JP2000144337A - Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same - Google Patents
Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the sameInfo
- Publication number
- JP2000144337A JP2000144337A JP31334898A JP31334898A JP2000144337A JP 2000144337 A JP2000144337 A JP 2000144337A JP 31334898 A JP31334898 A JP 31334898A JP 31334898 A JP31334898 A JP 31334898A JP 2000144337 A JP2000144337 A JP 2000144337A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- alloy steel
- strength
- corrosion resistance
- corrosion cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は耐応力腐食割れ性に
優れた高強度マルテンサイト系ステンレス鋼およびその
製造方法に係わり、さらに詳しく言えば、例えば石油、
天然ガスの掘削、輸送における湿潤炭酸ガス、湿潤硫化
水素を含む環境で高い応力腐食割れ抵抗を有する高強度
低C高Cr合金鋼(高強度マルテンサイト系ステンレス
鋼)およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength martensitic stainless steel having excellent resistance to stress corrosion cracking and a method for producing the same.
The present invention relates to a high-strength low-C high-Cr alloy steel (high-strength martensitic stainless steel) having high stress corrosion cracking resistance in an environment containing wet carbon dioxide gas and wet hydrogen sulfide in excavation and transportation of natural gas, and a method for producing the same.
【0002】[0002]
【従来の技術】近年生産される石油、天然ガスは湿潤炭
酸ガス、湿潤硫化水素を多量に含む場合が増加してお
り、その掘削、輸送においては従来の炭素鋼に替わって
13Cr系ステンレス鋼などのマルテンサイト系ステン
レス鋼が用いられてきている。しかし、従来のマルテン
サイト系ステンレス鋼は湿潤炭酸ガスに対する耐食性
(以下単に耐食性と呼ぶ)は優れているが湿潤硫化水素
に対する耐応力腐食割れ性(以下単に耐応力腐食割れ性
と呼ぶ)は十分ではなく、強度、靭性、耐食性を維持し
つつ耐応力腐食割れ性が向上したマルテンサイト系ステ
ンレス鋼が望まれていた。2. Description of the Related Art In recent years, petroleum and natural gas produced in recent years often include a large amount of wet carbon dioxide gas and wet hydrogen sulfide. In excavation and transportation, 13Cr stainless steel or the like is used in place of conventional carbon steel. Martensitic stainless steel has been used. However, conventional martensitic stainless steels have excellent corrosion resistance to wet carbon dioxide gas (hereinafter simply referred to as corrosion resistance), but have insufficient stress corrosion cracking resistance to wet hydrogen sulfide (hereinafter simply referred to as stress corrosion cracking resistance). There has been a demand for a martensitic stainless steel having improved stress corrosion cracking resistance while maintaining strength, toughness, and corrosion resistance.
【0003】強度、靭性、耐食性に加え耐応力腐食割れ
の要求を満たすものとして、特公昭61−3391号公
報、特開昭58−199850号公報、特開昭61−2
07550号公報が開示されている。As those satisfying the requirements of stress corrosion cracking resistance in addition to strength, toughness and corrosion resistance, Japanese Patent Publication Nos. 61-3391, 58-199850 and 61-2.
No. 07550 is disclosed.
【0004】一方、硫化水素分圧が0.01気圧を超え
る環境での耐応力腐食割れ性を改善したマルテンサイト
系ステンレス鋼も提案されており、例えば、特開昭60
−174859号公報、特開昭62−54063号公報
などが開示されている。On the other hand, a martensitic stainless steel having improved stress corrosion cracking resistance in an environment where the partial pressure of hydrogen sulfide exceeds 0.01 atm has been proposed.
JP-A-174859 and JP-A-62-54063 are disclosed.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、特公昭
61−3391号公報、特開昭58−199850号公
報、特開昭61−207550号公報に記載の鋼は、硫
化水素を極微量しか含まない環境では耐応力腐食割れ性
を示すものの、硫化水素分圧が0.01気圧を超える環
境では応力腐食割れが生じるため、硫化水素を多く含む
環境では使用できないという問題があった。However, the steels described in JP-B-61-3391, JP-A-58-199850, and JP-A-61-207550 contain only a trace amount of hydrogen sulfide. Although it exhibits stress corrosion cracking resistance in an environment, stress corrosion cracking occurs in an environment where the partial pressure of hydrogen sulfide exceeds 0.01 atm, and there has been a problem that it cannot be used in an environment containing a large amount of hydrogen sulfide.
【0006】また、特開昭60−174859号公報、
特開昭62−54063号公報などに記載の鋼も硫化水
素による応力腐食割れを完全に防止できるものではな
い。Further, Japanese Patent Application Laid-Open No. Sho 60-174859,
The steels described in JP-A-62-54063 cannot completely prevent stress corrosion cracking due to hydrogen sulfide.
【0007】さらに、強度の観点から言うと、前記した
マルテンサイト系ステンレス鋼はいずれも高強度化を試
みると靭性および耐応力腐食割れ性が著しく劣化し、そ
のため、強度あるいは靭性と耐応力腐食割れ性の一方を
犠牲にせざるを得ないという問題もあった。そのため、
例えば、高強度、耐応力腐食割れ性、耐食性および靭性
が同時に要求される高深度の油井には適用できないとい
う難点があった。Further, from the viewpoint of strength, in any of the above-mentioned martensitic stainless steels, when an attempt is made to increase the strength, the toughness and the stress corrosion cracking resistance are significantly deteriorated. There was also a problem that one had to sacrifice one sex. for that reason,
For example, there is a drawback that it cannot be applied to a deep oil well where high strength, stress corrosion cracking resistance, corrosion resistance and toughness are simultaneously required.
【0008】本発明の目的は、上記の従来技術における
問題点を解決すべく、従来のマルテンサイト系ステンレ
ス鋼の強度、耐応力腐食割れ性および靭性を同時に改善
することにより、耐食性を維持しつつ、硫化水素を多く
含む環境でも応力腐食割れを生じることなく使用できる
高強度の低C高Cr合金鋼(マルテンサイト系ステンレ
ス鋼)およびその製造方法を提供することにある。ここ
で、目標とする性能は、炭酸ガス、硫化水素を含む石
油、天然ガスの掘削、輸送用鋼管に要求される性能に鑑
み以下の如くとした。An object of the present invention is to improve the strength, stress corrosion cracking resistance and toughness of a conventional martensitic stainless steel at the same time in order to solve the above-mentioned problems in the prior art, thereby maintaining corrosion resistance. Another object of the present invention is to provide a high-strength low-C high-Cr alloy steel (martensitic stainless steel) that can be used without causing stress corrosion cracking even in an environment containing a large amount of hydrogen sulfide, and a method for producing the same. Here, the target performance was set as follows in view of the performance required for excavating and transporting oil and natural gas containing carbon dioxide and hydrogen sulfide.
【0009】(1)強度:0.2%耐力で758MPa
以上、(2)靭性:−20℃でのシャルピー・フルサイ
ズ試験片での吸収エネルギー値(シャルピー衝撃値と呼
ぶ)が100J以上、(3)耐食性:5%NaCl溶
液、180℃、30気圧CO2の環境下で、腐食速度が
0.5mm/y以下、(4)耐応力腐食割れ性:0.1
気圧の硫化水素ガスを飽和させた5%NaCl溶液中で
試験片に0.2%耐力の80%の応力を負荷し、720
時間以上破断せずに持ちこたえること。(1) Strength: 758 MPa at 0.2% proof stress
(2) Toughness: Absorbed energy value (referred to as Charpy impact value) of Charpy full-size test piece at −20 ° C. is 100 J or more. (3) Corrosion resistance: 5% NaCl solution, 180 ° C., 30 atm CO Under the environment of 2 , the corrosion rate is 0.5 mm / y or less, (4) stress corrosion cracking resistance: 0.1
The test piece was subjected to a stress of 80% with a 0.2% proof stress in a 5% NaCl solution saturated with a hydrogen sulfide gas at a pressure of 720 atm.
Hold without breaking for more than an hour.
【0010】[0010]
【課題を解決するための手段】前記課題を解決し目的を
達成するために、本発明は以下に示す手段を用いてい
る。In order to solve the above problems and achieve the object, the present invention uses the following means.
【0011】(1)本発明の合金鋼は、重量%で、C:
0.005〜0.05%と、Cr:12〜16%と、S
i:1%以下と、Mn:0.05〜0.3%と、Ni:
3.5〜6%と、Mo:1.5〜2.5%と、V:0.
01〜0.05%と、N:0.02%以下とを含み、か
つ下記(1)式を満足し、残部Fe及び不可避的不純物
からなることを特徴とする、高耐食性および高強度を有
する低C高Cr合金鋼である。(1) The alloy steel of the present invention contains C:
0.005 to 0.05%, Cr: 12 to 16%, S
i: 1% or less, Mn: 0.05 to 0.3%, Ni:
3.5-6%, Mo: 1.5-2.5%, V: 0.
It has high corrosion resistance and high strength, characterized in that it contains 0.1 to 0.05% and N: 0.02% or less, and satisfies the following formula (1) and is composed of the balance of Fe and inevitable impurities. Low C high Cr alloy steel.
【0012】 705−25×Ni%+5×Cr%+25×Mo%≧680 …(1) (2)本発明の合金鋼は、合金成分として、重量%でさ
らに、Nb:0.01〜0.1%、Ti:0.01〜
0.1%のうち1種以上を含むことを特徴とする、上記
(1)に記載の高耐食性および高強度を有する低C高C
r合金鋼である。705-25 × Ni% + 5 × Cr% + 25 × Mo% ≧ 680 (1) (2) The alloy steel of the present invention further contains Nb: 0.01 to 0.1% by weight as an alloy component. 1%, Ti: 0.01 to
Low C and high C having high corrosion resistance and high strength as described in (1) above, wherein at least one of 0.1% is contained.
r alloy steel.
【0013】(3)本発明の製造方法は、上記(1)ま
たは(2)に記載の組成を有する合金鋼を熱間加工した
後、Ac3 点〜980℃の温度に加熱してオーステナイ
ト化した後冷却し、次いで550℃〜Ac1 点の温度で
焼き戻しを行い、焼き戻し後の炭化物が粒内に均一に析
出し粒界に優先析出しないことを特徴とする、高耐食性
および高強度を有する低C高Cr合金鋼の製造方法であ
る。(3) In the production method of the present invention, after the alloy steel having the composition described in the above (1) or (2) is hot-worked, it is heated to a temperature of Ac 3 point to 980 ° C. to austenitize. And then tempered at a temperature of 550 ° C. to one point of Ac, wherein the carbide after tempering precipitates uniformly in the grains and does not preferentially precipitate at grain boundaries, and has high corrosion resistance and high strength. This is a method for producing a low C high Cr alloy steel having:
【0014】なお、ここでいう炭化物が粒内に均一に析
出するとは、炭化物が粒界に不連続に析出するととも
に、粒内でも微細なものが分散して析出した状態をい
う。[0014] The term "carbide precipitates uniformly in grains" as used herein means a state in which carbides precipitate discontinuously at grain boundaries, and fine particles are dispersed and precipitated in grains.
【0015】[0015]
【発明の実施の形態】本発明者らは、上記の課題を解決
すべく鋭意研究を重ねた結果、以下の知見を得るに至っ
た。BEST MODE FOR CARRYING OUT THE INVENTION As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained the following findings.
【0016】マルテンサイト系ステンレス鋼の耐食性向
上にはCrの増加が有効である。しかし、Crの増加は
一方ではδ−フェライト相を生成させ強度および靭性を
劣化させる。そこで、オーステナイト生成元素であるN
iを増加してδ−フェライト相の生成を抑制する方法が
あるが、Niの増加は焼き戻し温度の面から制約があ
る。Cの増加もδ−フェライト相の生成抑制に有効であ
るが、焼き戻し時に炭化物が析出しかえって耐食性およ
び耐応力腐食割れ性を劣化させるため、その含有量はむ
しろ制限されるべきである。It is effective to increase Cr to improve the corrosion resistance of martensitic stainless steel. However, an increase in Cr, on the other hand, forms a δ-ferrite phase and degrades strength and toughness. Therefore, the austenite forming element N
Although there is a method of suppressing the formation of the δ-ferrite phase by increasing i, there is a limitation in terms of the tempering temperature in increasing Ni. An increase in C is also effective in suppressing the formation of the δ-ferrite phase, but its content should be rather limited because carbides precipitate during tempering and deteriorate corrosion resistance and stress corrosion cracking resistance.
【0017】一方、一般には鋼を高強度化させると靭性
および耐応力腐食割れ性が劣化するが、Vを適量含有さ
せ、かつ熱処理により炭化物をこのステンレス鋼の基地
に微細な析出物として分散させることにより、これらを
劣化させることなく高強度化することができる。On the other hand, in general, when the strength of steel is increased, toughness and stress corrosion cracking resistance are deteriorated. However, V is contained in an appropriate amount, and carbide is dispersed as fine precipitates in the stainless steel matrix by heat treatment. Thereby, the strength can be increased without deteriorating these.
【0018】しかし、Vの微細な炭化物を均一に分散析
出させるには、特に焼き戻し条件を制御することが必要
である。However, in order to uniformly disperse and precipitate fine carbides of V, it is particularly necessary to control the tempering conditions.
【0019】以上の知見に基づき、本発明者らは、上記
のようなCrの増加による金属組織の制約を考慮しつ
つ、低C高Cr合金鋼にVを一定量含有させ、かつ熱処
理条件を一定範囲内に調整し、炭化物を粒内に均一に分
散析出させるようにして、従来のマルテンサイト系ステ
ンレス鋼では実現し得なかった高靭性、高強度で、耐応
力腐食割れ性に優れた新しいマルテンサイト系ステンレ
ス鋼(低C高Cr合金鋼)およびその製造方法を見出
し、本発明を完成させた。Based on the above findings, the present inventors considered that the low-C high-Cr alloy steel contains a certain amount of V, and Adjusted within a certain range, carbides are uniformly dispersed and precipitated in the grains, and new toughness, high strength, and excellent stress corrosion cracking resistance that were not realized with conventional martensitic stainless steel. The present inventors have found a martensitic stainless steel (low-C high-Cr alloy steel) and a method for producing the same, and have completed the present invention.
【0020】すなわち、本発明は、合金鋼組成及び製造
条件を下記範囲に限定して、従来のマルテンサイト系ス
テンレス鋼の強度、耐応力腐食割れ性および靭性を同時
に改善することにより、耐食性を維持しつつ、硫化水素
を多く含む環境でも応力腐食割れを生じることなく使用
できる高強度の低C高Cr合金鋼を提供することができ
る。That is, according to the present invention, the corrosion resistance is maintained by simultaneously improving the strength, stress corrosion cracking resistance and toughness of a conventional martensitic stainless steel by limiting the alloy steel composition and production conditions to the following ranges. In addition, it is possible to provide a high-strength, low-C, high-Cr alloy steel that can be used without causing stress corrosion cracking even in an environment containing a large amount of hydrogen sulfide.
【0021】以下に本発明の成分添加理由、成分限定理
由、及び製造条件の限定理由について、説明する。The reasons for adding the components of the present invention, the reasons for limiting the components, and the reasons for limiting the manufacturing conditions will be described below.
【0022】(1)成分組成範囲 C:0.005〜0.05% Cは強力なオーステナイト生成元素であり、また、高強
度を得るためにも欠かせない元素である。しかし、焼き
戻し時にCrと結合して炭化物となって析出し耐食性、
耐応力腐食割れ性および靭性を劣化させる。Cの含有量
が0.005%未満では十分な強度が得られず、0.0
5%を超えると劣化が顕著になるため0.005〜0.
05%の含有量である。(1) Component composition range C: 0.005 to 0.05% C is a strong austenite-forming element and an element indispensable for obtaining high strength. However, during tempering, it combines with Cr to form carbides and precipitates,
Deterioration of stress corrosion cracking resistance and toughness. If the C content is less than 0.005%, sufficient strength cannot be obtained,
If it exceeds 5%, the deterioration becomes remarkable, so 0.005 to 0.5%.
The content is 05%.
【0023】Cr:12〜16% Crはマルテンサイト系ステンレス鋼を構成する基本的
な元素で、しかも耐食性を発現する重要な元素である
が、含有量が12%未満では十分な耐食性が得られず、
16%を超えると他の合金元素を如何に調整してもδ−
フェライト相の生成量が増し、強度および靭性が劣化す
るため12〜16%である。Cr: 12 to 16% Cr is a basic element constituting martensitic stainless steel, and is an important element exhibiting corrosion resistance. If the content is less than 12%, sufficient corrosion resistance can be obtained. Without
If it exceeds 16%, δ-
The content is 12 to 16% because the amount of ferrite phase formed increases and the strength and toughness deteriorate.
【0024】Si:1%以下 Siは脱酸材として必要な元素であるが、強力なフェラ
イト生成元素でもあり、1%を超えて含有させるとδ−
フェライト相の生成を助長するため1%以下である。Si: not more than 1% Si is an element necessary as a deoxidizing material, but is also a strong ferrite-forming element.
The content is 1% or less to promote the formation of a ferrite phase.
【0025】Mn:0.05〜0.3% Mnは脱酸、脱硫剤として有効であるとともに、δ−フ
ェライト相の出現を抑えるオーステナイト生成元素であ
る。しかし、Mnは耐応力腐食割れ性に対して有害であ
り、上限は0.3%である。また、0.05%未満では
脱酸が不十分となり介在物が増加するのでMnの含有量
は0.05〜0.3%である。Mn: 0.05 to 0.3% Mn is an austenite-forming element which is effective as a deoxidizing and desulfurizing agent and suppresses the appearance of a δ-ferrite phase. However, Mn is detrimental to stress corrosion cracking resistance, with an upper limit of 0.3%. If it is less than 0.05%, deoxidation becomes insufficient and inclusions increase, so that the Mn content is 0.05 to 0.3%.
【0026】Ni:3.5〜6% Niは耐食性を向上させるとともに、オーステナイトの
生成に極めて有効な元素であるが、3.5%未満ではそ
の効果が少なく、一方、含有量が増加すると変態点(A
c1 点)を下げて焼き戻し温度に制約を与えるため6%
が上限である。 Mo:1.5〜2.5% Moは特に耐応力腐食割れ性および耐食性に有効な元素
であるが、1.5%未満の含有量ではその効果が現れ
ず、また2.5%を超えると過剰なδ−フェライト相を
出現させるため上限は2.5%である。Ni: 3.5 to 6% Ni is an element which is extremely effective in improving corrosion resistance and forming austenite, but its effect is small at less than 3.5%, while transformation increases when its content increases. Point (A
6% to lower the tempering temperature by lowering c 1 point)
Is the upper limit. Mo: 1.5 to 2.5% Mo is an element particularly effective for stress corrosion cracking resistance and corrosion resistance, but its effect does not appear at a content of less than 1.5%, and it exceeds 2.5%. And an excessive δ-ferrite phase, the upper limit is 2.5%.
【0027】V:0.01〜0.05% Vは強力な炭化物生成元素で、微細な炭化物を析出させ
ることにより結晶粒を微細化し、耐応力腐食割れ性を向
上させる。また、微細な炭化物の析出は強度向上にも寄
与する。しかし、フェライト生成元素でもあり、δ−フ
ェライト相を増加させる。含有量が0.01%未満では
耐応力腐食割れ性の向上効果が現れず、0.05%を超
えるとその効果は飽和し、かつ、δ−フェライト相が増
加するため、含有量は0.01〜0.05%である。V: 0.01-0.05% V is a strong carbide-forming element, and makes fine crystal grains finer by precipitating fine carbides, thereby improving stress corrosion cracking resistance. Further, precipitation of fine carbides also contributes to improvement in strength. However, it is also a ferrite forming element and increases the δ-ferrite phase. If the content is less than 0.01%, the effect of improving stress corrosion cracking resistance does not appear, and if it exceeds 0.05%, the effect is saturated and the δ-ferrite phase increases. 01-0.05%.
【0028】N:0.02%以下 Nは耐食性向上に有害な元素であるが、オーステナイト
生成元素でもある。0.02%を超えて含有させると焼
き戻し時に窒化物となって析出し、耐食性、耐応力腐食
割れ性および靭性が劣化するため0.02%以下の含有
量である。N: 0.02% or less N is an element harmful to the improvement of corrosion resistance, but is also an austenite-forming element. If the content exceeds 0.02%, it becomes a nitride during tempering and precipitates, and the corrosion resistance, stress corrosion cracking resistance and toughness deteriorate, so the content is 0.02% or less.
【0029】705−25×Ni%+5×Cr%+25
×Mo%≧680 これはAc1 点と主要添加元素(Ni,Cr,Mo)の
関係を与える式である。Ac1 点が低下すると、十分な
焼き戻しマルテンサイト組織を得ることが困難になり、
耐応力腐食割れ性が悪化する。そのため、705−25
×Ni%+5×Cr%+25×Mo%≧680を満たす
組成にする必要がある。705-25 × Ni% + 5 × Cr% + 25
× Mo% ≧ 680 This is an equation that gives the relationship between the Ac 1 point and the main additive element (Ni, Cr, Mo). When the Ac 1 point decreases, it becomes difficult to obtain a sufficient tempered martensite structure,
Stress corrosion cracking resistance deteriorates. Therefore, 705-25
× Ni% + 5 × Cr% + 25 × Mo% ≧ 680.
【0030】本発明では、上記の基本成分以外に以下の
選択成分(Nb,Ti)のうちの1種以上を含有しても
よい。In the present invention, one or more of the following selected components (Nb, Ti) may be contained in addition to the above basic components.
【0031】(選択成分) Nb:0.01〜0.1%、Ti:0.01〜0.1% Nb、Tiは強力な炭化物生成元素で、微細な炭化物を
析出させることにより結晶粒を微細化し、耐応力腐食割
れ性を向上させる。しかし、フェライト生成元素でもあ
り、δ−フェライト相を増加させる。含有量が0.01
%未満では耐応力腐食割れ性の向上効果が現れず、0.
1%を超えるとその効果は飽和し、かつ、δ−フェライ
ト相が増加するためNb、Tiともに含有量は0.01
〜0.1%である。(Selective components) Nb: 0.01-0.1%, Ti: 0.01-0.1% Nb, Ti is a strong carbide-forming element, and forms crystal grains by precipitating fine carbides. Refines and improves stress corrosion cracking resistance. However, it is also a ferrite forming element and increases the δ-ferrite phase. Content 0.01
%, The effect of improving stress corrosion cracking resistance does not appear,
If it exceeds 1%, the effect is saturated and the δ-ferrite phase increases, so that the content of both Nb and Ti is 0.01%.
~ 0.1%.
【0032】また、不可避不純物のうちにはP、Sが含
まれ、それらはいずれも鋼の熱間加工性および耐応力腐
食割れ性を劣化させる元素であり少ないほど好ましい。
しかし、Pにおいては0.04%以下、Sにおいては
0.01%以下であれば本発明の目的とする耐応力腐食
割れ性を確保でき、また熱間圧延鋼板あるいはシームレ
ス鋼管の製造に支障は現れない。Inevitable impurities include P and S, both of which are elements that degrade the hot workability and the stress corrosion cracking resistance of steel, and are preferably as small as possible.
However, if the content of P is 0.04% or less and the content of S is 0.01% or less, the stress corrosion cracking resistance, which is the object of the present invention, can be secured, and the production of a hot-rolled steel sheet or a seamless steel pipe is not hindered. It does not appear.
【0033】上記の成分組成範囲に調整することによ
り、従来のマルテンサイト系ステンレス鋼の強度、耐応
力腐食割れ性および靭性を同時に改善して、耐食性を維
持しつつ、硫化水素を多く含む環境でも応力腐食割れを
生じることなく使用できる高強度の低C高Cr合金鋼
(マルテンサイト系ステンレス鋼)を得ることが可能と
なる。By adjusting to the above-mentioned component composition range, the strength, stress corrosion cracking resistance and toughness of the conventional martensitic stainless steel are simultaneously improved, and the corrosion resistance is maintained while maintaining the corrosion resistance even in an environment containing a large amount of hydrogen sulfide. It is possible to obtain a high-strength low-C high-Cr alloy steel (martensitic stainless steel) that can be used without causing stress corrosion cracking.
【0034】このような特性の鋼は以下の製造方法によ
り、製造することができる。The steel having such characteristics can be manufactured by the following manufacturing method.
【0035】(2)鋼製造工程 (製造方法)上記の成分組成範囲に調整した鋼を転炉あ
るいは電気炉にて溶製し、普通造塊法または連続鋳造法
により鋳片にする。それを熱間加工により継目無鋼管ま
たは鋼板に製造した後、Ac3 点〜980℃の温度に加
熱してオーステナイト化した後冷却し、次いで550℃
〜Ac1 点の温度で焼き戻しを行う。(2) Steel Manufacturing Process (Manufacturing Method) Steel adjusted to the above-mentioned composition range is melted in a converter or an electric furnace, and cast into slabs by a normal ingot-making method or a continuous casting method. After producing it into a seamless steel pipe or steel plate by hot working, it is heated to a temperature of Ac 3 point to 980 ° C., austenitized, cooled, and then 550 ° C.
AAc Tempering is performed at a temperature of one point.
【0036】a.加熱温度:Ac3 点〜980℃ 加熱温度がAc3 点未満では、オーステナイト化されず
焼入れの効果が得られないため、下限はAc3 点であ
る。一方、加熱温度が980℃を超えると、結晶粒が粗
大となり、十分な強度が得られないばかりでなく、靭性
が劣化するため、上限は980℃である。A. Heating temperature: Ac 3 points to 980 ° C. If the heating temperature is less than Ac 3 points, the lower limit is Ac 3 points because austenitizing is not performed and the effect of quenching cannot be obtained. On the other hand, if the heating temperature exceeds 980 ° C., the crystal grains become coarse, not only cannot obtain sufficient strength, but also the toughness is deteriorated, so the upper limit is 980 ° C.
【0037】b.焼き戻し温度:550℃〜Ac1 点 焼戻し処理は、前述したように、Vの微細な炭化物を均
一に分散析出させて、靭性及び耐応力腐食割れ性を劣化
させることなく、高強度化させるために必須である。し
かし、その温度が、Ac1 点を超えると、一部がオース
テナイト相に変態して冷却時に焼入れマルテンサイト相
となり、残りの焼き戻しマルテンサイト相との間の成分
及び強度に不均一が生じるため、上限はAc1 点であ
る。また、550℃未満では、十分な焼き戻し効果が得
られずに強度が高くなり、靭性及び耐応力腐食割れ性を
劣化させるため、下限は550℃である。B. Tempering temperature: 550 ° C. to Ac 1 point As described above, the tempering treatment is to disperse and precipitate fine carbides of V uniformly and to increase the strength without deteriorating toughness and stress corrosion cracking resistance. Required for However, when the temperature exceeds the Ac 1 point, a part is transformed into an austenite phase and becomes a quenched martensite phase during cooling, and the components and strength between the remaining tempered martensite phase and the non-uniformity occur. The upper limit is Ac 1 point. When the temperature is lower than 550 ° C, the strength is increased without obtaining a sufficient tempering effect, and the toughness and the stress corrosion cracking resistance are deteriorated. Therefore, the lower limit is 550 ° C.
【0038】以下に本発明の実施例を挙げ、本発明の効
果を立証する。Hereinafter, the effects of the present invention will be proved by giving examples of the present invention.
【0039】[0039]
【実施例】本発明者らは、本発明鋼No.1〜6および
比較鋼a〜fを試験鋼として溶製し、熱間圧延にて厚み
12mmの鋼板とした後熱処理を行い、以下具体的に述
べるような試験を行った。EXAMPLES The present inventors made the steel No. 1 of the present invention. Samples 1 to 6 and comparative steels a to f were melted as test steels, and subjected to heat treatment after hot rolling to obtain a steel sheet having a thickness of 12 mm, and the tests specifically described below were performed.
【0040】表1に本発明鋼No.1〜6および比較鋼
a〜fの主要成分、選択成分、その他の成分を示す。こ
れらの鋼を950℃でオーステナイト化後空冷し、63
0℃で30分間焼き戻して機械的性質、耐食性および耐
応力腐食割れ性を試験した結果、各試験鋼のAc1 、A
c3 変態温度、及び炭化物析出状態を表2に示す。Table 1 shows the steel No. of the present invention. The main components, selected components, and other components of 1 to 6 and comparative steels a to f are shown. These steels were austenitized at 950 ° C., air-cooled,
As a result of tempering at 0 ° C. for 30 minutes to test the mechanical properties, corrosion resistance and stress corrosion cracking resistance, Ac 1 , A
Table 2 shows the c 3 transformation temperature and the carbide precipitation state.
【0041】表2に示すように、本発明鋼No.1〜6
は、いずれも0.2%耐力およびシャルピー衝撃値はす
べて目標値を上回った。また、耐食性および耐応力腐食
割れ性も目標をクリアした。As shown in Table 2, the steel No. of the present invention. 1-6
In each case, the 0.2% proof stress and the Charpy impact value all exceeded the target values. In addition, the corrosion resistance and stress corrosion cracking resistance also cleared the targets.
【0042】一方、比較鋼a〜fは、いずれかの成分が
本発明の範囲を外れているため、試験結果も耐食性や耐
応力腐食割れ性が目標を達成し得ていない。On the other hand, in the comparative steels a to f, any one of the components is out of the range of the present invention, so that the test results do not achieve the targets of the corrosion resistance and the stress corrosion cracking resistance.
【0043】[0043]
【表1】 [Table 1]
【0044】[0044]
【表2】 [Table 2]
【0045】[0045]
【発明の効果】本発明によれば、合金鋼組成及び製造条
件を特定することにより、炭酸ガス腐食に対する耐食性
はもとより硫化水素を多量に含む環境での耐応力腐食割
れ性の良好な高強度低C高Cr合金鋼を提供することが
可能となった。According to the present invention, by specifying the alloy steel composition and the production conditions, not only the corrosion resistance against carbon dioxide gas corrosion but also the high strength and low strength corrosion resistant cracking resistance in an environment containing a large amount of hydrogen sulfide can be obtained. It has become possible to provide C high Cr alloy steel.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 龍男 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 南 雄介 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsuo Maeda 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside Nihon Kokan Co., Ltd. (72) Inventor Yusuke Minami 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Honko Tube Co., Ltd.
Claims (3)
と、Cr:12〜16%と、Si:1%以下と、Mn:
0.05〜0.3%と、Ni:3.5〜6%と、Mo:
1.5〜2.5%と、V:0.01〜0.05%と、
N:0.02%以下とを含み、かつ下記(1)式を満足
し、残部Fe及び不可避的不純物からなることを特徴と
する、高耐食性および高強度を有する低C高Cr合金
鋼。 705−25×Ni%+5×Cr%+25×Mo%≧680 …(1)C: 0.005 to 0.05% by weight
, Cr: 12 to 16%, Si: 1% or less, Mn:
0.05-0.3%, Ni: 3.5-6%, Mo:
1.5-2.5%, V: 0.01-0.05%,
N: 0.02% or less, and satisfying the following formula (1), the balance being Fe and unavoidable impurities, and characterized by high corrosion resistance and high strength, a low C high Cr alloy steel. 705-25 × Ni% + 5 × Cr% + 25 × Mo% ≧ 680 (1)
b:0.01〜0.1%、Ti:0.01〜0.1%の
うち1種以上を含むことを特徴とする、請求項1に記載
の高耐食性および高強度を有する低C高Cr合金鋼。2. The alloy steel component further comprises N in weight%.
The low C height having high corrosion resistance and high strength according to claim 1, characterized in that it contains at least one of b: 0.01 to 0.1% and Ti: 0.01 to 0.1%. Cr alloy steel.
合金鋼を熱間加工した後、Ac3 点〜980℃の温度に
加熱してオーステナイト化した後冷却し、次いで550
℃〜Ac1 点の温度で焼き戻しを行い、焼き戻し後の炭
化物が粒内に均一に析出し粒界に優先析出しないことを
特徴とする、高耐食性および高強度を有する低C高Cr
合金鋼の製造方法。3. After hot-working the alloy steel having the composition according to claim 1 or 2, the steel is heated to a temperature of Ac 3 to 980 ° C., austenitized, cooled, and then cooled to 550.
Tempering at a temperature of 1 ° C. to Ac, and low carbide and high Cr having high corrosion resistance and high strength, characterized in that carbide after tempering precipitates uniformly in grains and does not preferentially precipitate at grain boundaries.
Manufacturing method of alloy steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31334898A JP3536687B2 (en) | 1998-11-04 | 1998-11-04 | Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31334898A JP3536687B2 (en) | 1998-11-04 | 1998-11-04 | Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000144337A true JP2000144337A (en) | 2000-05-26 |
JP3536687B2 JP3536687B2 (en) | 2004-06-14 |
Family
ID=18040176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31334898A Expired - Lifetime JP3536687B2 (en) | 1998-11-04 | 1998-11-04 | Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3536687B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002105604A (en) * | 2000-10-05 | 2002-04-10 | Kawasaki Steel Corp | High Cr martensitic stainless steel pipe for line pipe excellent in corrosion resistance and weldability and method for producing the same |
JP2003003243A (en) * | 2001-06-22 | 2003-01-08 | Sumitomo Metal Ind Ltd | High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance |
WO2003087415A1 (en) * | 2002-04-12 | 2003-10-23 | Sumitomo Metal Industries, Ltd. | Method for producing martensitic stainless steel |
JP3485034B2 (en) | 1999-07-19 | 2004-01-13 | Jfeスチール株式会社 | 862N / mm2 Class Low C High Cr Alloy Oil Well Pipe Having High Corrosion Resistance and Method of Manufacturing the Same |
JP2006110585A (en) * | 2004-10-13 | 2006-04-27 | Jfe Steel Kk | Method for producing martensitic stainless steel pipe circumferential welded joint with excellent intergranular stress corrosion cracking resistance |
CN105658833A (en) * | 2013-10-31 | 2016-06-08 | 杰富意钢铁株式会社 | Ferrite-martensite two-phase stainless steel, and method for producing same |
JP2023526739A (en) * | 2020-04-30 | 2023-06-23 | 宝山鋼鉄股▲分▼有限公司 | High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same |
-
1998
- 1998-11-04 JP JP31334898A patent/JP3536687B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3485034B2 (en) | 1999-07-19 | 2004-01-13 | Jfeスチール株式会社 | 862N / mm2 Class Low C High Cr Alloy Oil Well Pipe Having High Corrosion Resistance and Method of Manufacturing the Same |
JP2002105604A (en) * | 2000-10-05 | 2002-04-10 | Kawasaki Steel Corp | High Cr martensitic stainless steel pipe for line pipe excellent in corrosion resistance and weldability and method for producing the same |
JP2003003243A (en) * | 2001-06-22 | 2003-01-08 | Sumitomo Metal Ind Ltd | High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance |
WO2003087415A1 (en) * | 2002-04-12 | 2003-10-23 | Sumitomo Metal Industries, Ltd. | Method for producing martensitic stainless steel |
US7704338B2 (en) | 2002-04-12 | 2010-04-27 | Sumitomo Metal Industries, Ltd. | Method of manufacturing a martensitic stainless steel |
JP2006110585A (en) * | 2004-10-13 | 2006-04-27 | Jfe Steel Kk | Method for producing martensitic stainless steel pipe circumferential welded joint with excellent intergranular stress corrosion cracking resistance |
CN105658833A (en) * | 2013-10-31 | 2016-06-08 | 杰富意钢铁株式会社 | Ferrite-martensite two-phase stainless steel, and method for producing same |
EP3029170A4 (en) * | 2013-10-31 | 2016-10-05 | Jfe Steel Corp | FERRITE-MARTENSITE DIPHASIC STAINLESS STEEL AND PROCESS FOR PRODUCING THE SAME |
US10745774B2 (en) | 2013-10-31 | 2020-08-18 | Jfe Steel Corporation | Ferrite-martensite dual-phase stainless steel and method of manufacturing the same |
JP2023526739A (en) * | 2020-04-30 | 2023-06-23 | 宝山鋼鉄股▲分▼有限公司 | High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3536687B2 (en) | 2004-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102666897B (en) | High-toughness abrasion-resistant steel | |
EP0649915B1 (en) | High-strength martensitic stainless steel and method for making the same | |
CN111479945B (en) | Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same | |
JP4240189B2 (en) | Martensitic stainless steel | |
EP2154262A1 (en) | Abrasion-resistant steel sheet having excellent processability, and method for production thereof | |
JP5186809B2 (en) | Wear-resistant steel plate with excellent workability and method for producing the same | |
RU2763722C1 (en) | SULPHUR-RESISTANT PIPE FOR A PETROLEUM BOREHOLE ATTRIBUTED TO THE KILOPOUND/INCH2 (862 MPa) STEEL STRENGTH CLASS, AND METHOD FOR MANUFACTURE THEREOF | |
JP4650013B2 (en) | Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same | |
JP5458624B2 (en) | Wear-resistant steel plate with excellent workability and method for producing the same | |
JP2008075107A (en) | Manufacturing method of high strength and high toughness steel | |
JP4238832B2 (en) | Abrasion-resistant steel plate and method for producing the same | |
CN108474089B (en) | Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same | |
KR20070116561A (en) | Steel plate with good HAZ toughness and small strength drop by heat treatment after welding | |
CN112877591A (en) | High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof | |
JP3539250B2 (en) | 655 Nmm-2 class low C high Cr alloy oil country tubular good with high stress corrosion cracking resistance and method of manufacturing the same | |
JP3852248B2 (en) | Manufacturing method of martensitic stainless steel with excellent stress corrosion cracking resistance | |
JP3684895B2 (en) | Manufacturing method of high toughness martensitic stainless steel with excellent stress corrosion cracking resistance | |
JP3536687B2 (en) | Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same | |
JP2000160300A (en) | 655 Nmm-2 class low C high Cr alloy oil country tubular good with high corrosion resistance and method of manufacturing the same | |
JP3485034B2 (en) | 862N / mm2 Class Low C High Cr Alloy Oil Well Pipe Having High Corrosion Resistance and Method of Manufacturing the Same | |
JP2002266022A (en) | Manufacturing method of high toughness, high ductility and high strength steel | |
JP5793556B2 (en) | 862 MPa class low C high Cr steel pipe having high corrosion resistance and manufacturing method thereof | |
JP3228008B2 (en) | High-strength martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same | |
KR102607616B1 (en) | Rod steel and method of manufacturing the same | |
WO2019050010A1 (en) | Steel sheet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040308 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080326 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090326 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110326 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120326 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140326 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |