[go: up one dir, main page]

JP2000183242A - Junction board and manufacture thereof - Google Patents

Junction board and manufacture thereof

Info

Publication number
JP2000183242A
JP2000183242A JP10338037A JP33803798A JP2000183242A JP 2000183242 A JP2000183242 A JP 2000183242A JP 10338037 A JP10338037 A JP 10338037A JP 33803798 A JP33803798 A JP 33803798A JP 2000183242 A JP2000183242 A JP 2000183242A
Authority
JP
Japan
Prior art keywords
main surface
hole
relay board
solder
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10338037A
Other languages
Japanese (ja)
Other versions
JP3779478B2 (en
Inventor
Hiroshi Tajima
容 多島
Takaaki Hiraoka
敬章 平岡
Satoshi Hirano
訓 平野
Yasuhiro Sugimoto
康宏 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP33803798A priority Critical patent/JP3779478B2/en
Publication of JP2000183242A publication Critical patent/JP2000183242A/en
Application granted granted Critical
Publication of JP3779478B2 publication Critical patent/JP3779478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a junction board and method for manufacturing at a high yield, being easy to form an solder to an electronic component, etc. SOLUTION: A junction board 10 comprises a junction board main body 11, which when provided with first and second main surfaces 11A and 11B, comprises a through-hole 11H penetrating between the two surfaces, a recessed conductor 12 comprising a bottom part 12T which stops the opening on the side of second main surface 11B of the through-hole 11H and a side part 12S covering the inner peripheral surface of the through-hole 11H, and a packing solder body 13, which when packed in a recessed part 12R of the recessed conductor 12, protrudes on the side of first main surface 11A. With a bottomed recessed conductor 12 comprising the bottom part 12T and the side part 12S provided, a part of or all of solder paste which is to be a packing solder body 13 will not fall off in screen printing, etc., enhancing connectivity to the terminal of electric component, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ICチップやトラ
ンジスタ、抵抗、コンデンサ等の機能部品や機能部品を
搭載した配線基板等の電子部品の端子と、これを搭載す
るためのマザーボード、ドーターボード等のプリント配
線板に設けた端子との間に介在させて相互に接続させる
中継基板及びその製造方法に関し、特に、製造容易で微
細な間隔を持つ端子同士を接続できる中継基板及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a functional component such as an IC chip, a transistor, a resistor and a capacitor, and a terminal of an electronic component such as a wiring board on which the functional component is mounted, and a mother board and a daughter board for mounting the terminal. More particularly, the present invention relates to a relay board which can be connected to terminals provided at fine intervals, and to a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来より、ICチップをプリント配線板
にベアチップ実装する場合に、ICチップが不良であっ
た場合のリペアの困難さを考慮して、ICチップとプリ
ント配線板の間に中継基板(インターポーザ)を介在さ
せることがある。特に、複数のICチップを1つのプリ
ント配線板に搭載する場合には、一旦中継基板に複数の
ICチップを接続し、いずれのICチップも正常である
ことを確認してから、中継基板をプリント配線板に接続
することが多い。
2. Description of the Related Art Conventionally, when an IC chip is mounted on a printed wiring board as a bare chip, a relay board (interposer) is provided between the IC chip and the printed wiring board in consideration of the difficulty of repair when the IC chip is defective. ) May be interposed. In particular, when mounting a plurality of IC chips on one printed wiring board, connect the plurality of IC chips to the relay board once, confirm that all the IC chips are normal, and then print the relay board. Often connected to a wiring board.

【0003】このような従来の中継基板の構造につい
て、図11を参照しつつ説明する。図11(a)に示す
中継基板110は、アルミナセラミックからなる中継基
板本体111の2つの主面111A,111Bの間に開
けた貫通孔111H内に、タングステン、モリブデン等
のビア112を形成し、この上下を覆うようにして主面
111A,111Bにそれぞれタングステン、モリブデ
ン等のパッド113,114を形成したものである。こ
のような中継基板110を介在させて、図11(b)に
示すように、ICチップ等の電子部品D10,D20
を、プリント配線板P10に接続する。
The structure of such a conventional relay board will be described with reference to FIG. In the relay substrate 110 shown in FIG. 11A, a via 112 made of tungsten, molybdenum, or the like is formed in a through hole 111H opened between two main surfaces 111A and 111B of a relay substrate body 111 made of alumina ceramic. Pads 113 and 114 of tungsten, molybdenum, etc. are formed on the main surfaces 111A and 111B so as to cover the upper and lower sides, respectively. As shown in FIG. 11B, electronic components D10 and D20 such as IC chips are interposed with the relay board 110 interposed therebetween.
Is connected to the printed wiring board P10.

【0004】電子部品D10,D20は、それぞれシリ
コンからなる部品本体D11,D21の接続面D11
B,D21B(図中下面)に、多数のパッドD12,D
22を備え、これらのパッドD12,D22には、高温
ハンダ(例えば、95Pb−5Sn)からなり略半球状
のハンダバンプD13,D23を備える。また、プリン
ト配線板P10は、ガラス−エポキシ樹脂複合材料から
なる配線板本体P11の接続面P11A(図中上面)
に、電子部品D10,D20のパッドD12,D22
(ハンダバンプD13,D23)に対応した配置で、銅
からなる接続パッドP12、及び、高温ハンダからなり
略半球状のハンダバンプP13を備える。これらのハン
ダバンプD13,D23と中継基板110のパッド11
3とを、およびハンダバンプP13とパッド114とを
上記高温ハンダよりも低融点のハンダ(例えばPb−S
n共晶ハンダ37Pb−63Sn)S1,S2で接続す
る。
The electronic components D10 and D20 are connected to connection surfaces D11 of component bodies D11 and D21 made of silicon, respectively.
B, D21B (lower surface in the figure) have a number of pads D12, D
The pads D12 and D22 are provided with substantially hemispherical solder bumps D13 and D23 made of high-temperature solder (for example, 95Pb-5Sn). The printed wiring board P10 has a connection surface P11A (upper surface in the figure) of a wiring board body P11 made of a glass-epoxy resin composite material.
The pads D12, D22 of the electronic components D10, D20
(Solder bumps D13, D23), and includes a connection pad P12 made of copper and a substantially hemispherical solder bump P13 made of high-temperature solder. These solder bumps D13, D23 and pads 11 of relay board 110
3 and the solder bumps P13 and the pads 114 are soldered with a lower melting point than the high-temperature solder (for example, Pb-S).
n eutectic solder 37Pb-63Sn) Connected by S1 and S2.

【0005】その他の中継基板として、図12に示すも
のも挙げられる。この中継基板120は、ガラス−エポ
キシ樹脂複合材料からなる中継基板本体121の2つの
主面121A,121Bの間に開けた貫通孔121H内
に、銅メッキにより略円筒状のスルーホール導体122
を形成し、さらにこの内部に導電性樹脂(あるいは絶縁
性樹脂)からなるプラグ材125を充填し、銅メッキに
より蓋状にパッド123,124をそれぞれ形成したも
のである。この中継基板120も、上記(図11参照)
と同様にして、電子部品D10,D20やプリント配線
板P10と接続して用いることができる。
FIG. 12 shows another example of the relay board. The relay board 120 has a substantially cylindrical through-hole conductor 122 formed by copper plating in a through hole 121H formed between two main surfaces 121A and 121B of a relay board body 121 made of a glass-epoxy resin composite material.
Are formed, and a plug material 125 made of a conductive resin (or an insulating resin) is filled therein, and pads 123 and 124 are formed in a lid shape by copper plating, respectively. This relay board 120 is also the same as described above (see FIG. 11).
In the same manner as described above, it can be used by connecting to the electronic components D10 and D20 and the printed wiring board P10.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た中継基板110は、中継基板本体111がアルミナ等
のセラミックからなるため、靭性が低く、応力が掛かる
と折れる等の不具合を生じるため、中継基板本体111
の厚さを薄くすることができない。一方、厚さが厚いと
ビア112の長さが長くなるため、ビア112の持つ抵
抗やインダクタンスが大きくなって、電気的特性上も好
ましくない。また、厚さが厚いと、プリント配線板P1
0との熱膨張差に起因する応力が大きくなるため、両者
間の接続信頼性も低下する。さらに、この中継基板11
0は、例えば図13(a)に示すように、焼成後に中継
基板本体111となるセラミックグリーンシートGの2
つの主面GA,GBを貫通する貫通孔GH内に、タング
ステンペースト等の導体ペーストGPを充填し、さらに
パッド(図示しない)を印刷し焼成して形成する。この
場合には、グリーンシートGの厚さが薄いと、貫通孔G
H内に導体ペーストGPを保持する能力に乏しいため、
印刷時に一旦は充填された導体ペーストGPの一部また
はほぼ全部が脱落して、充填不良となりやすく、歩留ま
りが低下する。また、導体ペーストGPの量が一定でな
いと、各パッドに凹凸ができてコプラナリティが低下
し、ICチップなどの電子部品D10等との接続性が低
下する。
However, since the relay board body 111 is made of ceramics such as alumina, the relay board body 110 has a low toughness, and causes problems such as breakage when stress is applied. 111
Cannot be reduced in thickness. On the other hand, if the thickness is large, the length of the via 112 becomes long, so that the resistance and inductance of the via 112 increase, which is not preferable in terms of electrical characteristics. When the thickness is large, the printed wiring board P1
Since the stress due to the difference in thermal expansion from zero increases, the connection reliability between the two also decreases. Further, the relay board 11
0 is, for example, as shown in FIG. 13A, 2 of the ceramic green sheet G that becomes the relay substrate main body 111 after firing.
A conductive paste GP such as a tungsten paste is filled in a through-hole GH penetrating the two main surfaces GA and GB, and a pad (not shown) is printed and fired to form the pad. In this case, if the thickness of the green sheet G is small, the through hole G
Since the ability to hold the conductor paste GP in H is poor,
At the time of printing, a part or almost the entirety of the conductive paste GP once filled is dropped off, which is likely to cause poor filling, and the yield is reduced. Further, if the amount of the conductive paste GP is not constant, unevenness is formed in each pad, coplanarity is reduced, and connectivity with an electronic component D10 such as an IC chip is reduced.

【0007】一方、上記した中継基板120では、中継
基板本体121に含まれるガラス繊維に沿ってマイグレ
ーションを生じるため、隣接する貫通孔121H同士の
間隔を狭くする、例えば、200μm以下とすると、中
継基板120の高温高湿条件下での信頼性が低下するた
め、間隔を狭くすることができない。また、この中継基
板120は、プラグ材125を充填し熱硬化させると、
図13(b)に示すように、その表面125Sに凹凸が
生じるため、研磨によってその表面125Sを平坦に
し、その後パッド123,124を形成するのである
が、中継基板本体121の厚さが薄くなると、研磨が困
難になってくる。また、上記導電ペーストGPと同様
に、中継基板本体121の厚さが薄くなると、一旦充填
したプラグ材(樹脂)125が脱落しやすくなる。さら
に、プラグ材125の上下に蓋状のパッド123,12
4を形成するので、プラグ材125の形成後に研磨し、
さらにメッキによってパッド123,124を形成する
ため、中継基板120の製作には工数が掛かり高価とな
る。また、電子部品D10等のハンダバンプD13と接
続するには、予め低融点ハンダペーストをパッド123
等に塗布しておき、電子部品D10等を重ねた後にハン
ダペーストを加熱溶融させてハンダ付けする必要があ
る。
On the other hand, in the above-mentioned relay board 120, migration occurs along the glass fibers included in the relay board main body 121. Therefore, if the distance between the adjacent through holes 121H is reduced, for example, 200 μm or less, Since the reliability under the high-temperature and high-humidity conditions of 120 is reduced, the interval cannot be reduced. Further, when the relay board 120 is filled with the plug material 125 and thermally cured,
As shown in FIG. 13 (b), since the surface 125S has irregularities, the surface 125S is flattened by polishing, and then the pads 123 and 124 are formed. , Polishing becomes difficult. Further, as in the case of the conductive paste GP, when the thickness of the relay board main body 121 is reduced, the plug material (resin) 125 once filled easily falls off. Further, lid-like pads 123, 12 are formed above and below the plug material 125.
4 so that it is polished after the formation of the plug material 125,
Further, since the pads 123 and 124 are formed by plating, the production of the relay board 120 requires many steps and is expensive. Further, in order to connect to the solder bump D13 of the electronic component D10 or the like, a low melting point solder paste is previously applied to the pad 123.
It is necessary to apply heat to the electronic components D10 and the like, and then heat and melt the solder paste to solder.

【0008】本発明は、かかる問題点に鑑みてなされた
ものであって、歩留まりが高く形成容易で、電子部品等
とのハンダ付けも容易な中継基板及びその製造方法を提
供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a relay board which has a high yield, is easy to form, and can be easily soldered to electronic parts and the like, and a method of manufacturing the same. I do.

【0009】[0009]

【課題を解決するための手段、作用及び効果】その解決
手段は、第1主面と第2主面とを備え、この2つの主面
間を貫通する貫通孔を有する中継基板本体と、上記貫通
孔の第2主面側開口を塞ぐ底部と上記貫通孔内周面を覆
う側部とを備える略凹形状の凹状導体と、上記凹状導体
の凹部内に充填され上記第1主面側に突出する充填ハン
ダ体と、を備えることを特徴とする中継基板である。
Means for Solving the Problems, Action and Effect The solution is to provide a relay board main body having a first main surface and a second main surface and having a through hole penetrating between the two main surfaces. A substantially concave recessed conductor having a bottom portion for closing the opening on the second main surface side of the through hole and a side portion covering the inner peripheral surface of the through hole; And a projecting filling solder body.

