[go: up one dir, main page]

JP2000188279A - Electrostatically attractable transparent insulating substrate - Google Patents

Electrostatically attractable transparent insulating substrate

Info

Publication number
JP2000188279A
JP2000188279A JP36270698A JP36270698A JP2000188279A JP 2000188279 A JP2000188279 A JP 2000188279A JP 36270698 A JP36270698 A JP 36270698A JP 36270698 A JP36270698 A JP 36270698A JP 2000188279 A JP2000188279 A JP 2000188279A
Authority
JP
Japan
Prior art keywords
substrate
electrostatic attraction
electrode
transparent substrate
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36270698A
Other languages
Japanese (ja)
Inventor
Toshio Hayashi
俊雄 林
Ko Fuwa
耕 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP36270698A priority Critical patent/JP2000188279A/en
Publication of JP2000188279A publication Critical patent/JP2000188279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulating substrate which can be set to a highly uniform temperature distribution and can obtain a highly uniform worked or formed film distribution. SOLUTION: On the surface which is brought into contact with the upper surface of an electrostatic chuck electrode 12 provided on a substrate electrode 9, namely, on the rear surface of a transparent insulating substrate 16, a transparent conductive film composed of an oxide film or a nitride or metallic thin film, the composition of which is controlled so that the light transmittance of the film in the visible region becomes >=80% and the electrical resistivity of the film becomes <=1012 Ωcm, is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ドライエッチング
装置、プラズマCVD装置、スパッタリング装置、イオ
ン注入装置等の電子部品及び光学部品製造装置において
静電吸着により基板電極上に保持して所要の加工或いは
改質をするようにされたガラス基板のような絶縁性透明
基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing electronic parts and optical parts, such as a dry etching apparatus, a plasma CVD apparatus, a sputtering apparatus and an ion implantation apparatus, which is held on a substrate electrode by electrostatic attraction to perform required processing or processing. The present invention relates to an insulating transparent substrate such as a glass substrate which is made to be modified.

【0002】[0002]

【従来の技術】従来、電子部品及び光学部品製造装置を
用いてガラス基板を加工する際、ガラス基板を静電吸着
することができないので、機械的に基板台上に固定する
メカニカルチャッキング法が用いられていた。このよう
なメカニカルチャッキング法を用いたエッチング装置の
一例を添付図面の図2に示す。
2. Description of the Related Art Conventionally, when a glass substrate is processed using an electronic component and an optical component manufacturing apparatus, the glass substrate cannot be electrostatically attracted. Was used. FIG. 2 of the accompanying drawings shows an example of an etching apparatus using such a mechanical chucking method.

【0003】図2に示す装置において、真空室Aの上部
の誘電体円筒側壁Bの外部に三つの磁場コイルC1、C2、
C3及び高周波アンテナDが配置され、高周波アンテナD
は高周波電源Eに接続されている。真空室Aの頂部の天
板Fの上部フランジに近接してエッチングガス導入口
(図示していない)が設けられている。また真空室Aの
下部には、基板電極Gが絶縁体Hを介して配置され、こ
の基板電極GはブロッキングコンデンサーIを介してバ
イアス用の高周波電源Jに接続されている。処理すべき
ガラス基板KはメカニカルチャッキングLにより基板電
極G上に固定される。
In the apparatus shown in FIG. 2, three magnetic field coils C1, C2,
C3 and the high-frequency antenna D are arranged, and the high-frequency antenna D
Are connected to a high frequency power supply E. An etching gas inlet (not shown) is provided near the upper flange of the top plate F at the top of the vacuum chamber A. A substrate electrode G is disposed below the vacuum chamber A via an insulator H. The substrate electrode G is connected to a high frequency power source J for biasing via a blocking capacitor I. The glass substrate K to be processed is fixed on the substrate electrode G by the mechanical chucking L.

【0004】このように構成されたエッチング装置の動
作において、エッチングガスは真空室Aの頂部の天板F
の上部フランジに近接してエッチングガス導入口から真
空室A内導入され、真空室Aの上部の誘電体円筒側壁B
の外部に設けた高周波アンテナDに高周波電源Eから高
周波電力が印加されてプラズマが形成される。真空室A
の下部の基板電極Gには高周波電源Jからバイアス用の
高周波電力が印加される。このの場合、ブロッキングコ
ンデンサーIによって浮遊状態になっている基板電極G
は負のセルフバイアス電位となり、プラズマ中の正イオ
ンが引き込まれて基板K上の物質をエッチングする。基
板電極Gの下部からはHe等のガスが導入され、電極G
と基板Kとの熱伝達が図られ、基板Kの温度制御が行わ
れる。
In the operation of the etching apparatus configured as described above, the etching gas is supplied to the top plate F at the top of the vacuum chamber A.
Is introduced into the vacuum chamber A from the etching gas inlet close to the upper flange of the vacuum chamber A, and the dielectric cylindrical side wall B on the upper part of the vacuum chamber A
A high-frequency power is applied from a high-frequency power source E to a high-frequency antenna D provided outside the device to form plasma. Vacuum chamber A
A high-frequency power for bias is applied from a high-frequency power source J to a substrate electrode G below the substrate electrode. In this case, the substrate electrode G floating with the blocking capacitor I
Becomes a negative self-bias potential, and positive ions in the plasma are attracted to etch the substance on the substrate K. A gas such as He is introduced from below the substrate electrode G, and the electrode G
The heat is transferred between the substrate K and the substrate K, and the temperature of the substrate K is controlled.

【0005】[0005]

【発明が解決しようとする課題】例えば、図2に示すエ
ッチング装置では、基板電極Gに発生したセルフバイア
ス電場によってプラズマ中のイオンが引き寄せられてイ
オンが基板表面に衝撃し、基板上で大きな熱量が発生す
る。そのため、基板下部と基板電極との間に熱媒体とな
るガスを導入して熱伝達を良くし、基板上で発生した熱
量を基板電極を通して逃がすことにより、基板を一定の
温度に保つようにしている。
For example, in the etching apparatus shown in FIG. 2, the ions in the plasma are attracted by the self-bias electric field generated at the substrate electrode G, and the ions bombard the surface of the substrate. Occurs. Therefore, by introducing a gas serving as a heat medium between the lower part of the substrate and the substrate electrode to improve heat transfer, and by releasing the amount of heat generated on the substrate through the substrate electrode, the substrate is maintained at a constant temperature. I have.

【0006】しかしながら、従来のメカニカルチャッキ
ング方式のような機械式固定方法では、基本的には3点
接触であろということから類推できるように、基板と基
板電極との密着性が劣るため、基板と基板電極との距離
が一定とはならず、また、このため導入したガスの圧力
も一定にはならない。その結果、大きな温度分布をもつ
ことになり、均一な加工ができないと言う問題があっ
た。そこで、本発明は基板と基板電極との密着性を改善
して均一な温度分布が得られるようにしたガラス基板等
の絶縁性透明基板を提供することを目的としている。
However, in the conventional mechanical fixing method such as the mechanical chucking method, the adhesion between the substrate and the substrate electrode is inferior, as can be inferred from the fact that it is basically three-point contact. The distance between the substrate and the substrate electrode is not constant, and the pressure of the introduced gas is not constant. As a result, there is a problem that a large temperature distribution is obtained and uniform processing cannot be performed. Therefore, an object of the present invention is to provide an insulative transparent substrate such as a glass substrate or the like in which the uniformity of temperature distribution can be obtained by improving the adhesion between the substrate and the substrate electrode.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、ガラス基板の裏面すなわち基板保持台すなわち基
板電極と接する面またはその内側に可視領域の光透過率
が80%以上になるような透明導電膜を設けて、基板保
持台の最上面に設けた静電チャック電極による静電吸着
により基板保持台に密着固定できるように構成される。
In order to achieve the above-mentioned object, the light transmittance in the visible region becomes 80% or more on the back surface of the glass substrate, that is, on the surface in contact with the substrate holding table, that is, on the substrate electrode or on the inside thereof. A transparent conductive film is provided so that it can be fixedly adhered to the substrate holder by electrostatic attraction with an electrostatic chuck electrode provided on the uppermost surface of the substrate holder.

【0008】このように構成することにより、ガラス基
板を静電チャックにより基板保持台に密着固定させるの
で、基板保持台上の静電チャック電極とガラス基板の間
の距離が一定に保たれ、熱媒体となるガスの熱伝達量も
一定となって温度分布は均一になる。従って、例えばプ
ラズマエッチングの場合、プラズマから流入する熱量を
基板全体で均一に基板保持台に逃がすことができ、エッ
チ速度分布も均一になる。また裏面に形成した導電膜の
可視領域の光透過率を80%以上にすることにより、導
電性膜を除かなくても光学ガラスとしてそのまま使用す
ることができるようになる。
With this configuration, the glass substrate is closely fixed to the substrate holding table by the electrostatic chuck, so that the distance between the electrostatic chuck electrode on the substrate holding table and the glass substrate is maintained constant, The heat transfer amount of the gas serving as the medium is also constant, and the temperature distribution becomes uniform. Therefore, for example, in the case of plasma etching, the amount of heat flowing from the plasma can be uniformly released to the substrate holding table over the entire substrate, and the etch speed distribution becomes uniform. Further, by setting the light transmittance in the visible region of the conductive film formed on the back surface to 80% or more, the conductive glass can be used as it is without removing the conductive film.

【0009】[0009]

【発明の実施の形態】本発明の一つの実施の形態によれ
ば、真空室内に設けた基板電極の表面に装着され、プラ
ズマ等で処理するようにされたガラス基板は、基板電極
の表面と接触することになるガラス基板の面側に透明導
電膜を設けて静電吸着面を形成し、基板電極の表面に設
けられ、絶縁体内に複数本の導電体で構成されるパター
ンを埋設して構成した板状の静電吸着装置により、静電
吸着できるように構成される。
According to one embodiment of the present invention, a glass substrate mounted on a surface of a substrate electrode provided in a vacuum chamber and processed by plasma or the like is provided with a surface of the substrate electrode. A transparent conductive film is provided on the surface side of the glass substrate to be contacted to form an electrostatic chucking surface, and a pattern formed of a plurality of conductors is buried in the insulator provided on the surface of the substrate electrode. The configured plate-shaped electrostatic suction device is configured to be capable of electrostatic suction.

【0010】透明導電膜は、In、Ti、Sn等の酸化物及び
それらの化合物或いは混合物或いは合金の酸化物或いは
窒化物から成り、透明導電膜の可視領域の光透過率が8
0%以上になるようにガラス基板の静電吸着面が構成さ
れ得る。代わりに、透明導電膜は、100 nm以下の金属
薄膜から成り、可視領域の光透過率が80%以上になる
ようにガラス基板の静電吸着面が構成され得る。また、
透明導電膜は、抵抗率が1012Ωcm以下となるように組成
を制御した酸化物、窒化物或いはその他の化合物の薄膜
から成り、可視領域の光透過率が80%以上になろよう
に、ガラス基板の静電吸着面が構成され得る。さらに、
ガラス基板の静電吸着面はガラス基板の内側に設けるこ
ともでき、その場合には基板電極上の静電吸着装置に接
触する側のガラス基板のガラス層の厚さは好ましくは10
μm以下にすべきである。
The transparent conductive film is made of an oxide such as In, Ti, Sn or the like or an oxide or nitride of a compound, a mixture or an alloy thereof, and has a light transmittance of 8 in the visible region of the transparent conductive film.
The electrostatic attraction surface of the glass substrate can be configured to be 0% or more. Alternatively, the transparent conductive film may be formed of a metal thin film having a thickness of 100 nm or less, and the electrostatic attraction surface of the glass substrate may be configured so that the light transmittance in the visible region is 80% or more. Also,
The transparent conductive film is made of a thin film of an oxide, a nitride or other compound whose composition is controlled so as to have a resistivity of 10 12 Ωcm or less, and is made of glass such that the light transmittance in the visible region is 80% or more. An electrostatic attraction surface of the substrate can be configured. further,
The electrostatic attraction surface of the glass substrate can also be provided inside the glass substrate, in which case the thickness of the glass layer of the glass substrate on the substrate electrode that contacts the electrostatic attraction device is preferably 10
Should be less than μm.

【0011】以下、添付図面の図1を参照して本発明の
実施例について説明する。図1は本発明によるガラス基
板をエッチング処理するエッチング装置に適用した例を
示している。図1において1は真空室で、例えば石英か
ら成る円筒状側壁2を備え、その外側には磁場発生手段
を構成している三つのコイル3、4、5が実質的に同じ
円周上に軸線に沿って設けられている。図示したように
上下の二つの電磁コイル3、5には同じ向きの同一定電
流を流し、中間のコイル4には逆向きの電流を流すよう
にされている。それにより、中間のコイル4のレベル付
近に円筒状側壁2の内側に連続した磁場ゼロの位置がで
き、円輪状の磁気中性線が形成される。
An embodiment of the present invention will be described below with reference to FIG. 1 of the accompanying drawings. FIG. 1 shows an example applied to an etching apparatus for etching a glass substrate according to the present invention. In FIG. 1, reference numeral 1 denotes a vacuum chamber having a cylindrical side wall 2 made of, for example, quartz, on the outside of which three coils 3, 4, 5 constituting a magnetic field generating means are arranged on substantially the same circumference along an axis. It is provided along. As shown in the drawing, the same constant current in the same direction is applied to the upper and lower two electromagnetic coils 3 and 5, and the opposite current is applied to the intermediate coil 4. As a result, a position where a continuous magnetic field is zero is formed inside the cylindrical side wall 2 near the level of the intermediate coil 4, and a circular magnetic neutral line is formed.

【0012】中間のコイル4と円筒状側壁2との間には
電場発生手段を成す高周波電場発生用アンテナ6が設け
られ、プラズマ発生用高周波電源7に接続される。また
真空室1の下部内には絶縁体8を介して基板電極9が設
けられ、この基板電極9はコンデンサー10を介してバイ
アス用高周波電源11に接続されている。基板電極9上に
は、静電チャック電極12が設けられ、この静電チャック
電極12は絶縁体13内に複数本の導電体14で構成されるパ
ターンを埋設して板状に形成され、静電チャック電源15
に接続される。静電チャック電極12上にはガラス基板16
が装着される。このガラス基板16は上述のように、静電
チャック電極12の上面と接する側すなわち裏面には、可
視領域の光透過率が80%以上になりしかも抵抗率が10
12Ωcm以下となるように組成制御した酸化膜や窒化物或
いは金属薄膜から成る透明導電性膜が形成されている。
また、ガラス基板16と静電チャック電極12との間に流す
ガスの流路は図示していない。
Between the intermediate coil 4 and the cylindrical side wall 2, a high-frequency electric field generating antenna 6 serving as electric field generating means is provided, and is connected to a high-frequency power supply 7 for plasma generation. A substrate electrode 9 is provided in the lower part of the vacuum chamber 1 via an insulator 8, and the substrate electrode 9 is connected to a high-frequency power source 11 for bias via a capacitor 10. An electrostatic chuck electrode 12 is provided on the substrate electrode 9. The electrostatic chuck electrode 12 is formed in a plate shape by embedding a pattern composed of a plurality of conductors 14 in an insulator 13. Electric chuck power supply 15
Connected to. A glass substrate 16 is placed on the electrostatic chuck electrode 12
Is attached. As described above, the glass substrate 16 has a light transmittance in the visible region of 80% or more and a resistivity of 10% on the side in contact with the upper surface of the electrostatic chuck electrode 12, that is, on the back surface.
A transparent conductive film made of an oxide film, a nitride, or a metal thin film whose composition is controlled to be 12 Ωcm or less is formed.
Further, the flow path of the gas flowing between the glass substrate 16 and the electrostatic chuck electrode 12 is not shown.

【0013】真空室1の円筒状側壁2の上端には導電性
材料から成る対向電極17が基板電極10に相対して設けら
れ、この対向電極17はエッチング補助ガスを導入するた
めのシャワ板18を備え、このシャワ板18は対向電極17に
設けた図示してないガス通路を介してエッチング補助ガ
ス源(図示してない)に連通している。また真空室1は
排気口1aから真空排気系19により真空排気される。さら
に真空室1には図示してないがエッチング主ガスを導入
するためのガス導入部が設けられている。
A counter electrode 17 made of a conductive material is provided at the upper end of the cylindrical side wall 2 of the vacuum chamber 1 so as to face the substrate electrode 10. The counter electrode 17 is a shower plate 18 for introducing an etching assist gas. The shower plate 18 communicates with an etching assist gas source (not shown) through a gas passage (not shown) provided in the counter electrode 17. The vacuum chamber 1 is evacuated from an exhaust port 1a by an evacuation system 19. Further, although not shown, the vacuum chamber 1 is provided with a gas introduction unit for introducing an etching main gas.

【0014】このように構成した図示装置の作用及び動
作について説明する。図1の装置を用い、プラズマ発生
用高周波電源8(13.56MHz)の電力を1.0KW、基板バイア
ス高周波電源12(13.56MHz)の電力を0.8KW、圧力を3mT
orr、エッチング主ガスとしてC48を10sccm(10%)を導
入し、エッチングした。そのときの石英のエッチング速
度は約810nm/min±2.83%であった。従来の装置構成に
おける同条件下でのエッチ速度及びその分布は、840nm
/min ±7.1%である。このように温度分布を均一にす
ることにより、エッチ速度は多少減少するものの、基板
の温度分布を均一にしたので、高いエッチ速度均一性が
得られるようになった。
The operation and operation of the illustrated apparatus configured as described above will be described. Using the apparatus shown in FIG. 1, the power of the plasma generating high frequency power supply 8 (13.56 MHz) is 1.0 KW, the power of the substrate bias high frequency power supply 12 (13.56 MHz) is 0.8 KW, and the pressure is 3 mT.
Orr was introduced by introducing 10 sccm (10%) of C 4 F 8 as an etching main gas. At that time, the etching rate of quartz was about 810 nm / min ± 2.83%. The etch rate and its distribution under the same conditions in the conventional device configuration are 840 nm.
/ Min ± 7.1%. By making the temperature distribution uniform, the etch rate is somewhat reduced, but the temperature distribution of the substrate is made uniform, so that high etch rate uniformity can be obtained.

【0015】図示実施例では、エッチング装置に適用し
た例について説明してきたが、プラズマCVDについて
も高均一で均質な膜分布を得ることができる。また、イ
オン注入装置に適用しても同様に高均一な不純物分布が
得られると期待できることは言うまでもない
In the illustrated embodiment, an example in which the present invention is applied to an etching apparatus has been described. However, highly uniform and uniform film distribution can be obtained also in plasma CVD. Needless to say, it can be expected that a highly uniform impurity distribution can be similarly obtained even when applied to an ion implantation apparatus.

【0016】以上説明してきたように、本発明によれ
ば、基板電極上に設けた静電チャック電極の上面と接す
る側すなわち裏面側に、可視領域の光透過率が80%以
上になりしかも抵抗率が1012Ωcm以下となるように組成
制御した酸化膜や窒化物或いは金属薄膜から成る透明導
電性膜を形成しているので、ガラス基板のような絶縁性
の基板を加工する上で高均一な温度分布にすることかで
き、高均一な加工或いは成膜分布を得ることができる。
従って、本発明は電子部品や光学部品に用いられる絶縁
物の加工や成膜に大きく貢献するものである。
As described above, according to the present invention, on the side in contact with the upper surface of the electrostatic chuck electrode provided on the substrate electrode, that is, on the back surface side, the light transmittance in the visible region becomes 80% or more and the resistance is increased. A transparent conductive film composed of an oxide film, nitride, or metal thin film whose composition is controlled so that the rate is 10 12 Ωcm or less is formed, so that it is highly uniform when processing an insulating substrate such as a glass substrate. Temperature distribution, and highly uniform processing or film formation distribution can be obtained.
Therefore, the present invention greatly contributes to processing and film formation of insulators used for electronic components and optical components.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による絶縁性基板をエッチング処理す
るために用いられるエッチング装置の一例を示す概略断
面図である。
FIG. 1 is a schematic sectional view showing an example of an etching apparatus used for etching an insulating substrate according to the present invention.

【図2】 従来のエッチング装置の概略断面図である。FIG. 2 is a schematic sectional view of a conventional etching apparatus.

【符号の説明】[Explanation of symbols]

1:真空室 2:円筒状側壁 3、4、5:磁場発生手段を成すコイル 6:電場発生手段を成す高周波電場発生用アンテナ 7:プラズマ発生用高周波電源 8:絶縁体 9:基板電極 11:バイアス高周波電源 12:静電チャック電極 16:ガラス基板 1: vacuum chamber 2: cylindrical side wall 3, 4, 5: coil forming magnetic field generating means 6: high frequency electric field generating antenna forming electric field generating means 7: plasma generating high frequency power supply 8: insulator 9: substrate electrode 11: Bias RF power supply 12: Electrostatic chuck electrode 16: Glass substrate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F004 AA01 BA20 BB13 BB18 BB21 BB22 BB28 DA00 DB00 5F045 AA08 AA19 AC02 AF07 BB02 DP01 DP02 DP03 DQ10 EF05 EH01 EH02 EH11 EH16 EM01 EM05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F004 AA01 BA20 BB13 BB18 BB21 BB22 BB28 DA00 DB00 5F045 AA08 AA19 AC02 AF07 BB02 DP01 DP02 DP03 DQ10 EF05 EH01 EH02 EH11 EH16 EM01 EM05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 真空室内に設けた基板電極の表面に装着
され、プラズマ等で処理するようにされた絶縁性透明基
板において、基板電極の表面と接触することになる絶縁
性透明基板側に透明導電膜を設けて静電吸着面を形成
し、基板電極の表面に設けられ、絶縁体内に複数本の導
電体で構成されるパターンを埋設して構成した板状の静
電吸着装置により、静電吸着できるように構成したこと
を特徴とする静電吸着可能な絶縁性透明基板。
1. An insulating transparent substrate mounted on a surface of a substrate electrode provided in a vacuum chamber and treated with plasma or the like. A static conductive surface is formed by providing a conductive film, and is provided on a surface of the substrate electrode. An insulative transparent substrate capable of electrostatic attraction, characterized in that it is configured to be capable of electroadsorption.
【請求項2】 透明導電膜がIn、Ti、Sn等の酸化物及び
それらの化合物或いは混合物或いは合金の酸化物或いは
窒化物から成り、透明導電膜の可視領域の光透過率が8
0%以上になるように絶縁性透明基板の静電吸着面を構
成したことを特徴とする請求項1に記載の静電吸着可能
な絶縁性透明基板。
2. The transparent conductive film is made of an oxide such as In, Ti, Sn or the like or an oxide or nitride of a compound, a mixture or an alloy thereof, and has a light transmittance of 8 in a visible region of the transparent conductive film.
The insulating transparent substrate capable of electrostatic attraction according to claim 1, wherein the electrostatic attraction surface of the insulating transparent substrate is configured to be 0% or more.
【請求項3】 透明導電膜が100 nm以下の金属薄膜か
ら成り、可視領域の光透過率が80%以上になるように
絶縁性透明基板の静電吸着面を構成したことを特徴とす
る請求項1に記載の静電吸着可能な絶縁性透明基板。
3. The electrostatic adsorption surface of an insulating transparent substrate, wherein the transparent conductive film is made of a metal thin film having a thickness of 100 nm or less, and a light transmittance in a visible region is 80% or more. Item 2. An insulative transparent substrate according to item 1, which is capable of electrostatic attraction.
【請求項4】 透明導電膜は、抵抗率が1012Ωcm以下と
なるように組成を制御した酸化物、窒化物或いはその他
の化合物の薄膜から成り、可視領域の光透過率が80%
以上になるように、絶縁性基板の静電吸着面を構成した
ことを特徴とする請求項1に記載の静電吸着可能な絶縁
性基板。
4. The transparent conductive film is made of a thin film of an oxide, a nitride, or another compound whose composition is controlled so as to have a resistivity of 10 12 Ωcm or less, and has a light transmittance of 80% in a visible region.
The insulative substrate capable of electrostatic attraction according to claim 1, wherein the electrostatic attraction surface of the insulative substrate is configured as described above.
【請求項5】 絶縁性透明基板の静電吸着面が絶縁性透
明基板の内側に設けられていることを特徴とする請求項
1〜4のいずれか一項に記載の静電吸着可能な絶縁性透
明基板。
5. The insulation capable of electrostatic attraction according to claim 1, wherein the electrostatic attraction surface of the insulative transparent substrate is provided inside the insulative transparent substrate. Transparent substrate.
JP36270698A 1998-12-21 1998-12-21 Electrostatically attractable transparent insulating substrate Pending JP2000188279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36270698A JP2000188279A (en) 1998-12-21 1998-12-21 Electrostatically attractable transparent insulating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36270698A JP2000188279A (en) 1998-12-21 1998-12-21 Electrostatically attractable transparent insulating substrate

Publications (1)

Publication Number Publication Date
JP2000188279A true JP2000188279A (en) 2000-07-04

Family

ID=18477540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36270698A Pending JP2000188279A (en) 1998-12-21 1998-12-21 Electrostatically attractable transparent insulating substrate

Country Status (1)

Country Link
JP (1) JP2000188279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201240A (en) * 2012-03-23 2013-10-03 Toshiba Corp Method for manufacturing semiconductor device and glass substrate for semiconductor substrate support
CN109449907A (en) * 2018-12-11 2019-03-08 广东海拓创新精密设备科技有限公司 A kind of transparent electrostatic chuck and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201240A (en) * 2012-03-23 2013-10-03 Toshiba Corp Method for manufacturing semiconductor device and glass substrate for semiconductor substrate support
CN109449907A (en) * 2018-12-11 2019-03-08 广东海拓创新精密设备科技有限公司 A kind of transparent electrostatic chuck and preparation method thereof
CN109449907B (en) * 2018-12-11 2024-01-12 广东海拓创新技术有限公司 Transparent electrostatic chuck and preparation method thereof

Similar Documents

Publication Publication Date Title
US6080287A (en) Method and apparatus for ionized physical vapor deposition
JP5219479B2 (en) Uniformity control method and system in ballistic electron beam enhanced plasma processing system
JP4709376B2 (en) Plasma apparatus including a non-magnetic metal member supplied with power between a plasma high frequency excitation source and a plasma, and a method of processing a workpiece
KR100225567B1 (en) Method for producing a titanium-based conductive thin film
JP3429391B2 (en) Plasma processing method and apparatus
US5942042A (en) Apparatus for improved power coupling through a workpiece in a semiconductor wafer processing system
JP2000331993A (en) Plasma processing device
JP3737363B2 (en) Physical vapor treatment of surfaces with non-uniformity compensation
JP2002530531A (en) Method and apparatus for ionized physical vapor deposition
JP2002520492A (en) Feedthrough overlapping coil
TW408358B (en) Improved inductively coupled plasma source
JPH10275694A (en) Plasma processing apparatus and processing method
JPH10251849A (en) Sputtering device
JP4193255B2 (en) Plasma processing apparatus and plasma processing method
KR100225571B1 (en) Disk reproducing apparatus
JP3146171B2 (en) Plasma processing method and apparatus
EP0818556A1 (en) A method for providing full-face high density plasma deposition
JPH1027780A (en) Plasma treating method
JPH06124998A (en) Plasma process equipment
JP2000188279A (en) Electrostatically attractable transparent insulating substrate
JP4666817B2 (en) High dielectric etching equipment
JP2002115051A (en) Bias sputtering device
JPH04271122A (en) plasma processing equipment
JPH0649936B2 (en) Bias spattering device
JP2750430B2 (en) Plasma control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050615

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070409

A131 Notification of reasons for refusal

Effective date: 20070418

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070615

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071024