ... Semiconductor package 40 ... Multi-chip module
Claims (8)
体素子と回路基板をフリップチップ接合してなる半導体
装置を製造する方法であって、 前記半導体素子の上にニッケルを主成分とするニッケル
−クロム、ニッケル−モリブデン又はニッケル−タング
ステンの合金膜を第1の電極/バリヤメタル層として無
電解メッキにより形成し、 前記回路基板の上にニッケルを主成分とするニッケル−
クロム、ニッケル−モリブデン又はニッケル−タングス
テンの合金膜を第2の電極/バリヤメタル層として無電
解メッキにより形成し、 前記第1の電極/バリヤメタル層上に前記鉛フリーはん
だのはんだバンプを形成し、 前記はんだバンプを前記第2の電極/バリヤメタル層に
押し付けて前記フリップチップ接合を行うことを特徴と
する半導体装置の製造方法。1. A method for manufacturing a semiconductor device in which a semiconductor element and a circuit board are flip-chip bonded with a lead-free solder containing tin as a main component, wherein nickel containing nickel as a main component is provided on the semiconductor element. An alloy film of chromium, nickel-molybdenum or nickel-tungsten is formed as a first electrode / barrier metal layer by electroless plating, and nickel mainly composed of nickel is formed on the circuit board;
Forming an alloy film of chromium, nickel-molybdenum or nickel-tungsten as a second electrode / barrier metal layer by electroless plating; forming the lead-free solder bump on the first electrode / barrier metal layer; A method of manufacturing a semiconductor device, wherein the flip-chip bonding is performed by pressing a solder bump against the second electrode / barrier metal layer.
において、前記鉛フリーはんだのはんだバンプを転写バ
ンプ形成法により形成することを特徴とする半導体装置
の製造方法。2. The method of manufacturing a semiconductor device according to claim 1, wherein the solder bump of the lead-free solder is formed by a transfer bump forming method.
造方法において、前記錫を主成分とする鉛フリーはんだ
は、銀、ビスマス、アンチモン、亜鉛及びインジウムの
うち少なくとも1種以上の金属を含む組成を有し、該組
成において錫の含有量を40〜95重量%、ビスマスの
含有量を1〜60重量%、銀、アンチモン、亜鉛及びイ
ンジウムの含有量をそれぞれ0.1〜10重量%の範囲
で選定したことを特徴とする半導体装置の製造方法。3. The method for manufacturing a semiconductor device according to claim 1, wherein the lead-free solder containing tin as a main component comprises at least one metal selected from silver, bismuth, antimony, zinc, and indium. In this composition, the content of tin is 40 to 95% by weight, the content of bismuth is 1 to 60% by weight, and the content of silver, antimony, zinc and indium is 0.1 to 10% by weight, respectively. A method for manufacturing a semiconductor device, wherein the method is selected in the range described above.
半導体装置の製造方法において、前記第1及び第2の電
極/バリヤメタル層を構成する合金膜がニッケル−クロ
ムの場合に、クロムの含有量を0.1〜40重量%の範
囲で選定したことを特徴とする半導体装置の製造方法。4. The method of manufacturing a semiconductor device according to claim 1, wherein said alloy film forming said first and second electrodes / barrier metal layers is made of nickel-chromium. Characterized in that the content of is selected in the range of 0.1 to 40% by weight.
半導体装置の製造方法において、前記第1及び第2の電
極/バリヤメタル層を構成する合金膜がニッケル−モリ
ブデンの場合に、モリブデンの含有量を0.1〜40重
量%の範囲で選定したことを特徴とする半導体装置の製
造方法。5. The method of manufacturing a semiconductor device according to claim 1, wherein the alloy film forming the first and second electrodes / barrier metal layers is nickel-molybdenum. Characterized in that the content of is selected in the range of 0.1 to 40% by weight.
半導体装置の製造方法において、前記第1及び第2の電
極/バリヤメタル層を構成する合金膜がニッケル−タン
グステンの場合に、タングステンの含有量を0.1〜3
5重量%の範囲で選定したことを特徴とする半導体装置
の製造方法。6. The method of manufacturing a semiconductor device according to claim 1, wherein the alloy film forming the first and second electrodes / barrier metal layers is made of nickel-tungsten. 0.1 to 3
A method of manufacturing a semiconductor device, wherein the method is selected in a range of 5% by weight.
半導体装置の製造方法によって製造された半導体装置を
用いて半導体パッケージの形態で作製された半導体装
置。7. A semiconductor device manufactured in the form of a semiconductor package using the semiconductor device manufactured by the method of manufacturing a semiconductor device according to claim 1.