【0010】本発明によれば、底部と側部とを有する有
底の凹状導体を備えるので、充填ハンダ体とするために
スクリーン印刷等によって充填したハンダペーストの一
部または全部が脱落することはないから、充填ハンダ体
の量、従って、突出高さが均一になり、ICチップ等の
電子部品のバンプやパッドなどの端子との接続性が高く
なる。また、ハンダペーストを充填する際に脱落する心
配がないので、中継基板本体の厚さを薄くできる。ま
た、充填ハンダ体が第1主面側に突出しているので、接
続する電子部品等のパッドやバンプとの接続に際して、
確実に接続させることができる。
According to the present invention, since a bottomed concave conductor having a bottom portion and a side portion is provided, a part or all of the solder paste filled by screen printing or the like in order to form a filled solder body cannot fall off. Since there is no solder, the amount of the filled solder, and therefore the protrusion height, becomes uniform, and the connectivity with terminals such as bumps and pads of an electronic component such as an IC chip increases. Also, since there is no fear of falling off when the solder paste is filled, the thickness of the relay board main body can be reduced. In addition, since the filling solder body protrudes toward the first main surface side, when connecting with a pad or bump of an electronic component to be connected,
Connection can be made securely.

【0011】なお、上記充填ハンダ体を、第1主面側で
接続する電子部品等のバンプ等より低融点の材質からな
るものとすると、電子部品等と中継基板とを接続させる
のに際して、バンプ等より低融点のハンダペーストを予
め塗布しておくなどの作業が不要とすることができる。
When the filling solder body is made of a material having a melting point lower than that of a bump of an electronic component or the like to be connected on the first main surface side, when the electronic component or the like is connected to the relay board, the bump is not formed. This eliminates the need for an operation such as applying a solder paste having a lower melting point than before.

【0012】ここで、中継基板本体としては、靭性、絶
縁性、耐湿性、加工性等を考慮して適宜選択すればよ
い。例えば、エポキシ樹脂、ポリイミド樹脂、BT樹
脂,PPE樹脂等の樹脂、ガラス−エポキシ樹脂複合材
料など、これらの樹脂とガラス繊維(ガラス織布やガラ
ス不織布)との複合材料、これらの樹脂とポリアミド繊
維などの有機繊維との複合材料、連続多孔質PTFE等
の三次元網目状フッ素系樹脂にエポキシ樹脂等を含浸さ
せた複合材料などが挙げられる。凹状導体は、中継基板
本体の材質等を考慮して選択すればよいが、例えば、
銅、ニッケル等が挙げられる。また、充填ハンダ体は、
接続するICチップ等の電子部品やプリント配線板のバ
ンプの材質を考慮して、材質や融点を選択すればよい
が、例えば、Pb−Sn共晶ハンダ(37Pb−63S
n)や高温ハンダ(95Pb−5Sn,90Pb−10
Sn等)、あるいは96.5Sn−3.5Ag、95S
n−5Sbハンダ等が挙げられる。
The main body of the relay board may be appropriately selected in consideration of toughness, insulation, moisture resistance, workability, and the like. For example, resins such as epoxy resin, polyimide resin, BT resin and PPE resin, glass-epoxy resin composite materials, and composite materials of these resins with glass fibers (glass woven fabric or glass non-woven fabric), and these resins and polyamide fibers And a composite material obtained by impregnating a three-dimensional network-like fluororesin such as continuous porous PTFE with an epoxy resin or the like. The concave conductor may be selected in consideration of the material and the like of the relay board main body.
Copper, nickel and the like can be mentioned. Also, the filling solder body is
The material and melting point may be selected in consideration of the material of the electronic component such as an IC chip to be connected or the bump of the printed wiring board. For example, Pb-Sn eutectic solder (37Pb-63S
n) or high-temperature solder (95Pb-5Sn, 90Pb-10)
Sn, etc.) or 96.5Sn-3.5Ag, 95S
n-5Sb solder and the like.

【0013】さらに、上記の中継基板であって、前記中
継基板本体の厚さが200μm以下であることを特徴と
する中継基板とすると良い。
Further, in the above-mentioned relay substrate, it is preferable that the thickness of the relay substrate main body is 200 μm or less.

【0014】中継基板の厚さが薄い場合には、前記した
ように貫通穴内にペースト等を充填してもその後に脱落
する不具合を生じやすく、特に、中継基板本体の厚さが
200μm以下である場合には、貫通孔内に導体ペース
トやプラグ材用の樹脂ペーストを保持させにくくなる。
これに対して、本発明では有底の凹状導体を備えるの
で、ペースト等の脱落を生じることがなく、特に、20
0μm以下の厚さの中継基板本体においても、確実にハ
ンダペーストを保持し、均一な突出高さの充填ハンダ体
を形成することができる。従って、凹状導体や充填ハン
ダ体の抵抗やインダクタンスをより低下させることがで
きる。また、厚さを薄くした場合には、相対的に凹状導
体の形状が底の浅い形状になるので、凹状導体中へのハ
ンダペーストの充填がより容易になるから、充填ハンダ
体の体積や突出高さもより均一にできる。さらに、中継
基板本体の厚さが薄いので、この中継基板を介在させて
電子部品とプリント基板とを接続しても、中継基板を介
在させずに直接接続した場合に比較してさほど全体の高
さが高くならない。したがって、低背化の要求にも応え
ることができる。
When the thickness of the relay board is thin, as described above, even if the paste or the like is filled in the through-hole, a problem that the relay board falls off easily occurs. In particular, the thickness of the relay board body is 200 μm or less. In this case, it becomes difficult to hold the conductive paste or the resin paste for the plug material in the through hole.
On the other hand, in the present invention, since the bottomed concave conductor is provided, the paste or the like does not fall off.
Even in the relay substrate body having a thickness of 0 μm or less, it is possible to reliably hold the solder paste and form a filled solder body having a uniform protruding height. Therefore, the resistance and inductance of the concave conductor and the filled solder body can be further reduced. Also, when the thickness is reduced, the shape of the concave conductor becomes relatively shallow, so that the filling of the solder paste into the concave conductor becomes easier. The height can be made more uniform. Furthermore, since the thickness of the relay board main body is thin, even if the electronic components are connected to the printed circuit board with the relay board interposed, the overall height is much higher than when directly connected without the relay board interposed. Does not increase. Therefore, it is possible to meet the demand for a reduction in height.

【0015】さらに、上記の中継基板であって、隣接す
る前記凹状導体の側部同士の間隙が、200μm以下で
あり、前記中継基板本体が、ガラス繊維を含まない樹脂
系複合材料からなることを特徴とする中継基板とすると
良い。
Further, in the above relay board, it is preferable that a gap between side portions of the adjacent concave conductors is 200 μm or less, and the relay board body is made of a resin-based composite material containing no glass fiber. It is good to use the relay board as a feature.

【0016】中継基板本体の材質として、樹脂系複合材
料を用いる場合には、アルミナ等のセラミックを用いる
場合に比して、靭性が高いため、中継基板本体の厚さを
薄くすることができる。従って、凹状導体や充填ハンダ
体の抵抗やインダクタンスをより低下させることができ
る。また、厚さを薄くした場合には、凹状導体中へのハ
ンダペーストの充填がより容易になって、充填ハンダ体
の体積や突出高さもより均一にできる。また、樹脂系複
合材料を用い場合のうち、ガラス繊維を含むもの(例え
ば、ガラス−エポキシ樹脂複合材料)は、貫通孔形成の
際などに樹脂とガラス繊維との間に隙間ができやすく、
この隙間に浸入したメッキ液等の水分によってガラス繊
維の表面に沿って凹状導体をなす銅等の金属が移動する
マイグレーションを生じてショートしやすいが、本発明
では、ガラス繊維を含まない樹脂系複合材料を用いるの
で、凹状導体の側部の間隙が200μm以下という短い
距離であっても、マイグレーションを生じることもな
く、信頼性の高い中継基板とすることができる。
When a resin-based composite material is used as the material of the relay substrate body, the toughness is higher than when a ceramic such as alumina is used, so that the thickness of the relay substrate body can be reduced. Therefore, the resistance and inductance of the concave conductor and the filled solder body can be further reduced. When the thickness is reduced, the filling of the solder paste into the concave conductor becomes easier, and the volume and the protruding height of the filled solder body can be made more uniform. Further, among the cases where a resin-based composite material is used, those containing glass fibers (for example, a glass-epoxy resin composite material) tend to form a gap between the resin and the glass fibers when forming a through hole, and the like.
Moisture such as a plating solution that has penetrated into the gap causes migration of metal such as copper forming a concave conductor along the surface of the glass fiber, thereby easily causing a short circuit. However, in the present invention, a resin-based composite containing no glass fiber is used. Since the material is used, even if the gap between the side portions of the concave conductor is a short distance of 200 μm or less, no migration occurs and a highly reliable relay substrate can be obtained.

【0017】なお、ガラス繊維を含まない樹脂系複合材
料としては、例えば、エポキシ樹脂、ポリイミド樹脂、
BT樹脂、PPE樹脂等の樹脂とポリアミド繊維などの
有機繊維との複合材料、連続多孔質PTFE等の三次元
網目状フッ素系樹脂にエポキシ樹脂等を含浸させた複合
材料などが挙げられる。
As the resin-based composite material containing no glass fiber, for example, epoxy resin, polyimide resin,
Examples thereof include a composite material of a resin such as a BT resin or a PPE resin and an organic fiber such as a polyamide fiber, and a composite material in which a three-dimensional network-like fluororesin such as continuous porous PTFE is impregnated with an epoxy resin or the like.

【0018】さらに、上記中継基板であって、前記凹状
導体の底部のうち第2主面側に、前記充填ハンダ体をな
すハンダよりも高融点のハンダからなる高温ハンダバン
プを備えることを特徴とする中継基板とすると良い。
Further, the relay board is characterized in that a high-temperature solder bump made of solder having a higher melting point than that of the solder forming the filling solder body is provided on the second main surface side of the bottom of the concave conductor. It is good to use it as a relay board.

【0019】一般に、ハンダは組成が異なっても相溶す
るため、高融点のハンダと低融点のハンダとが溶融状態
で接触すると次第に混じり合って、組成が次第に変化し
てしまう。本発明では、凹状導体の凹部内に充填ハンダ
体、凹状導体の底部の第2主面側にはそれよりも高融点
の高温ハンダバンプを備えるので、第1主面側でICチ
ップのバンプ等とを接続し、第2主面側でバンプを形成
していないプリント配線板のパッドと接続することがで
きる。しかもこの際、充填ハンダ体と高温ハンダバンプ
とは凹状導体の底部で仕切られることになり、例えば、
高温ハンダバンプを形成する際、あるいは充填ハンダ体
を形成する際に、互いに混じり合わないので、組成変化
が無い。つまり、充填ハンダ体の融点が上昇し、あるい
は、高温ハンダバンプの融点が低下することがない。従
って、接続したICチップ等のリペアのために、接続や
取り外しのために何回も加熱した場合でも、充填ハンダ
体と第2主面側の高温ハンダバンプの両者の相溶による
組成や融点の変化を生じないから、同一条件で接続やリ
ペアを繰り返し行うことができる。
In general, even if the solders have different compositions, they are compatible with each other. Therefore, when the solder having a high melting point and the solder having a low melting point come into contact with each other in a molten state, the solder gradually mixes and the composition gradually changes. According to the present invention, since the filled solder body is provided in the concave portion of the concave conductor and the high-temperature solder bump having a higher melting point is provided on the second main surface side at the bottom of the concave conductor, the bump of the IC chip and the like are provided on the first main surface side. Can be connected to a pad of a printed wiring board on which no bump is formed on the second main surface side. Moreover, at this time, the filled solder body and the high-temperature solder bumps are separated at the bottom of the concave conductor.
When forming a high-temperature solder bump or forming a filled solder body, there is no change in composition because they do not mix with each other. That is, the melting point of the filled solder body does not increase or the melting point of the high-temperature solder bump does not decrease. Therefore, even if the solder is heated many times for connection and disconnection for repairing the connected IC chip and the like, the change in the composition and melting point due to the compatibility of both the filled solder body and the high-temperature solder bump on the second principal surface side. Therefore, connection and repair can be repeatedly performed under the same conditions.

【0020】また、ICチップ等の電子部品と第1主面
側で接続した場合には、ICチップ等と本発明の中継基
板とで、あたかも第2主面側に高温ハンダバンプを備え
る一体の基板(電子部品)のように取り扱うことができ
るので、これをマザーボード等のプリント配線板等に接
続するのに、この高温ハンダバンプにより容易に接続す
ることができる。
When an electronic component such as an IC chip is connected on the first main surface side, the IC chip or the like and the relay substrate of the present invention are integrated into a single substrate having a high-temperature solder bump on the second main surface side. Since it can be handled like an (electronic component), it can be easily connected to a printed wiring board such as a motherboard by using the high-temperature solder bumps.

【0021】さらに他の解決手段は、第1主面と第2主
面とを備える中継基板本体に、上記2つの主面間を貫通
する貫通孔及びこの貫通孔の第2主面側開口を塞ぐ底部
と上記貫通孔内周面を覆う側部とを有する略凹形状の凹
状導体を形成する貫通孔凹状導体形成工程と、上記第1
主面側から上記凹状導体の凹部内にハンダペーストを充
填し加熱して、上記凹状導体内に充填され上記第1主面
側に突出する充填ハンダ体を形成する充填ハンダ体形成
工程と、を備えることを特徴とする中継基板の製造方法
である。
Still another solution is to provide a relay board body having a first main surface and a second main surface with a through hole penetrating between the two main surfaces and an opening of the through hole on the second main surface side. A through-hole concave conductor forming step of forming a substantially concave concave conductor having a bottom portion to be closed and a side portion covering the inner peripheral surface of the through hole;
A filling solder body forming step of filling a solder paste into the concave portion of the concave conductor from the main surface side and heating to form a filling solder body filled in the concave conductor and protruding toward the first main surface side; A method for manufacturing a relay board, comprising:

【0022】本発明によれば、貫通孔凹状導体形成工程
において貫通孔および凹状導体を形成したので、充填ハ
ンダ体形成工程において、凹状導体の凹部内に確実にハ
ンダペーストを充填することができる。また、ハンダペ
ーストの一部または全部が脱落する等の不具合を生じな
いため、歩留まり良く中継基板を製造することができ
る。また、充填ハンダ体のハンダの量を略一定にでき、
突出高さも均一にできるから、第1主面側でICチップ
等の電子部品と接続させる場合に、接続性も高くでき
る。また、充填ハンダ体が第1主面側に突出しているの
で、電子部品等のパッドやバンプ等との接続に際して、
確実に接続させることができる。
According to the present invention, since the through-hole and the concave conductor are formed in the through-hole concave conductor forming step, the solder paste can be reliably filled in the concave portion of the concave conductor in the filling solder body forming step. In addition, since a problem such as a part or all of the solder paste falling off does not occur, the relay substrate can be manufactured with a high yield. Also, the amount of solder in the filling solder body can be made substantially constant,
Since the protruding height can be made uniform, when the first main surface side is connected to an electronic component such as an IC chip, the connectivity can be improved. Further, since the filling solder body protrudes toward the first main surface side, when connecting with a pad or a bump of an electronic component or the like,
Connection can be made securely.

【0023】さらに、他の解決手段は、第1主面と第2
主面とを備え、この2つの主面のうち少なくとも上記第
2主面に第2主面側金属層を有する中継基板本体のう
ち、上記第1主面に金属層を有さず第2主面にのみ第2
主面側金属層を有する所定位置に、上記中継基板本体を
穿孔可能で上記第2主面側金属層を穿孔不能なレーザを
用いた上記第1主面側からのレーザ加工により、上記第
2主面側金属層で第2主面側開口を塞がれた貫通孔を穿
孔する貫通孔形成工程と、少なくとも上記第2主面側金
属層のうち上記第2主面側開口において上記貫通孔内に
向かって露出する露出面および上記貫通孔内の内周面に
メッキを施して、略凹形状の凹状導体を形成する凹状導
体形成工程と、上記第1主面側から上記凹状導体の凹部
内にハンダペーストを充填し加熱して、上記凹状導体内
に充填され上記第1主面側に突出する充填ハンダ体を形
成する充填ハンダ体形成工程と、を備えることを特徴と
する中継基板の製造方法である。
Still another solution is to provide a first main surface and a second main surface.
A main surface of the relay board main body having at least the second main surface side metal layer on the second main surface of the two main surfaces, the second main surface having no metal layer on the first main surface. Second only on surface
At a predetermined position having the main surface side metal layer, the second main surface side metal layer can be pierced and the second main surface side metal layer cannot be pierced by laser processing from the first main surface side using a laser. A through-hole forming step of forming a through-hole in which the second main-surface-side opening is closed by the main-surface-side metal layer, and the through-hole in at least the second main-surface-side opening of the second main-surface-side metal layer; A concave conductor forming step of forming a substantially concave concave conductor by plating an exposed surface exposed inward and an inner peripheral surface in the through hole; and a concave portion of the concave conductor from the first main surface side A filling solder body forming step of forming a filling solder body filled in the concave conductor and protruding toward the first main surface side by heating and filling a solder paste therein. It is a manufacturing method.

【0024】本発明によれば、中継基板本体を穿孔可能
で第2主面側金属層を穿孔不能なレーザによるレーザ加
工で中継基板本体に貫通孔を形成するので、微細な貫通
孔を高い精度で穿孔できる。しかも、第2主面側金属層
を穿孔不能なレーザを当てるため、第2主面側金属層で
レーザが反射されるので確実に貫通孔を形成できる。ま
た、第2主面側金属層には穴は空かないため、凹状導体
形成工程において、底部を形成する際の基材としてその
まま使うことができるので、貫通孔の第2主面側開口に
容易に凹状導体の底部を形成できる。つまり、第2面側
金属層は、貫通孔形成工程においては、レーザのストッ
パ(及び反射板)の役割をして貫通孔の孔開けに寄与す
る上、凹状導体形成工程においては、メッキによって形
成する凹状導体の底部の基材としてその貫通孔に露出す
る露出面をなすようにすることができる。
According to the present invention, the through-hole is formed in the relay substrate body by laser processing using a laser capable of drilling the relay substrate body and not drilling the second main surface side metal layer. Can be perforated. In addition, since a laser that cannot be perforated is applied to the second main surface side metal layer, the laser is reflected by the second main surface side metal layer, so that a through hole can be formed reliably. Further, since there is no hole in the second main surface side metal layer, it can be used as it is as a base material for forming the bottom in the concave conductor forming step, so that the through hole can easily be formed in the second main surface side opening. , The bottom of the concave conductor can be formed. That is, in the through hole forming step, the second surface side metal layer serves as a laser stopper (and a reflection plate) to contribute to the opening of the through hole, and is formed by plating in the concave conductor forming step. An exposed surface exposed to the through hole can be formed as a base material at the bottom of the concave conductor to be formed.

【0025】さらに、有底の凹状導体を形成したので、
充填ハンダ体形成工程において、凹状導体の凹部内に確
実にハンダペーストを充填することができ、ハンダペー
ストの一部または全部が脱落する等の不具合を生じない
から、歩留まり良く中継基板を製造することができる。
また、充填ハンダ体のハンダの量を略一定にでき、突出
高さも均一にできるから、第1主面側でICチップ等の
電子部品と接続させる場合に、接続性も高くできる。ま
た、充填ハンダ体が第1主面側に突出しているので、電
子部品等のパッドやバンプ等との接続に際して、確実に
接続させることができる。
Further, since a bottomed concave conductor is formed,
In the filling solder body forming step, the solder paste can be reliably filled in the concave portion of the concave conductor, and a problem such as a part or all of the solder paste falling off does not occur. Can be.
In addition, since the amount of solder in the filled solder body can be made substantially constant and the protrusion height can be made uniform, when the first main surface side is connected to an electronic component such as an IC chip, the connectivity can be improved. Further, since the filling solder body protrudes toward the first main surface side, it can be reliably connected to pads, bumps and the like of electronic components and the like.

【0026】さらに、上記の中継基板の製造方法のうち
貫通孔形成工程において、前記貫通孔の第2主面側開口
の径よりも、これを塞ぐ第2主面側金属層の径が大きく
されていることを特徴とする中継基板の製造方法とする
と良い。貫通孔形成工程において、このように第2主面
側金属層の径が形成する貫通孔の第2主面側開口の径よ
りも大きい場合には、レーザ加工における位置ずれが多
少生じても、確実に開口を第2主面側金属層を塞ぐこと
ができる。
Further, in the through hole forming step in the method of manufacturing the relay board, the diameter of the second main surface side metal layer that closes the second main surface side opening of the through hole is made larger than the diameter of the second main surface side opening of the through hole. And a method of manufacturing a relay board. In the through hole forming step, if the diameter of the second main surface side metal layer is larger than the diameter of the second main surface side opening of the through hole to be formed, even if there is some displacement in laser processing, The opening can reliably close the second main surface side metal layer.

【0027】さらに、上記の中継基板の製造方法におい
て、前記貫通孔形成工程は、前記第1主面に所定パター
ンの透孔を備える第1主面側金属層と前記第2主面のう
ち少なくとも上記透孔に対応する位置に配置された第2
主面側金属層とを有する前記中継基板本体に、上記第1
主面側金属層の透孔に対しこの透孔より広くレーザを照
射し、透孔と断面略同形の前記貫通孔を形成するコンフ
ォーマルマスク貫通孔形成工程であることを特徴とする
中継基板の製造方法とすると良い。本発明によれば、透
孔をコンフォーマルマスクとして用い、透孔より広くレ
ーザを照射し、透孔と略同径の前記貫通孔を形成したの
で、所定位置及び形状で貫通孔を確実に形成できる。ま
た、レーザの位置決め精度が低くても形成可能である。
また、貫通孔を形成する部分以外の部分が第1主面側金
属層で覆われている場合には、一度に複数の貫通孔を同
時に形成することもできる。
Further, in the above-described method for manufacturing a relay board, the step of forming the through-hole includes at least one of a first main surface side metal layer having a through hole of a predetermined pattern on the first main surface and the second main surface. A second arrangement located at a position corresponding to the through hole
The relay board main body having a main surface side metal layer,
The relay substrate is characterized by being a conformal mask through-hole forming step of irradiating a laser to the through-hole of the main surface side metal layer wider than the through-hole and forming the through-hole having substantially the same cross section as the through-hole. It is good to use a manufacturing method. According to the present invention, the through-hole is used as a conformal mask, and the laser is irradiated more widely than the through-hole, and the through-hole having substantially the same diameter as the through-hole is formed. it can. Further, it can be formed even if the positioning accuracy of the laser is low.
In addition, when a portion other than the portion where the through hole is formed is covered with the first main surface side metal layer, a plurality of through holes can be formed simultaneously at a time.

【0028】[0028]

【発明の実施の形態】(実施形態1)本発明にかかる第
1の実施の形態について、図面を参照しつつ説明する。
図1(a)は、本実施形態1にかかる中継基板10の平
面図であり、図1(b)は、その部分拡大断面図であ
る。平面視略正方形板状の中継基板本体11は、ガラス
繊維を含まず、連続多孔質PTFEにエポキシ樹脂を含
浸させ硬化させた樹脂−樹脂複合材料(厚さ50μm)
からなり、第1主面11Aおよび第2主面11Bを備
え、さらに、この2つの主面間を貫通する直径50μm
の貫通孔11Hを多数備える。この貫通孔11H同士の
間隙(クリアランス)は、最も小さいもので150μm
とされている。この貫通孔11Hには、銅からなり略凹
字形状の凹状導体12が形成されており、その底部12
Tが貫通孔11Hの第2主面11B側開口を塞ぎ、側部
12Sが貫通孔11Hの内周面を覆うように配置されて
いる。また、本実施形態の凹状導体12においては、側
部12Sが、第1主面11Aのうち貫通孔11Hの第1
主面側開口周縁11APにまで延在して第1主面側開口
周縁部12Pを形成しており、また、底部12Tは、貫
通孔11Hの第2主面側開口周縁11BPにまで拡がっ
て第2主面側開口周縁部12Qを形成している。
(Embodiment 1) A first embodiment according to the present invention will be described with reference to the drawings.
FIG. 1A is a plan view of a relay board 10 according to the first embodiment, and FIG. 1B is a partially enlarged cross-sectional view thereof. The relay board main body 11 having a substantially square plate shape in a plan view does not contain glass fibers, and is a resin-resin composite material (thickness: 50 μm) obtained by impregnating and curing continuous porous PTFE with an epoxy resin.
A first main surface 11A and a second main surface 11B, and a diameter of 50 μm penetrating between the two main surfaces.
Are provided. The gap (clearance) between the through holes 11H is 150 μm, which is the smallest.
It has been. In this through hole 11H, a concave conductor 12 made of copper and having a substantially concave shape is formed.
T is arranged so as to close the opening of the through hole 11H on the second main surface 11B side, and the side portion 12S covers the inner peripheral surface of the through hole 11H. Also, in the concave conductor 12 of the present embodiment, the side portion 12S is formed by the first through hole 11H of the first main surface 11A.
The first main surface side opening peripheral portion 12P extends to the main surface side opening peripheral edge 11AP, and the bottom portion 12T extends to the second main surface side opening peripheral edge 11BP of the through hole 11H. An opening peripheral portion 12Q of the second main surface side is formed.

【0029】また、各凹状導体12には、それぞれ、凹
状導体側部12Sと底部12Tとで形成される凹部12
R、即ち、凹状導体側部12Sの内周面12SHと底部
12Tの第1主面側面(凹部底面)12TAで囲まれた
凹部12R内に充填され、さらに、第1主面側開口周縁
部12P上にまで拡り、第1主面11A側(図1(b)
中上方)に向かって、略球面状に突出する充填ハンダ体
13を備える。この充填ハンダ体13は、Pb−Sn共
晶ハンダ(37Pb−63Sn)からなり、後述するよ
うに、第1主面11A側でICチップ等の電子部品のバ
ンプ等を接続する場合に、この充填ハンダ体13を溶融
させて、バンプ等と接続させるものである。この貫通孔
11H、凹状導体12および充填ハンダ体13は、接続
する電子部品のバンプ等の配列に対応した位置に配置さ
れており、本実施形態では、図1(a)から容易に理解
できるように、充填ハンダ体13は、4群に別れて配置
され、それぞれ平面視格子状に配列されており、4つの
電子部品(以下では、電子部品D10,D20で代表さ
せる)を接続させるようになっている。
Each of the concave conductors 12 has a concave portion 12 formed by a concave conductor side portion 12S and a bottom portion 12T.
R, that is, the inner peripheral surface 12SH of the concave conductor side portion 12S and the concave portion 12R surrounded by the first main surface side surface (recess bottom surface) 12TA of the bottom portion 12T, and further, the first main surface side opening peripheral portion 12P. The first main surface 11A side (FIG. 1B)
A filling solder body 13 protruding in a substantially spherical shape toward the middle upper side. The filling solder body 13 is made of Pb-Sn eutectic solder (37Pb-63Sn). As will be described later, when connecting bumps or the like of an electronic component such as an IC chip on the first main surface 11A, the filling solder body 13 is used. The solder body 13 is melted and connected to a bump or the like. The through holes 11H, the concave conductors 12, and the filling solder bodies 13 are arranged at positions corresponding to the arrangement of the bumps or the like of the electronic components to be connected. In the present embodiment, they can be easily understood from FIG. The filling solder bodies 13 are separately arranged in four groups, are arranged in a lattice shape in plan view, and connect four electronic components (hereinafter, represented by electronic components D10 and D20). ing.

