JP2000136997A - Optical measuring device - Google Patents
Optical measuring deviceInfo
- Publication number
- JP2000136997A JP2000136997A JP10312227A JP31222798A JP2000136997A JP 2000136997 A JP2000136997 A JP 2000136997A JP 10312227 A JP10312227 A JP 10312227A JP 31222798 A JP31222798 A JP 31222798A JP 2000136997 A JP2000136997 A JP 2000136997A
- Authority
- JP
- Japan
- Prior art keywords
- light
- measurement
- optical
- scattering medium
- positions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 60
- 238000005259 measurement Methods 0.000 claims abstract description 70
- 238000001514 detection method Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 10
- 238000010521 absorption reaction Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、複数の層からなる
散乱媒体の各層の光学定数(例えば散乱係数、吸光係数
等)を、光を利用して計測する装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring optical constants (for example, scattering coefficient, extinction coefficient, etc.) of each layer of a scattering medium comprising a plurality of layers by using light.
【0002】[0002]
【従来の技術】従来より、生体の頭部等、複数の層から
なる散乱媒体の各層の光学定数を、光を利用して計測す
る装置が種々提案されている。2. Description of the Related Art Conventionally, various devices have been proposed for measuring the optical constant of each layer of a scattering medium composed of a plurality of layers, such as the head of a living body, using light.
【0003】例えば特開平9−135825号には、複
数の照射部から出射させた相異なる波長の強度変調光を
被検体に照射し、透過光をそれぞれの光路が重なるよう
に複数の検出部に集光し、これにより、被検体の所定領
域の光学パラメータを検出する感度を向上もしくは低下
させて、生体深部の吸収物質の濃度変化を算出する生体
光計測装置が開示されている。For example, Japanese Patent Application Laid-Open No. 9-135825 discloses that a subject is irradiated with intensity-modulated lights having different wavelengths emitted from a plurality of irradiation units, and transmitted light is transmitted to a plurality of detection units so that respective optical paths overlap. There is disclosed a biological light measurement device that collects light, thereby increasing or decreasing the sensitivity of detecting an optical parameter in a predetermined region of a subject, and calculating a change in the concentration of an absorbing substance in a deep part of a living body.
【0004】また特開平6−343625号には、散乱
媒体を透過させた複数波長の計測光の検出強度に基づい
て各波長毎の平均光路長を求め、2波長間の平均光路長
差が吸光物質の2波長間の吸光度に逆比例することを利
用して、吸光物質の濃度比を算出する装置が開示されて
いる。Japanese Patent Application Laid-Open No. Hei 6-343625 discloses that an average optical path length for each wavelength is obtained based on detection intensities of measurement light of a plurality of wavelengths transmitted through a scattering medium, and an average optical path length difference between two wavelengths is detected. There is disclosed an apparatus for calculating the concentration ratio of a light-absorbing substance by utilizing the fact that it is inversely proportional to the absorbance between two wavelengths of the substance.
【0005】この種の光計測装置は、装置構成が比較的
簡単である、非侵襲で計測が可能である、機能情報を計
測可能である、といった特長を有している。[0005] This type of optical measurement device has the features that the device configuration is relatively simple, non-invasive measurement is possible, and function information can be measured.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記の事情
に鑑み、複数の層からなる散乱媒体の各層の光学定数
を、より一層簡単な構成によって計測することができる
光計測装置を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides an optical measurement device capable of measuring the optical constant of each layer of a scattering medium comprising a plurality of layers with a simpler configuration. The purpose is to:
【0007】[0007]
【課題を解決するための手段】本発明による1つの光計
測装置は、複数の層からなる散乱媒体の表面から、その
内部に計測光を入射させる1つの光源と、この計測光の
入射位置からの距離が相異なる複数の位置において、そ
れぞれ前記表面から散乱媒体外に出射して来る計測光を
検出する光検出手段と、前記複数位置のそれぞれにおけ
る検出計測光の強度の、隣接位置の検出計測光強度との
差分を求める手段と、前記差分の極大値または極小値を
取る散乱媒体表面上の位置と、該位置に対応する検出器
を求める手段と、前記複数位置の検出計測光の強度に基
づいて、光源と検出位置との間の計測光路長を求める演
算手段とから構成されたものである。According to one aspect of the present invention, there is provided an optical measuring apparatus comprising: a light source for allowing measurement light to enter the inside of a scattering medium comprising a plurality of layers; At a plurality of positions having different distances from each other, detecting light emitted from the surface to the outside of the scattering medium, and light detection means for detecting the intensity of the detected measurement light at each of the plurality of positions. Means for obtaining a difference from the light intensity, a position on the scattering medium surface that takes a local maximum or minimum value of the difference, and a unit for obtaining a detector corresponding to the position; And a calculating means for calculating a measured optical path length between the light source and the detection position based on the calculated light path length.
【0008】また、本発明による別の光計測装置は、上
記と同様の光源、光検出手段、差分を求める手段、およ
び演算手段を備えてなる光計測装置において、演算手段
が、前記計測光の強度および計測光路長に基づいて、散
乱媒体の複数の層それぞれの光学定数(例えば吸収係
数、散乱係数等)も演算するように構成されたことを特
徴とするものである。Another optical measuring device according to the present invention is an optical measuring device comprising the same light source, light detecting means, means for calculating a difference, and calculating means as described above. An optical constant (for example, an absorption coefficient, a scattering coefficient, etc.) of each of the plurality of layers of the scattering medium is calculated based on the intensity and the measured optical path length.
【0009】なお上記の光検出手段として、より具体的
には、計測光の入射位置からの距離が相異なる複数の位
置にそれぞれ1つずつ配置された複数の光検出器からな
るものを用いることができる。[0009] More specifically, as the above-mentioned light detecting means, more specifically, a means comprising a plurality of photodetectors arranged one by one at a plurality of positions at different distances from the incident position of the measuring light is used. Can be.
【0010】またこの光検出手段として、計測光の入射
位置からの距離が相異なる複数の位置に沿って1つの受
光部を走査させ、該位置の各々において計測光を検出す
るものを用いることもできる。As the light detecting means, a means for scanning one light receiving portion along a plurality of positions having different distances from the incident position of the measuring light and detecting the measuring light at each of the positions may be used. it can.
【0011】また、光検出手段を散乱媒体の表面に沿っ
て2次元的に多数配置すれば、これらの光検出手段によ
って散乱媒体の光学定数の面内分布を求めることも可能
になる。さらに、光検出手段を散乱媒体の表面に沿って
2次元的に走査させる手段を設ければ、この光検出手段
の走査によって散乱媒体の光学定数の面内分布を求める
こともできる。If a large number of light detecting means are arranged two-dimensionally along the surface of the scattering medium, it becomes possible to obtain the in-plane distribution of the optical constant of the scattering medium by these light detecting means. Further, if means for scanning the light detecting means in a two-dimensional manner along the surface of the scattering medium is provided, the in-plane distribution of the optical constant of the scattering medium can be obtained by the scanning of the light detecting means.
【0012】また、光源として複数波長の計測光を発す
るものを用いるとともに、光検出手段として各波長毎の
計測光を検出可能なものを用いた上で、上記演算手段
を、計測光の各波長における散乱媒体内部の機能情報
(散乱媒体が生体組織の場合は、計測部位の酸素飽和度
等)を求めるように構成しておけば、この機能情報が直
接的に求められて実用上便利である。Further, a light source that emits measurement light of a plurality of wavelengths is used, and a light detection means that can detect the measurement light of each wavelength is used. If the function information inside the scattering medium in (1) is configured to be obtained (when the scattering medium is a living tissue, the oxygen saturation at the measurement site, etc.), this function information is directly obtained, which is practically convenient. .
【0013】[0013]
【発明の効果】以下、図2および3を参照して、本発明
の光計測装置による計測の原理を説明する。ここでは図
2に示すように、複数の層B1、B2、B3……からな
る人体の頭部等の散乱媒体10について、各層の散乱係数
と吸収係数の和を計測する場合を考える。The principle of measurement by the optical measuring device of the present invention will be described below with reference to FIGS. Here, as shown in FIG. 2, a case where the sum of the scattering coefficient and the absorption coefficient of each layer is measured for a scattering medium 10 such as the head of a human body composed of a plurality of layers B1, B2, B3.
【0014】散乱媒体10の表面10a近傍には、該散乱媒
体10の内部に計測光Lを入射させる1つの光源11が設け
られる。また散乱媒体10の表面10aに沿って、計測光L
の入射位置からの距離が相異なる複数の位置に、それぞ
れ光検出器D1 、D2 、D3……Dn が配置される。In the vicinity of the surface 10a of the scattering medium 10, one light source 11 for making the measuring light L enter the inside of the scattering medium 10 is provided. Also, along the surface 10a of the scattering medium 10, the measurement light L
, D3,..., Dn are arranged at a plurality of positions at different distances from the incident position.
【0015】散乱媒体10の内部に入射した計測光Lはそ
こで散乱し、一部は表面10a側に進行して、光検出器D
1 、D2 、D3 ……Dn に検出される。ここで光検出器
D1、D2 、D3 ……Dn の出力、つまり検出計測光L
の強度を示す信号を、それぞれO1 、O2 、O3 ……O
n と表すことにする。The measuring light L incident on the inside of the scattering medium 10 is scattered there, and a part proceeds to the surface 10a side, and the light detector D
1, D2, D3... Dn. Here, the outputs of the photodetectors D1, D2, D3,.
Are represented by O1, O2, O3... O
Let be represented by n.
【0016】これらの出力O1 、O2 、O3 ……On の
各々について隣接位置の出力との差分Sを、例えば S1 =O2 −O1 、S2 =O3 −O2 、S3 =O4 −O
3 、……… のようにして求めると、これらの差分は基本的に図3に
示すように変化する。すなわち、計測光Lは各層の界面
位置において反射しやすくなっているので、このような
反射計測光Lを受光しやすい位置において、差分Sが極
大値あるいは極小値(本例では極大値)を示す。ここ
で、上記差分Sが極大値あるいは極小値を示す位置を、
光検出器の番号を用いてm1 、m2 、m3 ……と表す。The difference S between each of the outputs O1, O2, O3,... On and the output at the adjacent position is, for example, S1 = O2-O1, S2 = O3-O2, and S3 = O4-O.
When these are determined as follows, these differences basically change as shown in FIG. That is, since the measurement light L is easily reflected at the interface position of each layer, the difference S shows the maximum value or the minimum value (the maximum value in this example) at the position where the reflection measurement light L is easily received. . Here, the position where the difference S indicates the maximum value or the minimum value is
The numbers of the photodetectors are used to represent m1, m2, m3...
【0017】また、上記極大値あるいは極小値を示す位
置の中間的位置においては、各層B1、B2、B3……
の光学定数を良好に反映して計測光Lが減光するので、
そのような中間的位置M1 、M2 、M3 ……を例えばM
1 =m1 /2、M2 =(m1+m2 )/2、M3 =(m2
+m3 )/2……として決定する。Further, at an intermediate position between the positions showing the maximum value or the minimum value, each of the layers B1, B2, B3,.
The measurement light L is reduced by favorably reflecting the optical constant of
Such intermediate positions M1, M2, M3...
1 = m1 / 2, M2 = (m1 + m2) / 2, M3 = (m2
+ M3) / 2....
【0018】本例では前述の通り、層B1、B2、B3
……における散乱係数と吸収係数の和を求めるものであ
り、それらは以下の手順で算出される。なお以下で説明
する位置等については、図4および5に分かりやすく示
してある。In this example, as described above, the layers B1, B2, B3
The sum of the scattering coefficient and the absorption coefficient in... Is calculated, and they are calculated in the following procedure. The positions and the like described below are clearly shown in FIGS.
【0019】(1)まず各光検出器の出力Oと、モンテ
カルロ法もしくは有限要素法等の手法から、散乱媒体10
の界面位置の光検出器位置m1 、m2 、m3 ……と中間
的位置M1 、M2 、M3 ……の計測光伝搬経路を推定
し、以下の(a)、(b)の量を算出する。(1) First, the output O of each photodetector and the scattering medium 10 are determined by a method such as the Monte Carlo method or the finite element method.
.. And the intermediate positions M1, M2, M3... Are estimated, and the following quantities (a) and (b) are calculated.
【0020】(a)上記の光検出器位置m1 、m2 、m
3 ……において、計測光Lが散乱媒体10に到達する深さ
b1 、b2 、b3 ……。(A) The photodetector positions m1, m2, m
3, depths b 1 , b 2 , b 3 at which the measurement light L reaches the scattering medium 10.
【0021】(b)中間的位置M1 、M2 、M3 ……に
光検出器が配されるものと仮定して、それらの位置にお
ける計測光路長LM1、LM2、LM3……、光源と各光検出
器間の距離A1 、A2 、A3 ……、および計測光Lが到
達する深さB1 、B2 、B3……。(B) Assuming that photodetectors are arranged at intermediate positions M1, M2, M3,..., And measurement light path lengths L M1 , L M2 , L M3. The distances A 1 , A 2 , A 3, ... Between the photodetectors, and the depths B 1 , B 2 , B 3 ,.
【0022】(2)中間的位置M1 の光検出器の出力お
よび計測光路長LM1から、層B1の単位光路長当たりの
散乱係数と吸収係数の和S.A.B1を算出する。(2) From the output of the photodetector at the intermediate position M1 and the measured optical path length L M1 , the sum S.S. of the scattering coefficient and the absorption coefficient per unit optical path length of the layer B1. A. Calculate B1 .
【0023】[0023]
【数1】 (Equation 1)
【0024】(3)計測光路長L2 のうち、層B1にか
かる部分L’M1と、層B2にかかる部分L’M2とを算出
する。具体的には、光伝搬経路はほぼ楕円であると考え
ることができるので、L’M1、L’M2は楕円弧として算
出できる。[0024] (3) of the measurement optical path length L 2, calculates 'and M1, part L according to the layer B2' portion L according to the layer B1 and M2. Specifically, since the light propagation path can be considered to be substantially elliptical, L ′ M1 and L ′ M2 can be calculated as elliptical arcs.
【0025】[0025]
【数2】 (Equation 2)
【0026】(4)層B2の単位光路長当たりの散乱係
数と吸収係数の和S.A.B2を算出する。(4) Sum of scattering coefficient and absorption coefficient per unit optical path length of layer B2 A. Calculate B2 .
【0027】[0027]
【数3】 (Equation 3)
【0028】(5)同様に計測光路長L3 のうち、層B
1にかかる部分L”M1と、層B2にかかる部分L”
M2と、層B3にかかる部分L”M3とを算出する。(5) Similarly, of the measured optical path length L 3 , the layer B
Part L ″ M1 over the part 1 and part L ″ over the layer B2
M2 and a portion L ″ M3 related to the layer B3 are calculated.
【0029】[0029]
【数4】 (Equation 4)
【0030】(6)同様に層B3の単位光路長当たりの
散乱係数と吸収係数の和S.A.B3を算出する。(6) Similarly, the sum of the scattering coefficient and the absorption coefficient per unit optical path length of the layer B3. A. Calculate B3 .
【0031】[0031]
【数5】 (Equation 5)
【0032】(7)上記(5)および(6)の手順を繰
り返すことにより、各層の単位光路長当たりの散乱係数
と吸収係数の和S.A.nを得る。(7) By repeating the above procedures (5) and (6), the sum S.D. of the scattering coefficient and the absorption coefficient per unit optical path length of each layer is obtained. A. get n.
【0033】[0033]
【数6】 (Equation 6)
【0034】以上説明した通り本発明による光計測装置
は、光源および光検出手段に加えて、簡単な演算を行な
う手段を設けただけの構成により、散乱媒体の各層の厚
さや、さらには各層の吸光度等の光学定数も計測できる
ものであり、構成が簡単なことから、安価に形成可能と
なる。As described above, the optical measuring device according to the present invention has a structure in which only means for performing a simple operation is provided in addition to the light source and the light detecting means, so that the thickness of each layer of the scattering medium and the thickness of each layer are further reduced. Optical constants such as absorbance can also be measured, and since the configuration is simple, it can be formed at low cost.
【0035】[0035]
【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0036】図1は、本発明の一実施形態による光計測
装置を示すものである。図示されるようにこの光計測装
置は、散乱媒体の一つである人体の頭部10の内部に計測
光Lを入射させる1つの光源11と、頭部10の表面に沿っ
て、計測光Lの入射位置からの距離が相異なる複数の位
置にそれぞれ配置された光検出器D1 、D2 、D3 ……
Dn とを有している。FIG. 1 shows an optical measuring device according to an embodiment of the present invention. As shown in the figure, the optical measurement device includes one light source 11 for inputting measurement light L into a human head 10 which is one of scattering media, and a measurement light L along a surface of the head 10. Of photodetectors D1, D2, D3 arranged at a plurality of positions at different distances from the incident position.
Dn.
【0037】上記光源11は光源ドライバ12によって駆動
される。また光検出器D1 、D2 、D3 ……Dn の各出
力はアンプ13を介して、例えばコンピュータシステムか
らなる演算手段15に入力される。この演算手段15は、C
RT等からなる表示手段16に接続されている。光源ドラ
イバ12およびアンプ13の作動は、コントローラ14によっ
て制御される。The light source 11 is driven by a light source driver 12. The outputs of the photodetectors D1, D2, D3,..., Dn are input via an amplifier 13 to arithmetic means 15, for example, a computer system. This calculation means 15 is C
It is connected to display means 16 such as an RT. The operations of the light source driver 12 and the amplifier 13 are controlled by the controller 14.
【0038】図2に示すように、頭部10の内部に入射し
た計測光Lはそこで散乱し、一部は頭部表面10a側に進
行して、光検出器D1 、D2 、D3 ……Dn に検出され
る。光検出器D1 、D2 、D3 ……Dn の各出力O1 、
O2 、O3 ……On は、アンプ13により増幅された上で
演算手段15に入力される。演算手段15は、出力O1 、O
2 、O3 ……On の各々について隣接位置の出力との差
分Sを、 S1 =O2 −O1 、S2 =O3 −O2 、S3 =O4 −O
3 、……… として求める。As shown in FIG. 2, the measurement light L incident on the inside of the head 10 is scattered there, and a part of the measurement light L proceeds to the head surface 10a side, and the photodetectors D1, D2, D3. Is detected. Each output O1 of the photodetectors D1, D2, D3,.
O2, O3,... On are amplified by the amplifier 13 and then input to the arithmetic means 15. The operation means 15 outputs the outputs O1, O
2, O3... On, the difference S from the output of the adjacent position is expressed as S1 = O2-O1, S2 = O3-O2, S3 = O4-O.
3 …………
【0039】これらの差分Sは前述した通り、基本的に
図3に示すように変化する。演算手段15は、この差分S
が極大値を示す位置を、光検出器の番号m1 、m2 、m
3 ……によって規定した上で、それらの位置の中間的位
置M1 、M2 、M3 ……を、M1 =m1 /2、M2 =
(m1 +m2 )/2、M3 =(m2 +m3 )/2……と
して決定する。このような中間的位置M1 、M2 、M3
は、頭部10の各層B1、B2、B3……の吸光度を良好
に反映した計測光Lが得られる位置である。As described above, these differences S basically change as shown in FIG. The calculating means 15 calculates the difference S
Are the maximum values at the photodetector numbers m1, m2, and m.
.., And intermediate positions M1, M2, M3... Of those positions are represented by M1 = m1 / 2, M2 =
(M1 + m2) / 2, M3 = (m2 + m3) / 2... Such intermediate positions M1, M2, M3
Is a position where the measurement light L that reflects the absorbance of each of the layers B1, B2, B3,.
【0040】さらに演算手段15は、各光検出器の出力O
を利用して、例えばモンテカルロ法や有限要素法等の手
法を用いて、光源11から界面位置m1 、m2 、m3 ……
と中間的位置M1 、M2 、M3 ……のそれぞれまでの光
伝搬経路(計測光路長)を算出し、それを基にして各層
B1、B2、B3……の厚さを算出し、光源11と中間的
位置M1 、M2 、M3 ……との間の距離および各層B
1、B2、B3……の厚さから、中間的位置M1 、M2
、M3 ……のそれぞれの計測光路長を各層毎に分割す
る。そして、以上の算出量を基に、各層B1、B2、B
3……の単位光路長当たりの散乱係数と吸収係数の和を
算出する。以上の各量の算出は、例えば前述した(数
1)〜(数6)式に基づいてなされる。各層の厚さと、
単位光路長当たりの散乱係数と吸収係数の和は、表示手
段16により表示される。Further, the calculating means 15 outputs the output O of each photodetector.
, Using a method such as the Monte Carlo method or the finite element method, from the light source 11 to the interface positions m1, m2, m3,.
, And intermediate positions M1, M2, M3,..., Are calculated, and the thicknesses of the layers B1, B2, B3,. Distance between intermediate positions M1, M2, M3,.
From the thicknesses of 1, B2, B3,..., The intermediate positions M1, M2
, M3... Are divided for each layer. Then, based on the above calculated amounts, each layer B1, B2, B
3. The sum of the scattering coefficient and the absorption coefficient per unit optical path length is calculated. The calculation of each of the above amounts is performed based on, for example, the above-described equations (Equation 1) to (Equation 6). The thickness of each layer,
The sum of the scattering coefficient and the absorption coefficient per unit optical path length is displayed by the display means 16.
【0041】なお、以上説明した実施形態においては、
計測光Lの入射位置からの距離が相異なる複数の位置に
それぞれ光検出器D1 、D2 、D3 ……Dn を配置して
いるが、その代わりに、図6に示すように1つの光検出
器Dを頭部表面10aに沿って移動させ、各移動位置にお
いて順次計測光Lを検出するようにしてもよい。In the embodiment described above,
The photodetectors D1, D2, D3... Dn are arranged at a plurality of positions at different distances from the incident position of the measurement light L. Instead, one photodetector as shown in FIG. D may be moved along the head surface 10a, and the measurement light L may be sequentially detected at each movement position.
【0042】また本発明においては、図1および2に示
したように、基本的にある1次元方向について計測光L
を検出すればよいが、図7に示すように散乱媒体表面10
aの上において、1つの光源20(例えば発光部に接続さ
れた送光用光ファィバの先端)を取り囲んで放射状に複
数の光検出手段21(例えば受光部に接続された受光用光
ファィバの先端)を配設し、光源20からの距離が等しい
計測光検出位置についての光検出信号どうしを加算し、
それらの加算信号について前述の差分を求める等しても
よい。In the present invention, as shown in FIGS. 1 and 2, measurement light L is basically applied in a certain one-dimensional direction.
Can be detected, but as shown in FIG.
a, a plurality of light detecting means 21 (e.g., the tip of a light-receiving optical fiber connected to a light-receiving section) surrounding one light source 20 (e.g., the tip of a light-transmitting optical fiber connected to a light-emitting section). ) Is added, and the light detection signals at the measurement light detection positions at the same distance from the light source 20 are added together,
The above-described difference may be obtained for these added signals.
【0043】また、この図7に示すような構成を採用す
る場合、上記の加算処理は行なわずに、各計測光検出位
置についての光検出信号を個別に利用すれば、散乱媒体
表面10aに沿った面内の光学定数分布を求めることもで
きる。When the configuration as shown in FIG. 7 is adopted, if the light detection signals at the respective measurement light detection positions are individually used without performing the above-described addition processing, along the scattering medium surface 10a. The optical constant distribution in the plane can also be obtained.
【0044】さらに、散乱媒体表面10aに対して、図2
に示した光源と光検出器群に図8に示す自由度を与えて
走査することにより、散乱媒体表面10aに沿った面内の
光学定数分布を求めることもできる。Further, FIG.
By scanning the light source and the photodetector group shown in (1) with the degrees of freedom shown in FIG. 8, the optical constant distribution in the plane along the scattering medium surface 10a can be obtained.
【0045】また、計測光の波長を複数にすることによ
り、散乱媒体内部の機能情報(つまり散乱媒体が生体組
織の場合は、計測部位の酸素飽和度等)を求めることも
可能になる。By using a plurality of wavelengths of the measurement light, it is also possible to obtain functional information inside the scattering medium (that is, when the scattering medium is a living tissue, the oxygen saturation of the measurement site, etc.).
【図1】本発明の一実施形態による光計測装置を示す概
略図FIG. 1 is a schematic diagram showing an optical measurement device according to an embodiment of the present invention.
【図2】図1の光計測装置の一部を示す概略側面図FIG. 2 is a schematic side view showing a part of the optical measurement device of FIG. 1;
【図3】図1の光計測装置における計測光検出信号の差
分値の変化を示す説明図FIG. 3 is an explanatory diagram showing a change in a difference value of a measurement light detection signal in the optical measurement device in FIG. 1;
【図4】本発明の光計測装置における光学定数算出の仕
組みを説明する説明図FIG. 4 is an explanatory diagram illustrating a mechanism of calculating an optical constant in the optical measurement device of the present invention.
【図5】本発明の光計測装置における光学定数算出の仕
組みを説明する説明図FIG. 5 is an explanatory diagram illustrating a mechanism of calculating an optical constant in the optical measurement device of the present invention.
【図6】本発明の別の実施形態による光計測装置の一部
を示す概略側面図FIG. 6 is a schematic side view showing a part of an optical measurement device according to another embodiment of the present invention.
【図7】本発明の別の実施形態による光計測装置の一部
を示す概略平面図FIG. 7 is a schematic plan view showing a part of an optical measurement device according to another embodiment of the present invention.
【図8】本発明のさらに別の実施形態における光検出手
段の走査を説明する概略図FIG. 8 is a schematic diagram illustrating scanning of a light detection unit according to still another embodiment of the present invention.
10 散乱媒体(頭部) 10a 散乱媒体の表面 11、20 光源 12 光源ドライバ 13 アンプ 14 コントローラ 15 演算手段 16 表示手段 21 光検出手段 D、D1 、D2 、D3 ……Dn 光検出器 L 計測光 10 Scattering medium (head) 10a Surface of scattering medium 11, 20 Light source 12 Light source driver 13 Amplifier 14 Controller 15 Calculation means 16 Display means 21 Light detection means D, D1, D2, D3 ... Dn light detector L Measurement light
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成10年12月14日(1998.12.
14)[Submission date] December 14, 1998 (1998.12.
14)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図8[Correction target item name] Fig. 8
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図8】 FIG. 8
Claims (7)
その内部に計測光を入射させる1つの光源と、 この計測光の入射位置からの距離が相異なる複数の位置
において、それぞれ前記表面から散乱媒体外に出射して
来る計測光を検出する光検出手段と、 前記複数位置のそれぞれにおける検出計測光の強度の、
隣接位置の検出計測光強度との差分を求める手段と、 前記差分の極大値または極小値を取る散乱媒体表面上の
位置と、該位置に対応する検出器を求める手段と、 前記複数位置の検出計測光の強度に基づいて、光源と検
出位置との間の計測光路長を求める演算手段とからなる
光計測装置。1. A surface of a scattering medium comprising a plurality of layers,
One light source for injecting measurement light into the inside thereof; and light detecting means for detecting measurement light emitted from the surface to the outside of the scattering medium at a plurality of positions at different distances from the incident position of the measurement light. And, of the intensity of the detection measurement light at each of the plurality of positions,
Means for calculating a difference between the detected measurement light intensity of the adjacent position, a position on the surface of the scattering medium which takes a local maximum value or a local minimum value of the difference, and means for obtaining a detector corresponding to the position; detection of the plurality of positions An optical measurement device comprising: an arithmetic unit that obtains a measurement optical path length between the light source and the detection position based on the intensity of the measurement light.
よび計測光路長に基づいて、前記複数の層それぞれの光
学定数も演算するものであることを特徴とする請求項1
記載の光計測装置。2. The apparatus according to claim 1, wherein said calculating means calculates the optical constants of each of the plurality of layers based on the intensity of the detected measurement light and the measurement optical path length.
The optical measurement device according to the above.
置からの距離が相異なる複数の位置にそれぞれ1つずつ
配置された複数の光検出器により、前記計測光を検出す
るように構成されていることを特徴とする請求項1また
は2記載の光計測装置。3. The light detection means is configured to detect the measurement light by a plurality of photodetectors arranged one by one at a plurality of positions at different distances from the incident position of the measurement light. The optical measurement device according to claim 1, wherein the measurement is performed.
置からの距離が相異なる複数の位置に沿って1つの受光
部を走査させ、該位置の各々において前記計測光を検出
するように構成されていることを特徴とする請求項1ま
たは2記載の光計測装置。4. The method according to claim 1, wherein the light detection unit scans one light receiving unit along a plurality of positions having different distances from an incident position of the measurement light, and detects the measurement light at each of the positions. The optical measurement device according to claim 1, wherein the optical measurement device is configured.
段が前記散乱媒体の表面に沿って2次元的に多数配置さ
れ、これらの光検出手段によって散乱媒体の光学定数の
面内分布を求めるように構成されていることを特徴とす
る光計測装置。5. A large number of light detecting means according to claim 1 or 2 are arranged two-dimensionally along the surface of the scattering medium, and the in-plane distribution of the optical constant of the scattering medium is determined by these light detecting means. An optical measurement device, characterized in that it is configured to determine.
段を前記散乱媒体の表面に沿って2次元的に走査させる
手段が設けられ、この光検出手段の走査によって散乱媒
体の光学定数の面内分布を求めるように構成されている
ことを特徴とする光計測装置。6. A means for scanning the light detecting means according to claim 1 or 2 two-dimensionally along the surface of the scattering medium, wherein the scanning of the light detecting means reduces the optical constant of the scattering medium. An optical measurement device configured to obtain an in-plane distribution.
るものが用いられるとともに、 前記光検出手段として前記計測光を各波長毎に検出可能
なものが用いられ、 前記演算手段が、計測光の各波長における散乱媒体内部
の機能情報を求めるように構成されていることを特徴と
する請求項1から6いずれか1項記載の光計測装置。7. A light source that emits measurement light of a plurality of wavelengths is used as the light source, and a light detection unit that can detect the measurement light for each wavelength is used as the light detection unit. The optical measurement device according to any one of claims 1 to 6, wherein function information inside the scattering medium at each wavelength is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10312227A JP2000136997A (en) | 1998-11-02 | 1998-11-02 | Optical measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10312227A JP2000136997A (en) | 1998-11-02 | 1998-11-02 | Optical measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000136997A true JP2000136997A (en) | 2000-05-16 |
Family
ID=18026721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10312227A Pending JP2000136997A (en) | 1998-11-02 | 1998-11-02 | Optical measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000136997A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001047422A1 (en) * | 1999-12-27 | 2001-07-05 | Hitachi, Ltd. | Biological photometric device |
WO2012115210A1 (en) * | 2011-02-23 | 2012-08-30 | 国立大学法人静岡大学 | Optical measurement device |
JP2013072736A (en) * | 2011-09-27 | 2013-04-22 | Seiko Epson Corp | Concentration determining device, optical absorption coefficient calculating method, concentration determining method, program for performing calculation of optical absorption coefficient and program for performing calculation of concentration |
KR20190012497A (en) * | 2017-07-27 | 2019-02-11 | 삼성전자주식회사 | Photo detector selection apparatus and method, scattering coefficient measurement apparatus and method |
-
1998
- 1998-11-02 JP JP10312227A patent/JP2000136997A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001047422A1 (en) * | 1999-12-27 | 2001-07-05 | Hitachi, Ltd. | Biological photometric device |
US7072700B2 (en) | 1999-12-27 | 2006-07-04 | Hitachi, Ltd. | Biological photometric device |
WO2012115210A1 (en) * | 2011-02-23 | 2012-08-30 | 国立大学法人静岡大学 | Optical measurement device |
JPWO2012115210A1 (en) * | 2011-02-23 | 2014-07-07 | 国立大学法人静岡大学 | Optical measuring device |
EP2679981A4 (en) * | 2011-02-23 | 2015-08-19 | Univ Shizuoka Nat Univ Corp | OPTICAL MEASURING DEVICE |
US9433352B2 (en) | 2011-02-23 | 2016-09-06 | National University Corporation Shizuoka University | Optical measuring device |
JP2013072736A (en) * | 2011-09-27 | 2013-04-22 | Seiko Epson Corp | Concentration determining device, optical absorption coefficient calculating method, concentration determining method, program for performing calculation of optical absorption coefficient and program for performing calculation of concentration |
KR20190012497A (en) * | 2017-07-27 | 2019-02-11 | 삼성전자주식회사 | Photo detector selection apparatus and method, scattering coefficient measurement apparatus and method |
KR102422021B1 (en) * | 2017-07-27 | 2022-07-15 | 삼성전자주식회사 | Photo detector selection apparatus and method, scattering coefficient measurement apparatus and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3433534B2 (en) | Method and apparatus for measuring scattering and absorption characteristics in scattering medium | |
JP4038179B2 (en) | Method and apparatus for the determination of light transport parameters and analytes in biological matrices | |
US8396534B2 (en) | Intravital-information imaging apparatus | |
JP4701468B2 (en) | Biological information measuring device | |
JP4469903B2 (en) | Biological information imaging device | |
JP5541662B2 (en) | Subject information acquisition apparatus and control method thereof | |
JP4643273B2 (en) | Apparatus for blood measurement | |
ES2543464T3 (en) | Surface plasmon resonance detection procedure and detection system | |
JP7012235B2 (en) | Light detection system | |
US20100081912A1 (en) | Ultrasound-Optical Doppler Hemometer and Technique for Using the Same | |
JP2006516207A (en) | Photoacoustic analysis method and apparatus | |
JP3859746B2 (en) | Optical measuring device for light absorber | |
CN105188523A (en) | Deep tissue flowmetry using diffuse speckle contrast analysis | |
JP2011519635A (en) | Optical microneedle spectrometer | |
JP4136704B2 (en) | Probe for optical measurement device and multichannel optical measurement device using the same | |
JP3425674B2 (en) | Component concentration measuring apparatus and method | |
US7262836B2 (en) | Apparatus for measuring biological information and method for measuring biological information | |
JP2000136997A (en) | Optical measuring device | |
JP2013088138A (en) | Refraction factor measuring device, concentration measuring device and method thereof | |
CN118369046A (en) | Method and detector arrangement for determining a concentration of a substance | |
US9993158B2 (en) | Apparatus for measuring condition of object | |
US7565249B2 (en) | Method for the determination of a light transport parameter in a biological matrix | |
JP2008519633A (en) | Fingerprint imaging | |
JP2020010880A5 (en) | ||
JP4047904B2 (en) | Biological information measuring optical element and biological information measuring apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051226 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060131 |