[go: up one dir, main page]

JP2000187193A - Optical attenuator - Google Patents

Optical attenuator

Info

Publication number
JP2000187193A
JP2000187193A JP10364754A JP36475498A JP2000187193A JP 2000187193 A JP2000187193 A JP 2000187193A JP 10364754 A JP10364754 A JP 10364754A JP 36475498 A JP36475498 A JP 36475498A JP 2000187193 A JP2000187193 A JP 2000187193A
Authority
JP
Japan
Prior art keywords
plane
magnetic field
single crystal
garnet single
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10364754A
Other languages
Japanese (ja)
Other versions
JP3764825B2 (en
Inventor
Hirotaka Kawai
博貴 河合
Hidenori Nakada
英則 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP36475498A priority Critical patent/JP3764825B2/en
Publication of JP2000187193A publication Critical patent/JP2000187193A/en
Application granted granted Critical
Publication of JP3764825B2 publication Critical patent/JP3764825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

(57)【要約】 【課題】 各デバイス毎の特性のばらつきを少なくし、
電磁石による必要磁界を小さくし、波長依存性及び温度
依存性を小さくする。 【解決手段】 偏光子、ガーネット単結晶、検光子をそ
の順序で配列し、ガーネット単結晶には電磁石によって
光軸に平行な方向に磁界を印加し、永久磁石によって光
軸に垂直な方向に磁界を印加し、それらの合成磁界によ
ってファラデー回転角を変化させ透過光量を制御する。
光軸は〈111〉方向であり、永久磁石の磁界は、光軸
に垂直な(111)面を中心としたステレオ投影図にお
いて、中心の(111)面と、最外周円上の(110)
面と等価な面と、その(110)面と等価な面から中心
の(111)面から70度の位置にある(111)面に
近い方に10度以内の範囲にあり、その方向は中心の
(111)面から最外周円上を向く。合成磁界ベクトル
の変位経路も同様の範囲内に設定する。
(57) [Summary] [Problem] To reduce variation in characteristics of each device,
The required magnetic field by the electromagnet is reduced, and the wavelength dependence and the temperature dependence are reduced. SOLUTION: A polarizer, a garnet single crystal and an analyzer are arranged in that order, a magnetic field is applied to the garnet single crystal in a direction parallel to an optical axis by an electromagnet, and a magnetic field is applied to a direction perpendicular to the optical axis by a permanent magnet. Is applied, and the Faraday rotation angle is changed by the combined magnetic field to control the amount of transmitted light.
The optical axis is in the <111> direction, and the magnetic field of the permanent magnet is equal to the center (111) plane and the (110) plane on the outermost circle in a stereographic projection centered on the (111) plane perpendicular to the optical axis.
A plane equivalent to the plane, and within 10 degrees closer to the (111) plane located 70 degrees from the center (111) plane from the plane equivalent to the (110) plane, and its direction is the center. From the (111) plane. The displacement path of the resultant magnetic field vector is set within the same range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、偏光子とファラデ
ー効果を有するガーネット単結晶と検光子を組み合わせ
た光アッテネータに関し、更に詳しく述べると、ガーネ
ット単結晶に対して電磁石によって光軸に平行な方向に
磁界を印加すると共に永久磁石によって光軸に垂直な方
向に磁界を印加し、それらの合成磁界によりファラデー
回転角を変化させ、透過光量を制御する光アッテネータ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical attenuator in which a polarizer, a garnet single crystal having a Faraday effect and an analyzer are combined, and more specifically, a direction parallel to an optical axis with respect to a garnet single crystal by an electromagnet. The present invention relates to an optical attenuator that applies a magnetic field to a magnetic field and applies a magnetic field in a direction perpendicular to the optical axis by a permanent magnet, changes the Faraday rotation angle by the combined magnetic field, and controls the amount of transmitted light.

【0002】[0002]

【従来の技術】光通信システムなどでは、光の透過量を
制御するために光アッテネータが用いられている。光ア
ッテネータとしては、通常、偏光子と検光子の間にファ
ラデー回転角可変装置を組み込む構成が採用されてい
る。このファラデー回転角を可変する装置では、ファラ
デー効果を有するガーネット単結晶に異なる二方向以上
から外部磁界を印加し、それらによる合成磁界を可変す
ることにより、ガーネット単結晶を透過する光のファラ
デー回転角を制御している。
2. Description of the Related Art In an optical communication system or the like, an optical attenuator is used to control the amount of transmitted light. As the optical attenuator, a configuration in which a Faraday rotation angle varying device is incorporated between a polarizer and an analyzer is usually adopted. In the device for varying the Faraday rotation angle, an external magnetic field is applied to the garnet single crystal having the Faraday effect from two or more different directions, and the resultant magnetic field is varied to thereby change the Faraday rotation angle of light transmitted through the garnet single crystal. Is controlling.

【0003】例えば、特開平6−51255号公報に
は、永久磁石によって光軸に平行な方向に、ガーネット
単結晶の飽和磁界以上の固定磁界を印加して前記ガーネ
ット単結晶を飽和状態にしておき、その状態で垂直方向
に電磁石により可変磁界を印加して合成磁界ベクトルを
変化させ、ガーネット単結晶の磁化方向を変えてファラ
デー回転角を変化させ、出射側のファイバに結合する光
量を制御する光アッテネータが開示されている。ガーネ
ット単結晶が未飽和の状態だと、磁区が発生することに
よる消光比の劣化、光の散乱が生じ、印加磁界に対する
ファラデー回転角の再現性が悪いからである。
For example, Japanese Patent Application Laid-Open No. Hei 6-51255 discloses that a garnet single crystal is saturated by applying a fixed magnetic field equal to or higher than the saturation magnetic field of a garnet single crystal in a direction parallel to the optical axis by a permanent magnet. In that state, a variable magnetic field is applied vertically by an electromagnet to change the resultant magnetic field vector, change the magnetization direction of the garnet single crystal, change the Faraday rotation angle, and control the amount of light coupled to the output side fiber. An attenuator is disclosed. This is because if the garnet single crystal is in an unsaturated state, the extinction ratio is degraded due to the generation of magnetic domains, light is scattered, and the reproducibility of the Faraday rotation angle with respect to the applied magnetic field is poor.

【0004】[0004]

【発明が解決しようとする課題】ところが、本発明者等
が上記のようなことを考慮してガーネット単結晶を飽和
状態にして複数の光アッテネータを作製したところ、最
大減衰量を得るための光軸と垂直方向の電磁石の磁界
が、作製した各デバイス毎に大きくばらつくという問題
が発生した。
However, when the inventors of the present invention made a plurality of optical attenuators by saturating a garnet single crystal in consideration of the above-mentioned situation, the light for obtaining the maximum attenuation was obtained. There has been a problem that the magnetic field of the electromagnet in the direction perpendicular to the axis varies greatly for each manufactured device.

【0005】本発明の目的は、各デバイス毎の特性のば
らつきを少なくでき、且つ電磁石による必要磁界を小さ
く、デバイスの消費電力を小さくでき、波長依存性及び
温度依存性が小さい光アッテネータを提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical attenuator which can reduce variations in characteristics of each device, reduce a magnetic field required by an electromagnet, reduce power consumption of the device, and have a small wavelength dependency and temperature dependency. That is.

【0006】[0006]

【課題を解決するための手段】本発明は、偏光子、ファ
ラデー効果を有するガーネット単結晶、検光子が、その
順序で配列され、前記ガーネット単結晶には電磁石によ
って光軸に平行な方向に磁界を印加すると共に永久磁石
によって光軸に垂直な方向に磁界を印加し、それらの合
成磁界によってファラデー回転角を変化させ、透過光量
を制御する構造の光アッテネータである。本発明におい
ては、光軸はガーネット単結晶の〈111〉方向であ
り、電磁石の磁界も〈111〉方向である。永久磁石の
磁界は、光軸に垂直なガーネット単結晶の(111)面
を中心としたステレオ投影図において、中心の(11
1)面と、最外周円上の(110)面と等価な面と、そ
の(110)面と等価な面から中心の(111)面から
70度の位置にある(111)面に近い方に10度以内
の範囲にあり、その方向は中心の(111)面から最外
周円上に向いて与えられる。そして、合成磁界ベクトル
の変位経路は、ガーネット単結晶の(111)を中心と
したステレオ投影図において、中心の(111)面と、
最外周円上の(110)面と等価な面と、その(11
0)面と等価な面から中心の(111)面から70度の
位置にある(111)面に近い方に10度以内の範囲内
に設定されている。
According to the present invention, a polarizer, a garnet single crystal having a Faraday effect, and an analyzer are arranged in that order, and a magnetic field is applied to the garnet single crystal by an electromagnet in a direction parallel to the optical axis. The optical attenuator has a structure in which a magnetic field is applied in a direction perpendicular to the optical axis by a permanent magnet and a Faraday rotation angle is changed by the combined magnetic field to control the amount of transmitted light. In the present invention, the optical axis is in the <111> direction of the garnet single crystal, and the magnetic field of the electromagnet is also in the <111> direction. The magnetic field of the permanent magnet is centered on the (11) plane of the garnet single crystal perpendicular to the optical axis.
1) plane, a plane equivalent to the (110) plane on the outermost circumference circle, and a plane closer to the (111) plane located 70 degrees from the center (111) plane from the plane equivalent to the (110) plane The direction is given from the center (111) plane toward the outermost circumference circle. The displacement path of the resultant magnetic field vector is represented by a central (111) plane in a stereo projection centered on the (111) garnet single crystal;
A plane equivalent to the (110) plane on the outermost circle and its (11) plane
The plane is set within 10 degrees closer to the (111) plane located 70 degrees from the center (111) plane from the plane equivalent to the (0) plane.

【0007】図1はガーネット単結晶の(111)面を
中心としたステレオ投影図である。隣り合う同心円は互
いに10度ずつ異なっている面を意味し、隣り合う径方
向の線は互いに10度ずつ異なっている面を意味する。
従ってガーネット単結晶の任意の面は、このステレオ投
影図内の点として示すことができる。最外周円上には
(110)面と等価な面が60度毎に現れ、また中心か
ら70度に位置する円上には(111)面と等価な面が
120度毎に現れる。中心の(111)面と、最外周円
上の(110)面と等価な面と、その(110)面と等
価な面から中心の(111)面から70度の位置にある
(111)面に近い方に10度以内の範囲とは、斜線を
付した6箇所の扇形領域である。ここで最外周円上の
(110)面と等価な面とは、(-101)面、(-11
0)面、(01-1)面、(10-1)面、(1-10)面、
(0-11)面のことである。また中心から70度に位置
する円上の(111)面と等価な面とは、(-111)
面、(11-1)面、(1-11)面のことである。(なお
結晶の面の表記法では、負の指数については、その指数
の上に横棒を引いて表すが、本明細書ではそれができな
いために指数にマイナス記号を付すことで表記してい
る。)
FIG. 1 is a stereographic projection centered on the (111) plane of a garnet single crystal. Adjacent concentric circles mean surfaces that differ by 10 degrees from each other, and adjacent radial lines mean surfaces that differ by 10 degrees from each other.
Therefore, any plane of the garnet single crystal can be shown as a point in this stereographic view. A plane equivalent to the (110) plane appears every 60 degrees on the outermost circle, and a plane equivalent to the (111) plane appears every 120 degrees on a circle located 70 degrees from the center. A (111) plane at the center, a plane equivalent to the (110) plane on the outermost circumference circle, and a (111) plane located 70 degrees from the center (111) plane from the plane equivalent to the (110) plane The range within 10 degrees closer to is the six fan-shaped areas with diagonal lines. Here, the planes equivalent to the (110) plane on the outermost circle are the (-101) plane and the (-11) plane.
0) plane, (01-1) plane, (10-1) plane, (1-10) plane,
(0-11) plane. The plane equivalent to the (111) plane on the circle located 70 degrees from the center is (-111)
Plane, (11-1) plane and (1-11) plane. (In the crystal plane notation, a negative index is represented by drawing a horizontal bar over the index, but in this specification, it is not possible to do so because it is indicated by adding a minus sign to the index. .)

【0008】ガーネット単結晶に印加する外部磁界を、
ガーネット単結晶の方位を考慮して固定することによ
り、印加磁界に対するファラデー回転角の再現性を良く
することができる。その際、永久磁石により光軸と垂直
方向にガーネット単結晶の磁化を向かせておき、電磁石
により光軸方向に回転させることにより、電磁石の磁界
は小さくて済む。更に永久磁石の磁界が、光軸に垂直な
ガーネット単結晶の(111)面を中心としたステレオ
投影図において、中心の(111)面と、最外周円上の
(110)面と等価な面と、その(110)面と等価な
面から中心の(111)面から70度の位置にある(1
11)面に近い方に10度以内の範囲にあり、その方向
が中心の(111)面から最外周円上に向いて与えられ
ることにより、電磁石の磁界がゼロのとき、ガーネット
単結晶の磁化が小さい磁界で光軸と垂直方向に近づき、
ファラデー回転角を10度以下にでき、最大減衰量20
dB以上を得ることができる。
An external magnetic field applied to the garnet single crystal is
By fixing the garnet single crystal in consideration of the orientation, the reproducibility of the Faraday rotation angle with respect to the applied magnetic field can be improved. At this time, the magnetization of the garnet single crystal is oriented in the direction perpendicular to the optical axis by the permanent magnet, and the magnet is rotated in the optical axis direction by the electromagnet, so that the magnetic field of the electromagnet can be reduced. Further, in a stereo projection view centering on the (111) plane of the garnet single crystal perpendicular to the optical axis, the magnetic field of the permanent magnet is equivalent to the (111) plane at the center and the (110) plane on the outermost circle. And (70) from the (111) plane at the center from the plane equivalent to the (110) plane.
11) The direction is within 10 degrees closer to the plane, and the direction is given from the center (111) plane to the outermost circle, so that when the magnetic field of the electromagnet is zero, the magnetization of the garnet single crystal Approach in the direction perpendicular to the optical axis with a small magnetic field,
Faraday rotation angle can be reduced to 10 degrees or less and maximum attenuation 20
dB or more can be obtained.

【0009】[0009]

【発明の実施の態様】特性面では、特に、永久磁石の磁
界が、光軸に垂直なガーネット単結晶の(111)面を
中心としたステレオ投影図において、中心の(111)
面から最外周円上の(110)面と等価な面の方向であ
り、合成磁界ベクトルの変位経路が、ガーネット単結晶
の(111)面を中心としたステレオ投影図において、
中心の(111)面と最外周円上の(110)面と等価
な面を結んだ線上にすることが望ましい。しかし、組み
立て精度などを考慮すると、その直線から2度程度以内
の狭い範囲内に収めれば、最良状態を維持できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In terms of characteristics, in particular, the magnetic field of a permanent magnet is centered on a (111) plane of a garnet single crystal centered on a (111) plane perpendicular to the optical axis.
The direction of the plane equivalent to the (110) plane on the outermost circle from the plane, and the displacement path of the resultant magnetic field vector is represented by a stereographic projection centered on the (111) plane of the garnet single crystal.
It is desirable to make it on a line connecting the center (111) plane and a plane equivalent to the (110) plane on the outermost circumference circle. However, considering the assembling accuracy and the like, the best condition can be maintained if it is within a narrow range of about 2 degrees from the straight line.

【0010】本発明で用いるガーネット単結晶は、例え
ば液相エピタキシャル(LPE)法で作製した(RB
i)3 Fe5 12又は(RBi)3 (FeM)5
12(但し、Rはイットリウムを含む希土類元素から選ば
れた1種以上の元素、Mは鉄と置換できる1種以上の元
素)がよい。Mとしては、例えばGa,In,Al等の
元素がある。その他、ガーネット単結晶は、Y3 Fe5
12でもよい。ガーネット単結晶の製造方法は、量産性
などの観点から上記LPE法が望ましいが、その他、フ
ローティング・ゾーン(FZ)法やフラックス法などで
もよい。
The garnet single crystal used in the present invention is produced by, for example, a liquid phase epitaxial (LPE) method (RB
i) 3 Fe 5 O 12 or (RBi) 3 (FeM) 5 O
12 (where R is at least one element selected from rare earth elements including yttrium, and M is at least one element that can be substituted for iron). Examples of M include elements such as Ga, In, and Al. In addition, the garnet single crystal is Y 3 Fe 5
O 12 may be used. As a method for producing a garnet single crystal, the above-mentioned LPE method is desirable from the viewpoint of mass productivity and the like.

【0011】[0011]

【実施例】(実施例1)光アッテネータの消費電力を小
さくするためには、小さな磁界でガーネット単結晶の磁
化を回転させ、ファラデー回転角を可変できなければな
らない。そこで本発明者等は、図2(a)に示する構成
の光アッテネータを作製し、ファラデー回転角、減衰量
と電磁石の磁界の関係を調べた。光ファイバ10から出
射した光は、レンズ12を介して偏光子14、ファラデ
ー効果を有するガーネット単結晶16、検光子18を通
過し、レンズ20を介して光ファイバ22に結合する。
ガーネット単結晶16には電磁石24により光軸方向に
磁界が与えられ、更に一対の永久磁石26,28によっ
て光軸と垂直な方向に磁界が与えられる。結晶位置での
永久磁石26,28による磁界は150エルステッドで
ある。ここで偏光子14と検光子18は、偏光分離膜を
介して2個の直角三角形プリズムを接合した複合偏光プ
リズムであり、それぞれを通過する偏光面のなす角度が
90度になるように配置した。
(Embodiment 1) In order to reduce the power consumption of the optical attenuator, it is necessary to rotate the magnetization of the garnet single crystal with a small magnetic field and change the Faraday rotation angle. Therefore, the present inventors fabricated an optical attenuator having the configuration shown in FIG. 2A and examined the relationship between the Faraday rotation angle, the amount of attenuation, and the magnetic field of the electromagnet. The light emitted from the optical fiber 10 passes through the polarizer 14 via the lens 12, the garnet single crystal 16 having the Faraday effect, and the analyzer 18, and is coupled to the optical fiber 22 via the lens 20.
A magnetic field is applied to the garnet single crystal 16 in the optical axis direction by an electromagnet 24, and a magnetic field is applied in a direction perpendicular to the optical axis by a pair of permanent magnets 26 and 28. The magnetic field generated by the permanent magnets 26 and 28 at the crystal position is 150 Oe. Here, the polarizer 14 and the analyzer 18 are a composite polarizing prism in which two right-angled triangular prisms are joined via a polarization separation film, and are arranged so that the angle between the polarization planes passing therethrough is 90 degrees. .

【0012】ガーネット単結晶は次のように作製した。
はじめにPbO−B2 3 −Bi23 を融剤として、
液相エピタキシャル(LPE)法により、格子定数が1
2.496Å、組成が(CaGd)3 (MgZrGa)
5 12、形状が直径1インチで厚み500μmの非磁性
ガーネット基板の(111)面上に、Bi置換希土類鉄
ガーネット単結晶(LPE膜、組成Tb1.000.65Bi
1.35Fe4.05Ga0.9512、膜厚450μm)を育成し
た。得られたLPE膜を3mm角に切断し、研磨により基
板を除去した後、大気中で1100℃、8時間熱処理し
た。熱処理するのは、成長誘導による一軸磁気異方性を
低減するためである。そして、再度研磨し、3×3×
0.31mmの形状に鏡面研磨し、反射防止膜を蒸着し
た。最後に、1×1×0.31mmに切断した。VSM
(振動試料型磁力計)によりガーネット単結晶の飽和磁
化4πMsを測定したところ120ガウスであったた
め、永久磁石による磁界を150エルステッドに設定し
てガーネット単結晶を飽和させた。そして、光がガーネ
ット単結晶の反射防止膜を蒸着した面、即ち(111)
面に対して垂直に入射するようにして測定を行った。
A garnet single crystal was prepared as follows.
Including PbO-B 2 O 3 -Bi 2 O 3 as a flux in,
Lattice constant is 1 by liquid phase epitaxy (LPE) method.
2.496 °, composition of (CaGd) 3 (MgZrGa)
5 O 12 , a Bi-substituted rare earth iron garnet single crystal (LPE film, composition Tb 1.00 Y 0.65 Bi) was placed on the (111) plane of a nonmagnetic garnet substrate having a diameter of 1 inch and a thickness of 500 μm.
1.35 Fe 4.05 Ga 0.95 O 12 , a film thickness of 450 μm) were grown. The obtained LPE film was cut into a 3 mm square, the substrate was removed by polishing, and then heat-treated at 1100 ° C. for 8 hours in the air. The heat treatment is performed to reduce uniaxial magnetic anisotropy due to growth induction. And it is polished again, 3 × 3 ×
Mirror polishing was performed to a shape of 0.31 mm, and an antireflection film was deposited. Finally, it was cut to 1 × 1 × 0.31 mm. VSM
When the saturation magnetization 4πMs of the garnet single crystal was measured by a (vibrating sample magnetometer) and found to be 120 Gauss, the magnetic field by the permanent magnet was set to 150 Oersted to saturate the garnet single crystal. Then, the light is deposited on the surface of the garnet single crystal antireflection film, that is, (111)
The measurement was performed so as to be perpendicular to the surface.

【0013】まずX線回折によりガーネット単結晶の方
位を調べた。その結果、図4(a)で示されるガーネッ
ト単結晶のA面〜E面は、それぞれ図4(b)の(11
1)面を中心としたステレオ投影図のA′面〜E′面に
相当することが分かった。そこで図5に示すように、3
個のガーネット単結晶16を方位を揃えて並べ、光を矢
印方向に入射して、永久磁石と電磁石による合成磁界ベ
クトルの変位経路を図6の0〜110度(即ちa〜l)
に10度ずつ変えて測定した。図6は図1と基本的に同
じであり、それに合成磁界ベクトルの変位経路と角度を
描き加えたものである。経路a〜fまでのファラデー回
転角と減衰量の測定結果を図7に、経路g〜lまでのフ
ァラデー回転角と減衰量の測定結果を図8に示す。また
経路a〜lにおける電磁石の磁界がゼロのときの減衰量
を表1に示す。なお、120〜230度、240〜35
0度の場合も測定したが、0〜110度までの測定結果
と同じであったため記載を省略する。測定では光源に
1.55μmの半導体レーザを使用した。
First, the orientation of the garnet single crystal was examined by X-ray diffraction. As a result, the A-plane to E-plane of the garnet single crystal shown in FIG.
1) It was found that they corresponded to the planes A 'to E' in the stereographic projection centering on the plane. Therefore, as shown in FIG.
The garnet single crystals 16 are aligned in the same direction, light is incident in the direction of the arrow, and the displacement path of the synthetic magnetic field vector by the permanent magnet and the electromagnet is 0 to 110 degrees (i.e., al) in FIG.
At 10 degrees. FIG. 6 is basically the same as FIG. 1 except that the displacement path and the angle of the resultant magnetic field vector are added. FIG. 7 shows the measurement results of the Faraday rotation angle and the attenuation amount for the paths a to f, and FIG. 8 shows the measurement results of the Faraday rotation angle and the attenuation amount for the paths g to l. Table 1 shows the attenuation when the magnetic field of the electromagnet in the paths a to l is zero. In addition, 120-230 degrees, 240-35
The measurement was also performed at 0 °, but the description was omitted because the measurement results were the same as those from 0 to 110 °. In the measurement, a 1.55 μm semiconductor laser was used as a light source.

【0014】[0014]

【表1】 [Table 1]

【0015】電磁石の磁界がゼロのところに着目する
と、外部印加磁界による合成磁界ベクトルの変位経路が
dとjのとき、ファラデー回転角がゼロになり、減衰量
が最大となった。経路aとgのとき、ファラデー回転角
が−や+の最大値になり減衰量が最小になった。これ
は、経路aでは図9(a)、経路gでは図9(b)のよ
うになっており、異方性磁界の影響を受け、ガーネット
単結晶の磁化が外部磁界と異方性磁界が合成された磁界
ベクトル方向を向いているためと思われる。これらの結
果から、特性のばらつきを抑えるためには、外部印加磁
界による合成磁界ベクトルの変位経路を固定する必要が
あり、更に最大減衰量を大きくするためには、外部印加
磁界による合成磁界ベクトルの変位経路を限定する必要
があることが分かる。表1より、経路d又はjから中心
の(111)面から70度の位置にある(111)面に
近い方に10度以内においては(図1の斜線領域)、最
大減衰量20dB以上が得られており、その範囲におい
て良好な特性の光アッテネータが得られることが分か
る。また、この構成の光アッテネータは、ファラデー回
転角が最小のとき最大減衰量が得られるため、波長依存
性、温度依存性が小さい。
Focusing on the point where the magnetic field of the electromagnet is zero, the Faraday rotation angle becomes zero and the attenuation becomes maximum when the displacement path of the composite magnetic field vector due to the externally applied magnetic field is d and j. In the case of the paths a and g, the Faraday rotation angle became the maximum value of-or +, and the amount of attenuation became the minimum. This is as shown in FIG. 9A for the path a and as shown in FIG. 9B for the path g, and the magnetization of the garnet single crystal is influenced by the external magnetic field and the anisotropic magnetic field. This is probably because they are oriented in the direction of the synthesized magnetic field vector. From these results, it is necessary to fix the displacement path of the composite magnetic field vector due to the externally applied magnetic field in order to suppress the variation in the characteristics, and to further increase the maximum attenuation, the displacement path of the composite magnetic field vector due to the externally applied magnetic field is required. It can be seen that the displacement path needs to be limited. According to Table 1, within 10 degrees closer to the (111) plane located at 70 degrees from the center (111) plane from the path d or j (the shaded area in FIG. 1), a maximum attenuation of 20 dB or more is obtained. It can be seen that an optical attenuator having good characteristics can be obtained in this range. Further, in the optical attenuator having this configuration, the maximum attenuation is obtained when the Faraday rotation angle is the minimum, so that the wavelength dependence and the temperature dependence are small.

【0016】経路a等では電磁石の磁界を印加していく
と、はじめ減衰量が大きくなりファラデー回転角がゼロ
になるところで最大減衰量が得られるが、このような挙
動は減衰量を制御することが困難になり好ましくない。
図1の斜線を付した扇形領域を外れたところでも、永久
磁石の磁界を大きくすれば、電磁石の磁界がゼロのとき
ガーネット単結晶の磁化は光軸に垂直に近づき、ファラ
デー回転角がゼロに近づく。そして、電磁石で大きな磁
界を印加すれば経路d又はjと同様の結果が得られる。
しかし、そうすると磁化を回転させるのに必要な電磁石
の磁界が大きくなるため、デバイスが大きくなったり、
消費電力が大きくなり好ましくない。
In the path a and the like, when the magnetic field of the electromagnet is applied, the attenuation becomes large at first, and the maximum attenuation is obtained when the Faraday rotation angle becomes zero. Becomes difficult, which is not preferable.
Even outside the hatched sector in FIG. 1, if the magnetic field of the permanent magnet is increased, the magnetization of the garnet single crystal approaches perpendicular to the optical axis when the magnetic field of the electromagnet is zero, and the Faraday rotation angle becomes zero. Get closer. When a large magnetic field is applied by an electromagnet, the same result as that obtained by the path d or j can be obtained.
However, doing so increases the magnetic field of the electromagnet required to rotate the magnetization, so the device becomes larger,
It is not preferable because the power consumption increases.

【0017】(実施例2)図2(b)に示す構造の光ア
ッテネータを作製した。これは、図2(a)に示すもの
とほぼ同様の構成であるが、永久磁石を片側のみに設け
たものである。それ故、対応する各部材には同一符号を
付し、それらについての説明は省略する。ここでは永久
磁石26はガーネット単結晶16の側がN極になってお
り、結晶位置での永久磁石による磁界は150エルステ
ッドである。偏光子14及び検光子18には楔形複屈折
結晶(材質はルチル)を用いた。ファラデー回転角が7
5度のとき出射側の光ファイバ22に最も結合しないよ
うに、偏光子14と検光子18を配置した。外部から印
加する合成磁界ベクトルの変位経路を図6の経路dとし
たときの電磁石の磁界に対するファラデー回転角と減衰
量の関係を図10に示す。電磁石の磁界が約250エル
ステッドのときに最大減衰量が得られた。
Example 2 An optical attenuator having the structure shown in FIG. 2B was manufactured. This has substantially the same configuration as that shown in FIG. 2A, except that a permanent magnet is provided on only one side. Therefore, corresponding members are denoted by the same reference numerals, and description thereof will be omitted. Here, the permanent magnet 26 has an N pole on the garnet single crystal 16 side, and the magnetic field of the permanent magnet at the crystal position is 150 Oersted. A wedge-shaped birefringent crystal (made of rutile) was used for the polarizer 14 and the analyzer 18. Faraday rotation angle is 7
At 5 degrees, the polarizer 14 and the analyzer 18 were arranged so as not to be most coupled to the optical fiber 22 on the emission side. FIG. 10 shows the relationship between the Faraday rotation angle and the attenuation with respect to the magnetic field of the electromagnet when the displacement path of the synthetic magnetic field vector applied from the outside is the path d in FIG. Maximum attenuation was obtained when the magnetic field of the electromagnet was about 250 Oe.

【0018】(比較例)比較のために、図3に示す従来
と同じ構成の光アッテネータを作製した。図3の光アッ
テネータは、図2(a)に示す光アッテネータの電磁石
と永久磁石の関係を逆にしたもので、一対の永久磁石2
6,28により光軸方向に磁界を与え、電磁石24によ
り光軸と垂直方向に磁界を与える。ファラデー回転角が
15度のとき、出射側の光ファイバ22に最も結合しな
いように、偏光子14と検光子18を配置した。結晶位
置での永久磁石26,28による磁界は150エルスデ
ッドである。外部から印加する合成磁界ベクトルの変位
経路を図6の経路dとしたときの電磁石の磁界に対する
ファラデー回転角と減衰量の関係を図11に示す。電磁
石の磁界が約800エルステッドのときに最大減衰量が
得られた。この値は、実施例2に示す光アッテネータの
3倍以上の値であった。
(Comparative Example) For comparison, an optical attenuator having the same configuration as that of the related art shown in FIG. 3 was manufactured. The optical attenuator shown in FIG. 3 is obtained by reversing the relationship between the electromagnet and the permanent magnet of the optical attenuator shown in FIG.
A magnetic field is applied in the optical axis direction by 6, 28, and a magnetic field is applied by the electromagnet 24 in a direction perpendicular to the optical axis. When the Faraday rotation angle was 15 degrees, the polarizer 14 and the analyzer 18 were arranged so as not to couple most to the optical fiber 22 on the emission side. The magnetic field generated by the permanent magnets 26 and 28 at the crystal position is 150 Oe. FIG. 11 shows the relationship between the Faraday rotation angle and the attenuation with respect to the magnetic field of the electromagnet when the displacement path of the synthetic magnetic field vector applied from the outside is the path d in FIG. The maximum attenuation was obtained when the magnetic field of the electromagnet was about 800 Oe. This value was three times or more the value of the optical attenuator shown in Example 2.

【0019】[0019]

【発明の効果】本発明は上記のように、ガーネット単結
晶に対して電磁石によって光軸に平行な方向に磁界を印
加すると共に永久磁石によって光軸に垂直な方向に磁界
を印加し、それらの合成磁界によってファラデー回転角
を変化させる際に、永久磁石の磁界方向と合成磁界ベク
トルの変位経路を特定しているため、印加磁界に対する
ファラデー回転角の再現性が良くなり各デバイス毎の特
性のばらつきを抑えることができ、且つ電磁石の磁界が
小さくて済み消費電力の低減とデバイスの小型化を図る
ことができる。また、ファラデー回転角が最小の時に最
大減衰量が得られるため、波長依存性及び温度依存性が
小さくなる。
As described above, the present invention applies a magnetic field to a garnet single crystal in a direction parallel to the optical axis by an electromagnet and applies a magnetic field in a direction perpendicular to the optical axis by a permanent magnet. When the Faraday rotation angle is changed by the synthetic magnetic field, the direction of the magnetic field of the permanent magnet and the displacement path of the synthetic magnetic field vector are specified, so the reproducibility of the Faraday rotation angle with respect to the applied magnetic field is improved, and the characteristics of each device vary. Can be suppressed, the magnetic field of the electromagnet is small, the power consumption can be reduced, and the device can be downsized. In addition, since the maximum attenuation is obtained when the Faraday rotation angle is minimum, the wavelength dependence and the temperature dependence are reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明範囲を示す(111)面を中心としたス
テレオ投影図。
FIG. 1 is a stereographic projection centered on a (111) plane showing a range of the present invention.

【図2】本発明における光アッテネータの基本構成図。FIG. 2 is a basic configuration diagram of an optical attenuator according to the present invention.

【図3】従来の光アッテネータの構成図。FIG. 3 is a configuration diagram of a conventional optical attenuator.

【図4】ガーネット単結晶の実際の面と(111)面を
中心としたステレオ投影図を示す説明図。
FIG. 4 is an explanatory diagram showing a stereo projection diagram centered on an actual plane and a (111) plane of a garnet single crystal.

【図5】ガーネット単結晶の配列状態を示す説明図。FIG. 5 is an explanatory view showing an arrangement state of a garnet single crystal.

【図6】外部合成磁界ベクトルの変位経路と角度を示す
ステレオ投影図。
FIG. 6 is a stereo projection showing displacement paths and angles of an external combined magnetic field vector.

【図7】経路a〜fにおける電磁石の磁界に対するファ
ラデー回転角と減衰量の関係を示すグラフ。
FIG. 7 is a graph showing a relationship between a Faraday rotation angle and an attenuation amount with respect to a magnetic field of an electromagnet in paths a to f.

【図8】経路g〜lにおける電磁石の磁界に対するファ
ラデー回転角と減衰量の関係を示すグラフ。
FIG. 8 is a graph showing a relationship between a Faraday rotation angle and an attenuation amount with respect to a magnetic field of an electromagnet in paths g to l.

【図9】経路aと経路gにおけるガーネット単結晶の結
晶磁気異方性の影響を示す説明図。
FIG. 9 is an explanatory view showing the influence of the crystal magnetic anisotropy of a garnet single crystal on paths a and g.

【図10】本発明の最良モードの一つにおける電磁石の
磁界に対するファラデー回転角と減衰量の関係を示すグ
ラフ。
FIG. 10 is a graph showing the relationship between the Faraday rotation angle and the attenuation with respect to the magnetic field of the electromagnet in one of the best modes of the present invention.

【図11】従来技術における電磁石の磁界に対するファ
ラデー回転角と減衰量の関係を示すグラフ。
FIG. 11 is a graph showing a relationship between a Faraday rotation angle and an attenuation amount with respect to a magnetic field of an electromagnet according to a conventional technique.

【符号の説明】[Explanation of symbols]

10,22 光ファイバ 12,20 レンズ 14 偏光子 16 ガーネット単結晶 18 検光子 24 電磁石 26,28 永久磁石 10,22 Optical fiber 12,20 Lens 14 Polarizer 16 Garnet single crystal 18 Analyzer 24 Electromagnet 26,28 Permanent magnet

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 偏光子、ファラデー効果を有するガーネ
ット単結晶、検光子が、その順序で配列され、前記ガー
ネット単結晶には電磁石によって光軸に平行な方向に磁
界を印加すると共に永久磁石によって光軸に垂直な方向
に磁界を印加し、それらの合成磁界によってファラデー
回転角を変化させ、透過光量を制御する光アッテネータ
であって、 光軸はガーネット単結晶の〈111〉方向であり、永久
磁石の磁界は、光軸に垂直なガーネット単結晶の(11
1)面を中心としたステレオ投影図において、中心の
(111)面と、最外周円上の(110)面と等価な面
と、その(110)面と等価な面から中心の(111)
面から70度の位置にある(111)面に近い方に10
度以内の範囲にあり、その方向は中心の(111)面か
ら最外周円上に向いて与えられ、 且つ合成磁界ベクトルの変位経路は、ガーネット単結晶
の(111)を中心としたステレオ投影図において、中
心の(111)面と、最外周円上の(110)面と等価
な面と、その(110)面と等価な面から中心の(11
1)面から70度の位置にある(111)面に近い方に
10度以内の範囲内であることを特徴とする光アッテネ
ータ。
1. A polarizer, a garnet single crystal having a Faraday effect, and an analyzer are arranged in that order. A magnetic field is applied to the garnet single crystal in a direction parallel to an optical axis by an electromagnet, and light is applied by a permanent magnet. An optical attenuator that applies a magnetic field in a direction perpendicular to the axis and changes the Faraday rotation angle by the combined magnetic field to control the amount of transmitted light. The optical axis is the <111> direction of garnet single crystal, and the permanent magnet Is the garnet single crystal perpendicular to the optical axis (11
1) In a stereographic projection centered on a plane, a (111) plane at the center, a plane equivalent to the (110) plane on the outermost circumference circle, and a plane equivalent to the (110) plane are located at the center (111) plane.
10 nearer the (111) plane located 70 degrees from the plane
And the direction is given from the center (111) plane to the outermost circle, and the displacement path of the resultant magnetic field vector is a stereo projection of the garnet single crystal centered at (111). , The plane equivalent to the (110) plane on the center, the (110) plane on the outermost circumference circle, and the center (11) from the plane equivalent to the (110) plane.
1) An optical attenuator characterized by being within 10 degrees within a range closer to the (111) plane located 70 degrees from the plane.
【請求項2】 永久磁石の磁界が、光軸に垂直なガーネ
ット単結晶の(111)面を中心としたステレオ投影図
において、中心の(111)面から最外周円上の(11
0)面と等価な面の方向であり、合成磁界ベクトルの変
位経路が、ガーネット単結晶の(111)面を中心とし
たステレオ投影図において、中心の(111)面と最外
周円上の(110)面と等価な面を結んだ線上である請
求項1記載の光アッテネータ。
2. In a stereographic projection centered on the (111) plane of a garnet single crystal perpendicular to the optical axis, the magnetic field of the permanent magnet is (11) on the outermost circle from the center (111) plane.
The direction of the plane equivalent to the (0) plane, and the displacement path of the resultant magnetic field vector is represented by the (111) plane at the center and the ( The optical attenuator according to claim 1, wherein the optical attenuator is on a line connecting surfaces equivalent to the (110) surface.
【請求項3】 ガーネット単結晶がY3 Fe5 12であ
る請求項1又は2記載の光アッテネータ。
3. The optical attenuator according to claim 1, wherein the garnet single crystal is Y 3 Fe 5 O 12 .
【請求項4】 ガーネット単結晶が(RBi)3 Fe5
12又は(RBi) 3 (FeM)5 12(但し、Rはイ
ットリウムを含む希土類元素から選ばれた1種以上の元
素、Mは鉄と置換できる1種以上の元素)である請求項
1又は2記載の光アッテネータ。
4. The garnet single crystal is (RBi)ThreeFeFive
O12Or (RBi) Three(FeM)FiveO12(However, R is a
At least one element selected from rare earth elements including thorium
Element, M is one or more elements that can be substituted for iron).
3. The optical attenuator according to 1 or 2.
【請求項5】 偏光子及び検光子が複合偏光プリズムで
ある請求項1乃至4のいずれかに記載の光アッテネー
タ。
5. The optical attenuator according to claim 1, wherein the polarizer and the analyzer are composite polarizing prisms.
【請求項6】 偏光子及び検光子が複屈折結晶である請
求項1乃至4のいずれかに記載の光アッテネータ。
6. The optical attenuator according to claim 1, wherein the polarizer and the analyzer are birefringent crystals.
JP36475498A 1998-12-22 1998-12-22 Optical attenuator Expired - Lifetime JP3764825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36475498A JP3764825B2 (en) 1998-12-22 1998-12-22 Optical attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36475498A JP3764825B2 (en) 1998-12-22 1998-12-22 Optical attenuator

Publications (2)

Publication Number Publication Date
JP2000187193A true JP2000187193A (en) 2000-07-04
JP3764825B2 JP3764825B2 (en) 2006-04-12

Family

ID=18482591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36475498A Expired - Lifetime JP3764825B2 (en) 1998-12-22 1998-12-22 Optical attenuator

Country Status (1)

Country Link
JP (1) JP3764825B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029478A1 (en) * 2000-10-04 2002-04-11 Fdk Corporation Polarizer and optical device using it
WO2002044798A1 (en) * 2000-11-30 2002-06-06 Tdk Corporation Faraday rotator and optical attenuator
WO2005071470A1 (en) * 2004-01-22 2005-08-04 Fdk Corporation Variable faraday rotor and variable optical attenuator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029478A1 (en) * 2000-10-04 2002-04-11 Fdk Corporation Polarizer and optical device using it
WO2002044798A1 (en) * 2000-11-30 2002-06-06 Tdk Corporation Faraday rotator and optical attenuator
US6747782B2 (en) 2000-11-30 2004-06-08 Tdk Corporation Faraday rotator and optical attenuator
WO2005071470A1 (en) * 2004-01-22 2005-08-04 Fdk Corporation Variable faraday rotor and variable optical attenuator

Also Published As

Publication number Publication date
JP3764825B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
JP2815509B2 (en) Optical attenuator
US6288827B1 (en) Faraday rotator
JP3720616B2 (en) Faraday rotation angle variable device
JP3493119B2 (en) Faraday rotation angle variable device
JP3764825B2 (en) Optical attenuator
US6392784B1 (en) Faraday rotator
JP3704429B2 (en) Faraday rotation angle variable device
JP3583515B2 (en) Polarization scrambler device
JP3581030B2 (en) Faraday rotation angle variable device
JP3602971B2 (en) Manufacturing method of magneto-optical element
JP3472524B2 (en) Optical attenuator
JP2786016B2 (en) Optical isolator
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPH06317763A (en) Optical isolator
JPS61179413A (en) Optical isolator
JP2916995B2 (en) Magnetic garnet for optical devices
JPH02306215A (en) Optical isolator
JPS59147320A (en) Optical non-reciprocal element
JP2570826B2 (en) Solid state circulator
JP2512941B2 (en) Optical isolator
JPH06281885A (en) Optical isolator
JP2002174802A (en) Optical attenuator
JPH0736000A (en) Waveguide type isolator
JPH10301070A (en) Faraday rotation angle variable device
JP2002228998A (en) Faraday rotor and optical attenuator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term