【0030】この中継基板10は、例えば、以下のよう
にして使用する。図2(a)に示すように、まず、IC
チップ等の電子部品D10,D20…と接続する。即
ち、電子部品本体D11,D21の接続面(図中下面)
D11B、D21Bに形成されたパッドD12,D22
に固着され略半球形状をなす高温ハンダバンプD13,
D23を、中継基板10の充填ハンダ体13によりハン
ダ付け接続する。高温ハンダバンプD13,D23は、
例えば、95Pb−5Snからなるので、Pb−Sn共
晶ハンダからなる充填ハンダ体13のみ溶融する温度
(例えば、230℃)に加熱して充填ハンダ体13を溶
融させて、高温ハンダバンプD13,D23と接触させ
ることにより、ハンダ付けを行う。なおこの際、充填ハ
ンダ体13は第1主面11A側に突出しているので、高
温ハンダバンプD13,D23の高さにバラツキがあっ
たり、中継基板本体11に反りやうねりがあっても、充
填ハンダ体13と高温ハンダバンプD13等とを確実に
接続させることができる。
The relay board 10 is used, for example, as follows. First, as shown in FIG.
Are connected to electronic components D10, D20,... Such as chips. That is, the connection surface of the electronic component bodies D11 and D21 (the lower surface in the figure)
Pads D12, D22 formed on D11B, D21B
High temperature solder bump D13, which is fixed to
D23 is connected by soldering with the filling solder body 13 of the relay board 10. The high-temperature solder bumps D13 and D23 are
For example, since it is made of 95Pb-5Sn, it is heated to a temperature (for example, 230 ° C.) at which only the filled solder body 13 made of Pb-Sn eutectic solder is melted to melt the filled solder body 13, and the high-temperature solder bumps D13 and D23 are formed. The soldering is performed by contacting. At this time, since the filling solder body 13 protrudes toward the first main surface 11A, even if the heights of the high-temperature solder bumps D13 and D23 vary, or if the relay substrate main body 11 is warped or undulated, the filling solder body 13 is not filled. The body 13 and the high-temperature solder bump D13 can be reliably connected.

【0031】また、第1主面側に接続する電子部品D1
0、D20の高温ハンダバンプD13,D23より低融
点の、具体的には、Pb−Sn共晶ハンダからなる充填
ハンダ体13を有しているため、電子部品D10等と中
継基板10とを接続させるのに際して、予めハンダペー
ストを塗布するなどの作業が不要となる。なお、貫通孔
11Hに有底の凹状導体12を配置しているので、後述
するように、充填ハンダ体13を形成するのに際して、
凹部12Rに充填・塗布したハンダペーストがその後に
脱落することが無く、ハンダペースト量を一定に保つこ
とができるので、充填ハンダ体13の突出高さが均一に
揃っている。従って、この点から、高温ハンダバンプD
13等との接続が確実にできる。また、充填ハンダ体1
3溶融させても、第2主面側(底部12Tの第2主面側
面12TB)に濡れ拡がることがないので、この点から
も充填ハンダ体13のハンダ体積が一定になり、接続が
確実になる。
An electronic component D1 connected to the first main surface side
0, D20, which has a lower melting point than the high-temperature solder bumps D13, D23, specifically, the filled solder body 13 made of Pb-Sn eutectic solder, so that the electronic component D10 and the like and the relay board 10 are connected. In this case, there is no need to apply a solder paste in advance. Since the bottomed concave conductor 12 is disposed in the through hole 11H, as described later, when forming the filling solder body 13,
Since the solder paste filled and applied to the concave portion 12R does not fall off later and the amount of the solder paste can be kept constant, the protruding heights of the filled solder bodies 13 are uniform. Therefore, from this point, the high-temperature solder bump D
Connection with 13 etc. can be reliably performed. Filling solder body 1
(3) Since the molten solder does not spread on the second main surface side (the second main surface side surface 12TB of the bottom portion 12T) even if it is melted, the solder volume of the filling solder body 13 is constant from this point, and the connection is reliably performed. Become.

【0032】その後、接続した電子部品D10,D20
等の動作確認をし、不具合のあるものは取り外して別の
電子部品を再度接続する。いずれの電子部品も正常に動
作した場合には、さらに、図2(b)に示すように、プ
リント配線板P10と接続させる。プリント配線板本体
P11の接続面(図中上面)P11Aに形成されたパッ
ドP12に固着され略半球形状をなす高温ハンダバンプ
P13を、中継基板10の凹状導体12の底部12Tに
Pb−Sn共晶ハンダSLによってハンダ付け接続す
る。具体的には、凹状導体12の底部12Tに、または
高温ハンダバンプP13に予めPb−Sn共晶ハンダペ
ースト(図示しない)を塗布しておき、プリント配線板
P10上に電子部品D10,D20を搭載した中継基板
10を重ねて、リフロー炉で加熱してPb−Sn共晶ハ
ンダペーストを溶融させ、凹状導体12と高温ハンダバ
ンプP13とをハンダ付け接続する。これにより、各電
子部品D10,D20…は、いずれも中継基板10を介
してプリント配線板P10に接続されたことになる。
Thereafter, the connected electronic components D10, D20
Check the operation, etc., remove the defective one, and connect another electronic component again. When all the electronic components operate normally, they are further connected to the printed wiring board P10 as shown in FIG. A substantially hemispherical high-temperature solder bump P13 fixed to a pad P12 formed on a connection surface (upper surface in the drawing) P11A of the printed wiring board main body P11 is provided on a bottom portion 12T of the concave conductor 12 of the relay substrate 10 by Pb-Sn eutectic solder. Solder connection by SL. Specifically, a Pb-Sn eutectic solder paste (not shown) was previously applied to the bottom 12T of the concave conductor 12 or to the high-temperature solder bump P13, and the electronic components D10 and D20 were mounted on the printed wiring board P10. The relay substrate 10 is stacked and heated in a reflow furnace to melt the Pb-Sn eutectic solder paste, and the concave conductor 12 and the high-temperature solder bump P13 are connected by soldering. This means that each of the electronic components D10, D20,... Has been connected to the printed wiring board P10 via the relay board 10.

【0033】このようにして、電子部品D10,D20
とプリント配線板P10とを接続する中継基板10は、
例えばガラス−エポキシ樹脂複合材料のようにガラス繊
維を含む複合材料ではなく、上記したように連続多孔質
PTFEにエポキシ樹脂を含浸硬化させた樹脂−樹脂複
合材料であるので、耐湿性が高く、マイグレーションを
生じ難い。このため、本実施形態のように、貫通孔11
H同士の間隙が最小で150μmとした場合にも、マイ
グレーションによる短絡等を生じることがない。
In this manner, the electronic components D10, D20
The relay board 10 that connects the printed wiring board P10 to the
For example, since a resin-resin composite material obtained by impregnating and curing an epoxy resin in continuous porous PTFE as described above is not a composite material containing glass fibers as in a glass-epoxy resin composite material, it has high moisture resistance and migration. Is unlikely to occur. Therefore, as in the present embodiment, the through holes 11
Even when the gap between H is 150 μm at the minimum, no short circuit or the like due to migration occurs.

【0034】(比較形態1,2)これに対し比較形態
1,2として、中継基板本体の材質にガラス繊維を含む
材質、具体的にはガラス繊維織布にBT(ビスマレイミ
ド−トリアジン)樹脂を含浸させた厚さ200μmのガ
ラス−BT樹脂複合材料を用い、各ビア径(貫通孔径)
300μm、ビア同士の最小間隙を200μm及び40
0μmとした従来の中継基板(図12参照)を製作し
た。
Comparative Examples 1 and 2 On the other hand, in Comparative Examples 1 and 2, a material containing glass fiber was used as the material of the relay substrate body, specifically, BT (bismaleimide-triazine) resin was used in a glass fiber woven fabric. Using a glass-BT resin composite material with a thickness of 200 μm impregnated, each via diameter (diameter of through hole)
300 μm, minimum gap between vias 200 μm and 40 μm
A conventional relay board having a thickness of 0 μm (see FIG. 12) was manufactured.

【0035】(実施形態1B)さらに、実施形態1Bと
して、上記実施形態1の中継基板10と同様の材質から
なるが、中継基板本体の厚さを4倍厚い200μmと
し、凹状導体径(貫通孔径)50μmは同様であるが、
凹状導体側部同士の最小間隙を50μm大きい200μ
mとした中継基板も製作した。
(Embodiment 1B) Further, as Embodiment 1B, the relay board 10 is made of the same material as that of Embodiment 1 described above, but the thickness of the relay board body is set to 200 μm, which is four times thicker, and the concave conductor diameter (through hole diameter) ) 50 μm is similar,
The minimum gap between the concave conductor sides is 50μm larger, 200μ
A relay board having a length of m was also manufactured.

【0036】(試験例)これらの実施形態1,1B,比
較形態1,2にかかる中継基板10等を用いて湿中負荷
試験を行い、マイグレーションの発生による絶縁抵抗低
下の有無を比較した。具体的には、温度85℃×湿度8
5%RH、大気圧の条件に設定した恒温恒湿槽中で、各
中継基板のビア間にDC50Vの電圧を印加して保持
し、適時ビア間の絶縁抵抗(5V×60秒)を測定し、
100MΩ以上の絶縁抵抗を保てる期間を測定した。結
果を表1に示す。
(Test Example) A wet / medium load test was performed using the relay boards 10 and the like according to Embodiments 1 and 1B and Comparative Embodiments 1 and 2 to determine whether insulation resistance was reduced due to migration. Specifically, a temperature of 85 ° C. and a humidity of 8
In a thermo-hygrostat set at 5% RH and atmospheric pressure, a voltage of 50 V DC was applied between the vias of each relay substrate and held, and the insulation resistance between the vias (5 V × 60 seconds) was measured at appropriate times. ,
The period during which the insulation resistance of 100 MΩ or more could be maintained was measured. Table 1 shows the results.

【0037】[0037]

【表1】 [Table 1]

【0038】上記表1から判るように、ビア同士の最小
間隙が400μmである比較形態2では、100MΩ以
上の絶縁抵抗を1000時間以上保持しているのに対
し、比較形態1では、500時間で絶縁抵抗が100M
Ω以下となった。具体的には、中継基板本体のガラス繊
維に沿って銅マイグレーションが生じ、ビア同士の間に
電気的な経路が形成されていた。このことから、ガラス
繊維を含む樹脂系複合材料、さらに具体的には、ガラス
−BT樹脂複合材料を用いた場合には、ビア同士の間隙
を400μm程度保てば良いが、この間隙を200μm
以下とすると、マイグレーションを生じるため、中継基
板の信頼性が著しく低下することが判る。
As can be seen from Table 1, in Comparative Example 2 in which the minimum gap between vias is 400 μm, an insulation resistance of 100 MΩ or more is maintained for 1000 hours or more, whereas in Comparative Example 1, 500 hours is required. Insulation resistance is 100M
Ω or less. Specifically, copper migration occurred along the glass fibers of the relay substrate body, and an electrical path was formed between the vias. For this reason, when a resin-based composite material containing glass fibers, more specifically, a glass-BT resin composite material is used, the gap between the vias may be maintained at about 400 μm.
Under the following conditions, it is found that migration occurs, so that the reliability of the relay board is significantly reduced.

【0039】一方、実施形態1,1Bについては、いず
れも100MΩ以上の絶縁抵抗を1000時間以上保持
している。これらの実施形態では、中継基板本体11等
の材質に、ガラス繊維を含まない樹脂系複合材料、具体
的には、三次元網目状フッ素系樹脂にエポキシ樹脂等を
含浸させた複合材料、さらに具体的には、連続多孔質P
TFEにエポキシ樹脂を含浸させ硬化させた樹脂−樹脂
複合材料を用いた。このため、凹状導体同士の間隙が2
00μm以下、具体的には、200μm(実施形態1
B)、さらには150μm(実施形態1)としても、マ
イグレーションを生じなかったものと考えられる。従っ
て、ガラス繊維を含まない樹脂系複合材料、具体的には
連続多孔質PTFEにエポキシ樹脂を含浸させた樹脂−
樹脂複合材料を中継基板本体に用いた場合には、凹状導
体の側部同士の間隙を200μm以下、さらには150
μm以下としても、マイグレーションを生じず、高い信
頼性を有する中継基板が得られることが判る。
On the other hand, in each of Embodiments 1 and 1B, an insulation resistance of 100 MΩ or more is maintained for 1000 hours or more. In these embodiments, the material of the relay board main body 11 and the like is a resin-based composite material containing no glass fiber, specifically, a composite material in which a three-dimensional mesh-like fluororesin is impregnated with an epoxy resin or the like, and more specifically. Typically, continuous porous P
A resin-resin composite material in which TFE was impregnated with an epoxy resin and cured was used. Therefore, the gap between the concave conductors is 2
00 μm or less, specifically 200 μm (Embodiment 1)
B), it is considered that no migration occurred even with 150 μm (Embodiment 1). Accordingly, a resin-based composite material containing no glass fiber, specifically, a resin obtained by impregnating a continuous porous PTFE with an epoxy resin-
When the resin composite material is used for the relay substrate body, the gap between the side portions of the concave conductor is set to 200 μm or less, and
It can be seen that even if it is less than μm, migration does not occur, and a relay substrate having high reliability can be obtained.

【0040】ついで、この中継基板10の製造方法につ
いて、図3、図4を参照して説明する。まず、図3
(a)に示すように、厚さ50μmで連続多孔質PTF
Eにエポキシ樹脂を含浸させ硬化させた複合材料からな
り、第1主面11Aと第2主面11Bとを有し略板状を
なす中継基板本体11を用意する。この中継基板本体1
1の第1主面11Aには、所定位置に直径50μmの透
孔14Hを備える厚さ12μmの銅箔14が、また、第
2主面11Bにも、略全面に厚さ12μmの銅箔15が
被着されている。
Next, a method of manufacturing the relay board 10 will be described with reference to FIGS. First, FIG.
(A) As shown in FIG.
A relay board main body 11, which is made of a composite material in which E is impregnated with an epoxy resin and cured, has a first main surface 11A and a second main surface 11B and has a substantially plate shape, is prepared. This relay board body 1
A 12 μm thick copper foil 14 having a through hole 14H having a diameter of 50 μm at a predetermined position on the first main surface 11A, and a 12 μm thick copper foil 15 on almost the entire surface of the second main surface 11B. Is attached.

【0041】ついで、第1主面11A側から、YAGレ
ーザの第3高調波(355nm)を透孔14Hよりも広
い範囲にわたって照射して透孔14Hをマスクパターン
として用い、図3(b)に示すように、中継基板本体1
1に透孔14Hと断面略同形の貫通孔11Hを複数個一
挙に形成する。このレーザ光は、銅箔14で反射される
ため、銅箔14の無い透孔14H内のみレーザ加工され
る。即ち、銅箔14は、コンフォーマルマスク法におけ
るコンフォーマルマスクとなる。また、銅箔15も、こ
のレーザ光を反射するため、銅箔15には貫通孔(透
孔)は形成されないため、貫通孔11Hは、銅箔15で
塞がれた状態となる。さらに、銅箔15によってレーザ
光が反射するため、入射光と反射光によって貫通孔14
Hが確実に形成される。これにより、本実施形態では、
直径50μm、最小間隙150μmの貫通孔11Hを多
数形成した。
Next, the third harmonic (355 nm) of the YAG laser is irradiated from the first main surface 11A side over a wider range than the through hole 14H, and the through hole 14H is used as a mask pattern. As shown, the relay board body 1
A plurality of through holes 11H having substantially the same cross section as the through holes 14H are formed at one time. Since this laser light is reflected by the copper foil 14, the laser processing is performed only in the through hole 14H where the copper foil 14 is not provided. That is, the copper foil 14 becomes a conformal mask in the conformal mask method. Further, since the copper foil 15 also reflects this laser beam, no through-hole (through-hole) is formed in the copper foil 15, so that the through-hole 11 </ b> H is closed by the copper foil 15. Further, since the laser light is reflected by the copper foil 15, the incident light and the reflected light cause
H is reliably formed. Thereby, in this embodiment,
A large number of through holes 11H having a diameter of 50 μm and a minimum gap of 150 μm were formed.

【0042】その後、銅箔14の表面(図中上面)、銅
箔15の表面(図中下面)、銅箔15の貫通孔14H内
露出面(図中上面)及び貫通孔11Hの内周面に、無電
解銅メッキを施して、厚さ1μmの無電解銅メッキ層1
6,17をそれぞれ形成する(図3(c)参照)。さら
に、感光性メッキレジストフィルムを無電解メッキ層1
6,17上に貼り付け、露光・現像して、貫通孔11H
内とその第1主面側開口周縁(直径120μm)の無電
解メッキ層16、および貫通孔11Hの第2主面側とそ
の開口周縁(直径120μm)の無電解メッキ層17が
露出するように透孔MR1H、MR2Hを有するメッキ
レジスト層MR1,MR2を形成する。ついで、この無
電解銅メッキ層16,17を共通電極として電解銅メッ
キを施し、貫通孔11H内および第1主面側開口周縁の
無電解メッキ層16上に略凹字形状の厚さ6μmの電解
銅メッキ層18を、また、貫通孔11Hの第2主面側及
びその開口周縁の無電解メッキ層17上に同厚の電解銅
メッキ層19をそれぞれ形成する(図3(d)参照)。
Thereafter, the surface of the copper foil 14 (upper surface in the drawing), the surface of the copper foil 15 (lower surface in the drawing), the exposed surface of the copper foil 15 in the through hole 14H (the upper surface in the drawing), and the inner peripheral surface of the through hole 11H. Is subjected to electroless copper plating to form an electroless copper plating layer 1 having a thickness of 1 μm.
6 and 17 are formed (see FIG. 3C). Further, a photosensitive plating resist film is applied to the electroless plating layer 1.
6, 17 and then exposed and developed to form a through hole 11H.
The inside and the electroless plating layer 16 on the first main surface side opening edge (diameter 120 μm) and the electroless plating layer 17 on the second main surface side of the through hole 11H and the opening edge (diameter 120 μm) are exposed. Plating resist layers MR1 and MR2 having through holes MR1H and MR2H are formed. Next, electrolytic copper plating is performed using the electroless copper plating layers 16 and 17 as a common electrode, and a substantially concave-shaped 6 μm-thick film is formed on the electroless plating layer 16 in the through hole 11H and the periphery of the opening on the first main surface side. An electrolytic copper plating layer 18 is formed, and an electrolytic copper plating layer 19 having the same thickness is formed on the second principal surface side of the through hole 11H and the electroless plating layer 17 on the periphery of the opening (see FIG. 3D). .

【0043】その後、メッキレジストMR1,MR2を
溶解除去し(図3(e)参照)、露出した無電解銅メッ
キ層16,17及びその下部に位置する銅箔14,15
をエッチングによって除去することにより、図4(a)
に示すように、貫通孔11H内及びその周縁に略凹形状
の凹状導体12を形成する。この凹状導体12は、その
底部12Tで貫通孔11Hを塞ぎ、側部12Sで貫通孔
11Hの内周面を覆い、凹部12Rを形成している。さ
らに、図4(b)に示すように、貫通孔11Hの位置に
対応した透孔MHを有するマスクMを用いて、凹部12
R内およびその第1主面11A側(図中上方)にPb−
Sn共晶ハンダペーストSPを充填・塗布する。この
際、貫通孔11Hは、凹状導体12の底部12Tで塞が
れて有底(盲孔)の状態となるので、凹部12R内に充
填されたPb−Sn共晶ハンダペーストSPが、従来の
ように(図13(a)参照)脱落することがないため、
歩留まり良く充填することができる。その後、リフロー
炉を通して加熱することにより、Pb−Sn共晶ハンダ
ペーストを溶解させて、充填ハンダ体13とし、中継基
板10を完成させる(図1参照)。この中継基板10で
は、充填ハンダ体13のハンダ体積がほぼ一定となるた
め、充填ハンダ体13の突出高さもほぼ一定となる。な
お、本実施形態では、銅箔14をコンフォーマルマスク
として用いたので、レーザ光の照射位置精度を高くする
必要がない点で有利である。また、透孔14Hをのぞ
き、第1主面11Aを銅箔14で覆っているので、複数
の貫通孔11Hを一挙に形成できる点でも有利である。
Thereafter, the plating resists MR1 and MR2 are dissolved and removed (see FIG. 3E), and the exposed electroless copper plating layers 16 and 17 and the copper foils 14 and 15 located thereunder are exposed.
Is removed by etching to obtain FIG.
As shown in (1), a substantially concave concave conductor 12 is formed in the through hole 11H and on the periphery thereof. The concave conductor 12 has a bottom portion 12T covering the through hole 11H, and a side portion 12S covering the inner peripheral surface of the through hole 11H to form a concave portion 12R. Further, as shown in FIG. 4B, the concave portion 12 is formed by using a mask M having a through hole MH corresponding to the position of the through hole 11H.
Rb and Pb- on the first main surface 11A side (upper side in the figure).
Fill and apply Sn eutectic solder paste SP. At this time, since the through-hole 11H is closed by the bottom 12T of the concave conductor 12 and becomes a bottomed (blind hole) state, the Pb-Sn eutectic solder paste SP filled in the concave 12R is replaced with a conventional one. (See FIG. 13 (a)).
Filling can be performed with good yield. Thereafter, by heating through a reflow furnace, the Pb-Sn eutectic solder paste is melted to form a filled solder body 13, and the relay board 10 is completed (see FIG. 1). In this relay board 10, since the solder volume of the filling solder body 13 is substantially constant, the protruding height of the filling solder body 13 is also substantially constant. In this embodiment, since the copper foil 14 is used as a conformal mask, it is advantageous in that it is not necessary to increase the irradiation position accuracy of the laser beam. In addition, since the first main surface 11A is covered with the copper foil 14 except for the through holes 14H, it is advantageous in that a plurality of through holes 11H can be formed at once.

【0044】(実施形態2)ついで、第2の実施の形態
について、図5を参照しつつ説明する。本実施形態の中
継基板20は、図5(a)に示す部分拡大断面図から容
易に理解できるように、上記実施形態1の中継基板10
と略同様であるが、底部12Tの第2主面側面12TB
に略半球状に盛り上がった高温ハンダバンプ23を備え
ている点で異なるものである。そこで以下では、同様な
部分の説明は省略または簡略化し、異なる部分について
説明する。本実施形態の中継基板20の高温ハンダバン
プ23は、90Pb−10Snからなり、凹状導体12
の第2主面側面12TBに溶着し、略半球状をなしてい
る。このような高温ハンダバンプ23は、上記したよう
に、例えば、Pb−Sn共晶ハンダを溶融させる程度の
加熱(230℃程度)では溶融しないので、上記実施形
態1の場合と、第1主面11A側で同様に電子部品D1
0,D20等と接続することができる。
(Embodiment 2) Next, a second embodiment will be described with reference to FIG. The relay board 20 according to the first embodiment can be easily understood from the partial enlarged cross-sectional view shown in FIG.
, But the second main surface side surface 12TB of the bottom portion 12T.
And a high-temperature solder bump 23 which is substantially hemispherically raised. Therefore, in the following, description of similar parts will be omitted or simplified, and different parts will be described. The high-temperature solder bumps 23 of the relay board 20 of the present embodiment are made of 90Pb-10Sn,
Is welded to the second main surface side surface 12TB and has a substantially hemispherical shape. As described above, such high-temperature solder bumps 23 are not melted by heating (about 230 ° C.) enough to melt Pb—Sn eutectic solder, for example. Electronic component D1 on the same side
0, D20, etc.

【0045】一方、プリント配線板P10と接続する際
には、上記実施形態1と異なり、プリント配線板P10
のパッドP12に予め高温ハンダバンプP13を形成し
ておく必要が無い。つまり、中継基板20を介さずに直
接電子部品D10等をパッドP12に接続する場合と同
様に、高温ハンダバンプ23を用いて、高温ハンダバン
プP13の無いパッドP12と接続させることができる
(図示しない)。具体的には、高温ハンダバンプ23、
あるいはパッド12上にPb−Sn共晶ハンダペースト
を塗布しておき、プリント配線板P10(但し高温ハン
ダバンプP13無し)と中継基板20を重ねて加熱し、
Pb−Sn共晶ハンダペーストを溶融させて接続する。
従って、中継基板20を用いれば、予め高温ハンダバン
プP13をプリント基板P10に形成しておく必要がな
い。
On the other hand, when connecting to the printed wiring board P10, unlike the first embodiment,
It is not necessary to previously form the high-temperature solder bump P13 on the pad P12. That is, the high-temperature solder bump 23 can be used to connect to the pad P12 without the high-temperature solder bump P13 (not shown), similarly to the case where the electronic component D10 or the like is directly connected to the pad P12 without the intervention of the relay board 20. Specifically, the high-temperature solder bumps 23,
Alternatively, a Pb-Sn eutectic solder paste is applied on the pads 12, and the printed wiring board P10 (without the high-temperature solder bumps P13) and the relay board 20 are stacked and heated.
The Pb-Sn eutectic solder paste is melted and connected.
Therefore, if the relay board 20 is used, it is not necessary to previously form the high-temperature solder bumps P13 on the printed board P10.

【0046】ついで、この中継基板20の製造方法につ
いて説明する。このうち、図4(a)に示す凹状導体1
2の形成までは、実施形態1と同様である。その後、図
5(b)に示すように、第2主面側面12TBに対応す
る位置に透孔M2Hを有するマスクM2を用意し、これ
を中継基板本体11の第2主面11B側に重ねて位置合
わせをし、第2主面側面12TB上(図5(b)中上
方)に、90Pb−10Snの高温ハンダペーストSP
2を塗布する。その後、約330℃に加熱して高温ハン
ダペーストSP2を溶融させ、第2主面側面12TBに
略半球状の高温ハンダバンプ23を形成する。その後
は、上記実施形態1と同様に、凹部12R内にPb−S
n共晶ハンダペーストSPを充填し(図4(b)参
照)、これを加熱して溶融させることにより、充填ハン
ダ体13を形成して中継基板20を完成させる。
Next, a method of manufacturing the relay board 20 will be described. Among them, the concave conductor 1 shown in FIG.
2 is the same as that of the first embodiment. Thereafter, as shown in FIG. 5B, a mask M2 having a through-hole M2H at a position corresponding to the second main surface side surface 12TB is prepared, and this is overlaid on the second main surface 11B side of the relay substrate main body 11. After the alignment, the high-temperature solder paste SP of 90Pb-10Sn is formed on the second main surface side surface 12TB (upper in FIG. 5B).
2 is applied. Thereafter, the solder paste is heated to about 330 ° C. to melt the high-temperature solder paste SP2, thereby forming a substantially hemispherical high-temperature solder bump 23 on the second main surface side surface 12TB. Thereafter, as in the first embodiment, Pb-S is formed in the recess 12R.
The n-eutectic solder paste SP is filled (see FIG. 4 (b)), and this is heated and melted to form the filled solder body 13 and complete the relay board 20.

【0047】(実施形態3)さらに、第3の実施形態と
して、上記実施形態1の中継基板10とほぼ同様である
が、異なる製造方法によって形成したものについて説明
する。この製造方法に使用する中継基板本体31(図6
(a)参照)は、実施形態1と同様に、厚さ50μmで
連続多孔質PTFEにエポキシ樹脂を含浸させ硬化させ
た複合材料からなり、第1主面31Aと第2主面31B
とを有し略板状をなす。但し、この中継基板本体31
は、第1主面31A側には銅箔を有さず、第2主面31
B側には、所定位置に直径120μmの円状の銅箔35
が被着されている。この中継基板本体31の第1主面3
1A側からYAGレーザの第3高調波を照射する。但
し、レーザ光のスポット径を絞り、所定位置、具体的に
は、円状銅箔35の略中央に照射するようにして、図6
(b)に示すように、銅箔35の径(120μm)より
小さい直径50μmの貫通孔31Hを穿孔する。この
際、貫通孔31Hは、平面視、銅箔35の内部に含まれ
るように形成する。なお、上記レーザ加工では、銅箔3
5は穿孔されないことは実施形態1の場合と同様であ
る。
(Embodiment 3) A third embodiment, which is substantially the same as the relay board 10 of the first embodiment but formed by a different manufacturing method, will be described. The relay board main body 31 used in this manufacturing method (FIG. 6)
(See (a)) is a composite material in which continuous porous PTFE is impregnated with an epoxy resin and cured by a thickness of 50 μm, similarly to the first embodiment, and has a first main surface 31A and a second main surface 31B.
And has a substantially plate shape. However, this relay board body 31
Has no copper foil on the first main surface 31A side and has a second main surface 31A.
On the B side, a circular copper foil 35 having a diameter of 120 μm is provided at a predetermined position.
Is attached. The first main surface 3 of the relay board main body 31
The third harmonic of the YAG laser is irradiated from the 1A side. However, the spot diameter of the laser beam is reduced, and the laser beam is radiated to a predetermined position, specifically, substantially at the center of the circular copper foil 35, as shown in FIG.
As shown in (b), a through hole 31H having a diameter of 50 μm smaller than the diameter (120 μm) of the copper foil 35 is formed. At this time, the through hole 31H is formed so as to be included in the inside of the copper foil 35 in plan view. In the laser processing, the copper foil 3
No. 5 is not perforated as in the case of the first embodiment.

【0048】ついで、銅箔35の表面(図中下面)、銅
箔35の貫通孔31H内露出面(図中上面)及び貫通孔
31H内周面、第1,第2主面31A,31B上に、無
電解銅メッキを施して、厚さ1μmの無電解銅メッキ層
36,37を形成する(図6(c)参照)。さらに、感
光性メッキレジストフィルムを無電解メッキ層36,3
7上に貼り付け、露光・現像して、貫通孔31H内とそ
の第1主面側開口周縁(直径120μm)の無電解メッ
キ層36、および銅箔35上の無電解メッキ層37が露
出するようにメッキレジスト層MR3,MR4を形成す
る。ついで、この無電解銅メッキ層36,37を共通電
極として電解銅メッキを施し、貫通孔31H内および第
1主面側開口周縁の無電解メッキ層36上に略凹字形状
の厚さ6μmの電解銅メッキ層38を、また、貫通孔3
1Hの第2主面側及びその開口周縁、つまり銅箔35上
の無電解メッキ層37上(図中下方)に同厚の電解銅メ
ッキ層39を、それぞれ形成する(図6(d)参照)。
Next, the surface (lower surface in the drawing) of the copper foil 35, the exposed surface (upper surface in the drawing) and the inner peripheral surface of the through hole 31H of the copper foil 35, and the first and second main surfaces 31A and 31B Then, electroless copper plating is performed to form electroless copper plating layers 36 and 37 having a thickness of 1 μm (see FIG. 6C). Further, a photosensitive plating resist film is applied to the electroless plating layers 36 and 3.
7 and exposed and developed to expose the electroless plating layer 36 in the through hole 31H and the periphery of the first main surface side opening (diameter 120 μm) and the electroless plating layer 37 on the copper foil 35. Thus, plating resist layers MR3 and MR4 are formed. Next, electrolytic copper plating is performed using the electroless copper plating layers 36 and 37 as a common electrode, and a substantially concave-shaped 6 μm thick film is formed in the through-hole 31H and on the electroless plating layer 36 around the opening on the first principal surface side. The electrolytic copper plating layer 38 is also
An electrolytic copper plating layer 39 of the same thickness is formed on the second main surface side of 1H and the periphery of the opening, that is, on the electroless plating layer 37 on the copper foil 35 (downward in the figure) (see FIG. 6D). ).

【0049】その後、メッキレジストMR3,MR4を
溶解除去し、露出した無電解銅メッキ層36,37をエ
ッチングによって除去することにより、図7(a)に示
すように、貫通孔31H内及びその周縁に略凹形状の凹
状導体32を形成する。この凹状導体32は、上記中継
基板10と同様に、その底部32Tで貫通孔31Hを塞
ぎ、側部32Sで貫通孔31Hの内周面を覆い、凹部3
2Rをなしている。また、凹状導体32の側部32S
が、第1主面31Aのうち貫通孔31Hの第1主面側開
口周縁まで延在して第1主面側開口周縁部32Pを形成
しており、また、底部32Tは、貫通孔31Hの第2主
面側開口周縁まで拡がって第2主面側開口周縁部32Q
を形成しているその後は、実施形態1と同様に、マスク
Mを用いて凹部32R内にPb−Sn共晶ハンダペース
トSPを充填し(図4(b)参照)、加熱溶融させて、
充填ハンダ体33を形成する。これにより、図7(b)
に示すように、実施形態1の中継基板10と略同様の中
継基板30が完成する。
Thereafter, the plating resists MR3 and MR4 are dissolved and removed, and the exposed electroless copper plating layers 36 and 37 are removed by etching, so that the inside of the through-hole 31H and its periphery are removed as shown in FIG. A concave conductor 32 having a substantially concave shape is formed. The recessed conductor 32 closes the through hole 31H at the bottom 32T and covers the inner peripheral surface of the through hole 31H at the side 32S, similarly to the relay board 10 described above.
2R. Also, the side portion 32S of the concave conductor 32
Extends to the first main surface side opening periphery of the through hole 31H in the first main surface 31A to form the first main surface side opening peripheral portion 32P, and the bottom portion 32T is formed of the through hole 31H. The second main surface side opening peripheral portion 32Q is extended to the second main surface side opening peripheral portion.
After that, the Pb-Sn eutectic solder paste SP is filled in the recess 32R using the mask M as in the first embodiment (see FIG. 4B), and is melted by heating.
The filling solder body 33 is formed. As a result, FIG.
As shown in (1), a relay board 30 substantially similar to the relay board 10 of the first embodiment is completed.

【0050】この中継基板30においても、Pb−Sn
共晶ハンダペーストSPを充填・塗布する際に、貫通孔
31Hは、凹状導体32の底部32Tで塞がれて有底
(盲孔)の状態となるので、凹部32R内に充填された
Pb−Sn共晶ハンダペーストSPが、従来のように
(図13(a)参照)脱落することがない。従って、中
継基板30においても、充填ハンダ体33のハンダ体積
がほぼ一定となるため、充填ハンダ体33の突出高さも
ほぼ一定とすることができる。なお、中継基板30で
は、メッキレジストMR3,MR4の除去後のエッチン
グにおいて、厚さの薄い無電解メッキ層36,37のみ
エッチング除去すれば足りるので、強力な薬剤を用いず
にソフトエッチングによってエッチングすればよいの
で、エッチングやその後の処理が容易である点で、優れ
ている。また、第1主面31A上に、実施形態1におけ
る銅箔14に相当する銅箔を形成する必要がないのでそ
の分安価となる。
In this relay board 30, Pb-Sn
When filling and applying the eutectic solder paste SP, the through-hole 31H is closed by the bottom 32T of the concave conductor 32 and becomes a bottomed (blind hole) state. The Sn eutectic solder paste SP does not fall off as in the conventional case (see FIG. 13A). Therefore, also in the relay substrate 30, the solder volume of the filling solder body 33 is substantially constant, and the protruding height of the filling solder body 33 can be substantially constant. In the relay substrate 30, in etching after the removal of the plating resists MR3 and MR4, only the thin electroless plating layers 36 and 37 need to be removed by etching, so that the etching is performed by soft etching without using a strong chemical. This is excellent because etching and subsequent processing are easy. Further, since there is no need to form a copper foil corresponding to the copper foil 14 in the first embodiment on the first main surface 31A, the cost is reduced accordingly.

【0051】(実施形態4)さらに、第4の実施形態と
して、上記実施形態1,3の中継基板10,30とほぼ
同様であるが、これらと異なる製造方法について説明す
る。この製造方法に使用する中継基板本体41(図8
(a)参照)は、実施形態1,3と同様に、厚さ50μ
mで連続多孔質PTFEにエポキシ樹脂を含浸させ硬化
させた複合材料からなり、第1主面41Aと第2主面4
1Bとを有し略板状をなす。但し、この中継基板本体4
1は、第1主面41A側には、所定位置に外径120μ
m、内径50μmのリング状銅箔44が被着され、第2
主面41B側には、リング状銅箔44に対応する位置、
即ち平面視同心となる位置に直径120μmの円状の銅
箔45が被着されている。この中継基板本体41の第1
主面41A側からYAGレーザの第3高調波を照射す
る。但し、レーザ光のスポット径を略80μmに絞り、
リング状銅箔44の略中央に照射するようにして、図8
(b)に示すように、リング状銅箔44の内径に従った
断面形状(直径50μm)の貫通孔41Hを穿孔する。
本実施形態におけるレーザ加工では、銅箔44,45は
穿孔されないことは実施形態1の場合と同様である。ま
た、容易に理解できるように、リング状銅箔34は、そ
の内径をマスクパターンとするコンフォーマルマスクと
して作用している。
(Embodiment 4) Further, as a fourth embodiment, a manufacturing method which is substantially the same as the relay boards 10 and 30 of the above-described first and third embodiments, but is different therefrom will be described. The relay board main body 41 used in this manufacturing method (FIG. 8)
(See (a)) is the same as in the first and third embodiments.
m and a composite material in which continuous porous PTFE is impregnated with an epoxy resin and cured, and has a first main surface 41A and a second main surface 4A.
1B and a substantially plate shape. However, this relay board body 4
1 has an outer diameter of 120 μm at a predetermined position on the first main surface 41A side.
m, a ring-shaped copper foil 44 having an inner diameter of 50 μm
On the main surface 41B side, a position corresponding to the ring-shaped copper foil 44,
That is, a circular copper foil 45 having a diameter of 120 μm is attached at a position that is concentric in plan view. The first of the relay board main body 41
The third harmonic of the YAG laser is irradiated from the main surface 41A side. However, the spot diameter of the laser beam is reduced to approximately 80 μm,
As shown in FIG.
As shown in (b), a through-hole 41H having a cross-sectional shape (diameter: 50 μm) according to the inner diameter of the ring-shaped copper foil 44 is formed.
In the laser processing according to the present embodiment, the copper foils 44 and 45 are not perforated as in the case of the first embodiment. Further, as can be easily understood, the ring-shaped copper foil 34 functions as a conformal mask using the inner diameter as a mask pattern.

【0052】ついで、銅箔44の表面(図中上面)、銅
箔45の表面(図中下面)、銅箔45の貫通孔41H内
露出面(図中上面)及び貫通孔41H内周面、第1,第
2主面41A,41B上に、無電解銅メッキを施して、
厚さ1μmの無電解銅メッキ層46,47を形成する
(図9(a)参照)。さらに、感光性メッキレジストフ
ィルムを無電解メッキ層46,47上に貼り付け、露光
・現像して、貫通孔41H内と銅箔44上、つまり貫通
孔41H内及びその第1主面側開口周縁(直径120μ
m)の無電解メッキ層46、および銅箔45上の無電解
メッキ層47が露出するように透孔MR5H、MR6H
を有するメッキレジスト層MR5,MR6を形成する。
ついで、この無電解銅メッキ層46,47を共通電極と
して電解銅メッキを施し、貫通孔41H内および第1主
面側開口周縁の無電解メッキ層46上に略凹字形状の厚
さ6μmの電解銅メッキ層48を、また、貫通孔41H
の第2主面側及びその開口周縁、つまり銅箔45上の無
電解メッキ層47上(図中下方)に同厚の電解銅メッキ
層49をそれぞれ形成する(図9(b)参照)。
Next, the surface of the copper foil 44 (upper surface in the drawing), the surface of the copper foil 45 (lower surface in the drawing), the exposed surface (upper surface in the drawing) of the copper foil 45 and the inner peripheral surface of the through hole 41H, Electroless copper plating is performed on the first and second main surfaces 41A and 41B,
Electroless copper plating layers 46 and 47 having a thickness of 1 μm are formed (see FIG. 9A). Further, a photosensitive plating resist film is stuck on the electroless plating layers 46 and 47, and exposed and developed, so that the inside of the through-hole 41H and the copper foil 44, that is, the inside of the through-hole 41H and the periphery of the opening on the first main surface side. (120μ diameter
m) through holes MR5H and MR6H so that the electroless plating layer 46 and the electroless plating layer 47 on the copper foil 45 are exposed.
The plating resist layers MR5 and MR6 having the following are formed.
Next, electrolytic copper plating is performed using the electroless copper plating layers 46 and 47 as a common electrode, and a substantially concave-shaped 6 μm thick film is formed on the electroless plating layer 46 in the through hole 41H and the periphery of the opening on the first main surface side. The electrolytic copper plating layer 48 is provided with the through hole 41H.
An electrolytic copper plating layer 49 having the same thickness is formed on the second principal surface side and the periphery of the opening, that is, on the electroless plating layer 47 on the copper foil 45 (the lower part in the figure) (see FIG. 9B).

【0053】その後、メッキレジストMR5,MR6を
溶解除去する(図9(c)参照)。その後、露出した無
電解銅メッキ層46,47をエッチングによって除去す
ることにより、図10(a)に示すように、貫通孔41
H内に略凹形状の凹状導体42を形成する。この凹状導
体42は、上記中継基板10と同様に、その底部42T
で貫通孔41Hを塞ぎ、側部42Sで貫通孔41Hの内
周面を覆い、凹部42Rをなしている。また、凹状導体
42の側部42Sが、第1主面41Aのうち貫通孔41
Hの第1主面側開口周縁まで延在して第1主面側開口周
縁部42Pを形成しており、また、底部42Tは、貫通
孔41Hの第2主面側開口周縁まで拡がって第2主面側
開口周縁部42Qを形成しているその後は、実施形態1
と同様に、マスクMを用いて凹部42R内にPb−Sn
共晶ハンダペーストSPを充填し(図4(b)参照)、
加熱溶融させて、充填ハンダ体43を形成する。これに
より、図10(b)に示すように、実施形態1の中継基
板10と略同様の中継基板40が完成する。
After that, the plating resists MR5 and MR6 are dissolved and removed (see FIG. 9C). Thereafter, the exposed electroless copper plating layers 46 and 47 are removed by etching, so that the through holes 41 are formed as shown in FIG.
A substantially concave concave conductor 42 is formed in H. The concave conductor 42 has a bottom 42T similar to the relay substrate 10.
Closes the through hole 41H, and the side portion 42S covers the inner peripheral surface of the through hole 41H to form a concave portion 42R. Further, the side portion 42S of the concave conductor 42 is connected to the through hole 41 of the first main surface 41A.
H extends to the first main surface side opening peripheral edge to form a first main surface side opening peripheral portion 42P, and the bottom portion 42T extends to the second main surface side opening peripheral edge of the through hole 41H. After forming the second main surface side opening peripheral portion 42Q, the first embodiment
Similarly, using the mask M, the Pb-Sn
Fill eutectic solder paste SP (see FIG. 4 (b)),
By heating and melting, a filled solder body 43 is formed. Thereby, as shown in FIG. 10B, a relay board 40 substantially similar to the relay board 10 of the first embodiment is completed.

【0054】この中継基板40においても、中継基板1
0,30と同様に、Pb−Sn共晶ハンダペーストSP
を充填・塗布する際に、貫通孔41Hは、凹状導体42
の底部42Tで塞がれて有底(盲孔)の状態となるの
で、凹部42R内に充填されたPb−Sn共晶ハンダペ
ーストSPが、従来のように(図13(a)参照)脱落
することがない。従って、中継基板40においても、充
填ハンダ体43のハンダ体積がほぼ一定となるため、充
填ハンダ体33の突出高さもほぼ一定とすることができ
る。なお、中継基板40では、中継基板30と同様に、
メッキレジストMR5,MR6の除去後のエッチングに
おいて、厚さの薄い無電解メッキ層46,47のみエッ
チング除去すれば足りるので、強力な薬剤を用いずにソ
フトエッチングによってエッチングすればよいので、エ
ッチングやその後の処理が容易である点で、優れてい
る。また、リング状銅箔44を用いてコンフォーマルマ
スク法によって貫通孔41Hを形成しているので、レー
ザ光の照射位置精度をあまり高くする必要が無い点でも
優れている。
Also in this relay board 40, the relay board 1
0,30, Pb-Sn eutectic solder paste SP
When filling and applying, the through-hole 41H is
Of the Pb-Sn eutectic solder paste SP filled in the concave portions 42R as in the conventional case (see FIG. 13A). Never do. Therefore, also in the relay board 40, since the solder volume of the filling solder body 43 is substantially constant, the protrusion height of the filling solder body 33 can be substantially constant. In the relay board 40, as in the relay board 30,
In the etching after the removal of the plating resists MR5 and MR6, only the thin electroless plating layers 46 and 47 need to be etched and removed. Therefore, the etching may be performed by soft etching without using a strong chemical. This is excellent in that the treatment is easy. Further, since the through-hole 41H is formed by the conformal mask method using the ring-shaped copper foil 44, it is excellent in that it is not necessary to make the irradiation position accuracy of the laser beam very high.

【0055】以上において、本発明を実施形態に即して
説明したが、本発明は上記実施形態に限定されるもので
はなく、その要旨を逸脱しない範囲で、適宜変更して適
用できることはいうまでもない。例えば、上記実施形態
においては、いずれも貫通孔11H等の周縁11AP,
11BPにも導体層12等が拡がって第1,第2主面側
開口周縁部12P,12Qも形成したものを示したが、
これらを形成しないものであっても良い。また、導体層
12等は、いずれも銅箔及び銅メッキからなるものとし
たが、その他の金属、例えば、ニッケル等、あるいは、
銅箔や銅メッキ層上にニッケルメッキを施すなど2種以
上の金属からなるものとしても良い。また、上記実施形
態においては、充填ハンダ体13として第1主面1A側
に球面状の突出したものを例示したが、溶融時にセラミ
ックやステンレス等ハンダに濡れない平板で各充填ハン
ダ体の突出高さを規制し、そのまま冷却して、各充填ハ
ンダ体13の第1主面側頂部が平坦となるようにすると
良い。平板の持つ平面に従って平坦化されることによ
り、各充填ハンダ体のコプラナリティを小さくすること
ができ、さらに、ハンダバンプとの接続のため再度充填
ハンダ体を溶融させた際には、頂部の高さが高くなるた
め、ハンダバンプとの接続が確実にできるからである。
なお、充填ハンダ体の頂部を平坦にするには、溶融後固
化した各充填ハンダ体13等を平面を持つ金型によって
押圧して各頂部を平坦にしても良い。また、上記実施形
態では、いずれも無電解メッキと電解メッキを用いて凹
状導体12等を形成したが、無電解メッキのみで凹状導
体を形成しても良い。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. Nor. For example, in the above-described embodiment, each of the periphery 11AP such as the through-hole 11H,
Although the conductor layer 12 and the like are also spread on 11BP to form the first and second principal surface side opening peripheral portions 12P and 12Q, FIG.
These may not be formed. Further, the conductor layer 12 and the like are all made of copper foil and copper plating, but other metals such as nickel or the like, or
It may be made of two or more kinds of metals, for example, nickel plating on a copper foil or a copper plating layer. In the above-described embodiment, the filling solder body 13 has a spherical projection on the first main surface 1A side. However, the projection height of each filling solder body is a flat plate that does not wet with solder such as ceramic or stainless steel when molten. It is preferable to regulate the height and cool as it is so that the top of the first main surface side of each filling solder body 13 becomes flat. By flattening according to the plane of the flat plate, the coplanarity of each filled solder body can be reduced, and when the filled solder body is melted again for connection with solder bumps, the height of the top is reduced. This is because the connection with the solder bump can be reliably performed because the height is high.
In order to flatten the tops of the filled solder bodies, each of the filled solder bodies 13 and the like that have been melted and solidified may be pressed by a flat mold to flatten the tops. Further, in each of the above embodiments, the concave conductor 12 and the like are formed using electroless plating and electrolytic plating, but the concave conductor may be formed only by electroless plating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1にかかる中継基板の平面図(a)お
よび部分拡大断面図(b)である。
FIG. 1 is a plan view (a) and a partially enlarged cross-sectional view (b) of a relay board according to a first embodiment.

【図2】(a)は図1の中継基板にICチップを接続し
た状態、(b)はさらにプリント配線板を接続した状態
を示す説明図である。
2A is an explanatory view showing a state in which an IC chip is connected to the relay board of FIG. 1, and FIG. 2B is an explanatory view showing a state in which a printed wiring board is further connected.

【図3】実施形態1にかかる中継基板の製造方法のう
ち、メッキレジストを除去するまでの工程を示す説明図
である。
FIG. 3 is an explanatory view showing a process until a plating resist is removed in the method of manufacturing the relay board according to the first embodiment.

【図4】実施形態1にかかる中継基板の製造方法のう
ち、凹部導体にハンダペーストを充填するまでの工程を
示す説明図である。
FIG. 4 is an explanatory diagram showing a process of filling a recess conductor with a solder paste in the method of manufacturing the relay board according to the first embodiment.

【図5】(a)は実施形態2にかかる中継基板の部分拡
大断面図、(b)はこの中継基板の製造方法のうち凹状
導体の底部側に高温ハンダペーストを塗布する工程を示
す説明図である。
FIG. 5A is a partially enlarged cross-sectional view of a relay board according to a second embodiment, and FIG. 5B is an explanatory view showing a step of applying a high-temperature solder paste to the bottom side of the concave conductor in the method of manufacturing the relay board; It is.

【図6】実施形態3にかかる中継基板の製造方法のう
ち、電解メッキまでの工程を示す説明図である。
FIG. 6 is an explanatory view showing steps up to electrolytic plating in the method of manufacturing the relay board according to the third embodiment.

【図7】(a)は実施形態3の中継基板の製造方法のう
ちエッチング工程を示す説明図、(b)は実施形態3に
かかる中継基板の部分拡大断面図である。
FIG. 7A is an explanatory view showing an etching step in the method for manufacturing a relay board according to the third embodiment, and FIG. 7B is a partially enlarged cross-sectional view of the relay board according to the third embodiment.

【図8】実施形態4にかかる中継基板の製造方法のう
ち、貫通孔形成までの工程を示す説明図である。
FIG. 8 is an explanatory view showing steps up to the formation of a through-hole in the method of manufacturing the relay board according to the fourth embodiment.

【図9】実施形態4にかかる中継基板の製造方法のう
ち、レジスト除去までの工程を示す説明図である。
FIG. 9 is an explanatory view showing steps up to removal of a resist in the method of manufacturing the relay board according to the fourth embodiment.

【図10】(a)は実施形態4の中継基板の製造方法の
うちエッチング工程を示す説明図、(b)は実施形態4
にかかる中継基板の部分拡大断面図である。
FIG. 10A is an explanatory view showing an etching step in the method for manufacturing a relay board according to the fourth embodiment, and FIG.
FIG. 4 is a partially enlarged cross-sectional view of the relay board according to FIG.

【図11】(a)は従来の中継基板の部分拡大断面図、
(b)は上記従来の中継基板の上下にICチップ及びプ
リント配線板を接続した状態を示す説明図である。
FIG. 11A is a partially enlarged cross-sectional view of a conventional relay board,
(B) is an explanatory view showing a state in which an IC chip and a printed wiring board are connected above and below the conventional relay board.

【図12】図11(a)とは異なる従来の中継基板の部
分格段断面図である。
FIG. 12 is a partial cross-sectional view of a conventional relay board different from FIG. 11 (a).

【図13】(a)は貫通孔内に充填したペーストが脱落
する様子を説明する説明図、(b)は貫通孔内に充填し
たペーストを硬化させることにより、ペースト(樹脂)
に凹凸ができた状態を示す説明図である。
FIG. 13A is an explanatory view illustrating a state in which a paste filled in a through-hole falls off, and FIG. 13B is a view showing a paste (resin) obtained by curing the paste filled in the through-hole.
FIG. 4 is an explanatory view showing a state in which irregularities are formed in FIG.

【符号の説明】[Explanation of symbols]

10,20,30,40 中継基板 11,31,41 中継基板本体 11A,31A,41A 第1主面 11B,31B,41B 第2主面 11H,31H,41H 貫通孔 12,32,42 凹状導体 12T,32T,42T (凹状導体の)底部 12S,32S,42S (凹状導体の)側部 12R,32R,42R (凹状導体の)凹部 13,33,43 充填ハンダ体 23 ハンダバンプ 10, 20, 30, 40 Relay board 11, 31, 41 Relay board body 11A, 31A, 41A First main surface 11B, 31B, 41B Second main surface 11H, 31H, 41H Through hole 12, 32, 42 Concave conductor 12T , 32T, 42T Bottom 12S, 32S, 42S (of concave conductor) Side 12R, 32R, 42R (of concave conductor) Recess 13, 33, 43 Filled solder body 23 Solder bump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 訓 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 (72)発明者 杉本 康宏 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 Fターム(参考) 5E319 AA10 BB05 CC22 CD26 5E336 BC25 DD04 EE01 5E344 BB02 CC05 DD02 EE06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor: Naru Hirano 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi Inside Japan Specialty Ceramics Co., Ltd. (72) Inventor Yasuhiro Sugimoto 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi Japan Special Ceramics F term in the company (reference) 5E319 AA10 BB05 CC22 CD26 5E336 BC25 DD04 EE01 5E344 BB02 CC05 DD02 EE06

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 第1主面と第2主面とを備え、この2つ
の主面間を貫通する貫通孔を有する中継基板本体と、 上記貫通孔の第2主面側開口を塞ぐ底部と上記貫通孔内
周面を覆う側部とを備える略凹形状の凹状導体と、 上記凹状導体の凹部内に充填され上記第1主面側に突出
する充填ハンダ体と、を備えることを特徴とする中継基
板。
1. A relay board main body having a first main surface and a second main surface and having a through hole penetrating between the two main surfaces, a bottom portion closing an opening of the through hole on the second main surface side. A concave conductor having a substantially concave shape having a side portion covering the inner peripheral surface of the through hole, and a filling solder body filled in a concave portion of the concave conductor and protruding toward the first main surface side. Relay board.
【請求項2】 請求項1に記載の中継基板であって、 前記中継基板本体の厚さが200μm以下であることを
特徴とする中継基板。
2. The relay board according to claim 1, wherein the thickness of the relay board body is 200 μm or less.
【請求項3】 請求項1または請求項2に記載の中継基
板であって、 隣接する前記凹状導体の側部同士の間隙が、200μm
以下であり、 前記中継基板本体が、ガラス繊維を含まない樹脂系複合
材料からなることを特徴とする中継基板。
3. The relay board according to claim 1, wherein the gap between the side portions of the adjacent concave conductors is 200 μm.
The relay substrate according to claim 1, wherein the relay substrate body is made of a resin-based composite material that does not include glass fibers.
【請求項4】 請求項1または請求項2に記載の中継基
板であって、 前記凹状導体の底部のうち第2主面側に、前記充填ハン
ダ体をなすハンダよりも高融点のハンダからなる高温ハ
ンダバンプを備えることを特徴とする中継基板。
4. The relay board according to claim 1, wherein a solder having a higher melting point than the solder forming the filling solder body is provided on the second main surface side of the bottom of the concave conductor. A relay board comprising high-temperature solder bumps.
【請求項5】 第1主面と第2主面とを備える中継基板
本体に、上記2つの主面間を貫通する貫通孔及びこの貫
通孔の第2主面側開口を塞ぐ底部と上記貫通孔内周面を
覆う側部とを有する略凹形状の凹状導体を形成する貫通
孔凹状導体形成工程と、 上記第1主面側から上記凹状導体の凹部内にハンダペー
ストを充填し加熱して、上記凹状導体内に充填され上記
第1主面側に突出する充填ハンダ体を形成する充填ハン
ダ体形成工程と、を備えることを特徴とする中継基板の
製造方法。
5. A relay board body having a first main surface and a second main surface, a through-hole penetrating between the two main surfaces, a bottom for closing an opening of the through-hole on the second main surface, and the through-hole. A through-hole concave conductor forming step of forming a substantially concave concave conductor having a side portion covering an inner peripheral surface of the hole; and filling and heating a solder paste into the concave portion of the concave conductor from the first main surface side. A filling solder body forming step of forming a filling solder body that fills the concave conductor and protrudes toward the first main surface side.
【請求項6】 第1主面と第2主面とを備え、この2つ
の主面のうち少なくとも上記第2主面に第2主面側金属
層を有する中継基板本体のうち、上記第1主面に金属層
を有さず第2主面にのみ第2主面側金属層を有する所定
位置に、上記中継基板本体を穿孔可能で上記第2主面側
金属層を穿孔不能なレーザを用いた上記第1主面側から
のレーザ加工により、上記第2主面側金属層で第2主面
側開口を塞がれた貫通孔を穿孔する貫通孔形成工程と、 少なくとも上記第2主面側金属層のうち上記第2主面側
開口において上記貫通孔内に向かって露出する露出面お
よび上記貫通孔内の内周面にメッキを施して、略凹形状
の凹状導体を形成する凹状導体形成工程と、 上記第1主面側から上記凹状導体の凹部内にハンダペー
ストを充填し加熱して、上記凹状導体内に充填され上記
第1主面側に突出する充填ハンダ体を形成する充填ハン
ダ体形成工程と、を備えることを特徴とする中継基板の
製造方法。
6. A relay board main body having a first main surface and a second main surface, wherein at least the second main surface of the two main surfaces has a second main surface side metal layer. At a predetermined position where the main surface has no metal layer and only the second main surface has the second main surface side metal layer, a laser capable of piercing the relay board main body and not piercing the second main surface side metal layer is used. A step of forming a through-hole in which the second main-surface-side metal layer closes the second main-surface-side opening by laser processing from the first main-surface side used; A concave portion that forms a substantially concave concave conductor by plating the exposed surface of the surface-side metal layer that is exposed toward the inside of the through hole and the inner peripheral surface of the through hole in the second main surface side opening. A step of forming a conductor, filling a solder paste into the concave portion of the concave conductor from the first main surface side and heating the solder paste; Method for producing a relay board to the filling solder forming step, characterized in that it comprises a to be filled in the Jo conductor to form a filled solder body projecting to the first main surface side.
【請求項7】 請求項6に記載の中継基板の製造方法に
おいて、 前記貫通孔の第2主面側開口の径よりも、これを塞ぐ第
2主面側金属層の径が大きくされていることを特徴とす
る中継基板の製造方法。
7. The method of manufacturing a relay board according to claim 6, wherein a diameter of the second main surface side metal layer closing the through hole is larger than a diameter of the second main surface side opening of the through hole. A method for manufacturing a relay board, comprising:
【請求項8】 請求項6または請求項7に記載の中継基
板の製造方法において、 前記貫通孔形成工程は、前記第1主面に所定パターンの
透孔を備える第1主面側金属層と前記第2主面のうち少
なくとも上記透孔に対応する位置に配置された第2主面
側金属層とを有する前記中継基板本体に、上記第1主面
側金属層の透孔に対しこの透孔より広くレーザを照射
し、透孔と断面略同形の前記貫通孔を形成するコンフォ
ーマルマスク貫通孔形成工程であることを特徴とする中
継基板の製造方法。
8. The method for manufacturing a relay board according to claim 6, wherein the through hole forming step includes: forming a first main surface side metal layer having a predetermined pattern of through holes on the first main surface; The relay board main body having at least a second main surface side metal layer disposed at a position corresponding to the through hole in the second main surface is provided with the through hole in the first main surface side metal layer. A method of manufacturing a relay board, comprising a step of forming a conformal mask through-hole in which a laser is irradiated wider than the hole to form the through-hole having substantially the same cross section as the through-hole.
JP33803798A 1998-10-08 1998-11-27 Relay board and manufacturing method thereof Expired - Fee Related JP3779478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33803798A JP3779478B2 (en) 1998-10-08 1998-11-27 Relay board and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-286205 1998-10-08
JP28620598 1998-10-08
JP33803798A JP3779478B2 (en) 1998-10-08 1998-11-27 Relay board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000183242A true JP2000183242A (en) 2000-06-30
JP3779478B2 JP3779478B2 (en) 2006-05-31

Family

ID=26556208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33803798A Expired - Fee Related JP3779478B2 (en) 1998-10-08 1998-11-27 Relay board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3779478B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076561A (en) * 2000-08-24 2002-03-15 Sony Corp Three-dimensional circuit board device and method for manufacturing three-dimensional circuit board device
JP2006324611A (en) * 2005-05-20 2006-11-30 Mitsui Mining & Smelting Co Ltd Film carrier tape with capacitor circuit and manufacturing method thereof, surface mount film carrier tape with capacitor circuit and manufacturing method thereof
WO2019241107A1 (en) * 2018-06-11 2019-12-19 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
JPWO2019035392A1 (en) * 2017-08-14 2020-10-01 ソニー株式会社 Electronic component modules, their manufacturing methods, endoscope devices, and mobile cameras
US10849218B2 (en) 2014-11-21 2020-11-24 Amphenol Corporation Mating backplane for high speed, high density electrical connector
US10993314B2 (en) 2016-03-08 2021-04-27 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US11096270B2 (en) 2016-03-08 2021-08-17 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
JP2022189275A (en) * 2021-06-11 2022-12-22 新光電気工業株式会社 Terminal structure, wiring board, and manufacturing method of terminal structure
US11637389B2 (en) 2020-01-27 2023-04-25 Amphenol Corporation Electrical connector with high speed mounting interface
US11637403B2 (en) 2020-01-27 2023-04-25 Amphenol Corporation Electrical connector with high speed mounting interface
US11742601B2 (en) 2019-05-20 2023-08-29 Amphenol Corporation High density, high speed electrical connector
USD1067191S1 (en) 2021-12-14 2025-03-18 Amphenol Corporation Electrical connector
USD1068685S1 (en) 2021-12-14 2025-04-01 Amphenol Corporation Electrical connector

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076561A (en) * 2000-08-24 2002-03-15 Sony Corp Three-dimensional circuit board device and method for manufacturing three-dimensional circuit board device
JP2006324611A (en) * 2005-05-20 2006-11-30 Mitsui Mining & Smelting Co Ltd Film carrier tape with capacitor circuit and manufacturing method thereof, surface mount film carrier tape with capacitor circuit and manufacturing method thereof
US11950356B2 (en) 2014-11-21 2024-04-02 Amphenol Corporation Mating backplane for high speed, high density electrical connector
US11546983B2 (en) 2014-11-21 2023-01-03 Amphenol Corporation Mating backplane for high speed, high density electrical connector
US10849218B2 (en) 2014-11-21 2020-11-24 Amphenol Corporation Mating backplane for high speed, high density electrical connector
US10993314B2 (en) 2016-03-08 2021-04-27 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US11765813B2 (en) 2016-03-08 2023-09-19 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US11096270B2 (en) 2016-03-08 2021-08-17 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US11805595B2 (en) 2016-03-08 2023-10-31 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US11553589B2 (en) 2016-03-08 2023-01-10 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
JP7180602B2 (en) 2017-08-14 2022-11-30 ソニーグループ株式会社 Electronic component module, manufacturing method thereof, endoscope device, and mobile camera
JPWO2019035392A1 (en) * 2017-08-14 2020-10-01 ソニー株式会社 Electronic component modules, their manufacturing methods, endoscope devices, and mobile cameras
WO2019241107A1 (en) * 2018-06-11 2019-12-19 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US11758656B2 (en) 2018-06-11 2023-09-12 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US11057995B2 (en) 2018-06-11 2021-07-06 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US12171063B2 (en) 2018-06-11 2024-12-17 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US11742601B2 (en) 2019-05-20 2023-08-29 Amphenol Corporation High density, high speed electrical connector
US11637403B2 (en) 2020-01-27 2023-04-25 Amphenol Corporation Electrical connector with high speed mounting interface
US11637389B2 (en) 2020-01-27 2023-04-25 Amphenol Corporation Electrical connector with high speed mounting interface
JP2022189275A (en) * 2021-06-11 2022-12-22 新光電気工業株式会社 Terminal structure, wiring board, and manufacturing method of terminal structure
USD1067191S1 (en) 2021-12-14 2025-03-18 Amphenol Corporation Electrical connector
USD1068685S1 (en) 2021-12-14 2025-04-01 Amphenol Corporation Electrical connector

Also Published As

Publication number Publication date
JP3779478B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
US7239014B2 (en) Capacitor-built-in type printed wiring substrate, printed wiring substrate, and capacitor
JP5123664B2 (en) Semiconductor device and manufacturing method thereof
JP3779478B2 (en) Relay board and manufacturing method thereof
JP4268434B2 (en) Wiring board manufacturing method
JP2000243873A (en) Wiring board, core substrate with built-in capacitor, main body of core substrate, capacitor and their manufacture
JP5157455B2 (en) Semiconductor device
JP2022161152A (en) Printed wiring board and manufacturing method for printed wiring board
JP2017183337A (en) Wiring board, electronic device, and method of manufacturing wiring board
JP2005150417A (en) Semiconductor device substrate, method for manufacturing the same, and semiconductor device
US20110061907A1 (en) Printed circuit board and method of manufacturing the same
JP2003229513A (en) Substrate incorporating element and method of manufacturing the same
JPH07326853A (en) Method for forming ball bumps on printed wiring board
JP2001230537A (en) Method for forming solder bump
JP5479959B2 (en) Manufacturing method of wiring board having solder bump, mask for mounting solder ball
JPH0831871A (en) Interface sealing film used for surface mount electronic device and surface mount structure
JP2007059588A (en) Method of manufacturing wiring board, and wiring board
JP2004119464A (en) Wiring board with solder bumps and method of manufacturing the same
JPH11111766A (en) Wiring board and method of manufacturing the same
KR101920916B1 (en) Printed circuit board having conductive post and method of manufacturing the same
JP2751897B2 (en) Ball grid array mounting structure and mounting method
JP2004288814A (en) Semiconductor device and its manufacturing method, circuit board, and electronic equipment
JP2023063917A (en) Wiring board and functional device
JPH04356935A (en) Bump electrode formation method for semiconductor devices
JP2007035870A (en) Semiconductor device
JP2003243816A (en) Wiring board and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees