JP2000180207A - Magnetic sensor - Google Patents
Magnetic sensorInfo
- Publication number
- JP2000180207A JP2000180207A JP10358089A JP35808998A JP2000180207A JP 2000180207 A JP2000180207 A JP 2000180207A JP 10358089 A JP10358089 A JP 10358089A JP 35808998 A JP35808998 A JP 35808998A JP 2000180207 A JP2000180207 A JP 2000180207A
- Authority
- JP
- Japan
- Prior art keywords
- thickness
- magnetoresistive element
- change
- magnetic field
- magnetoresistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 157
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000010586 diagram Methods 0.000 description 21
- 230000005294 ferromagnetic effect Effects 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229910003321 CoFe Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
(57)【要約】
【課題】 バイアス磁界を印加することなく、信号磁界
に対して抵抗値差を生じさせ、簡単な構成で差動出力を
取り出すことができる磁気センサを提供する。
【解決手段】 磁気センサは、基板1と、基板1に形成
され、基板1の表面に略平行に印加される信号磁界9に
対して抵抗値が変化する巨大磁気抵抗素子3とを備え
る。巨大磁気抵抗素子3は、磁性層15と非磁性層17
とが交互に積層された人工格子膜に印加される信号磁界
9の変化に対して抵抗値が変化する第1の巨大磁気抵抗
素子3aと、第1の巨大磁気抵抗素子3aに直列接続さ
れ、磁性層15と非磁性層17の厚みに対して異なる厚
みの非磁性層17aとが交互に積層された人工格子膜に
印加される信号磁界9の変化に対して抵抗値が変化しな
い第2の巨大磁気抵抗素子3bとを備える。
(57) Abstract: Provided is a magnetic sensor capable of generating a differential output with a simple configuration by generating a resistance value difference with respect to a signal magnetic field without applying a bias magnetic field. A magnetic sensor includes a substrate, and a giant magnetoresistive element formed on the substrate and having a resistance that changes with respect to a signal magnetic field applied substantially parallel to the surface of the substrate. The giant magnetoresistive element 3 includes a magnetic layer 15 and a non-magnetic layer 17.
Are connected in series to a first giant magnetoresistive element 3a whose resistance changes with respect to a change in the signal magnetic field 9 applied to the artificial lattice film alternately laminated, and the first giant magnetoresistive element 3a, The second resistance value does not change in response to a change in the signal magnetic field 9 applied to the artificial lattice film in which the magnetic layer 15 and the nonmagnetic layer 17a having different thicknesses with respect to the thickness of the nonmagnetic layer 17 are alternately stacked. A giant magnetoresistive element 3b.
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、磁気抵抗素子の磁
気抵抗効果を利用して、被検出対象の回転等を検出する
高感度で簡単な構成の磁気センサに関し、特に多層膜か
らなる巨大磁気抵抗素子GMR(giant magnetoresista
nce)を用いた磁気センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor having a high sensitivity and a simple structure for detecting rotation or the like of an object to be detected by utilizing the magnetoresistive effect of a magnetoresistive element. Resistive element GMR (giant magnetoresista
nce).
【0002】[0002]
【従来の技術】磁気抵抗素子は、磁界の変化に応じて抵
抗値が変化するため、ギアの回転等を検出する磁気セン
サに用いられている。この磁気センサは、バイアス磁石
の磁界がギアの回転等により変化し、この磁界の変化を
直列に接続された2つの磁気抵抗素子の接続中点から抵
抗値の変化(電圧出力)として取り出す。2. Description of the Related Art Since a resistance value of a magnetoresistive element changes in accordance with a change in a magnetic field, it is used as a magnetic sensor for detecting rotation of a gear. In this magnetic sensor, the magnetic field of the bias magnet changes due to rotation of a gear or the like, and the change in the magnetic field is extracted as a change in resistance (voltage output) from the connection point of the two magnetoresistive elements connected in series.
【0003】そして、磁気抵抗素子の電圧出力を信号処
理回路に供給すると、信号処理回路がギヤの回転数に応
じたパルスを出力する。このため、このパルス数をカウ
ントすることでギヤの回転数を検出できる。When a voltage output of the magnetoresistive element is supplied to a signal processing circuit, the signal processing circuit outputs a pulse corresponding to the number of rotations of the gear. Therefore, the number of rotations of the gear can be detected by counting the number of pulses.
【0004】前述した従来の磁気抵抗素子は、一般的に
Ni−FeやNi−Co等からなる強磁性体磁気抵抗素
子であり、磁気異方性を有している。このため、図8に
示すように、電極107a及び電極107b間に設けら
れた第1の磁気抵抗素子103aと、電極107b及び
電極107c間に設けられた第2の磁気抵抗素子103
bからなる強磁性体磁気抵抗素子103が用いられる。
第1の磁気抵抗素子103aと第2の磁気抵抗素子10
3bとは電極パターンが互いに直交して配置され、信号
磁界109が印加される。The above-described conventional magnetoresistive element is generally a ferromagnetic magnetoresistive element made of Ni—Fe, Ni—Co, or the like, and has magnetic anisotropy. Therefore, as shown in FIG. 8, a first magnetoresistive element 103a provided between the electrodes 107a and 107b and a second magnetoresistive element 103 provided between the electrodes 107b and 107c.
The ferromagnetic magnetoresistive element 103 made of b is used.
First magnetoresistive element 103a and second magnetoresistive element 10
3b, the electrode patterns are arranged orthogonal to each other, and a signal magnetic field 109 is applied.
【0005】この場合、図9に示すように、第1の磁気
抵抗素子103aの抵抗値のみが信号磁界109の変動
に応じて変化する。このため、第1の磁気抵抗素子10
3aの抵抗値と第2の磁気抵抗素子103bの抵抗値と
の抵抗値差に基づき、中点電極である電極107bから
差動出力を得ることができる。In this case, as shown in FIG. 9, only the resistance value of the first magnetoresistive element 103a changes according to the fluctuation of the signal magnetic field 109. Therefore, the first magnetoresistive element 10
A differential output can be obtained from the electrode 107b, which is the midpoint electrode, based on the difference between the resistance value of the resistance 3a and the resistance value of the second magnetoresistance element 103b.
【0006】しかし、従来の強磁性体磁気抵抗素子10
3では、信号磁界に対する抵抗値の変化を表す磁気抵抗
変化率が数%と小さいため、差動出力がかなり低下して
しまう。このため、強磁性体磁気抵抗素子103を用い
て差動出力を上げるためには、周辺回路を設けなければ
ならず、この周辺回路により磁気センサが複雑な回路に
なっていた。However, the conventional ferromagnetic magnetoresistive element 10
In the case of No. 3, since the rate of change in the magnetoresistance representing the change in the resistance value with respect to the signal magnetic field is as small as several percent, the differential output is considerably reduced. Therefore, in order to increase the differential output by using the ferromagnetic magnetoresistive element 103, a peripheral circuit must be provided, and the peripheral circuit has made the magnetic sensor a complicated circuit.
【0007】一方、多層膜からなる巨大磁気抵抗素子に
ついて、例えば、特開平8−32141号公報に記載さ
れている。この公報に記載された巨大磁気抵抗素子は、
第1の磁性層と第2の磁性層とこの間に形成された中間
非磁性層とを含む積層構造からなり、磁気抵抗変化率が
数十%と大きくなる。このため、従来の強磁性磁気抵抗
素子と比較して磁気センサ内の周辺回路を簡素化するこ
とができる。On the other hand, a giant magnetoresistive element comprising a multilayer film is described, for example, in Japanese Patent Application Laid-Open No. Hei 8-32141. The giant magnetoresistive element described in this publication is
It has a laminated structure including a first magnetic layer, a second magnetic layer, and an intermediate nonmagnetic layer formed therebetween, and the magnetoresistance change rate is as large as several tens%. Therefore, the peripheral circuit in the magnetic sensor can be simplified as compared with the conventional ferromagnetic magnetoresistive element.
【0008】ところが、巨大磁気抵抗素子は、強磁性磁
気抵抗素子とは異なり、信号磁界に対して等方性を有す
る。このため、この巨大磁気抵抗素子で、図8に示すよ
うな電極パターンを形成しても、第1の巨大磁気抵抗素
子113a及び第2の巨大磁気抵抗素子113bのそれ
ぞれの抵抗値は、図10に示すように、信号磁界に対し
てほぼ同一値で変化する。このため、抵抗値差を生ずる
差動出力を取り出すことができない。However, unlike a ferromagnetic magnetoresistive element, a giant magnetoresistive element is isotropic with respect to a signal magnetic field. For this reason, even if an electrode pattern as shown in FIG. 8 is formed with this giant magnetoresistive element, the respective resistance values of the first giant magnetoresistive element 113a and the second giant magnetoresistive element 113b are as shown in FIG. As shown in FIG. 7, the values change with substantially the same value with respect to the signal magnetic field. For this reason, it is not possible to take out a differential output that causes a resistance value difference.
【0009】すなわち、巨大磁気抵抗素子113は、大
きな磁気抵抗変化率を有するが、等方性であるため、差
動出力が取り出せないという課題を有していた。この課
題を解決した一例として、例えば、特開平8−2014
92号公報に記載された磁気センサが知られている。That is, although the giant magnetoresistive element 113 has a large magnetoresistance change rate, it has a problem that a differential output cannot be obtained because it is isotropic. One example of solving this problem is disclosed in, for example, JP-A-8-2014.
A magnetic sensor described in Japanese Patent Publication No. 92-92 is known.
【0010】特開平8−201492号公報に記載され
た磁気センサは、図11に示すように、強磁性層と非強
磁性層とを交互に積層した人工格子膜を用いた抵抗体パ
ターン(巨大磁気抵抗素子)113a,113bを同一
基板上に同方向平行して直列に接続し、抵抗体パターン
113a,113bに逆方向バイアス121,122を
印加し、さらに信号磁界119を印加する。As shown in FIG. 11, the magnetic sensor described in Japanese Patent Application Laid-Open No. Hei 8-201492 has a resistor pattern (giant giant) using an artificial lattice film in which ferromagnetic layers and non-ferromagnetic layers are alternately stacked. The magnetoresistive elements 113a and 113b are connected in series in the same direction in parallel on the same substrate, reverse biases 121 and 122 are applied to the resistor patterns 113a and 113b, and a signal magnetic field 119 is applied.
【0011】この磁気センサによれば、抵抗体パターン
103a,103bのそれぞれは、図12(a)の波形
126、図12(b)の波形127に示すような磁気抵
抗変化の特性となる。そして、基板に1周期λの信号磁
界119を印加すると、図12(a)の波形130(抵
抗体パターン113a)、図12(b)の波形131
(抵抗体パターン113b)のような抵抗値変化が発生
する。その差動出力が図13の波形132に示す出力と
して得られる。すなわち、等方性の巨大磁気抵抗素子で
あっても、信号磁界による抵抗値差を発生させ、差動出
力を得ることができる。According to this magnetic sensor, each of the resistor patterns 103a and 103b has a characteristic of magnetoresistance change as shown by a waveform 126 in FIG. 12A and a waveform 127 in FIG. 12B. When a signal magnetic field 119 having one cycle λ is applied to the substrate, a waveform 130 (resistor pattern 113a) in FIG. 12A and a waveform 131 in FIG.
A resistance value change like (resistor pattern 113b) occurs. The differential output is obtained as an output shown by a waveform 132 in FIG. In other words, even with an isotropic giant magnetoresistive element, a differential value can be obtained by generating a resistance value difference due to a signal magnetic field.
【0012】[0012]
【発明が解決しようとする課題】しかしながら、特開平
8−201492号公報に記載された磁気センサにあっ
ては、等方性を有する巨大磁気抵抗素子を用いた磁気セ
ンサを実現するものであるものの、微小区域におけるバ
イアス磁界制御が困難であった。また、バイアス磁石等
を用いてバイアス磁界を印加するため、磁気センサの構
造が複雑化していた。However, in the magnetic sensor described in Japanese Patent Application Laid-Open No. 8-201492, a magnetic sensor using a giant magnetoresistive element having isotropic property is realized. However, it was difficult to control the bias magnetic field in the minute area. Further, since a bias magnetic field is applied using a bias magnet or the like, the structure of the magnetic sensor has been complicated.
【0013】本発明は、バイアス磁界を印加することな
く、信号磁界に対して抵抗値差を生じさせることがで
き、しかも簡単な構成で差動出力を取り出すことができ
る磁気センサを提供することを課題とする。An object of the present invention is to provide a magnetic sensor capable of generating a resistance value difference with respect to a signal magnetic field without applying a bias magnetic field and capable of extracting a differential output with a simple configuration. Make it an issue.
【0014】[0014]
【課題を解決するための手段】本発明は、前記課題を解
決するために以下の構成とした。請求項1の磁気センサ
は、基板と、この基板に形成され、前記基板の表面に略
平行に印加される信号磁界に対して抵抗値が変化する磁
気抵抗手段とを備え、前記磁気抵抗手段は、磁性層と第
1の非磁性層とが交互に積層された第1の人工格子膜を
有し、第1の人工格子膜に印加される前記信号磁界の変
化に対して抵抗値が変化する第1の磁気抵抗素子と、こ
の第1の磁気抵抗素子に直列接続され、前記磁性層と前
記第1の非磁性層の厚みに対して異なる厚みの第2の非
磁性層とが交互に積層された第2の人工格子膜を有し、
第2の人工格子膜に印加される前記信号磁界の変化に対
して抵抗値が変化しない第2の磁気抵抗素子とを備える
ことを特徴とする。The present invention has the following arrangement to solve the above problems. The magnetic sensor according to claim 1 includes a substrate, and magnetoresistive means formed on the substrate and having a resistance value that changes with respect to a signal magnetic field applied substantially in parallel to the surface of the substrate, wherein the magnetoresistive means comprises: A first artificial lattice film in which magnetic layers and first nonmagnetic layers are alternately stacked, and the resistance value changes with respect to a change in the signal magnetic field applied to the first artificial lattice film. A first magneto-resistance element and a second non-magnetic layer connected in series to the first magneto-resistance element and having a different thickness from the thickness of the magnetic layer and the first non-magnetic layer; A second artificial lattice film,
A second magnetoresistive element whose resistance does not change in response to a change in the signal magnetic field applied to the second artificial lattice film.
【0015】請求項1の発明によれば、第1の磁気抵抗
素子は、磁性層と第1の非磁性層とが交互に積層された
第1の人工格子膜を有し、第1の人工格子膜に印加され
る信号磁界の変化に対して抵抗値が変化する。一方、第
1の磁気抵抗素子に直列接続された第2の磁気抵抗素子
は、磁性層と第1の非磁性層の厚みに対して異なる厚み
の第2の非磁性層とが交互に積層された第2の人工格子
膜を有し、第2の人工格子膜に印加される信号磁界の変
化に対して抵抗値が変化しない。According to the first aspect of the present invention, the first magnetoresistive element has the first artificial lattice film in which the magnetic layers and the first nonmagnetic layers are alternately stacked, The resistance value changes with a change in the signal magnetic field applied to the lattice film. On the other hand, the second magnetoresistance element connected in series to the first magnetoresistance element has a magnetic layer and a second nonmagnetic layer having a thickness different from the thickness of the first nonmagnetic layer, which are alternately stacked. And the resistance value does not change in response to a change in the signal magnetic field applied to the second artificial lattice film.
【0016】このため、第1の磁気抵抗素子は可変抵抗
とし、第2の磁気抵抗素子は固定抵抗として作用し、第
1及び第2の磁気抵抗素子の中点から中点電圧が取り出
されるため、バイアス磁界を印加することなく、信号磁
界に対して抵抗値差を生じさせることができ、しかも簡
単な構成で差動出力を取り出すことができる。Therefore, the first magneto-resistive element acts as a variable resistor, the second magneto-resistive element acts as a fixed resistor, and a midpoint voltage is extracted from the midpoint between the first and second magneto-resistive elements. In addition, a difference in resistance value can be generated with respect to a signal magnetic field without applying a bias magnetic field, and a differential output can be obtained with a simple configuration.
【0017】請求項2の発明のように、前記磁気抵抗手
段は、前記第2の人工格子膜を有し、第2の人工格子膜
に印加される前記信号磁界の変化に対して抵抗値が変化
しない第3の磁気抵抗素子と、この第3の磁気抵抗素子
に直列接続され、前記第1の人工格子膜を有し、第1の
人工格子膜に印加される前記信号磁界の変化に対して抵
抗値が変化する第4の磁気抵抗素子とを備え、前記第1
の磁気抵抗素子の一端と前記第3の磁気抵抗素子の一端
とを接続し、前記第2の磁気抵抗素子の一端と前記第4
の磁気抵抗素子の一端とを接続してフルブリッジ構成と
したことを特徴とする。According to a second aspect of the present invention, the magnetoresistive means has the second artificial lattice film, and has a resistance value against a change in the signal magnetic field applied to the second artificial lattice film. A third magnetoresistive element that does not change; and a third magnetoresistive element that is connected in series to the third magnetoresistive element, has the first artificial lattice film, and receives a change in the signal magnetic field applied to the first artificial lattice film. A fourth magnetoresistive element whose resistance value changes
One end of the magnetoresistive element is connected to one end of the third magnetoresistive element, and one end of the second magnetoresistive element is connected to the fourth magnetoresistive element.
Is connected to one end of the magnetoresistive element to form a full bridge configuration.
【0018】請求項2の発明によれば、第1の磁気抵抗
素子乃至第4の磁気抵抗素子によりフルブリッジ構成と
したことで、ハーフブリッジ構成によりもさらに大きい
差動出力を得ることができる。According to the second aspect of the present invention, since the first to fourth magnetoresistive elements form a full bridge configuration, a larger differential output can be obtained than in the half bridge configuration.
【0019】請求項3の発明は、前記信号磁界に対する
前記抵抗値の変化を表す磁気抵抗変化率が非磁性層の厚
みに応じて変化して極大値及び極小値を持つ場合に、前
記第1の非磁性層の厚みは、前記磁気抵抗変化率が前記
極大値になるときの厚みに設定され、前記第2の非磁性
層の厚みは、前記磁気抵抗変化率が略前記極小値になる
ときの厚みに設定されることを特徴とする。According to a third aspect of the present invention, when the rate of change in magnetoresistance representing the change in the resistance value with respect to the signal magnetic field changes according to the thickness of the nonmagnetic layer and has a maximum value and a minimum value, The thickness of the non-magnetic layer is set to a thickness at which the magnetoresistance change rate becomes the maximum value, and the thickness of the second nonmagnetic layer is set when the magnetoresistance change rate becomes substantially the minimum value. The thickness is set to be.
【0020】請求項3の発明によれば、第1の非磁性層
の厚みは、磁気抵抗変化率が極大値になるときの厚みに
設定され、第2の非磁性層の厚みは、磁気抵抗変化率が
略極小値になるときの厚みに設定されているため、信号
磁性に対して、第1の磁気抵抗素子と第2の磁気抵抗素
子との抵抗値差を生ずることができ、差動出力を取り出
すことができる。According to the third aspect of the invention, the thickness of the first non-magnetic layer is set to a thickness at which the rate of change in magnetoresistance reaches a maximum value, and the thickness of the second non-magnetic layer is set to Since the change rate is set to a thickness at which the change rate becomes substantially the minimum value, a difference in resistance between the first magnetoresistive element and the second magnetoresistive element with respect to signal magnetism can be generated, and You can extract the output.
【0021】請求項4の発明は、前記信号磁界に対する
前記抵抗値の変化を表す磁気抵抗変化率が非磁性層の厚
みに応じて変化して複数の極大値及び複数の極小値を持
つ場合に、前記第1の非磁性層の厚みは、前記磁気抵抗
変化率が前記複数の極大値のいずれか1つの極大値にな
るときの厚みに設定され、前記第2の非磁性層の厚み
は、前記磁気抵抗変化率が前記複数の極小値の最小値に
なるときの厚みに設定されることを特徴とする。According to a fourth aspect of the present invention, when the rate of change in magnetoresistance representing the change in the resistance value with respect to the signal magnetic field changes in accordance with the thickness of the nonmagnetic layer and has a plurality of maximum values and a plurality of minimum values, The thickness of the first non-magnetic layer is set to a thickness at which the rate of change in magnetoresistance becomes one of the plurality of local maximums, and the thickness of the second non-magnetic layer is: The thickness is set to a value at which the rate of change in magnetoresistance becomes a minimum value of the plurality of minimum values.
【0022】請求項4の発明によれば、第1の非磁性層
の厚みは、磁気抵抗変化率が複数の極大値のいずれか1
つの極大値になるときの厚みに設定され、第2の非磁性
層の厚みは、磁気抵抗変化率が複数の極小値の最小値に
なるときの厚みに設定されているため、信号磁性に対し
て、第1の磁気抵抗素子と第2の磁気抵抗素子との抵抗
値差を生ずることができ、差動出力を取り出すことがで
きる。According to the fourth aspect of the present invention, the thickness of the first nonmagnetic layer is such that the rate of change in magnetoresistance is one of a plurality of local maximum values.
Since the thickness of the second non-magnetic layer is set to the thickness at which the rate of change in magnetoresistance becomes the minimum value of a plurality of minimum values, the thickness of the second nonmagnetic layer is As a result, a resistance difference between the first and second magnetoresistive elements can be generated, and a differential output can be obtained.
【0023】請求項5の発明のように、前記第1の非磁
性層の厚みは、磁気抵抗変化率が第2ピーク値となる厚
みに設定され、前記第2の非磁性層の厚みは、磁気抵抗
変化率が第1ピーク値と第2ピーク値の間となる厚みに
設定されることを特徴とする。According to a fifth aspect of the present invention, the thickness of the first nonmagnetic layer is set to a thickness at which the rate of change in magnetoresistance reaches a second peak value, and the thickness of the second nonmagnetic layer is: It is characterized in that the magnetoresistance change rate is set to a thickness between the first peak value and the second peak value.
【0024】請求項5の発明によれば、第1の非磁性層
の厚みは、磁気抵抗変化率が第2ピーク値となる厚みに
設定され、前記第2の非磁性層の厚みは、磁気抵抗変化
率が第1ピーク値と第2ピーク値の間となる厚みに設定
されることで、効率良く差動出力を取り出すことができ
る。According to the fifth aspect of the present invention, the thickness of the first non-magnetic layer is set to a thickness at which the rate of change in magnetoresistance reaches the second peak value, and the thickness of the second non-magnetic layer is magnetic. By setting the resistance change rate to a thickness between the first peak value and the second peak value, a differential output can be efficiently taken out.
【0025】[0025]
【発明の実施の形態】以下、本発明の磁気センサの実施
の形態を図面を参照して詳細に説明する。図1(a)は
実施の形態の磁気センサの構成図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the magnetic sensor according to the present invention will be described in detail with reference to the drawings. FIG. 1A is a configuration diagram of the magnetic sensor according to the embodiment.
【0026】図1(a)に示す磁気センサは、基板1
と、この基板1に形成された巨大磁気抵抗素子3とを有
する。この巨大磁気抵抗素子3は、実施の形態では、例
えば、[NiFeCo/Cu]や[CoFe/Cu]多
層膜のような交換結合型人工格子膜から作製された巨大
磁気抵抗素子を用いた磁気センサを対象とする。The magnetic sensor shown in FIG.
And a giant magnetoresistive element 3 formed on the substrate 1. In the embodiment, the giant magnetoresistive element 3 is, for example, a magnetic sensor using a giant magnetoresistive element made of an exchange-coupled artificial lattice film such as a [NiFeCo / Cu] or [CoFe / Cu] multilayer film. Target.
【0027】巨大磁気抵抗素子3は、櫛状の電極パター
ン5aを有する第1の巨大磁気抵抗素子3aと、この第
1の巨大磁気抵抗素子3aに直列に接続された櫛状の電
極パターン5bを有する第2の巨大磁気抵抗素子3bと
からなるハーフブリッジ構成を採用する。このハーフブ
リッジ構成は、温度補償のために採用される。巨大磁気
抵抗素子3には基板1の表面と略平行に信号磁界9が印
加されるようになっていて、磁気抵抗素子3は、信号磁
界9の変化により抵抗変化を生ずるようになっている。The giant magnetoresistive element 3 includes a first giant magnetoresistive element 3a having a comb-shaped electrode pattern 5a and a comb-shaped electrode pattern 5b connected in series to the first giant magnetoresistive element 3a. And a second giant magnetoresistive element 3b. This half-bridge configuration is employed for temperature compensation. A signal magnetic field 9 is applied to the giant magnetoresistive element 3 substantially in parallel with the surface of the substrate 1, and the magnetoresistive element 3 changes its resistance by a change in the signal magnetic field 9.
【0028】電極パターン5aの一端には電極7aが接
続され、電極パターン5bの一端には電極7cが接続さ
れ、電極パターン5aと電極パターン5bとの中点には
電極7bが接続されている。The electrode 7a is connected to one end of the electrode pattern 5a, the electrode 7c is connected to one end of the electrode pattern 5b, and the electrode 7b is connected to the midpoint between the electrode pattern 5a and the electrode pattern 5b.
【0029】巨大磁気抵抗素子3は、交換結合型人工格
子膜から得られる。図1(b)は第1の巨大磁気抵抗素
子における交換結合型人工格子膜の構造図である。図1
(c)は第2の巨大磁気抵抗素子における交換結合型人
工格子膜の構造図である。The giant magnetoresistive element 3 is obtained from an exchange-coupled artificial lattice film. FIG. 1B is a structural diagram of an exchange-coupled artificial lattice film in the first giant magnetoresistance element. FIG.
(C) is a structural diagram of the exchange-coupled artificial lattice film in the second giant magnetoresistance element.
【0030】図1(b)に示す第1の巨大磁気抵抗素子
3aにおける交換結合型人工格子膜は、基板1と、この
基板1上に積層されたバッファ層13と、このバッファ
層13上に積層された磁性層15と、この磁性層15上
に積層された非磁性層17(第1の非磁性層)とを有す
るとともに、磁性層15と非磁性層17とが交互に積層
されて構成される。The exchange-coupled artificial lattice film in the first giant magnetoresistive element 3a shown in FIG. 1B is composed of a substrate 1, a buffer layer 13 laminated on the substrate 1, and It has a laminated magnetic layer 15 and a non-magnetic layer 17 (first non-magnetic layer) laminated on the magnetic layer 15, and the magnetic layer 15 and the non-magnetic layer 17 are alternately laminated. Is done.
【0031】図1(c)に示す第2の巨大磁気抵抗素子
3bにおける交換結合型人工格子膜は、基板1と、この
基板1上に積層されたバッファ層13と、このバッファ
層13上に積層された磁性層15と、この磁性層15上
に積層された第1の非磁性層の厚みに対して異なる厚み
の非磁性層17a(第2の非磁性層)とを有するととも
に、磁性層15と非磁性層17aとが交互に積層されて
構成される。なお、バッファ層13は、設けても良い
し、あるいは、設けなくても良い。The exchange-coupled artificial lattice film in the second giant magnetoresistive element 3b shown in FIG. 1C is composed of a substrate 1, a buffer layer 13 laminated on the substrate 1, and a A magnetic layer having a thickness different from the thickness of the first non-magnetic layer laminated on the magnetic layer; 15 and the nonmagnetic layer 17a are alternately laminated. Note that the buffer layer 13 may or may not be provided.
【0032】基板1は、絶縁膜を付加したシリコン基板
である。バッファ層13の厚みは、約50〜150Åで
ある。磁性層15は、NiFeCo、CoFe等であ
り、磁性層15の厚みは、約10〜20Åである。非磁
性層17は、Cu等である。磁性層15と非磁性層1
7、及び磁性層15と非磁性層17aとの積層数は、
[磁性層/非磁性層]を1周期とした場合、10〜60
周期程度である。The substrate 1 is a silicon substrate to which an insulating film has been added. Buffer layer 13 has a thickness of about 50 to 150 °. The magnetic layer 15 is made of NiFeCo, CoFe, or the like, and the thickness of the magnetic layer 15 is about 10 to 20 °. The non-magnetic layer 17 is made of Cu or the like. Magnetic layer 15 and non-magnetic layer 1
7, and the number of layers of the magnetic layer 15 and the nonmagnetic layer 17a are:
When [magnetic layer / nonmagnetic layer] is one cycle, 10 to 60
About a cycle.
【0033】図3に一般的な交換結合型人工格子膜の磁
気抵抗変化率と非磁性層厚との関係を示す。図3からも
わかるように、交換結合型人工格子膜の磁気抵抗変化率
は、非磁性層の厚さに依存し、非磁性層厚が約9Å付近
で第1ピーク値となり、約21Å付近で第2ピーク値と
なる。また、非磁性層厚が第1ピーク値と第2ピーク値
との間の約11Å〜19Å付近では、磁気抵抗変化率
は、数%以下である。FIG. 3 shows the relationship between the magnetoresistance ratio of a general exchange-coupling type artificial lattice film and the thickness of the nonmagnetic layer. As can be seen from FIG. 3, the rate of change in magnetoresistance of the exchange-coupled artificial lattice film depends on the thickness of the nonmagnetic layer, and reaches the first peak value when the thickness of the nonmagnetic layer is about 9 °, and about 21 °. It becomes the second peak value. When the thickness of the nonmagnetic layer is about 11 ° to 19 ° between the first peak value and the second peak value, the rate of change in magnetoresistance is several percent or less.
【0034】図2はハーフブリッジ構成の巨大磁気抵抗
素子の回路図である。電極7aには電源電圧VDDが供給
され、電極7cは、接地されている。第1の巨大磁気抵
抗素子3aは、磁気抵抗変化率が図3に示すピーク値
(第1ピーク値または第2ピーク値)をとるように非磁
性層17の厚みを設定した人工格子膜が用いられ、信号
磁界9に対して磁気抵抗変化を生じるようになってい
る。FIG. 2 is a circuit diagram of a giant magnetoresistive element having a half-bridge structure. The power supply voltage V DD is supplied to the electrode 7a, and the electrode 7c is grounded. As the first giant magnetoresistive element 3a, an artificial lattice film in which the thickness of the nonmagnetic layer 17 is set so that the magnetoresistance ratio has a peak value (first peak value or second peak value) shown in FIG. 3 is used. Thus, a change in magnetoresistance occurs with respect to the signal magnetic field 9.
【0035】第2の巨大磁気抵抗素子3bは、磁気抵抗
変化率がピーク値でなく図3に示す略極小値をとるよう
に非磁性層17aの厚みを設定した人工格子膜が用いら
れ、信号磁界9に対して磁気抵抗変化を生じないように
なっている。第1の巨大磁気抵抗素子3aと第2の巨大
磁気抵抗素子3bとの中点端子である電極7bから差動
出力が取り出されるようになっている。The second giant magnetoresistance element 3b uses an artificial lattice film in which the thickness of the nonmagnetic layer 17a is set so that the rate of change in magnetoresistance does not have a peak value but has a substantially minimum value as shown in FIG. A change in magnetoresistance with respect to the magnetic field 9 does not occur. A differential output is extracted from an electrode 7b which is a midpoint terminal between the first giant magnetoresistive element 3a and the second giant magnetoresistive element 3b.
【0036】すなわち、実施の形態では、信号磁界9の
変化に対して磁気抵抗変化が生じない素子を、巨大磁気
抵抗素子3の非磁性層依存性を活かした簡単な素子によ
って実現したことを特徴とする。That is, the embodiment is characterized in that an element which does not cause a change in magnetoresistance in response to a change in the signal magnetic field 9 is realized by a simple element utilizing the nonmagnetic layer dependence of the giant magnetoresistance element 3. And
【0037】次に、このように構成された実施の形態の
磁気センサの動作を図面を参照しながら説明する。信号
磁界9が、第1の巨大磁気抵抗素子3a及び第2の巨大
磁気抵抗素子3bのそれぞれの交換結合型人工格子膜に
印加される。Next, the operation of the magnetic sensor of the embodiment configured as described above will be described with reference to the drawings. A signal magnetic field 9 is applied to the respective exchange-coupled artificial lattice films of the first giant magnetoresistive element 3a and the second giant magnetoresistive element 3b.
【0038】このとき、第1の巨大磁気抵抗素子3a
は、磁気抵抗変化率がピーク値をとるように非磁性層1
7の厚みを設定した人工格子膜が用いられているため、
信号磁界9に対して磁気抵抗変化を生じる。At this time, the first giant magnetoresistive element 3a
Means that the non-magnetic layer 1
Since an artificial lattice film with a thickness of 7 is used,
A magnetoresistance change occurs in the signal magnetic field 9.
【0039】一方、第2の巨大磁気抵抗素子3bは、磁
気抵抗変化率が略極小値をとるように非磁性層17aの
厚みを設定した人工格子膜が用いられているため、信号
磁界9に対して磁気抵抗変化がほとんど生じない。On the other hand, the second giant magnetoresistive element 3b uses an artificial lattice film in which the thickness of the nonmagnetic layer 17a is set so that the rate of change in magnetoresistance takes a substantially minimum value. On the other hand, there is almost no change in magnetoresistance.
【0040】すなわち、信号磁界9に対して磁気抵抗変
化が生ずる第1の巨大磁気抵抗素子3aと、磁気抵抗変
化がほとんど生じない第2の巨大磁気抵抗素子3bとを
用いているため、回路を構成する巨大磁気抵抗素子3に
抵抗値差が生じて、第1の巨大磁気抵抗素子3aと第2
の巨大磁気抵抗素子3bとの中点端子である電極7bか
ら差動出力が取り出される。That is, since the first giant magnetoresistive element 3a whose magnetoresistance changes with respect to the signal magnetic field 9 and the second giant magnetoresistance element 3b whose magnetoresistance does not substantially change are used, the circuit is A resistance value difference occurs in the giant magnetoresistive element 3 constituting the first giant magnetoresistive element 3a and the second giant magnetoresistive element 3a.
A differential output is taken out from the electrode 7b which is a midpoint terminal with the giant magnetoresistive element 3b.
【0041】このように、実施の形態の磁気センサによ
れば、磁気センサのセンシング部に多層膜からなる巨大
磁気抵抗素子3を用いることで、従来の強磁性体磁気抵
抗素子に比較して大きな出力を得ることができる。As described above, according to the magnetic sensor of the embodiment, by using the giant magnetoresistive element 3 composed of a multilayer film in the sensing part of the magnetic sensor, it is larger than the conventional ferromagnetic magnetoresistive element. You can get the output.
【0042】また、磁気抵抗変化率の非磁性層厚依存性
を利用することにより、磁気抵抗素子特性が等方性を有
する巨大磁気抵抗素子3から差動出力を得ることができ
る。すなわち、回路を構成する巨大磁気抵抗素子3に非
磁性層厚が数Å異なるだけの交換結合型人工格子膜を用
いる。By utilizing the non-magnetic layer thickness dependency of the magnetoresistance change rate, a differential output can be obtained from the giant magnetoresistance element 3 having isotropic magnetoresistance element characteristics. That is, an exchange-coupled artificial lattice film whose nonmagnetic layer thickness is different by several Å is used for the giant magnetoresistive element 3 constituting the circuit.
【0043】この交換結合型人工格子膜においては、数
Åの非磁性層厚差が磁気抵抗変化率に極めて顕著に影響
する特徴を持つ。この特徴を利用することにより、等方
性を有する巨大磁気抵抗素子3は、バイアス磁界の印加
や磁気シールド無しで、信号磁界に対して抵抗値差を生
ずることができ、簡単な構成で差動出力を取り出すこと
ができる。This exchange-coupled artificial lattice film is characterized in that a difference in thickness of the nonmagnetic layer of several Å has a remarkable effect on the magnetoresistance ratio. By utilizing this feature, the isotropic giant magnetoresistive element 3 can generate a resistance value difference with respect to a signal magnetic field without applying a bias magnetic field and without a magnetic shield. You can extract the output.
【0044】なお、本出願人は、実施の形態の巨大磁気
抵抗素子3を試作した。この巨大磁気抵抗素子3は、バ
ッファ層13と磁性層15とにNiFeCoを用い、非
磁性層17,17aにCuを用いた交換結合型人工格子
膜である。基板1は、Si/SiO2からなる。バッフ
ァ層厚を50Åとし、磁性層厚を15Åとし、非磁性層
厚をtCUとした。積層周期数nは、20とした。The present applicant has made a prototype of the giant magnetoresistive element 3 of the embodiment. The giant magnetoresistive element 3 is an exchange-coupled artificial lattice film using NiFeCo for the buffer layer 13 and the magnetic layer 15 and Cu for the nonmagnetic layers 17 and 17a. Substrate 1 is made of a Si / SiO 2. The buffer layer thickness was 50 °, the magnetic layer thickness was 15 °, and the nonmagnetic layer thickness was t CU . The lamination cycle number n was set to 20.
【0045】第1の巨大磁気抵抗素子3aは、非磁性層
厚tCUが21Å(第2ピーク)の人工格子膜から作製し
た。第2の巨大磁気抵抗素子3bは、非磁性層厚tCUが
19Åの人工格子膜から作製した。The first giant magnetoresistive element 3a, the non-magnetic layer thickness t CU is made from an artificial lattice film of 21 Å (the second peak). The second giant magnetoresistive element 3b was formed from an artificial lattice film having a nonmagnetic layer thickness t CU of 19 °.
【0046】図4は、第1の巨大磁気抵抗素子3a及び
第2の巨大磁気抵抗素子3bの磁気抵抗変化率と信号磁
界との関係を示している。第1の巨大磁気抵抗素子3a
の磁気抵抗変化率が約9%であるのに対して、第2の巨
大磁気抵抗素子3bの磁気抵抗変化率は、1%以下であ
る。FIG. 4 shows the relationship between the magnetoresistance change rate of the first giant magnetoresistance element 3a and the second giant magnetoresistance element 3b and the signal magnetic field. First giant magnetoresistive element 3a
Is about 9%, while the magnetoresistance change of the second giant magnetoresistive element 3b is 1% or less.
【0047】なお、第1の巨大磁気抵抗素子3a及び第
2の巨大磁気抵抗素子3bの磁気抵抗変化率特性以外の
特性は、同等である。例えば、第1の巨大磁気抵抗素子
3a及び第2の巨大磁気抵抗素子3bの抵抗率は、約
2.17×10-7Ω・m程度であり、また、材料組成や
製造履歴等に関しても同様である。このため、巨大磁気
抵抗素子3の温度特性等基本的な特性は、差異がない。
すなわち、実施の形態では、非磁性層厚が単に数Å異な
るだけで、磁気抵抗変化の有無が生ずるという交換結合
型人工格子膜の特性を利用したものである。The characteristics of the first giant magnetoresistive element 3a and the second giant magnetoresistive element 3b other than the magnetoresistance ratio characteristics are the same. For example, the resistivity of the first giant magnetoresistive element 3a and the second giant magnetoresistive element 3b is about 2.17 × 10 −7 Ω · m, and the same applies to the material composition and manufacturing history. It is. Therefore, there is no difference in basic characteristics such as the temperature characteristics of the giant magnetoresistive element 3.
That is, in the embodiment, the characteristic of the exchange-coupling type artificial lattice film that the presence or absence of a change in the magnetoresistance occurs only by a difference in the thickness of the nonmagnetic layer by a few Å.
【0048】また、前述した実施の形態では、第1の巨
大磁気抵抗素子3aと第2の巨大磁気抵抗素子3bとか
らなるハーフブリッジ構成の巨大磁気抵抗素子3につい
て説明した。In the above-described embodiment, the giant magnetoresistive element 3 having a half-bridge configuration including the first giant magnetoresistive element 3a and the second giant magnetoresistive element 3b has been described.
【0049】本発明は、前述した巨大磁気抵抗素子3に
限定されることなく、例えば、フルブリッジ構成の巨大
磁気抵抗素子についても適用することができる。図5は
フルブリッジ構成の巨大磁気抵抗素子の構成図である。
図6はフルブリッジ構成の巨大磁気抵抗素子の回路図で
ある。The present invention is not limited to the giant magnetoresistive element 3 described above, but can be applied to, for example, a giant magnetoresistive element having a full bridge configuration. FIG. 5 is a configuration diagram of a giant magnetoresistive element having a full bridge configuration.
FIG. 6 is a circuit diagram of a giant magnetoresistive element having a full bridge configuration.
【0050】図5に示すフルブリッジ構成の巨大磁気抵
抗素子は、一端が電極7aに接続され他端が電極7bに
接続され、信号磁界9の変化に対して抵抗値が変化する
第1の巨大磁気抵抗素子3a1と、一端が電極7bに接
続され他端が電極7cに接続され、信号磁界9の変化に
対して抵抗値が変化しない第2の巨大磁気抵抗素子3b
1と、一端が電極7aに接続され他端が電極7dに接続
され、信号磁界9の変化に対して抵抗値が変化しない第
3の巨大磁気抵抗素子3b2と、一端が電極7dに接続
され他端が電極7cに接続され、信号磁界9の変化に対
して抵抗値が変化する第4の巨大磁気抵抗素子3a2と
を備える。The giant magnetoresistive element of the full bridge configuration shown in FIG. 5 has one end connected to the electrode 7a and the other end connected to the electrode 7b, and the first giant magnetoresistive element whose resistance value changes with a change in the signal magnetic field 9. A magnetoresistive element 3a1, a second giant magnetoresistive element 3b whose one end is connected to the electrode 7b and the other end is connected to the electrode 7c, and whose resistance value does not change in response to a change in the signal magnetic field 9;
1, a third giant magnetoresistive element 3b2 whose one end is connected to the electrode 7a and the other end is connected to the electrode 7d and whose resistance value does not change in response to a change in the signal magnetic field 9, and one end which is connected to the electrode 7d. A fourth giant magnetoresistive element 3a2 whose end is connected to the electrode 7c and whose resistance value changes with a change in the signal magnetic field 9;
【0051】また、電極7aには電源端子が接続され、
電極7cが接地されていて、電極7bと電極7dとから
差動出力(OUT1,OUT2)を取り出すようになっ
ている。A power supply terminal is connected to the electrode 7a.
The electrode 7c is grounded, and a differential output (OUT1, OUT2) is extracted from the electrode 7b and the electrode 7d.
【0052】このように、第1の巨大磁気抵抗素子3a
1乃至第4の巨大磁気抵抗素子3b2からなるフルブリ
ッジ構成の巨大磁気抵抗素子を用いることにより、ハー
フブリッジ構成の巨大磁気抵抗素子の差動出力よりもさ
らに大きな差動出力を得ることができる。As described above, the first giant magnetoresistive element 3a
By using a giant magnetoresistive element having a full bridge configuration including the first to fourth giant magnetoresistive elements 3b2, a differential output larger than the differential output of the giant magnetoresistive element having a half bridge configuration can be obtained.
【0053】なお、本発明は上述の実施の形態の磁気セ
ンサに限定されるものではない。実施の形態では、各巨
大磁気抵抗素子の電極パターンの長手方向の全てが信号
磁界9に対して略直交するように配置されていたが、例
えば、図7(a)に示すように、第1の巨大磁気抵抗素
子3aの電極パターン5aと第2の巨大磁気抵抗素子3
bの電極パターン5cとが略直交するように配置しても
良い。Note that the present invention is not limited to the magnetic sensors of the above embodiments. In the embodiment, the entire length of the electrode pattern of each giant magnetoresistive element is arranged so as to be substantially orthogonal to the signal magnetic field 9. For example, as shown in FIG. Electrode pattern 5a of second giant magnetoresistive element 3a and second giant magnetoresistive element 3
The electrode pattern 5c may be arranged so as to be substantially orthogonal to the electrode pattern 5c.
【0054】また、例えば、図7(b)に示すように、
第1の巨大磁気抵抗素子3dの電極パターン5dと第2
の巨大磁気抵抗素子3cの電極パターン5cとを略平行
に配置し、且つ電極パターンの長手方向に略平行に信号
磁界9を印加しても良い。For example, as shown in FIG.
The electrode pattern 5d of the first giant magnetoresistive element 3d and the second
May be arranged substantially parallel to the electrode pattern 5c of the giant magnetoresistive element 3c, and the signal magnetic field 9 may be applied substantially parallel to the longitudinal direction of the electrode pattern.
【0055】さらに、各電極パターンが信号磁界に対し
て所定角度(例えば、45°)となるように配置しても
良い。これは実施の形態の巨大磁気抵抗素子が等方性を
有するからである。このほか、本発明の技術的思想を逸
脱しない範囲内で、種々変形して実施可能であるのは勿
論である。Further, each electrode pattern may be arranged at a predetermined angle (for example, 45 °) with respect to the signal magnetic field. This is because the giant magnetoresistive element of the embodiment has isotropic properties. In addition, it goes without saying that various modifications can be made without departing from the technical idea of the present invention.
【0056】[0056]
【発明の効果】請求項1の発明によれば、第1の磁気抵
抗素子は、磁性層と第1の非磁性層とが交互に積層され
た第1の人工格子膜を有し、第1の人工格子膜に印加さ
れる信号磁界の変化に対して抵抗値が変化する。第2の
磁気抵抗素子は、磁性層と第1の非磁性層の厚みに対し
て異なる厚みの第2の非磁性層とが交互に積層された第
2の人工格子膜を有し、第2の人工格子膜に印加される
信号磁界の変化に対して抵抗値が変化しない。According to the first aspect of the present invention, the first magnetoresistive element has the first artificial lattice film in which the magnetic layers and the first nonmagnetic layers are alternately laminated. The resistance value changes with a change in the signal magnetic field applied to the artificial lattice film. The second magnetoresistive element has a second artificial lattice film in which magnetic layers and second nonmagnetic layers having different thicknesses with respect to the thickness of the first nonmagnetic layer are alternately laminated. The resistance value does not change in response to a change in the signal magnetic field applied to the artificial lattice film.
【0057】このため、第1及び第2の磁気抵抗素子の
中点から中点電圧が取り出されるため、バイアス磁界を
印加することなく、信号磁界に対して抵抗値差を生じさ
せることができ、しかも簡単な構成で差動出力を取り出
すことができる。For this reason, the midpoint voltage is taken out from the midpoint of the first and second magnetoresistance elements, so that a resistance value difference can be generated with respect to the signal magnetic field without applying a bias magnetic field. Moreover, a differential output can be obtained with a simple configuration.
【0058】請求項2の発明によれば、第1の磁気抵抗
素子乃至第4の磁気抵抗素子によりフルブリッジ構成と
したことで、ハーフブリッジ構成によりもさらに大きい
差動出力を得ることができる。According to the second aspect of the present invention, since the first to fourth magnetoresistive elements form a full bridge configuration, a larger differential output can be obtained than in the half bridge configuration.
【0059】請求項3の発明によれば、第1の非磁性層
の厚みは、磁気抵抗変化率が極大値になるときの厚みに
設定され、第2の非磁性層の厚みは、磁気抵抗変化率が
略極小値になるときの厚みに設定されているため、信号
磁性に対して、第1の磁気抵抗素子と第2の磁気抵抗素
子との抵抗値差を生ずることができ、差動出力を取り出
すことができる。According to the third aspect of the invention, the thickness of the first non-magnetic layer is set to a thickness at which the rate of change in magnetoresistance reaches a maximum value, and the thickness of the second non-magnetic layer is set to Since the change rate is set to a thickness at which the change rate becomes substantially the minimum value, a difference in resistance between the first magnetoresistive element and the second magnetoresistive element with respect to signal magnetism can be generated, and You can extract the output.
【0060】請求項4の発明によれば、第1の非磁性層
の厚みは、磁気抵抗変化率が複数の極大値のいずれか1
つの極大値になるときの厚みに設定され、第2の非磁性
層の厚みは、磁気抵抗変化率が複数の極小値の極小値に
なるときの厚みに設定されているため、信号磁性に対し
て、第1の磁気抵抗素子と第2の磁気抵抗素子との抵抗
値差を生ずることができ、差動出力を取り出すことがで
きる。According to the fourth aspect of the present invention, the thickness of the first nonmagnetic layer is such that the rate of change in magnetoresistance is one of a plurality of maximum values.
Since the thickness of the second non-magnetic layer is set to the thickness at which the rate of change in magnetoresistance becomes a minimum value of a plurality of minimum values, the thickness of the second non-magnetic layer is As a result, a resistance difference between the first and second magnetoresistive elements can be generated, and a differential output can be obtained.
【0061】請求項5の発明によれば、第1の非磁性層
の厚みは、磁気抵抗変化率が第2ピーク値となる厚みに
設定され、第2の非磁性層の厚みは、磁気抵抗変化率が
第1ピークと第2ピーク値の間となる厚みに設定される
ことで、効率良く差動出力を取り出すことができる。According to the fifth aspect of the present invention, the thickness of the first nonmagnetic layer is set to a thickness at which the rate of change in magnetoresistance reaches the second peak value, and the thickness of the second nonmagnetic layer is set to By setting the rate of change to a thickness between the first peak value and the second peak value, differential output can be efficiently taken out.
【図1】(a)は実施の形態の磁気センサの構成図、
(b)は第1の巨大磁気抵抗素子における交換結合型人
工格子膜の構造図、(c)は第2の巨大磁気抵抗素子に
おける交換結合型人工格子膜の構造図である。FIG. 1A is a configuration diagram of a magnetic sensor according to an embodiment,
(B) is a structural diagram of an exchange-coupling type artificial lattice film in the first giant magnetoresistance element, and (c) is a structural diagram of an exchange-coupling type artificial lattice film in the second giant magnetoresistance element.
【図2】ハーフブリッジ構成の巨大磁気抵抗素子の回路
図である。FIG. 2 is a circuit diagram of a giant magnetoresistive element having a half-bridge configuration.
【図3】一般的な交換結合型人工格子膜の磁気抵抗変化
率と非磁性層厚との関係を示す図である。FIG. 3 is a diagram showing a relationship between a magnetoresistance change rate of a general exchange-coupling type artificial lattice film and a nonmagnetic layer thickness.
【図4】第1の巨大磁気抵抗素子及び第2の巨大磁気抵
抗素子の磁気抵抗変化率と信号磁界との関係を示す図で
ある。FIG. 4 is a diagram illustrating a relationship between a magnetoresistance change rate of a first giant magnetoresistive element and a second giant magnetoresistive element and a signal magnetic field;
【図5】フルブリッジ構成の巨大磁気抵抗素子の構成図
である。FIG. 5 is a configuration diagram of a giant magnetoresistive element having a full bridge configuration.
【図6】フルブリッジ構成の巨大磁気抵抗素子の回路図
である。FIG. 6 is a circuit diagram of a giant magnetoresistive element having a full bridge configuration.
【図7】実施の形態のハーフブリッジ構成の巨大磁気抵
抗素子の他の構成例を示す図である。FIG. 7 is a diagram illustrating another configuration example of the giant magnetoresistive element having the half bridge configuration according to the embodiment;
【図8】従来の異方性を有する磁気抵抗素子を用いた磁
気センサの構成図である。FIG. 8 is a configuration diagram of a conventional magnetic sensor using a magnetoresistive element having anisotropy.
【図9】従来の異方性を有する磁気抵抗素子の信号磁界
に対する抵抗値の変化を示す図である。FIG. 9 is a diagram showing a change in resistance value with respect to a signal magnetic field of a conventional magnetoresistive element having anisotropy.
【図10】従来の等方性を有する磁気抵抗素子の信号磁
界に対する抵抗値の変化を示す図である。FIG. 10 is a diagram showing a change in resistance value of a conventional isotropic magnetoresistive element with respect to a signal magnetic field.
【図11】従来の等方性を有する磁気抵抗素子を用いた
磁気センサの一例を示す図である。FIG. 11 is a diagram illustrating an example of a conventional magnetic sensor using a magnetoresistive element having isotropic properties.
【図12】図11に示す磁気センサの磁界に対する磁気
抵抗変化を示す図である。12 is a diagram showing a change in magnetoresistance of the magnetic sensor shown in FIG. 11 with respect to a magnetic field.
【図13】図11に示す磁気センサの信号磁界に対する
出力を示す図である。13 is a diagram showing an output with respect to a signal magnetic field of the magnetic sensor shown in FIG.
1 基板 3 巨大磁気抵抗素子 3a 第1の巨大磁気抵抗素子 3b 第2の巨大磁気抵抗素子 5a〜5b 電極パターン 7a〜7c 電極 9 信号磁界 13 バッファ層 15 磁性層 17,17a 非磁性層 Reference Signs List 1 substrate 3 giant magnetoresistive element 3a first giant magnetoresistive element 3b second giant magnetoresistive element 5a-5b electrode pattern 7a-7c electrode 9 signal magnetic field 13 buffer layer 15 magnetic layer 17, 17a nonmagnetic layer
Claims (5)
の表面に略平行に印加される信号磁界に対して抵抗値が
変化する磁気抵抗手段とを備え、 前記磁気抵抗手段は、磁性層と第1の非磁性層とが交互
に積層された第1の人工格子膜を有し、第1の人工格子
膜に印加される前記信号磁界の変化に対して抵抗値が変
化する第1の磁気抵抗素子と、 この第1の磁気抵抗素子に直列接続され、前記磁性層と
前記第1の非磁性層の厚みに対して異なる厚みの第2の
非磁性層とが交互に積層された第2の人工格子膜を有
し、第2の人工格子膜に印加される前記信号磁界の変化
に対して抵抗値が変化しない第2の磁気抵抗素子と、を
備えることを特徴とする磁気センサ。1. A magnetic head comprising: a substrate; and a magnetoresistive means formed on the substrate and having a resistance value changed with respect to a signal magnetic field applied substantially parallel to a surface of the substrate, wherein the magnetoresistive means comprises a magnetic layer. And a first non-magnetic layer alternately laminated with a first artificial lattice film, wherein the first artificial lattice film has a resistance value that changes with a change in the signal magnetic field applied to the first artificial lattice film. A magneto-resistive element, a second non-magnetic layer having a thickness different from the thickness of the magnetic layer and the first non-magnetic layer, which is connected in series to the first magneto-resistive element; And a second magnetoresistive element having a resistance value that does not change in response to a change in the signal magnetic field applied to the second artificial lattice film.
子膜を有し、第2の人工格子膜に印加される前記信号磁
界の変化に対して抵抗値が変化しない第3の磁気抵抗素
子と、 この第3の磁気抵抗素子に直列接続され、前記第1の人
工格子膜を有し、第1の人工格子膜に印加される前記信
号磁界の変化に対して抵抗値が変化する第4の磁気抵抗
素子とを備え、 前記第1の磁気抵抗素子の一端と前記第3の磁気抵抗素
子の一端とを接続し、前記第2の磁気抵抗素子の一端と
前記第4の磁気抵抗素子の一端とを接続してフルブリッ
ジ構成としたことを特徴とする請求項1記載の磁気セン
サ。2. The third magnetoresistive means having the second artificial lattice film, wherein the resistance value does not change in response to a change in the signal magnetic field applied to the second artificial lattice film. An element, which is connected in series to the third magnetoresistive element, has the first artificial lattice film, and has a resistance value that changes with respect to a change in the signal magnetic field applied to the first artificial lattice film. And one end of the first magnetoresistive element and one end of the third magnetoresistive element, and one end of the second magnetoresistive element and the fourth magnetoresistive element. 2. The magnetic sensor according to claim 1, wherein one end of the magnetic sensor is connected to form a full bridge configuration.
を表す磁気抵抗変化率が非磁性層の厚みに応じて変化し
て極大値及び極小値を持つ場合に、前記第1の非磁性層
の厚みは、前記磁気抵抗変化率が前記極大値になるとき
の厚みに設定され、前記第2の非磁性層の厚みは、前記
磁気抵抗変化率が略前記極小値になるときの厚みに設定
されることを特徴とする請求項1または請求項2記載の
磁気センサ。3. The method according to claim 1, wherein the change rate of the magnetoresistance representing the change in the resistance value with respect to the signal magnetic field changes according to the thickness of the nonmagnetic layer and has a maximum value and a minimum value. The thickness is set to a thickness when the magnetoresistance change rate reaches the local maximum value, and the thickness of the second nonmagnetic layer is set to a thickness when the magnetoresistance change rate becomes approximately the local minimum value. The magnetic sensor according to claim 1 or 2, wherein
を表す磁気抵抗変化率が非磁性層の厚みに応じて変化し
て複数の極大値及び複数の極小値を持つ場合に、前記第
1の非磁性層の厚みは、前記磁気抵抗変化率が前記複数
の極大値のいずれか1つの極大値になるときの厚みに設
定され、前記第2の非磁性層の厚みは、前記磁気抵抗変
化率が前記複数の極小値の最小値になるときの厚みに設
定されることを特徴とする請求項1または請求項2記載
の磁気センサ。4. The method according to claim 1, wherein the change rate of the magnetoresistance representing the change in the resistance value with respect to the signal magnetic field changes according to the thickness of the nonmagnetic layer and has a plurality of maximum values and a plurality of minimum values. The thickness of the nonmagnetic layer is set to a thickness at which the magnetoresistance change rate becomes one of the plurality of local maximum values, and the thickness of the second nonmagnetic layer is the magnetic resistance change rate. 3. The magnetic sensor according to claim 1, wherein the thickness is set to a thickness at which the minimum value of the plurality of minimum values is obtained.
変化率が第2ピーク値となる厚みに設定され、前記第2
の非磁性層の厚みは、磁気抵抗変化率が第1ピーク値と
前記第2ピーク値の間となる厚みに設定されることを特
徴とする請求項3または請求項4記載の磁気センサ。5. The thickness of the first nonmagnetic layer is set to a thickness at which the rate of change in magnetoresistance reaches a second peak value,
5. The magnetic sensor according to claim 3, wherein the thickness of the nonmagnetic layer is set to a thickness such that the rate of change in magnetoresistance is between the first peak value and the second peak value. 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10358089A JP2000180207A (en) | 1998-12-16 | 1998-12-16 | Magnetic sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10358089A JP2000180207A (en) | 1998-12-16 | 1998-12-16 | Magnetic sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000180207A true JP2000180207A (en) | 2000-06-30 |
Family
ID=18457492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10358089A Pending JP2000180207A (en) | 1998-12-16 | 1998-12-16 | Magnetic sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000180207A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002131407A (en) * | 2000-10-26 | 2002-05-09 | Res Inst Electric Magnetic Alloys | Thin film magnetic field sensor |
JP2003035701A (en) * | 2001-05-16 | 2003-02-07 | Matsushita Electric Ind Co Ltd | Magnetic sensor and bill validator using the same |
JP2003121522A (en) * | 2001-10-12 | 2003-04-23 | Res Inst Electric Magnetic Alloys | Thin film magnetic field sensor |
JP2003179283A (en) * | 2001-12-12 | 2003-06-27 | Tokai Rika Co Ltd | Magnetic sensor |
JP3456204B2 (en) | 2001-01-09 | 2003-10-14 | 日立金属株式会社 | Magnetic encoder |
WO2005081007A1 (en) * | 2004-02-19 | 2005-09-01 | Mitsubishi Denki Kabushiki Kaisha | Magnetic field detector, current detector, position detector and rotation detector employing it |
JP2005531007A (en) * | 2002-06-27 | 2005-10-13 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Magnetoresistive sensor |
JP2007271322A (en) * | 2006-03-30 | 2007-10-18 | Alps Electric Co Ltd | Magnetic detector, and manufacturing method therefor |
WO2008078745A1 (en) * | 2006-12-26 | 2008-07-03 | Alps Electric Co., Ltd. | Method of magnetic detection and magnetic detector |
JP2008151528A (en) * | 2006-12-14 | 2008-07-03 | Hitachi Metals Ltd | Magnetic sensor and magnetic encoder |
JP2011089998A (en) * | 2010-11-11 | 2011-05-06 | Hitachi Metals Ltd | Bridge circuit and manufacturing method thereof, relative position signal detecting method |
JP2019066462A (en) * | 2017-09-29 | 2019-04-25 | 旭化成エレクトロニクス株式会社 | Detection device and detection system |
CN110286339A (en) * | 2018-03-19 | 2019-09-27 | Tdk株式会社 | Magnetic detection device |
US10809097B2 (en) | 2017-09-29 | 2020-10-20 | Asahi Kasei Microdevices Corporation | Detector apparatus and detector system |
-
1998
- 1998-12-16 JP JP10358089A patent/JP2000180207A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002131407A (en) * | 2000-10-26 | 2002-05-09 | Res Inst Electric Magnetic Alloys | Thin film magnetic field sensor |
JP3456204B2 (en) | 2001-01-09 | 2003-10-14 | 日立金属株式会社 | Magnetic encoder |
JP2003035701A (en) * | 2001-05-16 | 2003-02-07 | Matsushita Electric Ind Co Ltd | Magnetic sensor and bill validator using the same |
JP2003121522A (en) * | 2001-10-12 | 2003-04-23 | Res Inst Electric Magnetic Alloys | Thin film magnetic field sensor |
JP2003179283A (en) * | 2001-12-12 | 2003-06-27 | Tokai Rika Co Ltd | Magnetic sensor |
JP2005531007A (en) * | 2002-06-27 | 2005-10-13 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Magnetoresistive sensor |
US7375516B2 (en) | 2004-02-19 | 2008-05-20 | Mitsubishi Electric Corporation | Magnetic field detector, current detector, position detector and rotation detector employing it |
WO2005081007A1 (en) * | 2004-02-19 | 2005-09-01 | Mitsubishi Denki Kabushiki Kaisha | Magnetic field detector, current detector, position detector and rotation detector employing it |
US7508203B2 (en) | 2004-02-19 | 2009-03-24 | Mitsubishi Electric Corporation | Magnetic field detector, and current detection device, position detection device and rotation detection devices using the magnetic field detector |
JP2007271322A (en) * | 2006-03-30 | 2007-10-18 | Alps Electric Co Ltd | Magnetic detector, and manufacturing method therefor |
JP2008151528A (en) * | 2006-12-14 | 2008-07-03 | Hitachi Metals Ltd | Magnetic sensor and magnetic encoder |
WO2008078745A1 (en) * | 2006-12-26 | 2008-07-03 | Alps Electric Co., Ltd. | Method of magnetic detection and magnetic detector |
JP5006341B2 (en) * | 2006-12-26 | 2012-08-22 | アルプス電気株式会社 | Magnetic detection method and magnetic detection apparatus |
JP2011089998A (en) * | 2010-11-11 | 2011-05-06 | Hitachi Metals Ltd | Bridge circuit and manufacturing method thereof, relative position signal detecting method |
JP2019066462A (en) * | 2017-09-29 | 2019-04-25 | 旭化成エレクトロニクス株式会社 | Detection device and detection system |
US10809097B2 (en) | 2017-09-29 | 2020-10-20 | Asahi Kasei Microdevices Corporation | Detector apparatus and detector system |
CN110286339A (en) * | 2018-03-19 | 2019-09-27 | Tdk株式会社 | Magnetic detection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7112957B2 (en) | GMR sensor with flux concentrators | |
US6577124B2 (en) | Magnetic field sensor with perpendicular axis sensitivity, comprising a giant magnetoresistance material or a spin tunnel junction | |
US7710113B2 (en) | Magnetic sensor with offset magnetic field | |
JP3623367B2 (en) | Potentiometer with giant magnetoresistive element | |
US7456758B2 (en) | Magnetic encoder apparatus | |
JP3596600B2 (en) | Magnetic sensor and method of manufacturing the same | |
JP7136340B2 (en) | Magnetoresistive elements and magnetic sensors | |
EP0063397A1 (en) | Magnetic sensor | |
JP2000180207A (en) | Magnetic sensor | |
WO2008072610A1 (en) | Magnetic sensor, and magnetic encoder using the sensor | |
JP2011101026A (en) | Magneto-resistive laminate structure, and gradiometer including the same | |
CN103314304A (en) | Electromagnetic proportional current sensor | |
JPWO2008081797A1 (en) | Magnetic detector | |
JP2000193407A (en) | Magnetic positioning device | |
JP6529885B2 (en) | Magnetic sensor, method of measuring magnetic field, current sensor, and method of measuring current | |
JPH0870149A (en) | Magnetoresistance element | |
JPH0870148A (en) | Magnetoresistance element | |
JP6969751B2 (en) | Tunnel magnetoresistive element and magnetization direction correction circuit | |
JP2016114408A (en) | Magnetic field detection device | |
JPH0266479A (en) | Magnetoresistance effect element | |
WO2000025371A1 (en) | Magnetoresistant device and a magnetic sensor comprising the same | |
CN100368820C (en) | Spin valve type digital magnetic field sensor and manufacturing method thereof | |
JPH0217476A (en) | Differential type magnetoresistance effect element | |
JP2003282999A (en) | Magnetic sensor | |
JPH08201492A (en) | Magnetic sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |