JP2000173965A - Cleaning method by high-speed shear flow - Google Patents
Cleaning method by high-speed shear flowInfo
- Publication number
- JP2000173965A JP2000173965A JP10347597A JP34759798A JP2000173965A JP 2000173965 A JP2000173965 A JP 2000173965A JP 10347597 A JP10347597 A JP 10347597A JP 34759798 A JP34759798 A JP 34759798A JP 2000173965 A JP2000173965 A JP 2000173965A
- Authority
- JP
- Japan
- Prior art keywords
- cleaned
- cleaning
- shear flow
- ultrapure water
- pressure nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cleaning By Liquid Or Steam (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特に半導体ウエハ
等の被洗浄物の表面近傍に超純水の高速剪断流を作り、
被洗浄物表面に付着した微細な異物を完全に除去するこ
とが可能な高速剪断流による洗浄方法に関する。The present invention relates to a method for producing a high-speed shear flow of ultrapure water, particularly in the vicinity of the surface of an object to be cleaned such as a semiconductor wafer.
The present invention relates to a cleaning method using a high-speed shear flow capable of completely removing fine foreign matter attached to the surface of an object to be cleaned.
【0002】[0002]
【従来の技術】従来から被洗浄物の表面に付着した異物
を除去する洗浄方法としては、化学洗浄や物理洗浄があ
る。特に、半導体ウエハの表面にはサブミクロンオーダ
ーの微細パターンの電子回路が形成されるため、その表
面の金属汚染は、デバイスの性能に多大な影響を与える
とともに、歩留りを悪くし、コスト低減の妨げになる。
そのため、各種の洗浄方法が提案され、実用化されてい
る。2. Description of the Related Art Conventionally, there are chemical cleaning and physical cleaning as a cleaning method for removing foreign substances adhering to the surface of an object to be cleaned. In particular, since electronic circuits having a submicron order fine pattern are formed on the surface of a semiconductor wafer, metal contamination on the surface has a great effect on device performance, deteriorates yield, and hinders cost reduction. become.
Therefore, various cleaning methods have been proposed and put to practical use.
【0003】化学洗浄の代表例には、酸やフッ化水素に
よる洗浄、またオゾン層の破壊で問題となっているフロ
ン洗浄等が挙げられる。また、物理洗浄の代表例には、
超純水中での超音波洗浄や、被洗浄物を冷却したり加熱
したりして付着微粒子を収縮、膨張させて被洗浄物の表
面から剥離する方法等が挙げられる。[0003] Typical examples of chemical cleaning include cleaning with acid or hydrogen fluoride, and chlorofluorocarbon cleaning which is a problem due to destruction of the ozone layer. In addition, typical examples of physical cleaning include:
Ultrasonic cleaning in ultrapure water, a method of cooling or heating the object to be cleaned, and shrinking and expanding the attached fine particles to peel off from the surface of the object to be cleaned, and the like.
【0004】しかし、異物が微粒子、異種原子、有機・
無機分子、イオン等である場合、被洗浄物界面での相互
作用(一種の化学結合)により強固に付着している異物
微粒子を、被洗浄物の表面に損傷を与えずに除去するこ
とは、容易ではなく、従来の洗浄方法は有効とは言えな
い。つまり、化学洗浄の場合には被洗浄物の表面を洗浄
液で腐食させたり、また物理洗浄の場合には被洗浄物の
表面に損傷を与えることになる。また、被洗浄物の表面
から一度除去した異物が、その表面に再付着することも
あり、非常に困難を伴うのである。However, foreign substances are fine particles, foreign atoms, organic
In the case of inorganic molecules, ions, etc., it is necessary to remove the foreign particles firmly adhered by the interaction (a kind of chemical bond) at the interface of the object to be cleaned without damaging the surface of the object to be cleaned. It is not easy and conventional cleaning methods are not effective. That is, in the case of chemical cleaning, the surface of the object to be cleaned is corroded by the cleaning liquid, and in the case of physical cleaning, the surface of the object to be cleaned is damaged. In addition, the foreign matter once removed from the surface of the object to be cleaned may reattach to the surface, which is extremely difficult.
【0005】[0005]
【発明が解決しようとする課題】本発明者は、被洗浄物
表面に化学結合を伴って付着した微粒子を取り除くため
には、被洗浄物表面上に所定の強さ以上の剪断流が必要
であること、つまり剪断流の一定の速度勾配以上が必要
であるを、理論的に予測し、実験において確認したので
ある。SUMMARY OF THE INVENTION The inventor of the present invention requires a shear flow having a predetermined strength or more on a surface of an object to be cleaned in order to remove fine particles attached to the surface of the object to be cleaned with chemical bonding. That is, the need for a shear flow above a certain velocity gradient was theoretically predicted and confirmed in experiments.
【0006】そこで、本発明が前述の状況に鑑み、解決
しようとするところは、制御された範囲及び分布を有す
る一定の速度勾配以上の剪断流を被洗浄物表面に沿って
発生させることによって、前述の問題点を一挙に解決
し、水中での超音波による洗浄等では除去することが困
難な微細な異物を完全に除去することができ、しかも除
去した異物が被洗浄物の表面に再付着することを防止
し、洗浄を高能率で行うことが可能な高速剪断流による
洗浄方法を提供する点にある。[0006] In view of the above situation, the present invention seeks to solve the problem by generating a shear flow having a controlled range and distribution over a predetermined velocity gradient along the surface of the object to be cleaned. The above-mentioned problems can be solved at once, and fine foreign substances that are difficult to remove by ultrasonic cleaning in water can be completely removed, and the removed foreign substances re-attach to the surface of the object to be cleaned. Another object of the present invention is to provide a high-speed shearing flow cleaning method capable of preventing cleaning and performing cleaning with high efficiency.
【0007】[0007]
【課題を解決するための手段】本発明は、前述の課題解
決のために、超純水を主体とした加工槽内に被洗浄物と
高圧力ノズルとを所定の間隔を置いて配設し、被洗浄物
の表面近傍に高圧力ノズルから噴射した超純水の高速剪
断流を発生させて、被洗浄物表面に付着した微細な異物
を、該被洗浄物表面との結合を切って剥離するととも
に、除去した異物を高速剪断流の流れによって被洗浄物
表面に再付着することを防止してなる高速剪断流による
洗浄方法を確立した。According to the present invention, in order to solve the above-mentioned problems, an object to be cleaned and a high-pressure nozzle are arranged at a predetermined interval in a processing tank mainly composed of ultrapure water. By generating a high-speed shear flow of ultrapure water sprayed from a high-pressure nozzle near the surface of the object to be cleaned, fine foreign matter adhering to the surface of the object to be cleaned is cut off by bonding to the surface of the object to be cleaned. At the same time, a high-speed shearing flow cleaning method has been established which prevents the removed foreign matter from re-adhering to the surface of the object to be cleaned by the high-speed shearing flow.
【0008】ここで、被洗浄物に付着しない薬液を超純
水に混合した洗浄液を用い、該洗浄液を高圧ノズルから
被洗浄物表面に噴射することで、洗浄効果をより高める
ことも可能である。そして、前記高圧力ノズルの噴出口
が円孔であるとポイント洗浄ができ、またスリット孔で
あるとライン洗浄ができ、被洗浄物表面を広い面積にわ
たり一様に洗浄することが可能である。Here, the cleaning effect can be further enhanced by using a cleaning liquid in which a chemical solution that does not adhere to the cleaning object is mixed with ultrapure water and spraying the cleaning liquid from the high-pressure nozzle onto the surface of the cleaning object. . When the high pressure nozzle has a circular hole, point cleaning can be performed. When the high pressure nozzle has a slit hole, line cleaning can be performed, and the surface of the object to be cleaned can be uniformly cleaned over a wide area.
【0009】また、本発明の洗浄方法では、前記高圧力
ノズルによって発生した高速剪断流の後流側に回収手段
を配設し、異物を含む超純水を回収することが、再付着
防止のために特に好ましい。In the cleaning method of the present invention, the recovery means is disposed on the downstream side of the high-speed shear flow generated by the high-pressure nozzle, and the ultrapure water containing foreign matters is recovered to prevent re-adhesion. Especially preferred for.
【0010】[0010]
【発明の実施の形態】先ず、被洗浄物表面に化学結合を
伴って付着した微粒子を取り除くためには、被洗浄物表
面上にどの程度の剪断流の強さ(速度勾配)が必要であ
るかを見積もった。粒径0.1μmのZrO2 微粒子を
Si(100)表面に超純水中で吸着させ、この表面上
に様々な強さの超純水の剪断流を作用させた時、微粒子
がSi表面から除去される様子を光学顕微鏡により観察
した。その結果、5m/sec ・μm程度の速度勾配を越
えると効果的な微粒子の除去が進行することが分かっ
た。この結果から、洗浄には一定の速度勾配以上の剪断
流が必要であることが判ったが、その下限は被洗浄物の
材質と、付着微粒子の種類及び粒径によって変わること
が予想される。DESCRIPTION OF THE PREFERRED EMBODIMENTS First, in order to remove fine particles adhering to a surface of an object to be cleaned along with a chemical bond, a shear flow intensity (velocity gradient) is required on the surface of the object to be cleaned. Or estimated. When ZrO 2 fine particles having a particle size of 0.1 μm are adsorbed on the Si (100) surface in ultrapure water, and a shear flow of ultrapure water of various strengths acts on this surface, the fine particles are removed from the Si surface. The state of removal was observed with an optical microscope. As a result, it was found that when the velocity gradient exceeded about 5 m / sec · μm, effective removal of fine particles proceeded. From this result, it was found that the washing requires a shear flow at a speed gradient or higher, but the lower limit is expected to vary depending on the material of the object to be washed and the type and particle size of the attached fine particles.
【0011】本発明は、高圧力ノズルから超純水又は被
洗浄物に付着しない薬液を超純水に混合した洗浄液を被
洗浄物の洗浄面に噴射し、洗浄面に沿った剪断流を作
り、付着微粒子と被洗浄物表面原子との化学結合を断ち
切って、被洗浄物表面から付着微粒子を除去することに
よって洗浄を行うのである。そこで、高圧力ノズルから
噴射した超純水又は洗浄液の流れが、ノズル直下近傍で
どのようになるかを流体解析モデルを用いて数値計算し
た。According to the present invention, a high-pressure nozzle is used to spray ultrapure water or a cleaning liquid obtained by mixing a chemical solution not adhering to an object to be cleaned with ultrapure water onto the surface to be cleaned of the object to be cleaned, thereby forming a shear flow along the surface to be cleaned. The cleaning is performed by cutting off the chemical bond between the attached fine particles and the atoms on the surface of the object to be cleaned and removing the attached fine particles from the surface of the object to be cleaned. Then, the flow of the ultrapure water or the cleaning liquid jetted from the high-pressure nozzle was calculated in the vicinity of immediately below the nozzle by numerical calculation using a fluid analysis model.
【0012】解析モデルはノズルを被洗浄物表面に対し
て直角な軸対称とし、非圧縮性流体近似の基でナビエ・
ストークスの運動方程式を差分法によって数値的に解い
た。計算は、ノズルの穴径を0.1mmφ、外径を2m
mφとし、ノズル先端と被洗浄物表面間のギャップを1
mm及び2mmの場合について行った。また、ノズルへ
の流体の供給圧力は1000気圧とした。それぞれのギ
ャップにおいて圧力分布、ノズル穴方向(Z軸方向)及
び半径方向(R方向)の流れ分布を出した。図1にギャ
ップが1mmの場合、図2にギャップが2mmの場合の
結果を示している。In the analysis model, the nozzle is axially symmetrical at right angles to the surface of the object to be cleaned, and Navier's
Stokes equation of motion was solved numerically by the difference method. The calculation is as follows: the hole diameter of the nozzle is 0.1 mmφ, the outer diameter is 2 m
mφ, and the gap between the nozzle tip and the surface of the object to be cleaned is 1
mm and 2 mm. The supply pressure of the fluid to the nozzle was 1000 atm. At each gap, a pressure distribution, a flow distribution in a nozzle hole direction (Z-axis direction) and a radial direction (R direction) were obtained. FIG. 1 shows the results when the gap is 1 mm, and FIG. 2 shows the results when the gap is 2 mm.
【0013】この計算結果より、解析領域における流体
の粘性による圧力損失は約50気圧程度であることが分
かる。流入部では、約950気圧の動圧に相当するノズ
ル穴方向の流れ(約450m/sec )が発生しており
(図1(a) 参照)、この流れは被洗浄物の表面近傍(被
洗浄物表面から約75μm)までほぼ直進した後、減速
する。その際、被洗浄物の表面近傍で動圧が静圧に変換
され、約950気圧の静圧が発生した後(図1(b) 参
照)、半径方向の流れとして動圧に再変換される(図1
(c) 参照)。半径方向の流れは、被洗浄物表面に沿って
極めて薄く層状に発生しており(被洗浄物表面から約2
5μmの範囲)、洗浄において必要となる被洗浄物表面
上の剪断流れを非常に効果的に発生できることが分かっ
た。また、ギャップ1mmの場合と2mmの場合では、
ほぼ同等の流れが発生しており、このことはギャップ制
御が極めて容易であることを示している。本条件では、
ギャップ1mmと2mmの場合とも、被洗浄物表面上の
最大速度勾配は、100m/sec ・μm程度が得られて
いる。From this calculation result, it is understood that the pressure loss due to the viscosity of the fluid in the analysis region is about 50 atm. At the inflow section, a flow (about 450 m / sec) in the direction of the nozzle hole corresponding to a dynamic pressure of about 950 atm is generated (see FIG. 1 (a)). The vehicle decelerates after traveling almost straight to about 75 μm from the object surface. At that time, the dynamic pressure is converted into a static pressure near the surface of the object to be cleaned, and after a static pressure of about 950 atm is generated (see FIG. 1 (b)), the dynamic pressure is converted back to the dynamic pressure as a radial flow. (Figure 1
(c)). The radial flow occurs in a very thin layer along the surface of the object to be cleaned (approximately 2 mm from the surface of the object to be cleaned).
(In the range of 5 μm), it has been found that the shear flow on the surface of the object to be cleaned required for cleaning can be generated very effectively. In the case of a gap of 1 mm and 2 mm,
Almost the same flow occurs, which indicates that the gap control is extremely easy. In these conditions,
Even when the gap is 1 mm or 2 mm, the maximum velocity gradient on the surface of the object to be cleaned is about 100 m / sec · μm.
【0014】次に、本発明の詳細を添付した図面に基づ
き更に説明する。図3及び図4は、高圧力ノズルの概念
的構造を示しており、高圧力ノズル1の先端より洗浄液
又は超純水を噴出し、被洗浄物2の表面上に所定の剪断
流を作る。ここで、高圧力ノズル1から超純水のみを噴
き出す場合、超純水と薬液を混合した洗浄液を供給す
る。Next, the details of the present invention will be further described with reference to the accompanying drawings. 3 and 4 show a conceptual structure of the high-pressure nozzle, in which a cleaning liquid or ultrapure water is jetted from the tip of the high-pressure nozzle 1 to create a predetermined shear flow on the surface of the article 2 to be cleaned. Here, when only ultrapure water is ejected from the high-pressure nozzle 1, a cleaning liquid in which ultrapure water and a chemical solution are mixed is supplied.
【0015】図3は、高圧力ノズル1の噴出口3から超
純水を噴射する構造であり、図3(a) は噴出口3の方向
を被洗浄物2の表面と直角に配した垂直入射タイプであ
り、図3(b) は噴出口3の方向を被洗浄物2の表面に対
して傾斜させた斜め入射タイプである。ここで、前記噴
出口3が円孔の場合には、洗浄面上の微小領域に形成さ
れるポイント状洗浄痕を連続させて、被洗浄物2の全表
面を洗浄することが可能であり、特に異物の付着が多い
部分では集中的に洗浄を行うことができ、また前記噴出
口3がスリット孔である場合には、洗浄面上にライン状
洗浄ができ、面積の広い被洗浄物2の表面を短時間で一
様に洗浄することが可能である。FIG. 3 shows a structure in which ultrapure water is jetted from the jet port 3 of the high-pressure nozzle 1. FIG. 3 (a) shows a vertical direction in which the jet port 3 is oriented at right angles to the surface of the article 2 to be cleaned. FIG. 3B shows an oblique incidence type in which the direction of the ejection port 3 is inclined with respect to the surface of the object 2 to be cleaned. Here, when the ejection port 3 is a circular hole, it is possible to clean the entire surface of the cleaning object 2 by continuously forming point-like cleaning marks formed in a minute area on the cleaning surface, In particular, cleaning can be performed intensively in a portion where a large amount of foreign matter is attached, and when the jet port 3 is a slit hole, linear cleaning can be performed on the cleaning surface, and the cleaning target 2 having a large area can be cleaned. The surface can be uniformly cleaned in a short time.
【0016】また、高圧力ノズル1の噴出口3から超純
水又は超純水と薬液を混合した洗浄液を被洗浄物2の表
面に噴出し、除去した異物を超純水の流れに乗せ、異物
が被洗浄物2の表面に再付着する前に直ちに効率良く回
収することが望ましい。この概念図を図4に示してい
る。図4(a) は、回収手段として、垂直入射タイプの高
圧力ノズル1の先端部周囲に一定の間隔を置いて環状の
回収板4を配置し、高圧力ノズル1と回収板4の間に超
純水又は洗浄液が流れるようにしたものである。また、
図4(b) は、回収手段として、斜め入射タイプの高圧力
ノズル1の超純水又は洗浄液の下流側に一定の間隔を置
いて部分的に回収板4を配置したものである。Further, ultrapure water or a cleaning liquid obtained by mixing ultrapure water and a chemical liquid is jetted from the jet port 3 of the high-pressure nozzle 1 onto the surface of the object 2 to be cleaned, and the removed foreign substances are put on the flow of the ultrapure water. It is desirable that the foreign matter be immediately and efficiently collected before re-adhering to the surface of the cleaning object 2. This conceptual diagram is shown in FIG. FIG. 4 (a) shows a recovery means in which a ring-shaped recovery plate 4 is arranged at a fixed interval around the tip of a high-pressure nozzle 1 of a vertical incidence type, and is disposed between the high-pressure nozzle 1 and the recovery plate 4. Ultrapure water or cleaning liquid is allowed to flow. Also,
FIG. 4B shows a collecting means in which a collecting plate 4 is partially disposed at a certain interval downstream of the ultrapure water or the cleaning liquid of the oblique incidence type high-pressure nozzle 1.
【0017】次に、前記高圧力ノズル1へ高圧力の超純
水を供給するシステムを図5に基づいて簡単に説明す
る。圧力発生用のポンプ10には、プランジャーポンプ
を使用する。また、洗浄用の超純水を直接ポンプで加圧
すると、ポンプ内の摺動部で発生するパーティクル等の
汚染が問題となるため、PTFE又はSUS製のダイヤ
フラム又はブローズを介して洗浄用超純水を加圧するシ
ステムを採用している。超純水の加圧部11,12は2
連となっており、一台のプランジャーポンプ10により
市水を所定圧力に加圧し、それをレギュレータ13で2
流路に分岐し、それぞれバルブ14,15を介して前記
加圧部11,12に接続している。一方、洗浄用超純水
は、超純水供給装置16から各加圧部11,12にそれ
ぞれバルブ17,18を介して接続している。そして、
前記各加圧部11,12は、内部をPTFE又はSUS
製の隔膜19,20で市水と超純水が分離されており、
該隔膜19,20を通じて市水の圧力で超純水を加圧
し、各加圧部11,12で加圧された超純水はバルブ2
1,22を介して合流して前記高圧力ノズル1に供給さ
れる。また、前記バルブ14と加圧部11との間には排
水用バルブ23が、前記バルブ15と加圧部12との間
には排水用バルブ24が設けられている。これら全バル
ブは、電磁バルブを採用しコンピュータで開閉制御でき
るようになっている。Next, a system for supplying high-pressure ultrapure water to the high-pressure nozzle 1 will be briefly described with reference to FIG. A plunger pump is used as the pressure generating pump 10. In addition, if the ultrapure water for cleaning is directly pressurized by a pump, contamination of particles and the like generated in sliding parts in the pump becomes a problem. Therefore, the ultrapure water for cleaning is passed through a diaphragm or blow made of PTFE or SUS. The system which pressurizes water is adopted. Pressurizing parts 11 and 12 of ultrapure water are 2
The city water is pressurized to a predetermined pressure by one plunger pump 10 and the pressure is
It branches into a flow path and is connected to the pressurizing units 11 and 12 via valves 14 and 15, respectively. On the other hand, the ultrapure water for cleaning is connected from the ultrapure water supply device 16 to the pressurizing units 11 and 12 via valves 17 and 18, respectively. And
Each of the pressurizing parts 11 and 12 has a PTFE or SUS inside.
City water and ultrapure water are separated by diaphragms 19 and 20 made of
Ultrapure water is pressurized by the pressure of city water through the diaphragms 19 and 20, and the ultrapure water pressurized by the pressurizing units 11 and 12 is supplied to the valve 2.
The two are merged via the nozzles 1 and 22 and supplied to the high-pressure nozzle 1. A drain valve 23 is provided between the valve 14 and the pressurizing unit 11, and a drain valve 24 is provided between the valve 15 and the pressurizing unit 12. All these valves employ electromagnetic valves and can be opened and closed by a computer.
【0018】そして、この高圧力の超純水供給システム
の運転は以下のようになっている。先ず、前記超純水供
給装置16では、大気圧とほぼ同じ圧力の超純水が製造
される。この超純水を連続的に加圧することは困難であ
るので、前述のシステムでは二つの加圧部11,12で
交互に超純水を大気圧から所定の圧力まで加圧し、高圧
力ノズル1に連続的に高圧力の超純水を供給するように
なっている。つまり、一方の加圧部11の系統では、バ
ルブ14、21を開き、バルブ17、23を閉じて加圧
した市水を加圧部11内に供給し、該加圧部11内で隔
膜19を介して加圧された超純水が高圧力ノズル1へ供
給され、他方の加圧部12の系統では、バルブ15、2
2を閉じ、バルブ18、24を開き、加圧部12から市
水を排水しながら超純水供給装置16から加圧部12内
へ超純水を供給する。ここで、バルブ24を開いて加圧
部12内を大気圧に戻した後に、バルブ18を開き、超
純水供給装置16が圧力破壊しないようにしている。次
に、バルブ18、24を閉じ、バルブ15を開いて加圧
部12内に加圧した市水を供給し、超純水を加圧して供
給圧力に達すると、バルブ22を開き、バルブ21、1
4を閉じ、バルブ23を開いて加圧部11内の市水を排
水して加圧部11内が大気圧になった後、バルブ17を
開いて市水を排水しながら超純水供給装置16から超純
水を加圧部11内に供給するのである。以後は、この繰
り返しであり、各バルブの開閉タイミングはコンピュー
タ制御され、連続的に高圧力の超純水が高圧力ノズル1
に供給されるのである。The operation of the high-pressure ultrapure water supply system is as follows. First, the ultrapure water supply device 16 produces ultrapure water having substantially the same pressure as the atmospheric pressure. Since it is difficult to continuously pressurize the ultrapure water, in the above-described system, the ultrapure water is alternately pressurized from atmospheric pressure to a predetermined pressure by the two pressurizing units 11 and 12, and the high-pressure nozzle 1 is pressurized. , High-pressure ultrapure water is continuously supplied. That is, in the system of one pressurizing unit 11, the valves 14 and 21 are opened, and the valves 17 and 23 are closed to supply pressurized city water into the pressurizing unit 11, and the diaphragm 19 in the pressurizing unit 11 is supplied. The pressurized ultrapure water is supplied to the high-pressure nozzle 1 through the
2 is closed, valves 18 and 24 are opened, and ultrapure water is supplied from the ultrapure water supply device 16 into the pressurizing unit 12 while draining city water from the pressurizing unit 12. Here, after opening the valve 24 to return the inside of the pressurizing section 12 to the atmospheric pressure, the valve 18 is opened so that the ultrapure water supply device 16 does not break down under pressure. Next, the valves 18 and 24 are closed, the valve 15 is opened to supply the pressurized city water into the pressurizing section 12, and the ultrapure water is pressurized to reach the supply pressure. , 1
4, the valve 23 is opened to drain the city water in the pressurizing unit 11 and the inside of the pressurizing unit 11 is brought to the atmospheric pressure. From 16, ultrapure water is supplied into the pressurizing section 11. Thereafter, this is a repetition, and the opening / closing timing of each valve is controlled by a computer, and high-pressure ultrapure water is continuously supplied to the high-pressure nozzle 1.
It is supplied to.
【0019】次に、本発明の高速剪断流による洗浄方法
を採用した洗浄装置の例を図6に示している。この洗浄
装置100は、上部に超純水を満たした洗浄槽101を
有し、下部にX−Y−θ駆動系を内蔵した駆動機構部1
02を有し、洗浄槽101と駆動機構部102とは非磁
性体の隔壁103で区画され、駆動系の摺動部から発生
するパーティクル等によって洗浄槽101内が汚染され
ないようになっている。前記洗浄槽101内には、上部
にZ軸駆動系104に接続された高圧力ノズル1を設
け、下部に超純水静圧支持によって水平移動且つ回転可
能に設けた試料台105を設け、それに被洗浄物2を固
定し、前記高圧力ノズル1に対向させている。前記駆動
機構部102には、X軸駆動系106とY軸駆動系10
7によって水平移動可能に設けたXYテーブル108を
有し、該XYテーブル108にθ軸駆動系109を設け
ている。そして、前記試料台105の下面に固定した永
久磁石110とθ軸駆動系109に固定した永久磁石1
11とを前記隔壁103を介して対面させて磁気的に結
合し、X−Y−θ駆動系による変位を永久磁石111、
永久磁石110を介して試料台105に伝達している。
このように、各駆動系によって高圧力ノズル1と被洗浄
物2とはX−Y−Z−θ軸方向に相対的に変位可能とな
り、高圧力ノズル1によって被洗浄物2を所定の形状に
洗浄ができるようになっている。Next, FIG. 6 shows an example of a cleaning apparatus employing the high-speed shear flow cleaning method of the present invention. The cleaning device 100 has a cleaning tank 101 filled with ultrapure water at an upper part, and a driving mechanism unit 1 having a built-in XY-θ driving system at a lower part.
The cleaning tank 101 and the drive mechanism 102 are separated from each other by a partition wall 103 made of a non-magnetic material so that the inside of the cleaning tank 101 is not contaminated by particles or the like generated from a sliding portion of the drive system. In the washing tank 101, a high-pressure nozzle 1 connected to a Z-axis driving system 104 is provided at an upper part, and a sample table 105 provided horizontally and rotatably by ultrapure water static pressure support is provided at a lower part. The object to be cleaned 2 is fixed and is opposed to the high-pressure nozzle 1. The drive mechanism 102 includes an X-axis drive system 106 and a Y-axis drive system 10.
7 has an XY table 108 which is provided so as to be horizontally movable, and the XY table 108 is provided with a θ-axis drive system 109. The permanent magnet 110 fixed to the lower surface of the sample stage 105 and the permanent magnet 1 fixed to the θ-axis drive system 109
11 are opposed to each other via the partition 103 and are magnetically coupled to each other, and the displacement by the XY-θ drive system is changed by the permanent magnet 111,
The light is transmitted to the sample stage 105 via the permanent magnet 110.
As described above, the high-pressure nozzle 1 and the object to be cleaned 2 can be relatively displaced in the XYZ-θ-axis directions by the respective driving systems, and the object to be cleaned 2 is formed into a predetermined shape by the high-pressure nozzle 1. It can be washed.
【0020】そして、本洗浄装置100では、高圧力ノ
ズル1から噴射される超純水と、試料台105の超純水
静圧支持部から洗浄槽101内に流入する超純水と同量
の超純水を洗浄槽101から液相分離して抜き取るシス
テムが備えられ、抜き取られた超純水は精製装置によ
り、不純物濃度を極限まで低減させた後、再度静圧支持
部に送られる。本システムにより、洗浄槽101内の構
造物から溶出する極微量の金属イオン等の除去までが可
能になっている。In the cleaning apparatus 100, the same amount of ultrapure water injected from the high-pressure nozzle 1 and ultrapure water flowing into the cleaning tank 101 from the ultrapure water static pressure support of the sample stage 105 is used. A system is provided for separating ultrapure water from the cleaning tank 101 by liquid phase separation, and the extracted ultrapure water is sent to the static pressure support unit again after the impurity concentration is reduced to the limit by a purification device. This system makes it possible to remove even trace amounts of metal ions and the like eluted from the structure in the cleaning tank 101.
【0021】[0021]
【発明の効果】以上にしてなる本発明の高速剪断流によ
る洗浄方法によれば、水中での超音波による洗浄等では
除去することが困難な原子レベルの異物を完全に除去す
ることができ、しかも除去して異物が被洗浄物の表面に
再付着することを防止し、洗浄を高能率で行うことがで
き、また必要な領域のみに所定の流れを発生できるた
め、洗浄装置の小型化が可能であり、更に十分に大きな
ギャップでの洗浄が可能であるので、流れを安定させる
ためのギャップ制御が極めて容易であり、また粗粒混入
等の外乱に対して安定である。According to the high-speed shear flow cleaning method of the present invention as described above, it is possible to completely remove atomic-level foreign substances which are difficult to remove by ultrasonic cleaning in water or the like. In addition, foreign substances can be removed to prevent foreign substances from re-adhering to the surface of the object to be cleaned, cleaning can be performed with high efficiency, and a predetermined flow can be generated only in a necessary area. Since it is possible to perform cleaning with a sufficiently large gap, gap control for stabilizing the flow is extremely easy and stable against disturbance such as mixing of coarse particles.
【図1】高圧ノズルから被洗浄物表面に1mmのギャッ
プで直角に超純水を噴出した場合の圧力と速度成分のシ
ミュレーション結果を示し、(a) はZ方向速度成分、
(b) は圧力分布、(c) はR方向速度成分をそれぞれ示し
ている。FIG. 1 shows a simulation result of a pressure and a velocity component when ultrapure water is jetted from a high-pressure nozzle to a surface of an object to be cleaned at a right angle with a gap of 1 mm, and FIG.
(b) shows the pressure distribution, and (c) shows the velocity component in the R direction.
【図2】高圧ノズルから被洗浄物表面に2mmのギャッ
プで直角に超純水を噴出した場合の圧力と速度成分のシ
ミュレーション結果を示し、(a) はZ方向速度成分、
(b) は圧力分布、(c) はR方向速度成分をそれぞれ示し
ている。FIG. 2 shows a simulation result of pressure and velocity components when ultrapure water is jetted from a high-pressure nozzle at a right angle to the surface of an object to be cleaned with a gap of 2 mm.
(b) shows the pressure distribution, and (c) shows the velocity component in the R direction.
【図3】洗浄液を直接噴射する高圧力ノズルの概念を示
す簡略断面図であり、(a) は垂直入射タイプ、(b) は斜
め入射タイプをそれぞれ示している。FIGS. 3A and 3B are simplified cross-sectional views showing the concept of a high-pressure nozzle that directly injects a cleaning liquid. FIG. 3A shows a vertical incidence type, and FIG. 3B shows an oblique incidence type.
【図4】洗浄後の超純水又は洗浄液を回収する機能を備
えたノズル構造を示した簡略断面図であり、(a) は垂直
入射タイプの高圧力ノズルの周囲に回収板を配した構
造、(b) は斜め入射タイプの高圧力ノズルの下流側に回
収板を配した構造をそれぞれ示している。FIG. 4 is a simplified cross-sectional view showing a nozzle structure having a function of recovering ultrapure water or a cleaning liquid after cleaning, and FIG. 4 (a) is a structure in which a recovery plate is arranged around a vertical incidence type high pressure nozzle. (B) shows a structure in which a collecting plate is disposed downstream of the oblique incidence type high pressure nozzle.
【図5】高圧力の超純水供給システムの簡略配管図であ
る。FIG. 5 is a simplified piping diagram of a high-pressure ultrapure water supply system.
【図6】本発明の方法を採用した洗浄装置を一部破断し
て示した簡略斜視図である。FIG. 6 is a partially cutaway perspective view showing a cleaning apparatus employing the method of the present invention.
1 高圧力ノズル 2 被洗浄物 3 噴出口 4 回収板(回収手段) 10 ポンプ 11,12 加圧部 13 レギュレータ 14,15,17,18,21,22,23,24 バ
ルブ 16 超純水供給装置 19,20 隔膜 100 洗浄装置 101 洗浄槽 102 駆動機構部 103 隔壁 104 Z軸駆動系 105 試料台 106 X軸駆動系 107 Y軸駆動系 108 XYテーブル 109 θ軸駆動系 110,111 永久磁石REFERENCE SIGNS LIST 1 high-pressure nozzle 2 object to be washed 3 spout 4 recovery plate (recovery means) 10 pump 11, 12 pressurizing unit 13 regulator 14, 15, 17, 18, 21, 22, 23, 24 valve 16 ultrapure water supply device 19, 20 diaphragm 100 cleaning apparatus 101 cleaning tank 102 drive mechanism section 103 partition wall 104 Z-axis drive system 105 sample table 106 X-axis drive system 107 Y-axis drive system 108 XY table 109 θ-axis drive system 110, 111 permanent magnet
Claims (5)
と高圧力ノズルとを所定の間隔を置いて配設し、被洗浄
物の表面近傍に高圧力ノズルから噴射した超純水の高速
剪断流を発生させて、被洗浄物表面に付着した微細な異
物を、該被洗浄物表面との結合を切って剥離するととも
に、除去した異物を高速剪断流の流れによって被洗浄物
表面に再付着することを防止したことを特徴とする高速
剪断流による洗浄方法。An object to be cleaned and a high-pressure nozzle are disposed at a predetermined interval in a processing tank mainly composed of ultrapure water, and an ultrapure nozzle sprayed from a high-pressure nozzle near a surface of the object to be cleaned. By generating a high-speed shear flow of water, fine foreign substances adhering to the surface of the object to be cleaned are cut off by bonding to the surface of the object to be cleaned, and the removed foreign objects are removed by the flow of the high-speed shear flow. A cleaning method using high-speed shear flow, wherein re-adhesion to a surface is prevented.
合した洗浄液を用い、該洗浄液を高圧ノズルから被洗浄
物表面に噴射してなる請求項1記載の高速剪断流による
洗浄方法。2. The cleaning method using a high-speed shear flow according to claim 1, wherein a cleaning solution obtained by mixing a chemical solution that does not adhere to the object to be cleaned with ultrapure water is used, and the cleaning solution is sprayed from a high-pressure nozzle onto the surface of the object to be cleaned.
請求項1又は2記載の高速剪断流による洗浄方法。3. The cleaning method using a high-speed shear flow according to claim 1, wherein the ejection port of the high-pressure nozzle is a circular hole.
である請求項1又は2記載の高速剪断流による洗浄方
法。4. The cleaning method according to claim 1, wherein the ejection port of the high-pressure nozzle is a slit hole.
剪断流の後流側に回収手段を配設し、洗浄液を回収して
なる請求項1〜4何れかに記載の高速剪断流による洗浄
方法。5. The cleaning method using a high-speed shear flow according to claim 1, wherein a recovery means is disposed downstream of the high-speed shear flow generated by the high-pressure nozzle to recover the cleaning liquid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10347597A JP2000173965A (en) | 1998-12-07 | 1998-12-07 | Cleaning method by high-speed shear flow |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10347597A JP2000173965A (en) | 1998-12-07 | 1998-12-07 | Cleaning method by high-speed shear flow |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000173965A true JP2000173965A (en) | 2000-06-23 |
Family
ID=18391301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10347597A Pending JP2000173965A (en) | 1998-12-07 | 1998-12-07 | Cleaning method by high-speed shear flow |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000173965A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008091534A (en) * | 2006-09-29 | 2008-04-17 | Tokyo Electron Ltd | Substrate treatment method, cleaning method, substrate treatment apparatus, and storage medium |
JP2012230253A (en) * | 2011-04-26 | 2012-11-22 | Osaka Univ | Method of cleaning substrate |
-
1998
- 1998-12-07 JP JP10347597A patent/JP2000173965A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008091534A (en) * | 2006-09-29 | 2008-04-17 | Tokyo Electron Ltd | Substrate treatment method, cleaning method, substrate treatment apparatus, and storage medium |
JP2012230253A (en) * | 2011-04-26 | 2012-11-22 | Osaka Univ | Method of cleaning substrate |
US8748062B2 (en) | 2011-04-26 | 2014-06-10 | Osaka University | Method of cleaning substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8327861B2 (en) | Megasonic precision cleaning of semiconductor process equipment components and parts | |
US20040055621A1 (en) | Processing of semiconductor components with dense processing fluids and ultrasonic energy | |
JP5252861B2 (en) | Substrate processing equipment | |
US8211269B2 (en) | Wafer spin chuck and an etcher using the same | |
US20080308132A1 (en) | Semiconductor substrate cleaning method using bubble/chemical mixed cleaning liquid | |
KR970706916A (en) | ULTRA-LOW PARTICLE SEMICONDUCTOR CLEANER | |
KR20080028804A (en) | Substrate processing apparatus and substrate processing method | |
JP2015195411A (en) | Wet processing apparatus and method using fluid meniscus | |
JPH0459086A (en) | Cleaning device | |
JP3380021B2 (en) | Cleaning method | |
WO1995028235A1 (en) | Washing method and washing device | |
JP2000167770A (en) | Processing method by high-speed shear flow | |
JP2000173965A (en) | Cleaning method by high-speed shear flow | |
JP2002110591A (en) | Apparatus and method of cleaning wafers after wire saw | |
JPH1070101A (en) | Semiconductor device manufacturing method and manufacturing device, cleaning method and cleaning device, processing device, fluid mixing pipe, and cleaning liquid supply member | |
JP2000167714A (en) | Processing method using hydroxide ions in ultrapure water | |
JPH0964000A (en) | Dry cleaning equipment | |
JP2013111713A (en) | Device and method of feeding cutting water | |
JP6097008B2 (en) | Washing water supply device and method | |
US20140251382A1 (en) | Methods for Confinement of Foam Delivered by a Proximity Head | |
JP3635951B2 (en) | Cleaning method with hydroxide ions in ultrapure water | |
JP3512868B2 (en) | Cleaning method | |
JP2011171691A (en) | Semiconductor cleaning system using micro-nano solid | |
JP2009167496A (en) | Washing apparatus for pretreatment of electrodeposition coating | |
JP2894451B2 (en) | Jet scrubber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20031031 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20031215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040422 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041005 |