半導体装置の製造方法によって製造された半導体装置を
回路基板上に複数個搭載してマルチチップモジュールの
形態で作製された半導体装置。8. A semiconductor device manufactured in the form of a multi-chip module by mounting a plurality of semiconductor devices manufactured by the method of manufacturing a semiconductor device according to claim 1 on a circuit board. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36752698A JP3682758B2 (en) | 1998-12-24 | 1998-12-24 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36752698A JP3682758B2 (en) | 1998-12-24 | 1998-12-24 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000195885A true JP2000195885A (en) | 2000-07-14 |
JP3682758B2 JP3682758B2 (en) | 2005-08-10 |
Family
ID=18489535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36752698A Expired - Fee Related JP3682758B2 (en) | 1998-12-24 | 1998-12-24 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3682758B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002151538A (en) * | 2000-11-10 | 2002-05-24 | Nippon Steel Corp | Semiconductor device and its producing method |
EP1241281A1 (en) * | 2001-03-16 | 2002-09-18 | Shipley Co. L.L.C. | Tin plating |
JP3392808B2 (en) | 2000-03-31 | 2003-03-31 | 株式会社東芝 | Lead-free joint |
WO2005098933A1 (en) * | 2004-03-29 | 2005-10-20 | Intel Corporation | Under bump metallization layer to enable use of high tin content solder bumps |
JP2007103840A (en) * | 2005-10-07 | 2007-04-19 | Nec Electronics Corp | Method of manufacturing electronic circuit device |
JP2007103816A (en) * | 2005-10-07 | 2007-04-19 | Nec Electronics Corp | Interconnect substrate and electronic circuit device |
JP2009016468A (en) * | 2007-07-03 | 2009-01-22 | Sony Corp | Solder joint structure and solder bump forming method |
JP2010056267A (en) * | 2008-08-28 | 2010-03-11 | Mitsubishi Materials Corp | Method of forming bump without junction defects |
US8314500B2 (en) * | 2006-12-28 | 2012-11-20 | Ultratech, Inc. | Interconnections for flip-chip using lead-free solders and having improved reaction barrier layers |
JP2014146658A (en) * | 2013-01-28 | 2014-08-14 | Fujitsu Ltd | Semiconductor device and manufacturing method of the same |
JPWO2021193338A1 (en) * | 2020-03-26 | 2021-09-30 |
-
1998
- 1998-12-24 JP JP36752698A patent/JP3682758B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3392808B2 (en) | 2000-03-31 | 2003-03-31 | 株式会社東芝 | Lead-free joint |
JP2002151538A (en) * | 2000-11-10 | 2002-05-24 | Nippon Steel Corp | Semiconductor device and its producing method |
EP1241281A1 (en) * | 2001-03-16 | 2002-09-18 | Shipley Co. L.L.C. | Tin plating |
CN100578746C (en) * | 2004-03-29 | 2010-01-06 | 英特尔公司 | Under bump metallization layer enable to use high tin content solder bumps |
WO2005098933A1 (en) * | 2004-03-29 | 2005-10-20 | Intel Corporation | Under bump metallization layer to enable use of high tin content solder bumps |
JP2007103840A (en) * | 2005-10-07 | 2007-04-19 | Nec Electronics Corp | Method of manufacturing electronic circuit device |
JP2007103816A (en) * | 2005-10-07 | 2007-04-19 | Nec Electronics Corp | Interconnect substrate and electronic circuit device |
US8314500B2 (en) * | 2006-12-28 | 2012-11-20 | Ultratech, Inc. | Interconnections for flip-chip using lead-free solders and having improved reaction barrier layers |
JP2009016468A (en) * | 2007-07-03 | 2009-01-22 | Sony Corp | Solder joint structure and solder bump forming method |
JP2010056267A (en) * | 2008-08-28 | 2010-03-11 | Mitsubishi Materials Corp | Method of forming bump without junction defects |
JP2014146658A (en) * | 2013-01-28 | 2014-08-14 | Fujitsu Ltd | Semiconductor device and manufacturing method of the same |
US9620470B2 (en) | 2013-01-28 | 2017-04-11 | Fujitsu Limited | Semiconductor device having connection terminal of solder |
TWI579992B (en) * | 2013-01-28 | 2017-04-21 | Fujitsu Ltd | Semiconductor device and method of manufacturing the semiconductor device |
JPWO2021193338A1 (en) * | 2020-03-26 | 2021-09-30 |
Also Published As
Publication number | Publication date |
---|---|
JP3682758B2 (en) | 2005-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5099644B2 (en) | Electronic components, semiconductor packages and electronic equipment | |
US5391514A (en) | Low temperature ternary C4 flip chip bonding method | |
JP3748785B2 (en) | Method for forming lead-free bumps | |
US8592995B2 (en) | Method and structure for adhesion of intermetallic compound (IMC) on Cu pillar bump | |
JP4051893B2 (en) | Electronics | |
JP4195886B2 (en) | Method for forming a flip-chip interconnect structure with a reaction barrier layer using lead-free solder | |
US6444562B1 (en) | Nickel alloy films for reduced intermetallic formation in solder | |
JP4130508B2 (en) | Solder bonding method and electronic device manufacturing method | |
JP2003338517A (en) | Method of forming lead-free solder alloy on substrate | |
JP3682758B2 (en) | Semiconductor device and manufacturing method thereof | |
TWI242866B (en) | Process of forming lead-free bumps on electronic component | |
JP5231727B2 (en) | Joining method | |
JP4366838B2 (en) | Method for manufacturing electronic circuit module | |
JP3568676B2 (en) | Semiconductor device, circuit board, and electronic circuit device | |
JP2000150574A (en) | Semiconductor device and bonding method using solder | |
JP2001237259A (en) | Solder alloy, circuit board, semiconductor device and method of manufacturing the same | |
TW200419748A (en) | Under bump metallurgy and flip chip | |
JP2697116B2 (en) | Indium solder joint structure | |
JP3672733B2 (en) | Solder bonding method and electronic device | |
JP2008147375A (en) | Semiconductor device, circuit wiring board, and manufacturing method of semiconductor device | |
JP3594442B2 (en) | Semiconductor device | |
JP3557797B2 (en) | Semiconductor device | |
JP2007123577A (en) | Semiconductor device | |
JP3469093B2 (en) | Manufacturing method of printed circuit board and mounted circuit board | |
JP3466498B2 (en) | Wiring board and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050518 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090603 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110603 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130603 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140603 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |