JP2000133884A - Quantum well structure light-emitting device - Google Patents
Quantum well structure light-emitting deviceInfo
- Publication number
- JP2000133884A JP2000133884A JP30295998A JP30295998A JP2000133884A JP 2000133884 A JP2000133884 A JP 2000133884A JP 30295998 A JP30295998 A JP 30295998A JP 30295998 A JP30295998 A JP 30295998A JP 2000133884 A JP2000133884 A JP 2000133884A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- well layer
- light emitting
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004888 barrier function Effects 0.000 claims abstract description 78
- 239000004065 semiconductor Substances 0.000 claims abstract description 35
- 150000004767 nitrides Chemical class 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000013078 crystal Substances 0.000 claims description 57
- 229910052738 indium Inorganic materials 0.000 claims description 53
- 239000000203 mixture Substances 0.000 claims description 51
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 50
- 238000005253 cladding Methods 0.000 claims description 26
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 16
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 9
- 229910052733 gallium Inorganic materials 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 6
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 claims description 4
- 125000005842 heteroatom Chemical group 0.000 claims description 4
- 239000004020 conductor Substances 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 558
- 239000012071 phase Substances 0.000 description 34
- 239000000463 material Substances 0.000 description 28
- 238000005452 bending Methods 0.000 description 27
- 230000007704 transition Effects 0.000 description 26
- 230000000694 effects Effects 0.000 description 16
- 229910002601 GaN Inorganic materials 0.000 description 14
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000000969 carrier Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 238000000295 emission spectrum Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000001419 dependent effect Effects 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 7
- 239000000470 constituent Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- JZPXQBRKWFVPAE-UHFFFAOYSA-N cyclopentane;indium Chemical compound [In].[CH]1[CH][CH][CH][CH]1 JZPXQBRKWFVPAE-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 229910021476 group 6 element Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000003362 semiconductor superlattice Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、III 族窒化物半導
体結晶からなる量子井戸構造体を発光層とするpn接合
型DH構造の量子井戸構造発光素子を形成するための技
術に係わり、特に高輝度で且つ単色性に優れた発光をも
たらす量子井戸構造の発光層を構成するための技術に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for forming a pn junction type DH quantum well structure light emitting device using a quantum well structure made of a group III nitride semiconductor crystal as a light emitting layer. The present invention relates to a technique for forming a light emitting layer having a quantum well structure that emits light with excellent brightness and monochromaticity.
【0002】[0002]
【従来技術】実用化に至っている青色帯或いは緑色帯な
どの短波長可視光を放射する発光ダイオード(LED)
等の発光素子の全んどは、III 族窒化物半導体の一種で
あるn形の窒化ガリウム・インジウム(GaαIn1-α
N:0≦α≦1)を発光層(活性層)として構成されて
いる。GaαIn1-αNが、インジウム組成比(=1−
α)如何に依って、大凡、2.0エレクトロンボルト
(eV)から約3.4eVに亘る、短波長の可視光或い
は近紫外光を出射するに好都合な禁止帯幅を室温で与え
るのが大きな理由である(特許出願公告昭和55年第3
834号参照)。2. Description of the Related Art Light-emitting diodes (LEDs) that emit short-wavelength visible light such as a blue band or a green band that have been put into practical use
Most of light emitting devices such as n-type gallium indium nitride (GaαIn 1- α) which is a kind of group III nitride semiconductor
N: 0 ≦ α ≦ 1) as a light emitting layer (active layer). GaαIn 1 -αN has an indium composition ratio (= 1−1).
α) Depending on how it is provided, at room temperature, a convenient bandgap for emitting short-wavelength visible light or near-ultraviolet light ranging from about 2.0 electron volts (eV) to about 3.4 eV. This is the reason (Patent Application Publication No. 3 of 1980)
No. 834).
【0003】従来の発光部の構成は、n形及びp形のク
ラッド層間に、GaαIn1-αNからなる発光層を挟持
した、所謂pn接合型のダブルヘテロ(double
hetero:DH)構造から構成するのが一般的であ
る(Jpn.J.Appl.Phys.,Vol.3
4、Part2、No.10B(1995)、L133
2〜L1335頁参照)。一方、発光層の結晶構造的な
構成の従来例を省みれば、インジウム組成を均一とする
GaαIn1-αNの単一の層から発光層を構成する例が
ある(特開平9−36430号公報明細書参照)。ま
た、積層構造的に観れば、単一量子井戸(Single
Quantum Well:SQW)構造或いは多重
量子井戸(Multi Quantum Well:M
QW)構造から構成する技術が開示されている(特開平
9−36430号公報明細書参照)。A conventional light emitting portion has a so-called pn junction type double hetero structure in which a light emitting layer made of GaαIn 1 -αN is sandwiched between n-type and p-type cladding layers.
Hetero: DH) structure (Jpn. J. Appl. Phys., Vol . 3).
4 , Part2, No. 10B (1995), L133
2-L1335). On the other hand, if the conventional example of the crystal structure of the light emitting layer is omitted, there is an example in which the light emitting layer is formed from a single layer of GaαIn 1 -αN having a uniform indium composition (Japanese Patent Laid-Open No. 9-36430). See specification). Further, when viewed stacked structure, a single quantum well (S ingle
Q uantum W ell: SQW) structure or a multiple quantum well (M ulti Q uantum W ell: M
A technique comprising a QW) structure is disclosed (see Japanese Patent Application Laid-Open No. 9-36430).
【0004】発光層をSQW或いはMQW構造から構成
すれば、特に単色性に優れる発光が得られる利点があ
る。また、レーザダイオード(LD)にあっては、発振
閾値の低下がもたらされる利点があるからである(末松
安晴著、「光デバイス」((株)コロナ社、平成9年
5月15日、初版第8刷発行)、63頁参照)。[0004] If the light emitting layer is formed of an SQW or MQW structure, there is an advantage that light emission with particularly excellent monochromaticity can be obtained. This is because a laser diode (LD) has an advantage of lowering the oscillation threshold (Yasuharu Suematsu, “Optical Device” (Corona Co., Ltd., May 15, 1997, first edition) 8th print), page 63).
【0005】MQWの構成要素でもある従来のSQWの
エネルギー帯構造を模式的に図9に例示する。SQW
は、基本的に、障壁作用を呈する層010、011と、
それに挟持された発光層たる井戸層012との接合をも
って構成される。量子井戸構造の発光層を構成するにあ
たり、障壁層の層厚は略同一とするのが従来例である
(特開平9−36422号公報明細書参照)。井戸層も
同様に、量子井戸構造の終端を構成する井戸層(終端井
戸層)を含めて略同一の層厚のGa0.93In0.07Nから
構成する例が知れている(特開平9−36423号公報
明細書参照)。FIG. 9 schematically shows an energy band structure of a conventional SQW which is also a component of the MQW. SQW
Are basically layers 010, 011 exhibiting a barrier action,
It is configured with a junction with a well layer 012 as a light emitting layer sandwiched therebetween. In forming a light emitting layer having a quantum well structure, it is a conventional example that the thickness of a barrier layer is substantially the same (see Japanese Patent Application Laid-Open No. 9-36422). Similarly, there is known an example in which a well layer is formed of Ga 0.93 In 0.07 N having substantially the same layer thickness including a well layer (terminating well layer) forming a terminal of a quantum well structure (Japanese Patent Laid-Open No. 9-36423). Gazette).
【0006】また、図10は、図9に例示したSQW構
造に於ける矩形ポテンシャル構成を示すものである。障
壁層010、011は、井戸層012の禁止帯幅013
よりも大きなバンドギャップ014、015の材料から
構成されるのが常である。井戸層012が配置された領
域のポテンシャル井戸部016の伝導帯017側には、
伝導帯端から一定の準位を保った量子準位019、02
0が発生している。また、価電子帯018側にも、価電
子帯端から一定の準位を保った量子準位021、022
が発生している。この量子準位019〜022の発生に
より、遷移エネルギー023、024は、井戸層012
の禁止帯幅013より大となるのが常識である(上記の
「光デバイス」、63頁参照)。従って、量子井戸構造
からの発光の波長は、井戸層を成す材料が本来有する禁
止帯幅に対応する波長よりも、より短波長側に移行する
ものとなるのが理論の教えるところである。FIG. 10 shows a rectangular potential configuration in the SQW structure shown in FIG. The barrier layers 010 and 011 are formed by the forbidden band width 013 of the well layer 012.
It is usually made of a material having a larger band gap 014, 015. On the conduction band 017 side of the potential well portion 016 in the region where the well layer 012 is arranged,
Quantum levels 019, 02 maintaining a constant level from the conduction band edge
0 has occurred. Also, on the valence band 018 side, quantum levels 021 and 022 maintaining a constant level from the valence band edge.
Has occurred. Due to the generation of the quantum levels 019 to 022, the transition energies 023 and 024 are changed to the well layer 012.
Is larger than the forbidden band width 013 (see “Optical Device”, page 63). Therefore, the theory teaches that the wavelength of light emitted from the quantum well structure shifts to a shorter wavelength side than the wavelength corresponding to the band gap inherent to the material forming the well layer.
【0007】量子井戸構造の発光層を備えた従来のIII
族窒化物半導体DH構造の発光素子にあって、発光部の
ポテンシャル構成は、図10に例示する如く、井戸層0
12を中心として線対称型の矩形ポテンシャル構成とな
っているのがもっぱらである(特開平8−11612
8号公報及び特開平9−8412号公報参照)。或い
は、伝導帯及び価電子帯のレベルが一様に直線的に変化
するポテンシャル構成となっているものである(Ma
t.Res.Soc.Symp.Proc.,Vol.
449(1997)、1167〜1172頁参照)。し
かしながら一方では、この様な一般的な矩形ポテンシャ
ル井戸構造からも、量子力学的理論が指摘する理論的帰
結とは反対に、井戸層(発光層)を構成するIII 族窒化
物半導体の正規の(本来の)バンドギャップエネルギー
よりも小さなエネルギーの発光をもたらす窒化物半導体
発光素子が知られている(特開平8−316528号
公報及びEUROPEAN PATENT APPLICATION EP−0 716
457 A2参照)。A conventional III having a light emitting layer of a quantum well structure
In the light emitting device having the group III nitride semiconductor DH structure, the potential configuration of the light emitting portion is, as illustrated in FIG.
In general, it has a rectangular potential configuration which is symmetrical with respect to the center line 12 (see Japanese Patent Application Laid-Open No. 8-11612).
8 and JP-A-9-8412). Alternatively, it has a potential configuration in which the levels of the conduction band and the valence band uniformly and linearly change (Ma
t. Res. Soc. Symp. Proc. , Vol.
449 (1997), pp. 1167-1172). However, on the other hand, even from such a general rectangular potential well structure, contrary to the theoretical result pointed out by quantum mechanical theory, the regular (III) of the group III nitride semiconductor constituting the well layer (light emitting layer) is used. 2. Description of the Related Art A nitride semiconductor light emitting device that emits light with energy smaller than the original band gap energy is known (JP-A-8-316528 and EUROPEAN PATENT APPLICATION EP-0 716).
457 A2).
【0008】[0008]
【発明が解決しようとする課題】GaαIn1-αNを井
戸層とする量子井戸構造の発光層にあって、発光波長を
制御するために利用される一つの従来技術として、イン
ジウム組成比(=1−α)に変化を与える手段がある。
例えば、発光波長のより長波長化を所望するにあって
は、インジウム組成比を比較的大とするGaαIn1-α
Nを井戸層とする施策が講じられる。インジウム組成比
の増大に伴い、GaαIn1-αNの禁止帯幅は小とな
り、それに応じて発光波長は長波長となるからである
(特公昭55−3834号参照)。In a light emitting layer having a quantum well structure in which GaαIn 1 -αN is used as a well layer, one conventional technique used for controlling an emission wavelength is an indium composition ratio (= 1). −α).
For example, when it is desired to increase the emission wavelength, GaαIn 1− α having a relatively large indium composition ratio is used.
Measures will be taken to make N a well layer. This is because as the indium composition ratio increases, the band gap of GaαIn 1 -αN becomes smaller, and the emission wavelength becomes longer accordingly (see Japanese Patent Publication No. 55-3834).
【0009】しかし、インジウム組成比が、例えば約
0.4から約0.5と高いGaαIn1-αNを得るに
は、成膜温度を600℃前後の低温に設定することが余
儀なくされる(Materials Letters,
35(1985)、85〜89頁参照)。500℃前後
の低温で成膜したGaαIn1-αNは、結晶性に劣るも
のであることが知れている(「電子情報通信学会誌」、
Vol.76,No.9(1993年9月)、913〜
917頁参照)。井戸層を構成するIII 族窒化物半導体
結晶層の優劣は、発光素子の発光強度の高低に反映され
る。結晶性に劣るGaα In1-α Nから井戸層を構
成することは、強度的に優れる発光をもたらす量子構造
発光層を得る妨げとなる。即ち、高輝度の量子井戸構造
の発光素子が得られ難いのが従来技術に於ける一つの問
題点である。However, in order to obtain GaαIn 1 -αN having a high indium composition ratio of, for example, about 0.4 to about 0.5, it is necessary to set the film forming temperature to a low temperature of about 600 ° C. (Materials Letters,
35 (1985), pages 85-89). It is known that GaαIn 1 -αN formed at a low temperature of about 500 ° C. has poor crystallinity (“Journal of the Institute of Electronics, Information and Communication Engineers”,
Vol. 76, No. 9 (September 1993), 913-
917). The superiority of the group III nitride semiconductor crystal layer constituting the well layer is reflected in the level of the light emission intensity of the light emitting element. Constituting the well layer from GaαIn 1 -αN having poor crystallinity hinders obtaining a quantum structure light-emitting layer that emits light with excellent intensity. That is, one of the problems in the prior art is that it is difficult to obtain a light emitting element having a quantum well structure with high luminance.
【0010】量子井戸構造では、井戸層内にキャリアの
遷移エネルギーの増大を帰結する量子準位が発生する
(例えば、特開平9−8412号公報参照)。従って、
同一の発光波長を獲得するに当たって、単一層から発光
層を構成する場合に比較して更に、インジウム組成比を
大とするGaαIn1-αNから井戸層を構成する必要が
生ずる。上記の様に、高インジウム組成比となすべく、
低温で成膜したGaαIn1-αN結晶程、結晶性はより
劣るものとなる。即ち、高いインジウム組成比のGaα
In1-αNから成る量子井戸構造発光層からは、強度的
に優れる例えば、緑色帯等の短波長可視光を都合良く得
られないのが現状である。[0010] In the quantum well structure, a quantum level resulting in an increase in the transition energy of carriers is generated in the well layer (for example, see Japanese Patent Application Laid-Open No. 9-8412). Therefore,
In order to obtain the same emission wavelength, it is necessary to form the well layer from GaαIn 1 -αN having a higher indium composition ratio as compared with the case where the light-emitting layer is formed from a single layer. As mentioned above, to achieve a high indium composition ratio,
The crystallinity becomes worse as the GaαIn 1 -αN crystal formed at a lower temperature. That is, Gaα having a high indium composition ratio
At present, short-wavelength visible light such as a green band, which is excellent in intensity, cannot be conveniently obtained from a quantum well structure light emitting layer composed of In 1 -αN.
【0011】一方、別の従来技術に倣い、井戸層を構成
するIII 族窒化物半導体の正規の禁止帯幅に対応するよ
りも、より長波長の発光をもたらすとされる量子井戸構
造から発光層を構成するにしても(特許第278069
1号参照)、理論上発光の長波長化が達成出来ない理不
尽な矩形ポテンシャル井戸構造とは、別のポテンシャル
構成を発明する必要がある。本発明が解決すべき第1の
課題も此処に有り、単色性に優れる発光をもたらす優位
性を備えた、結晶成長が簡便で尚且結晶性に優れる比較
的に低いインジウム組成比のGaαIn1-αNをもって
しても、例えば、青緑帯或いは緑色帯等の発光が容易
に、安定して得られる量子井戸構造の構成を提供するこ
とにある。特に、バンド構造の観点から好適なポテンシ
ャル構造を備えた量子井戸構造の構成を提供することに
ある。On the other hand, following another prior art, the quantum well structure which emits light of a longer wavelength than the corresponding forbidden band gap of the group III nitride semiconductor constituting the well layer is changed from the light emitting layer to the light emitting layer. (Japanese Patent No. 278069)
1), it is necessary to invent a potential configuration different from an unreasonable rectangular potential well structure which cannot theoretically achieve a longer wavelength of light emission. The first problem to be solved by the present invention is also present here. GaαIn 1 -αN having a relatively low indium composition ratio, which has an advantage of emitting light with excellent monochromaticity, is simple in crystal growth, and has excellent crystallinity. It is another object of the present invention to provide a structure of a quantum well structure that can easily and stably emit light in a blue-green band or a green band. In particular, it is an object of the present invention to provide a configuration of a quantum well structure having a suitable potential structure from the viewpoint of a band structure.
【0012】また、本発明が第2の課題とするところ
は、井戸層を構成するGaαIn1-αNの結晶性に依っ
て、発光強度に敏感に変化を来す従来の問題にあって、
例えば、青緑帯或いは更なる高強度の発光をもたらすた
めに、量子井戸構造の井戸層が備えるべき要件を、結晶
材料的な観点から明確にすることにある。本発明の目的
は、上記の主たる課題を解決して、発光強度にも、ま
た、発光の単色性にも優れる、III 族窒化物半導体から
成る量子井戸構造の発光層を備えた発光素子を提供する
ことにある。The second object of the present invention is to solve the conventional problem that the emission intensity is sensitively changed depending on the crystallinity of GaαIn 1 -αN constituting the well layer.
For example, it is to clarify the requirements that the well layer of the quantum well structure should have in order to provide a blue-green band or higher-intensity light emission from the viewpoint of a crystalline material. An object of the present invention is to solve the above-mentioned main problems and to provide a light-emitting element having a light-emitting layer having a quantum well structure made of a group III nitride semiconductor, which is excellent in light emission intensity and monochromaticity of light emission. Is to do.
【0013】[0013]
【課題を解決するための手段】本発明は、上記の従来技
術の問題点を克服して、発光の強度及び単色性の何れに
も優れる量子井戸構造のn形発光層を備えた、量子井戸
構造発光素子を提供することを目的として成されたもの
である。特に、請求項1に記載の発明は、従来技術に於
いて不明確であった、井戸層(活性層)を構成する半導
体材料の禁止帯よりも低いエネルギーの発光をもたらす
に理に叶い、且つ好都合であるバンド構造を内包する単
一若しくは多重量子井戸構造の発光層を備えた発光素子
について提示するものである。また、そのバンド構成を
都合良くもたらせる井戸層に係わる接合構成を述べるこ
とにある。SUMMARY OF THE INVENTION The present invention overcomes the above-mentioned problems of the prior art and provides a quantum well having an n-type light emitting layer having a quantum well structure excellent in both emission intensity and monochromaticity. It is made for the purpose of providing a structural light emitting device. In particular, the invention described in claim 1 makes sense to bring about emission of energy lower than the forbidden band of the semiconductor material constituting the well layer (active layer), which was unclear in the prior art, and A light emitting device having a light emitting layer having a single or multiple quantum well structure including a convenient band structure is presented. Another object of the present invention is to describe a junction structure relating to a well layer that can provide the band structure conveniently.
【0014】即ち、請求項1に記載の発明は、結晶基板
の一表面上に形成され、III 族窒化物半導体結晶層から
なるn形及びp形クラッド層に挟持されたn形発光層を
備えた、pn接合型ダブルヘテロ(DH)構造の発光素
子において、前記n形発光層は、単一若しくは多重の量
子井戸構造を有し、該量子井戸構造の終端を構成する井
戸層(終端井戸層)とp形クラッド層との中間に、n形
のIII 族窒化物半導体から成る介在層が配置され、該終
端井戸層が、前記n形介在層と終端井戸層との接合界面
近傍の領域において、該終端井戸層の伝導帯を、フェル
ミレベル(Fermi level)に向けて低ポテン
シャル側に下に凸に曲折させたポテンシャル構成を有す
る、インジウム(In)を含有するn形のIII 族窒化物
半導体結晶層から成ることを特徴としている。That is, the invention according to claim 1 includes an n-type light emitting layer formed on one surface of a crystal substrate and sandwiched between n-type and p-type cladding layers made of a group III nitride semiconductor crystal layer. Further, in a light emitting device having a pn junction type double hetero (DH) structure, the n-type light emitting layer has a single or multiple quantum well structure, and a well layer (termination well layer) constituting an end of the quantum well structure. ) And the p-type cladding layer, an intervening layer made of an n-type group III nitride semiconductor is disposed, and the terminal well layer is formed in a region near a junction interface between the n-type intervening layer and the terminal well layer. An indium (In) -containing n-type group III nitride semiconductor having a potential configuration in which a conduction band of the terminal well layer is bent downward and convex toward a lower potential side toward a Fermi level. Consisting of crystal layers It is characterized by.
【0015】また、請求項2の発明は、請求項1記載の
発明に於いて、前記終端井戸層が、前記n形介在層と該
n形介在層に終端井戸層を挟んで対峙するn形障壁層と
の間に挟持されていることを特徴としている。According to a second aspect of the present invention, in the first aspect of the present invention, the terminal well layer faces the n-type intervening layer with the n-type intervening layer sandwiching the terminal well layer. It is characterized by being sandwiched between a barrier layer.
【0016】また、請求項3の発明は、請求項2に記載
の発明において、前記n形障壁層を、前記n形介在層と
略同一の組成で略同一の層厚から成すことを特徴として
いる。According to a third aspect of the present invention, in the second aspect, the n-type barrier layer has substantially the same composition and the same thickness as the n-type intervening layer. I have.
【0017】また、請求項4に記載の発明は、発光波長
の長波長化をもたらすに優位なポテンシャル構成を内包
させた終端井戸層に関するものである。即ち、請求項4
に記載の発明は、請求項2または3に記載の発明におい
て、前記終端井戸層が、前記n形障壁層との接合界面近
傍の領域において、該終端井戸層の価電子帯をフェルミ
レベルに向けて上に凸に曲折させた低ポテンシャル領域
を有することを特徴とするものである。The fourth aspect of the present invention relates to a terminal well layer including a potential configuration that is advantageous for increasing the emission wavelength. That is, claim 4
In the invention described in (2), in the invention described in (2) or (3), the terminal well layer directs the valence band of the terminal well layer to the Fermi level in a region near a junction interface with the n-type barrier layer. And has a low potential region bent upward and convex.
【0018】また、請求項5に記載の発明は、請求項4
に記載の発明において、井戸層を構成する半導体材料の
禁止帯幅に対応するよりも長波長の発光をもたらせる、
バンドの曲折の大きさを都合良く規定した発明である。
即ち、請求項5に記載の発明において、終端井戸層は、
伝導帯の本来のポテンシャルレベル(Eco)と、フェ
ルミレベル側へ落ち込んだ低ポテンシャル端(Ec)と
の、エネルギー差(ΔEc=|Eco−Ec|)と、価
電子帯の本来のポテンシャルレベル(Evo)と、フェ
ルミレベル側へ落ち込んだ低ポテンシャル端(Ev)と
のエネルギー差(ΔEv=|Evo−Ev|)との、合
計のエネルギー差(ΔEc+ΔEv)を、0.4エレク
トロンボルト(eV)以上とする伝導帯及び価電子帯の
曲折を有することを特徴としている。The invention described in claim 5 is the same as the claim 4.
In the invention described in the above, it is possible to provide light emission of a longer wavelength than corresponding to the band gap of the semiconductor material forming the well layer,
This is an invention that conveniently defines the size of the bending of the band.
That is, in the invention according to claim 5, the terminal well layer is
The energy difference (ΔEc = | Eco−Ec |) between the original potential level (Eco) of the conduction band and the low potential end (Ec) dropped to the Fermi level side, and the original potential level (Evo) of the valence band ) And the energy difference (ΔEv = | Evo−Ev |) between the low potential end (Ev) dropped to the Fermi level side, and the total energy difference (ΔEc + ΔEv) is 0.4 electron volts (eV) or more. It is characterized by having a bending of the conduction band and the valence band.
【0019】また、請求項6に記載の発明は、請求項4
または5に記載の発明にあって、特に、多重量子井戸構
造から成る発光層から、単色性に優れる発光を得るため
の構成を提供するものである。即ち、請求項6に記載の
発明は、請求項4または5に記載の発明において、前記
n形発光層が多重の量子井戸構造を有し、前記終端井戸
層の層厚は、上記の合計のエネルギー差(ΔEc+ΔE
v)を他の井戸層の合計のエネルギー差よりも大とする
ことを特徴としている。Further, the invention according to claim 6 provides the invention according to claim 4.
In the invention according to the fifth aspect, in particular, the invention provides a configuration for obtaining light emission excellent in monochromaticity from a light emitting layer having a multiple quantum well structure. That is, in the invention according to claim 6, in the invention according to claim 4 or 5, the n-type light emitting layer has a multiple quantum well structure, and the layer thickness of the terminal well layer is the sum of the above-mentioned total. Energy difference (ΔEc + ΔE
v) is larger than the total energy difference of the other well layers.
【0020】また、請求項7に記載の発明は、請求項1
乃至6の何れかに記載の発明において、単色性に優れ、
尚且、特に、発光の長波長化をもたらすに都合の良い終
端井戸層を構成する上での優位性を提供するものであ
る。即ち、請求項7に記載の発明は、請求項1乃至6の
何れかに記載の発明において、前記n形発光層が多重の
量子井戸構造を有し、前記終端井戸層の層厚を他の井戸
層の層厚以下としたことを特徴としている。The invention described in claim 7 is the first invention.
In the invention according to any one of Items 1 to 6, excellent in monochromaticity,
In addition, the present invention particularly provides an advantage in forming a terminal well layer that is convenient for increasing the wavelength of light emission. That is, in the invention according to claim 7, in the invention according to any one of claims 1 to 6, the n-type light-emitting layer has a multiple quantum well structure, and the thickness of the terminal well layer is changed to another thickness. It is characterized in that the thickness is not more than the thickness of the well layer.
【0021】また、請求項8に記載の発明は、請求項1
乃至7に記載の発明において、発光強度の増加が図れる
終端井戸層を構成するための要件を提示するものであ
る。即ち、請求項8に記載の発明は、請求項1乃至7に
記載の発明において、前記終端井戸層を、インジウム組
成比(=X)を0.3以下とする主体相と、該主体相と
はインジウム組成比を相違し、主体相との接合境界領域
に歪層を存在させた従属相とを含む多相構造のn形窒化
ガリウム・インジウム(Ga1-X InX N:0≦X≦
0.3)から構成することを特徴としている。The invention described in claim 8 is the first invention.
In the inventions of (1) to (7), the present invention provides requirements for forming a terminal well layer capable of increasing emission intensity. That is, in the invention described in claim 8, in the invention described in any one of claims 1 to 7, the terminal well layer includes a main phase having an indium composition ratio (= X) of 0.3 or less; Is a multiphase n-type gallium indium nitride (Ga 1−x In x N: 0 ≦ X ≦) having a different indium composition ratio and including a dependent phase having a strained layer in the junction boundary region with the main phase.
0.3).
【0022】また、請求項9に記載の発明は、請求項8
に記載の発明にあって、更に発光強度を増大させるため
に井戸層が備えるべき要件を提示するものである。即
ち、請求項9に記載の発明は、請求項8に記載の発明に
おいて、前記多相構造からなる終端井戸層を、酸素原子
濃度を5×1017cm-3以上で5×1020cm-3以下と
する、n形のGa1-X InX N(0≦X≦0.3)結晶
から構成したことを特徴としている。The invention according to claim 9 is the invention according to claim 8
In the invention described in (1), the requirement that the well layer should have in order to further increase the emission intensity is presented. That is, the invention of claim 9 is the invention according to claim 8, the termination well layer made from the multi-phase structure, the oxygen atom concentration in 5 × 10 17 cm -3 to 5 × 10 20 cm - It is characterized by being made of an n -type Ga 1-x In x N (0 ≦ X ≦ 0.3) crystal whose number is 3 or less.
【0023】[0023]
【発明の実施の形態】本願の請求項1に記載の発明に係
わる第1の実施形態について、量子井戸構造を単一量子
井戸(SQW)構造とした場合を説明する。図1に、障
壁層10、井戸層11、及び介在層12を順次、積層し
た構造から成る、SQW構造1bのpn接合型DH構造
の発光部1のエネルギー帯構造を例示する。本発明に係
わるSQW構造1bは、1個の障壁(バリア:barr
ier)層10と、1個の介在層12とで、1個の井戸
層11を挟持した構成から成り、この構成より発光層1
aが形成されている。発光層1aは、n形クラッド層1
3とp形クラッド層14とに挟持され、発光部1が構成
されている。この唯一の井戸層から成るSQW構造にあ
っては、その唯一の井戸層11が終端井戸層11aであ
る。本発明の量子井戸構造の特徴は、終端井戸層11a
とp形クラッド層14との中間に介在層12が挿入され
た構成にある。即ち、本発明では、終端井戸層11a
を、p形結晶層に直接、接合させる構成とはしていな
い。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The first embodiment according to the first aspect of the present invention will be described in the case where the quantum well structure is a single quantum well (SQW) structure. FIG. 1 illustrates an energy band structure of a light emitting unit 1 having a pn junction type DH structure of an SQW structure 1b having a structure in which a barrier layer 10, a well layer 11, and an intervening layer 12 are sequentially stacked. The SQW structure 1b according to the present invention includes one barrier (barrier: barr).
ier) layer 10 and one intervening layer 12 so as to sandwich one well layer 11.
a is formed. The light emitting layer 1a includes the n-type cladding layer 1
3 and the p-type cladding layer 14 to constitute the light emitting section 1. In the SQW structure including the single well layer, the single well layer 11 is the terminal well layer 11a. The feature of the quantum well structure of the present invention is that the terminal well layer 11a
And an intermediate layer 12 is inserted between the p-type cladding layer 14 and the p-type cladding layer 14. That is, in the present invention, the termination well layer 11a
Is not directly bonded to the p-type crystal layer.
【0024】図2は、本願の請求項1に記載の発明に係
わる第1の実施形態の量子井戸構造を多重量子井戸(M
QW)構造とした場合を、エネルギー帯構造を基に説明
するための図である。SQW構造の場合と同様に、終端
井戸層11aとp形クラッド層14との中間に介在層1
2が挿入される構成となっている。このMQW構造1d
の発光層1aは、n形及びp形クラッド層13,14に
挟持され、発光部1が構成されている。介在層12に接
合する、MQW構造1dの最終端を構成する井戸層11
aが終端井戸層である。第1近接井戸層としての終端井
戸層11aの次に介在層12に隣接している井戸層が第
2近接井戸層11bである。第2近接井戸層11bよ
り、n形クラッド層13に至る間に配置されている、井
戸層(図2では、11c〜11e)が第2近接井戸層1
1b以降の井戸層である。これらの井戸層11a〜11
eと障壁層10を交互に重層して5周期のMQW構造1
dが構成されている。FIG. 2 shows a quantum well structure of the first embodiment according to the first aspect of the present invention.
It is a figure for explaining the case where it is a QW) structure based on an energy band structure. As in the case of the SQW structure, an intermediate layer 1 is provided between the terminal well layer 11a and the p-type cladding layer 14.
2 is inserted. This MQW structure 1d
The light emitting layer 1a is sandwiched between the n-type and p-type cladding layers 13 and 14 to form the light emitting section 1. The well layer 11 which joins the intervening layer 12 and forms the final end of the MQW structure 1d
a is a terminal well layer. The well layer adjacent to the intervening layer 12 next to the terminal well layer 11a as the first proximity well layer is the second proximity well layer 11b. The well layers (11c to 11e in FIG. 2) arranged between the second proximity well layer 11b and the n-type cladding layer 13 are the second proximity well layers 1.
1b and subsequent well layers. These well layers 11a to 11
e and the barrier layer 10 are alternately layered to form a five-period MQW structure 1.
d is configured.
【0025】図2において、n形及びp形クラッド層1
3,14は、n形及びp形の例えば、窒化アルミニウム
・ガリウム混晶(AlY Ga1-Y N:0≦Y≦1)から
構成できる。井戸層11a〜11eが障壁層10及び介
在層12よりも小さな禁止帯幅の半導体材料から構成す
るのは、量子準位を創生するための常套手段である。窒
素に加えて他の砒素(As)やリン(P)等の第V族元
素を構成元素とする、例えば、砒化窒化ガリウム混晶
(GaN1-Y AsY :0<Y<1)やリン化窒化ガリウ
ム(GaN1-Z PZ :0<Z<1)等のn形III 族窒化
物半導体材料からも井戸層を構成することは可能であ
る。しかし、インジウム(In)を構成元素として含む
ことにより、短波長可視光を発するに好適な禁止帯幅が
より好適にもたらされるインジウム含有III 族窒化物半
導体材料、特に、Ga1-X InX N混晶から井戸層を好
んで構成する。In FIG. 2, n-type and p-type cladding layers 1
3, 14 can be composed of n-type and p-type, for example, aluminum-gallium nitride mixed crystal (Al Y Ga 1-Y N: 0 ≦ Y ≦ 1). It is a conventional means for creating a quantum level that the well layers 11a to 11e are made of a semiconductor material having a smaller band gap than the barrier layer 10 and the intervening layer 12. In addition to nitrogen, other Group V elements such as arsenic (As) and phosphorus (P) are used as constituent elements. For example, gallium arsenide mixed crystal (GaN 1-Y As Y : 0 <Y <1) or phosphorus It is also possible to form the well layer from an n-type group III nitride semiconductor material such as gallium oxynitride (GaN 1-Z P Z : 0 <Z <1). However, by containing indium (In) as a constituent element, an indium-containing group III nitride semiconductor material that more suitably provides a band gap suitable for emitting short-wavelength visible light, particularly Ga 1-X In X N It is composed of a mixed crystal and prefers a well layer.
【0026】井戸層及び障壁層は、n形の伝導を呈する
III 族窒化物半導体結晶層から構成するのが好ましい。
井戸層及び障壁層は、第IV族元素の珪素(Si)や錫
(Sn)、または第VI族の硫黄(S)やセレン(Se)
等のn形不純物をドーピングしたn形III 族窒化物半導
体結晶層から構成できる。しかし、不純物による不用意
な準位の形成を回避するため、本発明では、アンドープ
(undope)で高純度のGa1-X InX N混晶から
井戸層を構成するのを最も好ましいとする。障壁層は、
特に導電性に優れるn形結晶層から構成するのが好まし
い。The well layer and the barrier layer exhibit n-type conduction.
It is preferable to use a group III nitride semiconductor crystal layer.
The well layer and the barrier layer are made of a group IV element such as silicon (Si) or tin (Sn), or a group VI element such as sulfur (S) or selenium (Se).
And the like can be constituted by an n-type group III nitride semiconductor crystal layer doped with an n-type impurity such as However, in order to avoid inadvertent formation of levels due to impurities, in the present invention, it is most preferable to form the well layer from an undoped and high-purity Ga 1-x In x N mixed crystal. The barrier layer is
In particular, it is preferable to use an n-type crystal layer having excellent conductivity.
【0027】障壁層並びに井戸層として作用させるに好
適な層厚は、本発明においては、特に規定を加えるべき
事項ではない。キャリアの移動(transport)
に対する障壁作用を呈する障壁層、及び発光を担う井戸
層にとって好適な層厚は、クローニッヒ・ペニー(Kr
onig・Penny)則などの量子力学理論が自ずと
教示するところである(K.Seeger著、「セミコ
ンダクターの物理学(上)」((株)吉岡書店、199
1年6月10日第1刷発行)、12〜21頁参照)。強
いて言及すれば、障壁層は、約10〜20nm程度のト
ンネル(tunnel)効果が発揮できる層厚とするの
が一般的である。井戸層の層厚は概ね、10nm或いは
それ未満とするのが一般的である。MQW構造を成す井
戸層と障壁層並びに介在層の構成要件は、SQW構造の
発光層を構成する場合と同一である。MQW構造の発光
層を構成する障壁層の層厚は、敢えて同一とする必要は
ない。同じく、MQW構造を構成する井戸層の層厚は敢
えて統一する必然性もない。In the present invention, the layer thickness suitable for functioning as a barrier layer and a well layer is not particularly specified. Transfer of carrier (transport)
A suitable layer thickness for the barrier layer exhibiting a barrier effect on the light emission and the well layer responsible for light emission is Kronig-Penny (Kr
(K. Seeger, "Physics of Semiconductors (1)" (Yoshioka Shoten, 199)
The first printing was issued on June 10, 2001), pages 12 to 21). In general, the barrier layer generally has a layer thickness of about 10 to 20 nm that can exhibit a tunnel effect. Generally, the thickness of the well layer is generally 10 nm or less. The constituent requirements of the well layer, the barrier layer, and the intervening layer having the MQW structure are the same as those of forming the light emitting layer having the SQW structure. The thicknesses of the barrier layers constituting the light emitting layer having the MQW structure need not be the same. Similarly, there is no necessity to unify the thicknesses of the well layers constituting the MQW structure.
【0028】介在層12は、終端井戸層11aを構成す
る例えば、n形Ga1-X InX Nよりも禁止帯幅が大き
なIII 族窒化物半導体材料から構成する。特に、後述す
る様に、インジウム濃度を相違する複数の相から成る多
相構造から終端井戸層11aが構成されている場合、終
端井戸層11aを主体的に構成する主体相を構成する物
質以上の禁止帯幅を有するIII 族窒化物半導体より構成
する。また、介在層12は、井戸層11aが放射する短
波長の発光に対して透明な、例えばAlY Ga1-Y N
(0≦y≦1)材料から構成するのを好ましいとする。
介在層12は、n形結晶層から構成する。キャリア濃度
を約5×1017cm-3未満、望ましくは1×1017cm
-3以下とした、低キャリア濃度で高純度のIII 族窒化物
半導体材料から構成するのが好ましい。層厚は大凡、5
0nm以下で好ましくは20nm以下が適する。The intervening layer 12 is made of a group III nitride semiconductor material constituting the terminal well layer 11a, for example, having a larger band gap than n-type Ga 1-x In x N. In particular, as described later, when the terminal well layer 11a is composed of a multiphase structure composed of a plurality of phases having different indium concentrations, the terminal well layer 11a is formed of a material having a main phase that mainly constitutes the terminal well layer 11a. It is made of a group III nitride semiconductor having a band gap. Further, the intervening layer 12 is transparent to short-wavelength light emitted from the well layer 11a, for example, Al Y Ga 1 -YN.
(0 ≦ y ≦ 1) It is preferable to constitute the material.
Intervening layer 12 is composed of an n-type crystal layer. The carrier concentration is less than about 5 × 10 17 cm -3 , preferably 1 × 10 17 cm -3
It is preferable to use a high-purity Group III nitride semiconductor material with a low carrier concentration of -3 or less. Approximate layer thickness, 5
0 nm or less, preferably 20 nm or less is suitable.
【0029】介在層12は、低キャリア濃度で高純度の
結晶層から構成するのを好ましいとしているため、層厚
が必要以上に厚いと発光素子の順方向電圧が上昇するな
ど、低電圧で駆動可能な低消費電力の発光素子を得る際
に不都合を招く。介在層12が逆に、極端に薄いと膜の
連続性が損なわれ、終端井戸層11aの表面を一様の層
厚をもって被覆するに至らず、終端井戸層11aで、後
述するバンドの曲折を均一に発生させるに不十分とな
る。従って、介在層の層厚は2nm以上とするのが好ま
しい。Since it is preferable that the intervening layer 12 be formed of a high-purity crystal layer with a low carrier concentration, if the layer thickness is unnecessarily thick, the forward voltage of the light emitting element will increase, and driving at a low voltage will occur. This causes inconvenience in obtaining a light emitting element with low possible power consumption. Conversely, if the intervening layer 12 is extremely thin, the continuity of the film is impaired, and the surface of the terminal well layer 11a cannot be covered with a uniform thickness. Insufficient for uniform generation. Therefore, it is preferable that the thickness of the intervening layer be 2 nm or more.
【0030】図3は、図1に示した第1の実施形態に係
わるSQW構造1bの発光層1aを備えた発光部1の各
層の接合界面近傍のエネルギーバンド構成をより詳細に
説明するためのバンドダイヤグラム(band dia
gram)である。第1の実施形態に係わるバンド構成
の特徴は、n形介在層12との接合界面15a近傍にお
ける終端井戸層11aの内部領域に限り、伝導帯16が
フェルミレベル17側に下に凸に折れ曲がった曲折によ
り、低ポテンシャル部18が形成されていることにあ
る。FIG. 3 is a diagram for explaining in more detail the energy band configuration near the junction interface of each layer of the light emitting section 1 having the light emitting layer 1a of the SQW structure 1b according to the first embodiment shown in FIG. Band diagram
gram). The band structure according to the first embodiment is characterized in that the conduction band 16 is bent downward to the Fermi level 17 only in the inner region of the terminal well layer 11a near the junction interface 15a with the n-type intervening layer 12. The low potential portion 18 is formed by bending.
【0031】また、図4に示すのは、図2に示したMQ
W構造1dに対応するバンドダイヤグラムである。SQ
W構造1a及びMQW構造1dに拘わらず、第1の実施
形態に係わるバンド構成の特徴は、n形介在層12との
接合界面15a近傍の終端井戸層11a内に、伝導帯1
6がフェルミレベル17側に下に凸に折れ曲がった曲折
により、特に顕著に低ポテンシャル部18が形成されて
いることにある。FIG. 4 shows the MQ signal shown in FIG.
It is a band diagram corresponding to W structure 1d. SQ
Regardless of the W structure 1a and the MQW structure 1d, the feature of the band configuration according to the first embodiment is that the conduction band 1 is formed in the terminal well layer 11a near the junction interface 15a with the n-type intermediate layer 12.
6 is that the low potential portion 18 is particularly remarkably formed by the bending bent downward to the Fermi level 17 side.
【0032】上記の様に、伝導帯16に低ポテンシャル
領域18を形成するためには、終端井戸層11aとn形
介在層12とのヘテロ接合界面15aに於いて、組成を
急峻に変化させる必要が求められる。例えば、n形Al
Y Ga1-Y N(0≦Y≦1)から介在層12を、また、
同介在層12よりも小さな禁止帯幅のn形Ga1-X In
X N(0<X≦1)からなる終端井戸層11aとのヘテ
ロ接合系にあって、アルミニウム(Al)若しくはイン
ジウム(In)の原子濃度がそれを構成元素として含む
層内の平均的な濃度から2桁、濃度を増減するに要する
遷移領域幅は、約20nm以下、望ましくは約15nm
以下、更に好ましくは約12nm以下とする必要があ
る。遷移領域幅は、一般的な2次イオン質量分析法(S
IMS)或いはオージェ(Auger)電子分光分析法
(AES)などによる元素の分布状態の分析結果を基に
測量できる。遷移領域幅が上記の程度であれば、伝導帯
或いは価電子帯に低ポテンシャル部を創出できる必要条
件を揃えることができる。As described above, in order to form the low potential region 18 in the conduction band 16, the composition must be changed sharply at the heterojunction interface 15a between the terminal well layer 11a and the n-type intermediate layer 12. Is required. For example, n-type Al
The intervening layer 12 is formed from YGa 1-YN (0 ≦ Y ≦ 1).
N-type Ga 1-x In having a band gap smaller than that of the intermediate layer 12
In the heterojunction system with the terminal well layer 11a composed of XN (0 <X ≦ 1), the atomic concentration of aluminum (Al) or indium (In) is the average concentration in a layer containing it as a constituent element. , The transition region width required to increase or decrease the concentration is about 20 nm or less, preferably about 15 nm.
Hereinafter, it is more preferable that the thickness be about 12 nm or less. The transition region width is determined by a general secondary ion mass spectrometry (S
It can be measured based on the analysis result of the distribution state of the element by IMS or Auger electron spectroscopy (AES). If the width of the transition region is within the above range, the necessary conditions for creating a low potential portion in the conduction band or the valence band can be made uniform.
【0033】介在層12と終端井戸層11aとの接合界
面15a近傍の領域に局所的に設けた伝導帯16の低ポ
テンシャル領域部18には、電子19を蓄積させること
ができる。低ポテンシャル部18を、特に、電子19を
供給するp形クラッド層14との接合界面15aに隣接
させて、電子19の蓄積領域を設けておけば、電子に比
較して、拡散長の短い正孔(hole)を効率的に捕獲
でき、従って、同蓄積領域近傍で有効に電子と正孔との
放射再結合を果たせる優位性がある。Electrons 19 can be accumulated in the low potential region 18 of the conduction band 16 provided locally in the vicinity of the junction interface 15a between the intervening layer 12 and the terminal well layer 11a. If the low potential portion 18 is provided adjacent to the junction interface 15a with the p-type cladding layer 14 for supplying the electrons 19, and a storage region for the electrons 19 is provided, the positive potential has a shorter diffusion length than the electrons. There is an advantage that holes can be efficiently captured, and thus radiative recombination of electrons and holes can be effectively performed in the vicinity of the accumulation region.
【0034】また、伝導帯16の低ポテンシャル部18
は、ポテンシャルの一律な割合での変化により形成され
ているのではなく、介在層12及び終端井戸層11aと
の接合界面15a近傍の極く限定された狭い領域での急
激なバンド曲折により形成されている。従って、この微
小領域に局在するキャリア(電子)は、低次元、例えば
2次元キャリアとして挙動できる。このため、低次元で
あるが故のキャリアの高速走行性をもってして、発光の
応答性(response)が俊速な高速応答性の量子
井戸構造発光層がもたらされる利点も付随する。The low potential portion 18 of the conduction band 16
Is not formed by a change in the potential at a uniform rate, but is formed by a sharp band bending in a very limited narrow region near the junction interface 15a with the intervening layer 12 and the terminal well layer 11a. ing. Therefore, carriers (electrons) localized in the minute region can behave as low-dimensional, for example, two-dimensional carriers. For this reason, there is also an advantage that a high-speed responsive quantum well structure light-emitting layer is provided with a high-speed carrier owing to a low-dimensional structure, and a high-speed responsiveness (response).
【0035】本願の請求項2に記載の発明に係わる第2
の実施形態に示す結晶層の配置関係は、終端井戸層をn
形介在層に直接、接合させることを意味する。即ち、量
子井戸構造の発光層にあって、終端は井戸層から構成す
ることを意味する。この配置は、図1並びに図2に例示
されている。n形介在層に直接、接合させるのは、この
接合により終端井戸層内に伝導帯の曲折を効果的に発生
させるためである。井戸層と共に量子井戸構造を構成す
るn形障壁層の配置と関連させて、本実施形態の配置関
係を纏めれば、終端井戸層はn形介在層とn形障壁層と
の中間に配置するものである(図1及び図2参照)。S
QW構造にあっては、n形障壁層はn形クラッド層に代
用させることが出来る。A second aspect according to the invention described in claim 2 of the present application
The arrangement relationship of the crystal layers shown in the embodiment is that the terminal well layer is n
Means to directly join to the intervening layer. That is, in the light emitting layer having the quantum well structure, it means that the terminal is constituted by the well layer. This arrangement is illustrated in FIGS. 1 and 2. The reason why the junction is made directly to the n-type intervening layer is that this junction effectively causes the conduction band to be bent in the terminal well layer. If the arrangement relationship of the present embodiment is summarized in relation to the arrangement of the n-type barrier layer constituting the quantum well structure together with the well layer, the terminal well layer is arranged between the n-type intermediate layer and the n-type barrier layer. (See FIGS. 1 and 2). S
In the QW structure, the n-type barrier layer can be substituted for the n-type cladding layer.
【0036】本願の請求項3に記載の発明に係わる第3
の実施形態に於ける、量子井戸構造を構成する上での特
徴は、n形の伝導を呈するのが好ましいとする介在層1
2と終端井戸層11aと接合するn形障壁層10とは、
略同一の組成から成る材料から構成することにある。例
えば、n形で高抵抗のAlY Ga1-Y N(0≦Y≦1)
から介在層12を構成する場合には、n形障壁層10は
アルミニウム組成比(=Y)を同一とするAlY Ga
1-Y N(0≦Y≦1)から構成する。若しくは、アルミ
ニウム組成比の相違を大凡、±0.05以内とする、ア
ルミニウム組成比を略同一とするAlY Ga1-Y N(0
≦Y≦1)から構成する。n形障壁層10の導電性につ
いては、介在層12を高純度で高抵抗の結晶層から構成
するのを好ましいとするに対し、それと最も近接して対
峙するn形障壁層10は、導電性に優れるIII 族窒化半
導体結晶層から構成するのを良しとする。具体的にはn
形障壁層10のキャリア濃度は、導電性を確保するため
に少なくとも約1×1016cm-3以上、好ましくは約1
×1017cm-3を越え約1×1018cm-3以上であるこ
とが好ましい。しかし、キャリア濃度が1×1019cm
-3を越えると逆にn形障壁層10の結晶性が低下するの
で、キャリア濃度は約1×1019cm-3以下とするのが
好ましい。A third aspect according to the invention described in claim 3 of the present application.
The feature of forming the quantum well structure in the embodiment of the present invention is that the interposition layer 1 preferably exhibits n-type conduction.
2 and the n-type barrier layer 10 joined to the terminal well layer 11a
It consists of materials having substantially the same composition. For example, n-type and high-resistance Al Y Ga 1 -Y N (0 ≦ Y ≦ 1)
, The n-type barrier layer 10 is made of Al Y Ga having the same aluminum composition ratio (= Y).
1-Y N (0 ≦ Y ≦ 1). Alternatively, Al Y Ga 1 -YN (0
≦ Y ≦ 1). Regarding the conductivity of the n-type barrier layer 10, it is preferable that the intervening layer 12 be formed of a high-purity, high-resistance crystal layer. It is preferable to use a group III nitride semiconductor crystal layer that is excellent in quality. Specifically, n
The carrier concentration of the barrier layer 10 is at least about 1 × 10 16 cm −3 or more, preferably about 1 × 10 16 cm −3 to secure conductivity.
It is preferably more than × 10 17 cm -3 and about 1 × 10 18 cm -3 or more. However, when the carrier concentration is 1 × 10 19 cm
If it exceeds -3 , on the contrary, the crystallinity of the n-type barrier layer 10 deteriorates. Therefore, the carrier concentration is preferably set to about 1 × 10 19 cm −3 or less.
【0037】図1に示したSQW構造1bを例にして本
実施形態の効用を説明すれば、介在層12及びn形障壁
層10を略同一の材料から構成すると、その中間に配置
する終端井戸層11aに、その両側の接合面15a、1
5bから印加される応力を略均等とすることができる。
この印加される応力が略均等である状況下では、接合界
面15a、15bに於けるバンドの曲折の程度を、界面
での急峻性如何に依ってより容易に制御することが可能
となる。The effect of this embodiment will be described by taking the SQW structure 1b shown in FIG. 1 as an example. If the intervening layer 12 and the n-type barrier layer 10 are made of substantially the same material, Layer 11a is provided with bonding surfaces 15a, 1
The stress applied from 5b can be made substantially uniform.
Under the situation where the applied stress is substantially equal, it is possible to more easily control the degree of band bending at the bonding interfaces 15a and 15b depending on the steepness at the interfaces.
【0038】更に、介在層12と、終端井戸層11aと
接合するn形障壁層10とを略同一の層厚のIII 族窒化
物半導体材料から構成すると、n形障壁層10及び介在
層12の両側から終端井戸層11aに印加される応力の
均等化が図れる。それより、終端井戸層11a内に一様
に曲折したバンドを発生させるに優位となる。略同一と
は、概ね、±10%未満の厚さの差異を指す。Furthermore, when the intervening layer 12 and the n-type barrier layer 10 joined to the termination well layer 11a are made of a group III nitride semiconductor material having substantially the same thickness, the n-type barrier layer 10 and the intervening layer 12 The stress applied to the terminal well layer 11a from both sides can be equalized. This is advantageous in generating a uniformly bent band in the terminal well layer 11a. Substantially the same generally refers to a difference in thickness of less than ± 10%.
【0039】上記のバンドの曲折が略一義的に接合界面
の急峻性をもって決定する技術手段を利用して、本願の
請求項4に記載の発明に係わる第4の実施形態では、伝
導帯に加えて価電子帯の曲折を形成する。本実施形態に
係わるバンド構成を図3のバンドダイヤグラムを利用し
て説明する。第4の実施形態に係わるバンド構成の特徴
は、終端井戸層11aのn形障壁層10との接合界面1
5b近傍の領域に限り、価電子帯20がフェルミレベル
17側に上に凸に折れ曲がった曲折により、低ポテンシ
ャル部21が形成されていることにある。さらに第3の
実施形態に示す如く、終端井戸層11aを、組成及び層
厚を略同一とするn形介在層12及びn形障壁層10に
挟持させた構成に依れば、伝導帯16に限らず、価電子
帯20側にもバンドの曲折を都合良く形成することがで
きる。In the fourth embodiment according to the fourth aspect of the present invention, utilizing the technical means for determining the bending of the band substantially uniquely with the steepness of the bonding interface, the present invention is applied to the addition of the conduction band. To form a valence band bend. The band configuration according to the present embodiment will be described with reference to the band diagram of FIG. A feature of the band configuration according to the fourth embodiment is that a junction interface 1 between the terminal well layer 11a and the n-type barrier layer 10 is formed.
Only in the region near 5b, the low potential portion 21 is formed by bending the valence band 20 so as to protrude upward to the Fermi level 17 side. Further, as shown in the third embodiment, according to the configuration in which the terminal well layer 11a is sandwiched between the n-type intermediate layer 12 and the n-type barrier layer 10 having substantially the same composition and thickness, the conduction band 16 In addition to the above, the band bending can be conveniently formed on the valence band 20 side.
【0040】フェルミレベル17側に曲折した低ポテン
シャル部21には、電子19との放射再結合を果たす正
孔22を有効に蓄積できる。この低ポテンシャル部21
は、本来の価電子帯20のエネルギーレベルよりも低位
であり、従って、この領域に蓄積された正孔22のエネ
ルギーレベルはそもそも低位となっている。また、上記
の様に介在層12との接合界面15a近傍の低ポテンシ
ャル部位18に蓄積された電子19もエネルギーレベル
は低位である。故に、この様なバンド構成に於ける電子
19と正孔22間の遷移エネルギー23は、終端井戸層
11aを構成するIII 族窒化物半導体材料の禁止帯幅2
4より小となる。従って、発光波長は、終端井戸層11
aを構成するIII 族窒化物半導体材料の禁止帯幅24に
対応する波長よりも長波長の発光がもたらされるものと
なる。In the low potential portion 21 bent to the Fermi level 17 side, holes 22 that perform radiative recombination with electrons 19 can be effectively accumulated. This low potential portion 21
Is lower than the energy level of the original valence band 20, and the energy level of the holes 22 accumulated in this region is lower than the original. As described above, the energy level of the electrons 19 accumulated in the low potential portion 18 near the junction interface 15a with the intervening layer 12 is also low. Therefore, the transition energy 23 between the electron 19 and the hole 22 in such a band configuration is caused by the band gap 2 of the group III nitride semiconductor material forming the terminal well layer 11a.
It is smaller than 4. Therefore, the emission wavelength is equal to that of the terminal well layer 11.
A light having a wavelength longer than the wavelength corresponding to the band gap 24 of the group III nitride semiconductor material constituting a is provided.
【0041】図2に示す様に、井戸層内の伝導帯16の
曲折の程度は、伝導帯16の本来のポテンシャルレベル
(Eco)16aと、フェルミレベル17側へ落ち込ん
だ低ポテンシャル端(Ec)16bとの、エネルギー差
(ΔEc=|Eco−Ec|)16cで表される。一
方、価電子帯20の本来のポテンシャルレベル(Ev
o)20aと、フェルミレベル17側へ落ち込んだ低ポ
テンシャル端(Ev)20bとのエネルギー差(ΔEv
=|Evo−Ecv|)20cをもって、価電子帯20
の曲折の程度が表される。伝導帯16側のΔEc(=1
6c)と、価電子帯20側のΔEv(=20c)との総
和であるエネルギー差ΔEc+ΔEvが本発明の云う合
計のエネルギー差である。例えば、終端井戸層11aを
構成する半導体材料の正規の禁止帯幅24から、合計の
エネルギー差ΔEc+ΔEvを差し引いた値が遷移エネ
ルギー23を与える。As shown in FIG. 2, the degree of bending of the conduction band 16 in the well layer depends on the original potential level (Eco) 16 a of the conduction band 16 and the low potential end (Ec) dropped to the Fermi level 17 side. It is represented by an energy difference (ΔEc = | Eco−Ec |) 16c with respect to 16b. On the other hand, the original potential level (Ev
o) The energy difference (ΔEv) between 20a and the low potential end (Ev) 20b that has dropped to the Fermi level 17 side.
= | Evo-Ecv |) 20c, the valence band 20
The degree of fold is expressed. ΔEc (= 1) on the conduction band 16 side
6c) and the energy difference ΔEc + ΔEv, which is the sum of ΔEv (= 20c) on the valence band 20 side, is the total energy difference referred to in the present invention. For example, a value obtained by subtracting the total energy difference ΔEc + ΔEv from the regular band gap 24 of the semiconductor material forming the terminal well layer 11 a gives the transition energy 23.
【0042】本発明の第5の実施形態では、本願の請求
項5に記載の如く、上記の合計のエネルギー差ΔEc+
ΔEvを0.4eV以上とする井戸層から終端井戸層1
1aを構成する。少なくとも、ΔEc+ΔEvが0.4
eV以上である終端井戸層11aは、発光の長波長化を
もたらすに都合の良い効果を与えるからである。合計の
エネルギー差ΔEc+ΔEvを0.4eV以上とするに
は、終端井戸層を略同一の組成と層厚の介在層及び障壁
層を挟持して、双方の結晶層から終端井戸層に略均等に
応力を付与することがより好ましい。この様な前提条件
が整備されていれば、後述する接合界面の急峻性(日本
物理学会編、「半導体超格子の物理と応用」((株)培
風館発行、昭和61年9月30日初版第4刷)、139
〜145頁参照)の達成に依って、少なくとも合計のエ
ネルギー差ΔEc+ΔEvを0.4eV以上とする井戸
層が構成できる。In the fifth embodiment of the present invention, as described in claim 5 of the present application, the above total energy difference ΔEc +
From the well layer having ΔEv of 0.4 eV or more to the terminal well layer 1
1a. At least ΔEc + ΔEv is 0.4
This is because the terminal well layer 11a having eV or more provides an advantageous effect for increasing the emission wavelength. In order to make the total energy difference ΔEc + ΔEv 0.4 eV or more, the terminal well layer is sandwiched between the intervening layer and the barrier layer having substantially the same composition and thickness, and the stress is almost equally applied from both crystal layers to the terminal well layer. Is more preferable. If such prerequisites are prepared, the steepness of the bonding interface described later (edited by the Physical Society of Japan, “Physics and Application of Semiconductor Superlattice”, published by Baifukan Co., Ltd., first edition on September 30, 1986) 4 prints), 139
145), a well layer can be formed in which at least the total energy difference ΔEc + ΔEv is 0.4 eV or more.
【0043】多重量子井戸(MQW)構造を構成する井
戸層毎にバンドの”落ち込み”の程度が顕著に異なれ
ば、それに付帯して、井戸層内の低ポテンシャル領域に
形成される準位が井戸層に依って異なる。従って、キャ
リアの遷移エネルギーが井戸層毎に異なる事態を招き、
井戸層毎に波長を互いに異にする発光が帰結される不都
合が生ずる。単色性のある発光を確保するために、本願
の請求項6に記載の発明に係わる第6の実施形態では、
この合計のエネルギー差ΔEc+ΔEvを基準として終
端井戸層の構成を更に規定する。即ち、本発明の第6の
実施形態では、多重量子井戸構造の終端井戸層につい
て、上記の合計のエネルギー差(ΔEc+ΔEv)を他
の井戸層の合計のエネルギー差よりも大とした井戸層を
もって構成する。If the degree of the "drop" of the band is significantly different for each well layer constituting the multiple quantum well (MQW) structure, a level formed in the low potential region in the well layer is added to the difference. It depends on the layer. Therefore, the transition energy of carriers is different for each well layer,
There is a disadvantage that light emission having different wavelengths is obtained for each well layer. In order to secure monochromatic light emission, in the sixth embodiment according to the invention described in claim 6 of the present application,
The configuration of the terminal well layer is further defined based on the total energy difference ΔEc + ΔEv. That is, in the sixth embodiment of the present invention, the terminal well layer having the multiple quantum well structure is configured with a well layer in which the total energy difference (ΔEc + ΔEv) is larger than the total energy difference of the other well layers. I do.
【0044】図4のバンドダイヤグラムを利用して説明
すれば、第2近接井戸層11bの、障壁層10aとの接
合界面15cでの伝導帯16のポテンシャルの”落ち込
み”の程度25cを、第1近接井戸層11aの落ち込み
の深さ25aよりも小としているのが特徴である。且
つ、障壁層10bとの接合界面15dに於ける価電子帯
20の落ち込みの程度25dも、第1近接井戸層11a
内の価電子帯20の落ち込みの程度25bのよりも小と
しているのが特徴である。要約すれば、第2近接井戸層
11b内に於ける合計のエネルギー差(25c+25d
に相当する)を、終端井戸層11a内の合計のエネルギ
ー差(25a+25bに相当する)よりも小とするのが
特徴である。終端井戸層11aの内部の低ポテンシャル
部18、21に、第2近接井戸層11bよりも優先的に
キャリア(電子19及び正孔22)を蓄積させ、第2近
接井戸層11b以降の井戸層11c〜11eの内部に
は、伝導帯16の曲折に依る電子19及び正孔22の蓄
積領域を派生的に内在させないためである。Referring to the band diagram of FIG. 4, the degree 25c of the “drop” of the potential of the conduction band 16 at the junction interface 15c of the second proximity well layer 11b with the barrier layer 10a is determined by the first The feature is that it is smaller than the depth 25a of the depression of the adjacent well layer 11a. Also, the degree 25d of the drop of the valence band 20 at the junction interface 15d with the barrier layer 10b is reduced by the first proximity well layer 11a.
The feature is that the degree of dip of the valence band 20 in the inside is smaller than 25b. In summary, the total energy difference (25c + 25d) in the second adjacent well layer 11b
) Is smaller than the total energy difference (corresponding to 25a + 25b) in the terminal well layer 11a. The carriers (electrons 19 and holes 22) are accumulated in the low potential portions 18 and 21 inside the terminal well layer 11a preferentially over the second adjacent well layer 11b, and the well layers 11c after the second adjacent well layer 11b are accumulated. This is because the accumulation region of the electrons 19 and the holes 22 due to the bending of the conduction band 16 is not internally included in the layers 11e to 11e.
【0045】MQW構造から発光層を構成するにあっ
て、第1近接井戸層(終端井戸層)11aと第2近接井
戸層11bを含むそれ以降の井戸層11c〜11eに隣
接するn形障壁層を第3の実施形態に則るものとすれ
ば、発光をもたらすためのキャリアとしての電子19が
蓄積する領域を、ポテンシャルの関係上、ほぼ一カ所1
8に集中できる。一方、正孔22が蓄積できる領域も特
定の領域21に限定される。即ち、キャリアを終端井戸
層11aの内部の特定のポテンシャル領域18,21に
限定して閉じ込めたが故に、略一定のエネルギーを有す
る電子19及び正孔22を放射再結合を起こすように利
用できる。このため、発光波長の単一性、即ち、単色性
に優れる発光がもたらされる。第2近接井戸層11b以
降の井戸層11c〜11eの各々に、伝導帯16並びに
価電子帯20の”落ち込み”を略同一とする低ポテンシ
ャル部が形成されておれば、形成される量子準位も各井
戸間で略同一となり、波長の揃った発光がもたらされる
利点がある。第2近接井戸層以降の井戸層内のポテンシ
ャルの”落ち込み”は無いのが理想である。In forming the light emitting layer from the MQW structure, an n-type barrier layer adjacent to the subsequent well layers 11c to 11e including the first adjacent well layer (terminal well layer) 11a and the second adjacent well layer 11b is provided. Is assumed to conform to the third embodiment, the region where electrons 19 as carriers for causing light emission accumulate is substantially one place in terms of potential.
I can concentrate on 8. On the other hand, the region where the holes 22 can be accumulated is also limited to the specific region 21. That is, since the carriers are confined to the specific potential regions 18 and 21 inside the terminal well layer 11a, the electrons 19 and the holes 22 having substantially constant energy can be used to cause radiative recombination. For this reason, light emission excellent in unity of emission wavelength, that is, monochromaticity is provided. If a low potential portion having substantially the same “dip” of the conduction band 16 and the valence band 20 is formed in each of the well layers 11c to 11e after the second proximity well layer 11b, the formed quantum level Also, there is an advantage that the light emission is substantially the same between the wells, and light emission with a uniform wavelength is provided. Ideally, there is no “drop” in the potential in the well layers after the second adjacent well layer.
【0046】終端井戸層11aについて特に、ポテンシ
ャルの”落ち込み”を顕著に形成するためには、終端井
戸層に関する接合界面での組成の急峻性をより優れたも
のとする。例えば、窒化ガリウム・インジウム混晶から
なる終端井戸層にあって、インジウム原子濃度の遷移距
離を10nm以下とすると、上記の合計のエネルギー差
(ΔEc+ΔEv)を0.4eV以上とすることができ
る。一方、大凡、1eV〜1.5eVを越える深いポテ
ンシャルの落ち込みを形成すると、発光波長は不都合に
長波長となり、短波長可視光の発光を定常的に得るに至
らなくなる。例えば、伝導帯より約1.7eVの低いポ
テンシャル部を形成した、室温禁止帯幅を約3.1eV
とするGa0.9 In0.1 N結晶から終端井戸層を構成す
ると、波長が約800nmを越える赤外光が発せられる
こととなる。In particular, in order to form a remarkable “drop” in the potential of the terminal well layer 11 a, the steepness of the composition at the junction interface with respect to the terminal well layer is improved. For example, if the transition distance of the indium atom concentration is 10 nm or less in the terminal well layer made of gallium nitride / indium mixed crystal, the above total energy difference (ΔEc + ΔEv) can be 0.4 eV or more. On the other hand, if a deep potential drop exceeding approximately 1 eV to 1.5 eV is formed, the emission wavelength becomes undesirably a long wavelength, and it becomes impossible to constantly emit short-wavelength visible light. For example, the forbidden band width at room temperature where a potential portion lower than the conduction band by about 1.7 eV is formed is about 3.1 eV.
When the terminal well layer is formed from the Ga 0.9 In 0.1 N crystal described above, infrared light having a wavelength exceeding about 800 nm is emitted.
【0047】MQW構造に於ける終端井戸層内のポテン
シャルの落ち込みを他の井戸層のそれらに比較して大と
するには、終端井戸層の両側の接合界面の急峻性を、他
の井戸層の場合に比較して優れたものとすれば良い。界
面急峻性に故意に差異を発生させるには、例えば、成膜
期間に間隔を設ける、所謂、成長を中断する機会を設け
る手法がある。成長を中断して接合界面の急峻性を制御
する方法に依れば、成長中断時間を延長すれば、界面の
急峻性は一般に向上する。成長中断期間を設定せずに、
連続的に成膜を進行させると、接合界面の急峻性は劣る
ものとなる。例えば、n形GaN障壁層上にGa0.9 I
n0.1 N終端井戸層を連続的に堆積すると、その接合界
面に於けるインジウム原子濃度の遷移距離は20nmを
優に越え、約40nm〜約50nmに到達する場合があ
る。従って、終端井戸層につき調整された成長中断時間
をもって成膜し、他の井戸層の成膜時には敢えて成膜中
断時間を設けないなどの操作により、終端井戸層に関す
る急峻性を他の井戸層のそれに比較して秀逸と成すこと
ができる。In order to make the potential drop in the terminal well layer in the MQW structure larger than those in the other well layers, the steepness of the junction interface on both sides of the terminal well layer is determined by the other well layer. What is necessary is just to make it excellent compared with the case of. In order to intentionally cause a difference in the interface steepness, for example, there is a method of providing an interval in a film formation period, that is, a method of providing an opportunity to interrupt growth. According to the method of controlling the steepness of the junction interface by interrupting the growth, the steepness of the interface generally improves when the growth interruption time is extended. Without setting a growth suspension period,
When film formation is continuously performed, the steepness of the bonding interface becomes poor. For example, Ga 0.9 I on an n-type GaN barrier layer
When the n 0.1 N terminal well layer is continuously deposited, the transition distance of the indium atom concentration at the junction interface may well exceed 20 nm and reach about 40 nm to about 50 nm. Therefore, the steepness of the terminal well layer is reduced by adjusting the growth interruption time for the terminal well layer, and by not intentionally providing a film suspension time when forming another well layer. In comparison, it can be excellent.
【0048】また、本発明の第7の実施形態に記す如
く、MQW構造発光層の構成に於いて、特に、終端井戸
層11aを、他の井戸層とは層厚を異にする材料から構
成すれば、発光波長に簡便に変化を来たせる利点が得ら
れる。例えば、介在層及び井戸層を構成するIII 族窒化
物半導体材料に変更を加えずに、終端井戸層11aの層
厚のみを、他の井戸層の層厚よりも単純に厚くすると、
発光波長は短波長側に移行する傾向を呈する。逆に、終
端井戸層11aのみを、単純に他の井戸層に比べてより
薄層から構成すると、発光の長波長化が果たせる。従っ
て、量子井戸構造からなる発光層にあって、発光波長に
支配的な影響を及ぼす終端井戸層の層厚11aを、他の
井戸層よりも薄くすれば、結晶性が劣化する不都合を招
く高インジウム組成比のGa1-X InX N結晶層から敢
えて井戸層を構成する迄もなく、発光波長の長波長化が
達成され得て利便である。Further, as described in the seventh embodiment of the present invention, in the structure of the MQW light emitting layer, particularly, the terminal well layer 11a is made of a material having a different layer thickness from the other well layers. This has the advantage that the emission wavelength can be easily changed. For example, if only the thickness of the terminal well layer 11a is simply made thicker than the other well layers without changing the group III nitride semiconductor material forming the intervening layer and the well layer,
The emission wavelength tends to shift to the shorter wavelength side. Conversely, if only the terminal well layer 11a is simply made thinner than the other well layers, the emission wavelength can be made longer. Therefore, in the light emitting layer having a quantum well structure, if the layer thickness 11a of the terminal well layer, which has a dominant influence on the emission wavelength, is made thinner than the other well layers, the crystallinity deteriorates. needless to dare constituting the well layer from Ga 1-X in X N crystal layer indium composition ratio a convenience-obtained long wavelength is achieved in the emission wavelength.
【0049】終端井戸層11aの層厚を薄くすると、n
形障壁層10と介在層12とから被る応力の度合いは増
加する。このため、終端井戸層11aとの接合界面15
aでの伝導帯16及びn形障壁層10との界面15bで
の価電子帯20の双方に於けるバンドの曲折は、更に増
すものとなる。このため、バンドの曲折の増加により低
ポテンシャル部18、21に形成されるエネルギー準位
がより低位となる。従って、キャリア間の遷移エネルギ
ーは厚膜の終端井戸層の場合に比べて、より減少される
に至り、長波長の発光を得るに都合の良い構成が帰結さ
れる。即ち、従来の如く、結晶性に劣る高インジウム組
成比の窒化ガリウム・インジウム混晶から敢えて、終端
井戸層を構成する必要も無く、長波長の発光を獲得する
に更に優位となる構成が得られる利点がある。When the thickness of the terminal well layer 11a is reduced, n
The degree of stress applied from the shaped barrier layer 10 and the intervening layer 12 increases. Therefore, the junction interface 15 with the terminal well layer 11a is formed.
The band bending in both the conduction band 16 at a and the valence band 20 at the interface 15b with the n-type barrier layer 10 is further increased. For this reason, the energy level formed in the low potential portions 18 and 21 due to the increase in the band bending becomes lower. Therefore, the transition energy between carriers is further reduced as compared with the case of a thick terminal well layer, resulting in a configuration convenient for obtaining long-wavelength light emission. In other words, unlike the conventional case, the gallium nitride-indium mixed crystal having a high indium composition ratio, which is inferior in crystallinity, does not need to constitute a terminal well layer, and a configuration that is more advantageous for obtaining long-wavelength emission can be obtained. There are advantages.
【0050】この長波長化現象は、従来の一般的な矩形
ポテンシャル構成の量子井戸構造から発現される現象と
は、全く逆の現象である。従来の矩形ポテンシャル構造
の量子井戸構造では、井戸層の厚さ、即ち、井戸幅が減
少すれば、井戸内に形成される準位はより高くなる。従
って、量子準位間の電子の遷移エネルギーは増大し、故
に、発光波長は短波長となる。一方で前記の如く、この
従来の量子井戸構造とは異なり、井戸幅の減少と共に長
波長の発光をもたらす構成が開示されてはいるものの、
長波長化現象をもたらすに足るバンド構成が全く不明で
あったのに対し、本発明では、それが伝導帯及び価電子
帯の上記した如くの曲折に基づくバンド構造に依ること
を明示するものである。This longer wavelength phenomenon is a phenomenon completely opposite to the phenomenon developed from a conventional general quantum well structure having a rectangular potential configuration. In the conventional quantum well structure having a rectangular potential structure, the level formed in the well becomes higher as the thickness of the well layer, that is, the well width decreases. Therefore, the transition energy of electrons between quantum levels increases, and thus the emission wavelength becomes short. On the other hand, as described above, unlike this conventional quantum well structure, although a configuration that emits light of a long wavelength with a decrease in the well width is disclosed,
While the band structure sufficient to cause the wavelength extension phenomenon was completely unknown, the present invention clearly shows that it depends on the band structure based on the above-described bending of the conduction band and the valence band. is there.
【0051】本発明の第8の実施形態では、本来、単色
性に優れる発光をもたらす量子井戸構造からなる発光層
にあって、特に、終端井戸層を本願の請求項7に記載の
如く、インジウム組成比が規制された、多相構造の結晶
層から構成する。発光強度を増大させるに顕著な効果が
上げられるからである。本発明のポテンシャルバンドの
構成に依れば、敢えて、結晶性に劣化を来す高インジウ
ム組成比のGa1-X InX Nを終端井戸層として採用す
るに伴う、発光の高強度化を妨げる不合理性を回避でき
る。本発明に依れば、インジウム組成比(=X)が0.
3以下の結晶性に劣化を来さない程度の、比較的小さな
インジウム組成比の窒化ガリウム・インジウム混晶(G
a1-X InX N:0≦X≦0.3)を難なく終端井戸層
として利用して、長波長の発光をもたらす量子井戸構造
発光素子を提供できる。According to the eighth embodiment of the present invention, a light emitting layer having a quantum well structure which provides light emission excellent in monochromaticity is provided. In particular, the terminal well layer is formed of indium as described in claim 7 of the present application. It is composed of a crystal layer having a multiphase structure with a restricted composition ratio. This is because a remarkable effect can be obtained in increasing the emission intensity. According to the configuration of the potential band of the present invention, it is necessary to use Ga 1-x In x N having a high indium composition ratio, which deteriorates crystallinity, as a terminal well layer. Avoid irrationality. According to the present invention, the indium composition ratio (= X) is 0.1.
A gallium nitride-indium mixed crystal (G) having a relatively small indium composition ratio that does not cause deterioration in crystallinity of 3 or less.
a 1 -X In x N: 0 ≦ X ≦ 0.3) can be easily used as a terminal well layer to provide a quantum well structure light emitting device that emits light of a long wavelength.
【0052】インジウム組成が上記の範囲内にあり、且
つ多相構造のGa1-X InX N(0≦X≦0.3)から
なる終端井戸層からは、特に強度に優れる発光がもたら
される。多相構造とは、インジウム組成比(=X)を相
違する複数の塊(domain)或いは相(phas
e)の混合からなる結晶体である(特開平10−562
02号参照)。層内に支配的に存在する相(塊)を主体
相とすれば、主体相内とその相内に従属的に散在する相
(従属相)とからなるのが多相構造である。従属相はも
っぱら、微結晶体の呈をなす場合が全んどであり、この
微結晶体が時として量子ドット(quantum do
t)的な作用を発揮するが故に、強度的に優れる発光が
得られる。また、主体相と従属相とは、概して、インジ
ウム組成比を相違するものであって、それ故に、主体相
と従属相との接合界面で発生する格子歪も発光強度の増
大に寄与するものとなる。The terminal well layer composed of Ga 1-x In x N (0 ≦ X ≦ 0.3) having an indium composition within the above-mentioned range and having a multiphase structure provides light emission with particularly excellent intensity. . The multi-phase structure means a plurality of domains or phases having different indium composition ratios (= X).
(e) is a crystal comprising the mixture of (e) (JP-A-10-562)
No. 02). If a phase (lump) predominantly present in the layer is the main phase, the multiphase structure is composed of the main phase and the phase (dependent phase) scattered subordinately within the main phase. The dependent phase is almost exclusively in the form of microcrystals, which are sometimes referred to as quantum dots.
t), a light emission excellent in intensity can be obtained. In addition, the main phase and the subordinate phase generally have different indium composition ratios, and therefore, the lattice strain generated at the junction interface between the main phase and the subordinate phase also contributes to the increase in emission intensity. Become.
【0053】多相構造からなる終端井戸層は、同層を例
えば、有機金属熱分解気相堆積(MOCVD)法、分子
線エピタキシャル(MBE)法或いはハロゲン化物やハ
イドライド(水素化物)を原料とする気相エピタキシャ
ル(VPE)法で成膜した後に、適正化された条件の基
で加熱、冷却を施せば定常的に形成できる。For the terminal well layer having a multiphase structure, the same layer is made of, for example, a metal organic chemical vapor deposition (MOCVD) method, a molecular beam epitaxial (MBE) method, or a halide or hydride (hydride). After the film is formed by the vapor phase epitaxy (VPE) method, the film can be formed constantly by heating and cooling under optimized conditions.
【0054】本発明の第9の実施形態では、多相構造か
らなるGa1-X InX N(0≦X≦0.3)結晶層にあ
って、特に、酸素原子を適正な濃度で含むGa1-X In
X N(0≦X≦0.3)結晶層から終端井戸層11aを
構成する。酸素濃度の適正化により、高強度の発光を与
える終端井戸層101aが構成できる。特に、酸素原子
濃度を、望ましくは5×1020cm-3未満、更に望まし
くは、1×1020cm-3以下とするGa1-X InX N
(0≦X≦0.3)が終端井戸層11aを構成するため
の結晶層として適する。酸素原子濃度を約1×1015c
m-3或いは約1×1014cm-3以下とする、極めて酸素
原子濃度の低いGa1-X InX N(0≦X≦0.3)結
晶層から終端井戸層を形成すると、却って高強度の発光
を定常的にもたらすには至らない場合が多々、認められ
る。高強度の発光をもたらすに好都合となる酸素原子濃
度の範囲は、約5×1017cm-3以上で、1×1020c
m-3以下である。In the ninth embodiment of the present invention, a Ga 1-x In x N (0 ≦ X ≦ 0.3) crystal layer having a multi-phase structure contains oxygen atoms at an appropriate concentration. Ga 1-X In
The terminal well layer 11a is composed of an XN (0 ≦ X ≦ 0.3) crystal layer. By optimizing the oxygen concentration, the terminal well layer 101a that provides high-intensity light emission can be configured. In particular, Ga 1-x In x N is preferably set to have an oxygen atom concentration of less than 5 × 10 20 cm −3 , more preferably 1 × 10 20 cm −3 or less.
(0 ≦ X ≦ 0.3) is suitable as a crystal layer for constituting the terminal well layer 11a. Oxygen atom concentration about 1 × 10 15 c
If the terminal well layer is formed from a Ga 1-x In x N (0 ≦ X ≦ 0.3) crystal layer having an extremely low oxygen atom concentration of not more than m −3 or about 1 × 10 14 cm −3, it will be rather high. In many cases, it does not always result in a strong luminescence. The range of oxygen atom concentration that is convenient for providing high intensity light emission is about 5 × 10 17 cm −3 or more and 1 × 10 20 c
m −3 or less.
【0055】酸素原子濃度を好適な範囲とするGa1-X
InX N(0≦X≦0.3)結晶層を得る手段には、例
えば、MOCVD法に依るGa1-X InX Nの成膜に際
し、含酸素物質からなる不純物或いは酸素を含む官能基
(function group)が付加した化合物を
含む有機金属化合物を成長原料として用いる方法があ
る。例えば、トリメチルガリウム((CH3 )3 Ga:
TMG)をGa源とし、トリメチルインジウム((CH
3 )3 In:TMI)をIn源とするGa1-X InX N
(0≦X≦0.3)の成膜技術にあっては、酸素濃度を
数重量ppmから十数重量ppmとするTMGと、数十
重量ppmから約100重量ppmとするTMIとを成
長原料とすることにより、酸素原子濃度を上記の好適な
範囲内に収納するための前提条件が整えられる。Ga 1 -X with oxygen atom concentration in a suitable range
Means for obtaining an In X N (0 ≦ X ≦ 0.3) crystal layer include, for example, a functional group containing oxygen or an impurity formed of an oxygen-containing substance when forming Ga 1-x In x N by MOCVD. There is a method of using an organometallic compound containing a compound to which (function group) is added as a growth material. For example, trimethylgallium ((CH 3 ) 3 Ga:
TMG) was used as a Ga source, and trimethylindium ((CH
3 ) Ga 1-x In x N using 3 In: TMI) as an In source
In the case of the film forming technique (0 ≦ X ≦ 0.3), TMG whose oxygen concentration is from several ppm by weight to tens of ppm by weight, and TMI whose oxygen concentration is from tens of ppm by weight to about 100 ppm by weight are used as a growth material. As a result, the precondition for keeping the oxygen atom concentration within the above-mentioned preferred range is set.
【0056】終端井戸層をなすGa1-X InX N(0≦
X≦0.3)結晶層内の酸素原子濃度を調節するための
別の手段には、Ga1-X InX N(0≦X≦0.3)
を、酸素含有物質を故意に添加した成長雰囲気内で成膜
する手段が挙げられる。酸素含有物質には、一酸化炭素
(CO)、二酸化炭素(CO2 )や水(H2 O)などが
あるが、一酸化窒素(NO)や二酸化窒素(NO2 )な
どの酸素含有物質は、III 族窒化物半導体の構成元素で
ある窒素(N)を含むため、成膜時の成長層からの窒素
の揮散を抑制できる観点からしても好ましく用いられ
る。例えば、水分を数〜数十ppmの体積濃度で含むア
ンモニア(NH3 )ガスを窒素源と利用しても、Ga
1-X InX N 結晶層内の酸素原子濃度を制御できる。
Ga1-X InXN結晶層内の酸素原子濃度は、2次イオ
ン質量分析法(SIMS)やオージェ(Auger)電
子分光分析法(AES)などの機器分析法により定量で
きる。Ga 1-x In x N (0 ≦
X ≦ 0.3) Another means for adjusting the oxygen atom concentration in the crystal layer is Ga 1-x In x N (0 ≦ X ≦ 0.3).
Is formed in a growth atmosphere to which an oxygen-containing substance is intentionally added. Oxygen-containing substances include carbon monoxide (CO), carbon dioxide (CO 2 ), and water (H 2 O), but oxygen-containing substances such as nitric oxide (NO) and nitrogen dioxide (NO 2 ) Since it contains nitrogen (N) which is a constituent element of a group III nitride semiconductor, it is preferably used from the viewpoint of suppressing the volatilization of nitrogen from a growth layer during film formation. For example, even if ammonia (NH 3 ) gas containing water at a volume concentration of several to several tens ppm is used as a nitrogen source, Ga
The oxygen atom concentration in the 1-X In X N crystal layer can be controlled.
The oxygen atom concentration in the Ga 1-x In x N crystal layer can be quantified by instrumental analysis methods such as secondary ion mass spectrometry (SIMS) and Auger electron spectroscopy (AES).
【0057】[0057]
【作用】請求項1の発明に記載されるバンド構成から
は、電子を終端井戸層の内部の領域に選択的に蓄積させ
る作用が発揮される。これより、低ポテンシャル部位に
局在された電子を低いポテンシャルレベルに充填され
る。According to the band structure described in the first aspect of the present invention, an effect of selectively accumulating electrons in the region inside the terminal well layer is exhibited. Thereby, the electrons localized in the low potential portion are filled to a low potential level.
【0058】また、請求項2の発明に記載される終端井
戸層の配置に依れば、終端井戸層内に低ポテンシャル部
位を確実に創生させることができる。特に、請求項3に
記載如く、介在層と、終端井戸層に接合するn形障壁層
とを略同一の組成で、略同一の層厚の材料から構成は、
終端井戸層に略均等に応力を印加する作用を及ぼし、終
端井戸層の接合界面に於けるバンドの曲折の有無及びそ
の曲折の程度を容易に制御できる状態を創出する。According to the arrangement of the terminal well layer according to the second aspect of the present invention, a low potential portion can be reliably created in the terminal well layer. In particular, as described in claim 3, the intervening layer and the n-type barrier layer joined to the terminal well layer are formed of a material having substantially the same composition and substantially the same layer thickness,
It exerts an action of applying a stress substantially evenly to the terminal well layer, and creates a state in which the presence or absence of the band bending at the junction interface of the terminal well layer and the degree of the bending can be easily controlled.
【0059】また、請求項4に記載の発明は、正孔を井
戸層内の特定の低ポテンシャル領域に選択的な蓄積を来
す作用を有する。低ポテンシャル部位に於いて、電子及
び正孔が存在するレベルは低いため、キャリア間の遷移
エネルギーは減少し、従って、本来の禁止帯幅に対応す
るよりも長波長の発光がもたらされる。The invention according to claim 4 has an effect of selectively accumulating holes in a specific low potential region in the well layer. The low levels of electrons and holes at the low potential sites reduce the transition energies between carriers, thus resulting in longer wavelength emission than corresponds to the intrinsic bandgap.
【0060】また、請求項5に記載の発明は、キャリア
を井戸層内に確実に蓄積させる作用を有し、発光の長波
長化に優位に作用するバンドポテンシャル構成をもたら
す作用を有する。Further, the invention according to claim 5 has an effect of reliably accumulating carriers in the well layer, and an effect of providing a band potential configuration which is advantageous in increasing the wavelength of light emission.
【0061】また、請求項6の発明に記載の、第1及び
第2近接井戸層との間に於けるポテンシャルの関係は第
1近接井戸層、即ち、終端井戸層内に優先的に電子及び
正孔を蓄積する作用を発揮する。これより、量子井戸構
造からの発光をより単色化するに作用する。According to the sixth aspect of the present invention, the potential relationship between the first and second proximity well layers is such that electrons and electrons are preferentially contained in the first proximity well layer, that is, the terminal well layer. It acts to accumulate holes. This acts to make the emission from the quantum well structure monochromatic.
【0062】また、請求項7の発明に記載の、他の井戸
層よりも薄い層厚からなる終端井戸層は、発光波長の長
波長化を簡便に達成できるポテンシャル構成をもたらす
作用を有する。Further, the terminal well layer having a thickness smaller than that of the other well layers according to the invention of claim 7 has an effect of providing a potential configuration capable of easily achieving a longer emission wavelength.
【0063】また、請求項8に記載した終端井戸層の構
成は、終端井戸層からの発光強度を増加させる作用を有
する。特に、請求項9に記載の、酸素原子濃度が規定さ
れた終端井戸層は、発光の強度を更に増加させる作用を
有する。The structure of the terminal well layer described in claim 8 has the function of increasing the intensity of light emitted from the terminal well layer. In particular, the terminal well layer in which the oxygen atom concentration is defined according to claim 9 has an action of further increasing the intensity of light emission.
【0064】[0064]
【実施例】(実施例1)本実施例1では、SQW構造か
ら成る発光ダイオード(LED)を例にして、本発明を
具体的に説明する。図5は、本実施例で作製した積層構
造体41からなるLED40の断面構造を示す模式図で
ある。(Embodiment 1) In Embodiment 1, the present invention will be specifically described using a light emitting diode (LED) having an SQW structure as an example. FIG. 5 is a schematic diagram illustrating a cross-sectional structure of the LED 40 including the laminated structure 41 manufactured in the present example.
【0065】サファイア(α−Al2 O3 単結晶)から
なる結晶基板400の(0001)面(c面)上には、
同基板400との接合界面を主に単結晶とし、その上層
部を多結晶或いは非晶質を主体として構成したアンドー
プの窒化ガリウム(GaN)からなる緩衝層401を4
50℃で堆積した。層厚を約17nmとする緩衝層40
1上には、キャリア濃度を約2×1017cm-3とし、層
厚を約0.5μmとするアンドープでn形のGaN層4
02を堆積してある。アンドープn形GaN層402の
上には、珪素(Si)のドーピング濃度を層厚の増加方
向に増加させた、即ち、層厚の増加方向にキャリア濃度
を漸次、増加させたn形GaN層403が堆積されてい
る。On the (0001) plane (c plane) of the crystal substrate 400 made of sapphire (α-Al 2 O 3 single crystal),
A buffer layer 401 made of undoped gallium nitride (GaN) composed mainly of single crystal at the junction interface with the substrate 400 and having an upper layer mainly composed of polycrystal or amorphous.
Deposited at 50 ° C. Buffer layer 40 having a thickness of about 17 nm
1, an undoped n-type GaN layer 4 having a carrier concentration of about 2 × 10 17 cm −3 and a layer thickness of about 0.5 μm.
02 is deposited. On the undoped n-type GaN layer 402, the n-type GaN layer 403 in which the doping concentration of silicon (Si) is increased in the direction of increasing the layer thickness, that is, the carrier concentration is gradually increased in the direction of increasing the layer thickness. Has been deposited.
【0066】このn形GaN層403を下部のn形のク
ラッド層として利用して、その上に、層厚を20nmと
するアンドープのn形GaN(キャリア濃度=4×10
17cm-3)からなる障壁層404を堆積した。Using this n-type GaN layer 403 as a lower n-type cladding layer, an undoped n-type GaN having a layer thickness of 20 nm (carrier concentration = 4 × 10
A barrier layer 404 of 17 cm -3 ) was deposited.
【0067】障壁層404上には、終端井戸層405た
る井戸層を890℃で堆積した。終端井戸層405は、
層厚が約7nmのアンドープのn形Ga0.88In0.12N
から構成した。TMGをガリウム源とし、結合価を1価
とするシクロペンタジエニルインジウム(C5 H5 I
n)をインジウム源として(J.Crystal Gr
owth,107(1991)、360〜364頁参
照)、n形Ga0.88In0. 12N終端井戸層405の成膜
を、双方の原料の常圧MOCVD反応炉への供給を停止
することをもって終了させた。終端井戸層405の成膜
後、原料ガスのMOCVD反応炉への供給を停止する成
長中断の期間を3分間に亘り設け、その間、アンモニア
(NH3 )ガスのみを流通させて、MOCVD反応炉内
よりインジウム源及びガリウム源の残留が無き様に掃
引、排除した。On the barrier layer 404, a well layer serving as a terminal well layer 405 was deposited at 890 ° C. The terminal well layer 405 is
Undoped n-type Ga 0.88 In 0.12 N with a layer thickness of about 7 nm
It consisted of. Cyclopentadienyl indium (C 5 H 5 I
n) as an indium source (J. Crystal Gr)
owth, 107 (1991), pp. 360-364), the formation of the n-type Ga 0.88 In 0. 12 N termination well layer 405, ends with stopping the supply to the atmospheric pressure MOCVD reactor of both raw materials I let it. After the formation of the terminal well layer 405, a growth interruption period in which the supply of the source gas to the MOCVD reactor is stopped is provided for 3 minutes, during which only the ammonia (NH 3 ) gas is allowed to flow and the inside of the MOCVD reactor is The indium source and the gallium source were swept and eliminated such that there was no residue.
【0068】成長中断後、n形障壁層404と同一の材
料からなる、同一の層厚のn形GaNを介在層406と
して堆積した。介在層406のキャリア濃度は、約7×
1016cm-3とした。即ち、n形介在層406は、n形
障壁層404と伝導形も同一とする材料から構成した
が、キャリア濃度をn形障壁層404よりも低とする、
より高抵抗で高純度のIII 族化合物半導体結晶層から構
成した。After the growth was interrupted, n-type GaN of the same material and having the same thickness as the n-type barrier layer 404 was deposited as the intervening layer 406. The carrier concentration of the intervening layer 406 is about 7 ×
It was 10 16 cm -3 . That is, the n-type intermediate layer 406 is made of a material having the same conductivity type as the n-type barrier layer 404, but has a lower carrier concentration than the n-type barrier layer 404.
It was composed of a higher resistance and higher purity group III compound semiconductor crystal layer.
【0069】上記のn形障壁層404及び介在層406
とで井戸層405を挟持して、SQW構造の発光部42
を構成した。n形介在層406と井戸層405との接合
界面43での急峻性を、インジウム(In)濃度が井戸
層405内の平均的濃度より2桁、原子濃度を減するに
要する遷移距離を一般的なSIMS分析手段により測定
したところ、約14nmであった。この急峻性は、n形
介在層406とn形井戸層405との接合界面43での
伝導帯の屈曲(ベンディング)を発生させるに充分なも
のとなった。The above-described n-type barrier layer 404 and intervening layer 406
The light emitting part 42 having the SQW structure is sandwiched between the well layer 405 and
Was configured. The steepness at the junction interface 43 between the n-type intervening layer 406 and the well layer 405 is generally determined by the transition distance required for reducing the atomic concentration by two orders of magnitude from the average concentration in the well layer 405 and the indium (In) concentration. It was about 14 nm when measured by a simple SIMS analysis means. This steepness was sufficient to cause bending (bending) of the conduction band at the junction interface 43 between the n-type intervening layer 406 and the n-type well layer 405.
【0070】n形介在層406上には、マグネシウム
(Mg)ドープp形Al0.15Ga0.85N層をp形クラッ
ド層(層厚=15nm)407として堆積した。p形ク
ラッド層407上には、層厚の増加方向にアルミニウム
(Al)組成比を0.15から0に略直線的減少させた
p形AlY Ga1-Y N(Y=0.15→0)層をコンタ
クト層(層厚=0.1μm、キャリア濃度=2×1017
cm-3)408として堆積し、積層構造体41を構成し
た。On the n-type intermediate layer 406, a magnesium (Mg) -doped p-type Al 0.15 Ga 0.85 N layer was deposited as a p-type cladding layer (layer thickness = 15 nm) 407. On the p-type cladding layer 407, a p-type Al Y Ga 1-Y N (Y = 0.15 →) in which the aluminum (Al) composition ratio is decreased substantially linearly from 0.15 to 0 in the direction of increasing the layer thickness 0) layer as a contact layer (layer thickness = 0.1 μm, carrier concentration = 2 × 10 17)
cm −3 ) 408 to form a laminated structure 41.
【0071】公知のフォトリソグラフィー技術を利用し
たパターニング加工を介して、積層構造体41にプラズ
マエッチング加工を施して露呈したn形クラッド層40
3の表面上には、n形オーミック(Ohmic)電極4
09を設けた。また、p形コンタクト層408の表面上
には、p形オーミック(Ohmic)電極410を設け
てLED40を構成した。The n-type cladding layer 40 exposed by performing plasma etching processing on the laminated structure 41 through patterning processing using a known photolithography technique
On the surface of 3, an n-type ohmic electrode 4
09 was provided. Further, a p-type ohmic electrode 410 was provided on the surface of the p-type contact layer 408 to constitute the LED 40.
【0072】両オーミック電極409、410間に、
3.5ボルト(V)の直流電圧を印加して、20ミリア
ンペア(mA)の順方向電流を通流してLED40を発
光させた。発光の中心波長は約450nmであり、終端
井戸層405を構成するGa0. 88In0.12Nの室温での
禁止帯幅(約3.1eV)に対応するよりも、約0.3
4eV程度低い遷移エネルギーに相当する長波長の発光
がもたらされるものとなった。また、発光の半値幅は約
13nmであった。チップ(chip)状態で、一般の
積分球を利用して測光される発光強度は約23マイクロ
ワット(μW)に達した。即ち、本実施例では、低ポテ
ンシャル側に屈曲した価電子帯構造を有する終端井戸層
を発光層としているため、長波長化された発光と共に、
単色性にも強度的にも優れる発光をもたらすLEDが得
られた。Between the ohmic electrodes 409 and 410,
A DC voltage of 3.5 V (V) was applied, and a forward current of 20 mA (mA) was passed to cause the LED 40 to emit light. The center wavelength of the emission is about 450 nm, than corresponds to the Ga 0. 88 In 0.12 N of bandgap at room temperature which constitutes a terminating well layer 405 (about 3.1 eV), about 0.3
Long wavelength light emission corresponding to a transition energy as low as about 4 eV was obtained. Further, the half width of the light emission was about 13 nm. In a chip state, the emission intensity measured using a general integrating sphere reached about 23 microwatts (μW). That is, in the present embodiment, the terminal well layer having a valence band structure bent to the low potential side is used as the light emitting layer.
An LED providing light emission excellent in both monochromaticity and intensity was obtained.
【0073】(実施例2)本実施例では、本発明のポテ
ンシャル構成を内包する多重量子井戸構造(MQW)か
らなる発光層を備えたLEDを形成する場合を例にし
て、本発明を具体的に説明する。図6は、本実施例のL
ED50の断面構造を示す模式図である。結晶基板40
0よりn形クラッド層403に至る構成は、実施例1に
記載の通りとした。(Embodiment 2) In this embodiment, the present invention will be specifically described by taking as an example a case where an LED having a light emitting layer having a multiple quantum well structure (MQW) including the potential structure of the present invention is formed. Will be described. FIG. 6 shows L of the present embodiment.
It is a schematic diagram which shows the cross-section of ED50. Crystal substrate 40
The configuration from 0 to the n-type cladding layer 403 was as described in Example 1.
【0074】n形クラッド層403を構成するn形Ga
N層上には、アンドープでn形のGaNを障壁層500
とし、アンドープでn形のGa0.90In0.10Nを井戸層
501とした、一対の積層構造単位51aを4周期、積
層させた多重量子井戸構造51bからなる発光層52を
配置した。障壁層500の層厚は約15nmとした。ま
た、井戸層501の層厚は4nmとした。障壁層500
及び井戸層501のキャリア濃度は、何れも5×1017
cm-3としてある。このMQW構造51bは、n形クラ
ッド層403と接合する層を、アンドープでn形のGa
Nを障壁層500とし、終端井戸層501aをn形のG
a0.90In0.10Nから構成してある。N-type Ga constituting n-type cladding layer 403
On the N layer, undoped n-type GaN is applied to the barrier layer 500.
A light-emitting layer 52 composed of a multi-quantum well structure 51b in which a pair of stacked structural units 51a are stacked in four cycles, using undoped n-type Ga 0.90 In 0.10 N as a well layer 501, is disposed. The thickness of the barrier layer 500 was about 15 nm. The thickness of the well layer 501 was 4 nm. Barrier layer 500
And the carrier concentration of the well layer 501 is 5 × 10 17
cm -3 . In this MQW structure 51b, an undoped n-type Ga
N is a barrier layer 500, and the terminal well layer 501a is an n-type G layer.
a 0.90 In 0.10 N.
【0075】終端井戸層(第1近接層)501aに次い
で近接する第2近接井戸層501b以降のn形クラッド
層403側に在る井戸層501c、501dと障壁層5
00との接合界面の急峻化を達成するための措置は、特
に講じていない。即ち、第2近接井戸層501bを含め
て他の井戸層501c〜501dは、障壁層500に時
間的に連続させて成膜させており、成長中断操作は行っ
ていない。反面、MQW構造51bの発光層52の終端
をなす終端井戸層501aを成膜する際には、最終端の
n形障壁層500aの成膜を終了した後、時間的に連続
させて終端井戸層501aを成膜せずに、原料ガスのM
OCVD成長炉内への供給を意識的に4分間に亘り停止
した。この成長中断の有無に依って、終端井戸層501
aのn形障壁層500aとの界面の価電子帯の低ポテン
シャル側への曲折の程度を、第2近接井戸層501bを
含めて他の井戸層501c〜501dに比較して大とし
た。上記の成長中断操作により、終端井戸層501aと
n形障壁層500aとの接合界面に於ける、実施例1に
記したインジウム原子濃度に関する遷移距離を約12n
mとした。The well layers 501c, 501d and the barrier layer 5 on the n-type cladding layer 403 side after the second proximity well layer 501b adjacent to the terminal well layer (first proximity layer) 501a.
No measures have been taken to achieve the steepening of the junction interface with 00. That is, the other well layers 501c to 501d including the second adjacent well layer 501b are formed on the barrier layer 500 so as to be temporally continuous, and the growth interruption operation is not performed. On the other hand, when forming the terminal well layer 501a that terminates the light emitting layer 52 of the MQW structure 51b, after the film formation of the n-type barrier layer 500a at the final end is completed, the terminal well layer 501a is continuously connected temporally. 501a without forming a film,
The supply into the OCVD growth furnace was intentionally stopped for 4 minutes. Depending on the presence or absence of this growth interruption, the termination well layer 501
The degree of bending of the valence band at the interface with the n-type barrier layer 500a toward the lower potential side is larger than that of the other well layers 501c to 501d including the second adjacent well layer 501b. By the above-described growth interruption operation, the transition distance relating to the indium atom concentration described in Example 1 at the junction interface between the terminal well layer 501a and the n-type barrier layer 500a is set to about 12 n.
m.
【0076】終端井戸層501a上には、層厚を最終端
のn形障壁層500aと同一の20nmとし、アルミニ
ウム組成比を0.05とする窒化アルミニウム・ガリウ
ム混晶(Al0.05Ga0.95N)からなるn形介在層50
3を堆積した。n形介在層503は、n形障壁層500
aと略同一の組成の材料から構成しながらも、キャリア
濃度は約2×1016cm-3未満と障壁層500aよりも
低キャリア濃度の材料から構成してある。On the terminal well layer 501a, an aluminum gallium nitride mixed crystal (Al 0.05 Ga 0.95 N) having a thickness of 20 nm, the same as that of the n-type barrier layer 500a at the final end, and an aluminum composition ratio of 0.05. N-type intermediate layer 50 made of
3 was deposited. The n-type intermediate layer 503 includes the n-type barrier layer 500.
Although it is composed of a material having substantially the same composition as that of the barrier layer 500a, the carrier concentration is lower than about 2 × 10 16 cm −3, which is lower than that of the barrier layer 500a.
【0077】終端井戸層501a上にn形介在層503
を堆積するに際し、上記の如くの成長中断時間を設け
た。成長中断時間は敢えて画一とする必要はないが、n
形介在層503を堆積する以前の成長中断時間も上記の
場合と同じく4分間とした。これより、終端井戸層50
1a内の平均的濃度からインジウム原子濃度を2桁減少
させるに要する、n形介在層503との接合界面からn
形介在層503の内部への距離(遷移距離)を約13n
mとした。The n-type intervening layer 503 is formed on the terminal well layer 501a.
During the deposition, the growth interruption time was provided as described above. It is not necessary to make the growth interruption time uniform, but n
The growth interruption time before depositing the intervening layer 503 was also set to 4 minutes as in the above case. Thus, the terminal well layer 50
1a, it is necessary to reduce the indium atom concentration by two orders of magnitude from the junction interface with the n-type intermediate layer 503.
The distance (transition distance) to the inside of the intermediate layer 503 is about 13 n.
m.
【0078】n形介在層503上には、実施例1に記載
したp形クラッド層407及びp形コンタクト層408
を順次、積層させて積層構造体51を構築した。On the n-type intermediate layer 503, the p-type cladding layer 407 and the p-type contact layer 408 described in the first embodiment are formed.
Were sequentially laminated to form a laminated structure 51.
【0079】積層構造体51に加工を施して作製したp
n接合型のDH構造のLED50に、約3.4〜3.5
Vの順方向電圧を印加して、20mAの順方向電流を通
流させた際には、発光の中心波長を約470nmとする
青色発光が帰結された。即ち、終端井戸層を構成するG
a0.90In0.10Nが有する正規の禁止帯である約3.1
eVを約0.46eV程、下回る約2.64eVの遷移
エネルギーに相当する発光が帰結された。発光スペクト
ルの半値幅は、約12nmと更に狭帯化されているもの
となった。チップ状態での発光の強度は約25μWの高
強度であった。The p produced by processing the laminated structure 51
About 3.4 to 3.5 for the LED 50 having the n-junction DH structure
When a forward voltage of V was applied and a forward current of 20 mA was passed, blue light emission having a center wavelength of light emission of about 470 nm was obtained. That is, G constituting the terminal well layer
About 3.1 which is a forbidden band of a 0.90 In 0.10 N.
Light emission corresponding to a transition energy of about 2.64 eV, which is about 0.46 eV lower than eV, was obtained. The half width of the emission spectrum was further narrowed to about 12 nm. The light emission intensity in a chip state was as high as about 25 μW.
【0080】(実施例3)本実施例では、特に、請求項
7に記載の構成要素を備えたLEDを作製する場合を例
にして本発明を具体的に説明する。(Embodiment 3) In the present embodiment, the present invention will be specifically described by taking as an example a case where an LED having the components described in claim 7 is manufactured.
【0081】本実施例では、実施例2に記載の4周期か
らなるMQW構造を構成するにあたり、終端井戸層50
1aを構成するn形のGa0.90In0.10N結晶層の層厚
を、第2近接井戸層501b及びそれ以降の井戸層50
1c〜501dより薄層となして構成した。すなわち、
終端井戸層501aの層厚は5nmとし、それ以外の井
戸層501b、501c〜501dの層厚は10nmと
した。このようにして、実施例2とは終端井戸層501
aの層厚のみを変更して成る積層構造体からLEDを構
成した。In this embodiment, when the MQW structure having four periods described in the second embodiment is formed, the termination well layer 50 is formed.
The thickness of the n-type Ga 0.90 In 0.10 N crystal layer constituting the first near well layer 501 b and the subsequent well layers 50 b
It comprised so that it might be thinner than 1c-501d. That is,
The layer thickness of the terminal well layer 501a was 5 nm, and the layer thicknesses of the other well layers 501b, 501c to 501d were 10 nm. Thus, the second embodiment differs from the second embodiment in that the termination well layer 501 is provided.
An LED was constructed from a laminated structure obtained by changing only the layer thickness of a.
【0082】n形及びp形オーミック電極間に約3.2
Vの順方向の電圧を印加して、約20mAの順方向電流
を流通させて発光させた。発光の中心波長は、実施例2
のLEDのそれに比し、約490nmとより長波長とな
った。この波長は、井戸層を構成するGa0.90In0.10
Nの正規の禁止帯幅である約3.1eVに比して、約
0.57eV小さい約2.5eVの遷移エネルギーに相
当するものである。即ち、終端井戸層を構成する窒化ガ
リウム・インジウム混晶の組成を変えずとも、単純に終
端井戸層の層厚を減少させることによって、多重量子井
戸構造の発光層からの発光を長波長となせることが示さ
れた。また、発光スペクトルの半値幅は約14nmとな
り、しかも、チップ状態での発光強度は視感度補正を施
した後に於いて約27μWの高きに達した。これより、
本実施例に記載の構成に依れば、単色性にも、また、強
度的にも優れる比較的に長波長の可視光を発光できる量
子井戸構造発光素子が提供できることが示された。Approximately 3.2 between the n-type and p-type ohmic electrodes
A forward voltage of V was applied, and a forward current of about 20 mA was passed to emit light. The center wavelength of the light emission is the same as in Example 2.
The wavelength was about 490 nm, which was longer than that of the LED. This wavelength corresponds to Ga 0.90 In 0.10 constituting the well layer.
This corresponds to a transition energy of about 2.5 eV, which is smaller by about 0.57 eV than the normal band gap of N, which is about 3.1 eV. That is, even if the composition of the gallium-indium nitride mixed crystal constituting the terminal well layer is not changed, the emission from the light emitting layer having the multiple quantum well structure can be made to have a longer wavelength by simply reducing the layer thickness of the terminal well layer. Was shown. Further, the half width of the emission spectrum was about 14 nm, and the emission intensity in the chip state reached as high as about 27 μW after performing visibility correction. Than this,
According to the configuration described in the present example, it was shown that a quantum well structure light emitting device capable of emitting relatively long wavelength visible light, which is excellent in monochromaticity and strength, can be provided.
【0083】(比較例1)実施例3に記載と同様のLE
Dを構成するにあたり、即ち、終端井戸層501aの層
厚を他の井戸層501b〜501dより薄層として成る
MQW構造51bを備えたLEDを作製するにあたり、
第2近接井戸層501bのn形介在層503側の障壁層
500a及びn形障壁層500bの双方との接合界面で
の界面急峻性を向上させるものとした。即ち、n形障壁
層500bの成長を終了した後、1分間に亘る成長中断
時間を設け、また、第2近接井戸層501bの成長後、
同じく1分間の成長中断時間を設けることにより、第2
近接井戸層501bに係わる双方の接合界面の急峻性を
略同一とした。これより、終端井戸層501aと同じく
伝導帯、及び価電子帯の双方に低ポテンシャル部を有す
る第2の近接井戸層501bを備えたMQW構造51b
を形成した。(Comparative Example 1) LE similar to that described in Example 3
In forming D, that is, in manufacturing an LED having an MQW structure 51b in which the thickness of the terminal well layer 501a is made thinner than the other well layers 501b to 501d,
The steepness at the junction interface between the second proximity well layer 501b and both the barrier layer 500a and the n-type barrier layer 500b on the n-type intervening layer 503 side is improved. That is, after the growth of the n-type barrier layer 500b is completed, a growth interruption time of one minute is provided, and after the growth of the second proximity well layer 501b,
By providing a 1 minute growth interruption time,
The steepness of both junction interfaces related to the adjacent well layer 501b was made substantially the same. Thus, the MQW structure 51b including the second proximity well layer 501b having a low potential portion in both the conduction band and the valence band as in the terminal well layer 501a.
Was formed.
【0084】AESに依る分析結果を基に求めた、比較
例1に記した遷移距離は、第2終端井戸層501bに関
する双方の接合界面で約15nmとなった。これから判
断すれば、終端井戸層501aについての遷移距離に比
較して約3〜4nm程、急峻性に劣るものとなった。The transition distance described in Comparative Example 1, which was obtained based on the analysis result by AES, was about 15 nm at both junction interfaces of the second terminal well layer 501b. Judging from this, the steepness was inferior to the transition distance of the terminal well layer 501a by about 3 to 4 nm.
【0085】実施例1乃至3に記載したのと同様にして
pn接合型のDH構造のLEDを作製して発光特性を評
価した。実施例3のLEDの特性との比較に於いて、発
光の中心波長は、終端井戸層内に形成したバンドの変曲
の影響により、約505nmと若干ながら長波長となっ
た。一方、図7に発光スペクトル53を示す如く、本比
較例1のLEDは、中心発光波長を与える主たるスペク
トル53aに加えて、これより短波長側に、中心の波長
を約480nmとする副次的なスペクトル53bの発生
が認められた。副次的なスペクトル53bの出現によ
り、実施例3のLED50からの発光スペクトル53に
比較すれば、半値幅は約21nmとより劣るものとなっ
た。In the same manner as described in Examples 1 to 3, pn junction type DH structure LEDs were manufactured and the light emission characteristics were evaluated. In comparison with the characteristics of the LED of Example 3, the center wavelength of light emission was slightly longer at about 505 nm due to the influence of the inflection of the band formed in the terminal well layer. On the other hand, as shown in the emission spectrum 53 in FIG. 7, the LED of this comparative example 1 has a secondary spectrum having a center wavelength of about 480 nm on the shorter wavelength side in addition to the main spectrum 53a giving the center emission wavelength. The generation of the spectrum 53b was observed. Due to the appearance of the secondary spectrum 53b, the half-value width was about 21 nm, which was inferior to that of the emission spectrum 53 from the LED 50 of Example 3.
【0086】図7の発光スペクトルを比較すれば明らか
な様に、副次的なスペクトル53bは、実施例3のLE
D50からは発生していない。一方、第2近接井戸層5
01bを障壁層500a、500bとの接合界面に低ポ
テンシャル部を設けた井戸層から構成すると、発光の単
色性を乱す副次的なスペクトル53bが出現する。従っ
て、この様な副次的なスペクトル53bは、上記の如く
のポテンシャル構成を備えた第2近接層501bに由来
するものと解釈される。換言すれば、多重量子井戸構造
(MQW)からなる発光層にあって、発光波長を画一化
させる、或いは発光スペクトルの半値幅を狭帯化させる
などの発光特性の改善を果たすには、第2近接井戸層内
に於ける伝導帯及び価電子帯のポテンシャルの落ち込み
を極力、抑制すべきであることが教示される結果となっ
た。As is clear from the comparison of the emission spectra of FIG. 7, the secondary spectrum 53b
It does not occur from D50. On the other hand, the second adjacent well layer 5
When 01b is formed of a well layer having a low potential portion at the junction interface with the barrier layers 500a and 500b, a secondary spectrum 53b that disturbs monochromaticity of light emission appears. Therefore, such a secondary spectrum 53b is interpreted as being derived from the second proximity layer 501b having the potential configuration as described above. In other words, in the light-emitting layer having a multiple quantum well structure (MQW), to improve the light-emitting characteristics such as making the emission wavelength uniform or narrowing the half-width of the emission spectrum, The result teaches that the potential drop of the conduction band and the valence band in the two adjacent well layers should be suppressed as much as possible.
【0087】(実施例4)本実施例では、特に、請求項
8及び9に記載の構成からなる発光層(終端井戸層)を
備えた、発光強度に優れる量子井戸構造LEDを作製す
る場合を例にして本発明を具体的に説明する。(Embodiment 4) In this embodiment, in particular, a case where a quantum well structure LED having excellent light emission intensity and having a light emitting layer (terminal well layer) having the structure described in claim 8 and 9 is manufactured. The present invention will be specifically described by way of examples.
【0088】実施例1に記載と類似のLED用途の積層
構造体(図5参照)を構成するに当たり、n形障壁層4
04の成膜終了後、終端井戸層405の成膜を開始する
に至る間に、実施例1に記載の成長中断操作を施した。In constructing a laminated structure similar to that described in Example 1 for LED use (see FIG. 5), an n-type barrier layer 4 was used.
After the completion of the film formation of No. 04, the growth interruption operation described in Example 1 was performed before the film formation of the terminal well layer 405 was started.
【0089】本実施例では、終端井戸層405を、酸素
を含有する多相構造のn形窒化ガリウム・インジウム混
晶(Ga0.82In0.18N)から構成した。終端井戸層4
05を常圧MOCVD技術を利用して成膜する際には、
主にメトキシ(methoxy:−OCH3 )基を付加
した有機化合物を含酸素不純物として約60重量ppm
の濃度で含むトリメチルインジウム((CH3 )3 I
n)をIn源とした。これにより、酸素原子濃度を約8
×1018cm-3とし、且つインジウム組成比を0.18
とするアンドープのn形Ga0.82In0.18Nを成膜し
た。In this embodiment, the terminal well layer 405 is composed of an n-type gallium-indium nitride mixed crystal (Ga 0.82 In 0.18 N) having a multiphase structure containing oxygen. Terminal well layer 4
05 is formed using the atmospheric pressure MOCVD technique,
Organic compounds having a methoxy (-OCH 3 ) group added thereto are used as oxygen-containing impurities in an amount of about 60 ppm by weight.
Trimethylindium ((CH 3 ) 3 I)
n) was used as the In source. Thereby, the oxygen atom concentration is reduced to about 8
× 10 18 cm -3 and an indium composition ratio of 0.18
Undoped n-type Ga 0.82 In 0.18 N was formed.
【0090】層厚を約5nmとし、キャリア濃度を約5
×1017cm-3とする終端井戸層405を885℃で成
膜を終了した後は、次層のn形介在層406の成長温度
である1070℃に約100℃/分の速度で、2分間で
昇温した。この昇温に要した時間と、原料ガスのMOC
VD反応炉への供給を中断した3分間と併せて合計5る
分間に亘る成長中断時間を設けた。終端井戸層405の
成膜の前後に於いて成長中断の期間を設けることによ
り、n形障壁層404及びn形介在層406との双方の
接合界面に於ける急峻性を約14nmとした。The layer thickness is about 5 nm, and the carrier concentration is about 5 nm.
After the film formation of the terminal well layer 405 of × 10 17 cm −3 is completed at 885 ° C., the temperature is increased at a rate of about 100 ° C./min to 1070 ° C., which is the growth temperature of the next n-type intermediate layer 406. The temperature rose in minutes. The time required for this temperature rise and the MOC of the source gas
A growth interruption time was provided for a total of 5 minutes in combination with the 3 minutes when the supply to the VD reactor was interrupted. By providing a period of growth interruption before and after the formation of the terminal well layer 405, the steepness at the junction interface between both the n-type barrier layer 404 and the n-type intervening layer 406 is set to about 14 nm.
【0091】然る後、1070℃で3分に亘って、実施
例1と同様のp形Al0.15Ga0.85Nクラッド層407
を成長させた。p形Al0.15Ga0.85Nクラッド層40
7に続き、10分間に亘り、アルミニウム組成比(=
X)を0.15から表面に向けて0に減少させる組成勾
配を付したp形AlX Ga1-X N(X=0.15→0)
コンタクト層408を成長した。p形コンタクト層40
8の成膜が終了した後は、950℃に毎分約40℃の速
度で冷却した。続けて、950℃から650℃に15℃
/分の速度で冷却した。終端井戸層405に、この様な
冷却速度を異にする2段階の冷却を施し、終端井戸層4
05をインジウム組成比を相違する多相構造の結晶層と
なした。Thereafter, the same p-type Al 0.15 Ga 0.85 N cladding layer 407 as in the first embodiment was formed at 1070 ° C. for 3 minutes.
Grew. p-type Al 0.15 Ga 0.85 N cladding layer 40
After 10 minutes, the aluminum composition ratio (=
X) p-type Al x Ga 1 -xN (X = 0.15 → 0) with a composition gradient that reduces X) from 0.15 toward 0 toward the surface
A contact layer 408 was grown. p-type contact layer 40
After the film formation of No. 8 was completed, the film was cooled to 950 ° C. at a rate of about 40 ° C./min. Continue from 950 ° C to 650 ° C at 15 ° C
Per minute. The terminal well layer 405 is subjected to such two-stage cooling with different cooling rates, and the terminal well layer 4
Sample No. 05 was a crystal layer having a multiphase structure having different indium composition ratios.
【0092】図8は、上記の冷却工程を経過した後に於
ける、終端井戸層405の内部の結晶構造を示す透過型
電子顕微鏡(TEM)像である。終端井戸層405は、
インジウム組成比(=X)を2〜3%とするGa1-X I
nX Nからなる主体相Sと、インジウム組成比を約15
〜25%程度とするGa1-X InX Nの微結晶体からな
る従属相Tとからなる多相構造となっている。主体相S
と従属相Tとの境界領域の多くには、双方のインジウム
組成比の相違に起因する格子定数の差異に起因して発生
すると考慮される格子歪を内包する領域Uの存在が認め
られた。また、終端井戸層405内の酸素原子濃度は、
重金属に比較すれば検出感度が劣るために正確に定量す
るに至らなかった。しかし、酸素は、主体相S及び従属
相Tの双方の相領域に含有されており、強いて云えば、
従属相Tの内部により多く存在する様に見受けられた。FIG. 8 is a transmission electron microscope (TEM) image showing the crystal structure inside the terminal well layer 405 after the cooling step. The terminal well layer 405 is
Ga 1-X I with an indium composition ratio (= X) of 2-3%
a main phase S composed of n x N and an indium composition ratio of about 15
It has a multi-phase structure composed of a dependent phase T of microcrystal crystal of Ga 1-X In X N to about 25%. Subject phase S
In many of the boundary regions between the indium phase and the dependent phase T, the existence of a region U containing lattice strain which is considered to occur due to a difference in lattice constant caused by a difference in indium composition ratio between the two was recognized. The oxygen atom concentration in the terminal well layer 405 is
Since the detection sensitivity was inferior to heavy metals, accurate quantification was not achieved. However, oxygen is contained in both the phase region of the main phase S and the phase region of the dependent phase T.
It appeared to be more present inside the dependent phase T.
【0093】実施例1に記載と同様にして、量子井戸構
造LEDを作製した。LEDからは、発光波長を約45
0nmとする青緑色帯の発光が放射された。これは、終
端井戸層を構成するGa0.82In0.18Nが有する本来の
禁止帯幅である約3.0eVに比べて、約0.34eV
低い遷移エネルギーに相当する発光であった。また、発
光スペクトルの半値幅は約12nmとなった。これらの
特性には、実施例1のLEDのそれと然したる相違は認
められなかった一方で、発光強度は、実施例1のLED
の強度を約30%上回る約30μWとなった。これよ
り、そもそも高い結晶性を維持できるインジウム組成比
を0.3以下とした上に、酸素を適量に含む、多相構造
となしたGa1-X InX Nから構成した終端井戸層は、
高発光強度の量子井戸構造発光素子をもたらすに特に、
効果があることが示された。In the same manner as described in Example 1, a quantum well structure LED was manufactured. From the LED, the emission wavelength is about 45
Emission of a blue-green band of 0 nm was emitted. This is about 0.34 eV compared to about 3.0 eV which is the original band gap of Ga 0.82 In 0.18 N constituting the terminal well layer.
Light emission corresponding to a low transition energy was obtained. The half width of the emission spectrum was about 12 nm. While these characteristics did not differ from those of the LED of Example 1, the emission intensity was higher than that of the LED of Example 1.
Of about 30 μW, which is about 30% higher than the intensity of Thus, the terminal well layer composed of Ga 1-X In X N having a multiphase structure containing an appropriate amount of oxygen in addition to an indium composition ratio capable of maintaining a high crystallinity of 0.3 or less,
In particular, to provide a quantum well structure light emitting device with high emission intensity,
It was shown to be effective.
【0094】[0094]
【発明の効果】請求項1に記載の発明に依れば、単色性
に優れる発光をもたらす量子井戸構造の元来の特性を発
揮させつつ、高インジウム組成比の結晶性に劣るインジ
ウム含有III 族窒化物半導体層を敢えて、発光層として
利用せずとも、終端井戸層のn形介在層との接合面で発
光の長波長化を促すに利便なバンドの低ポテンシャル側
への曲折を発生させることができ、これより、発光の長
波長化に都合の良い量子井戸構造発光素子を提供できる
効果がある。According to the first aspect of the present invention, an indium-containing group III material having a high indium composition ratio and inferior crystallinity is exhibited while exhibiting the original characteristics of a quantum well structure providing light emission with excellent monochromaticity. Even if the nitride semiconductor layer is not intentionally used as a light emitting layer, a band which is convenient for promoting a longer wavelength of light emission at the junction surface of the terminal well layer and the n-type intervening layer is generated to a low potential side. Thus, there is an effect that a quantum well structure light emitting element convenient for increasing the wavelength of light emission can be provided.
【0095】請求項2及び3に記載の発明では、請求項
1の発明に加えて、終端の井戸層をn形障壁層およびn
形介在層で挟持し、終端井戸層内にバンドの曲折を発生
させるに都合の良い構成としたので、発光の長波長化に
都合の良い量子井戸構造発光素子を提供できる効果があ
る。According to the second and third aspects of the present invention, in addition to the first aspect of the present invention, the terminal well layer is formed of an n-type barrier layer and an n-type barrier layer.
Since it is sandwiched between the intervening layers and has a configuration that is convenient for generating band bending in the terminal well layer, there is an effect that a quantum well structure light-emitting element that is convenient for increasing the wavelength of light emission can be provided.
【0096】請求項4の発明では、正孔を価電子帯の低
ポテンシャル部に有効に蓄積できる構成としたため、正
規の禁止帯幅よりも小さな遷移エネルギーが与えられ、
発光の長波長化をもたらすに特に都合の良い構成を備え
た量子構造発光素子を提供できる効果がある。According to the fourth aspect of the invention, since holes are effectively accumulated in the low potential portion of the valence band, a transition energy smaller than the normal band gap is given,
There is an effect that it is possible to provide a quantum structure light emitting device having a configuration particularly convenient for increasing the wavelength of light emission.
【0097】請求項5の発明では、接合界面での急峻性
を確保して、発光波長を長波長側に移行させるのに都合
良く作用する伝導帯及び価電子帯の双方のバンドの曲折
の程度をより大としたので、キャリアの遷移エネルギー
が更に減ぜられ、長波長の発光をもたらすに好都合の量
子井戸発光素子が提供できる効果がある。特に、請求項
7に記載の発明に依れば、接合界面の急峻性に依るバン
ドの曲折に因る発光の長波長化をより端的に発現できる
より薄層から終端井戸層を構成したため、発光の長波長
化が簡便に達成できる量子井戸発光素子が提供される。According to the fifth aspect of the present invention, the degree of bending of both the conduction band and the valence band, which works well to shift the emission wavelength to the longer wavelength side while securing steepness at the junction interface. Is increased, the transition energy of carriers is further reduced, and there is an effect that a quantum well light emitting device which is convenient for providing long-wavelength light emission can be provided. In particular, according to the seventh aspect of the present invention, since the terminal well layer is formed from a thinner layer capable of more clearly exhibiting a longer wavelength of light emission due to band bending due to the steepness of the junction interface, the light emission is improved. Provided is a quantum well light emitting device that can easily achieve a longer wavelength.
【0098】また、請求項6の発明に依れば、多重量子
構造にあって、終端井戸層内の伝導帯及び価電子帯双方
のバンドの曲折の程度を他の井戸層のそれに比較して大
として、キャリア間の遷移エネルギーの不均一性の拡大
を抑制したので、特に、単色性に優れる、長波長の発光
をもたらす量子井戸構造発光素子が提供できる効果があ
る。According to the invention of claim 6, in the multiple quantum structure, the degree of bending of both the conduction band and the valence band in the terminal well layer is compared with that of the other well layers. In general, since the expansion of the non-uniformity of the transition energy between carriers is suppressed, a quantum well structure light emitting element which is excellent in monochromaticity and emits light of a long wavelength can be provided.
【0099】請求項8の発明では、量子井戸構造の終端
井戸層を、単一組成ではなく、インジウム組成を相違す
る多相構造とし、尚且、結晶性の悪化を顕著に帰結しな
いインジウム組成比が0.3以下の低インジウム組成比
の窒化ガリウム・インジウムから構成したので、高い強
度の発光がもたらされ、このため、高輝度の量子井戸構
造発光素子を提供できる効果がある。According to the eighth aspect of the present invention, the terminal well layer of the quantum well structure is not a single composition but has a multiphase structure having a different indium composition, and the indium composition ratio which does not remarkably cause the deterioration of crystallinity is improved. Since it is composed of gallium / indium nitride having a low indium composition ratio of 0.3 or less, high-intensity light emission is provided, and therefore, there is an effect that a high-intensity quantum well structure light-emitting device can be provided.
【0100】更に、請求項9に記載の発明では、請求項
8の発明に記載の如く、低インジウム組成比で、且つ、
多相構造の窒化ガリウム・インジウム混晶から終端井戸
層を構成するにあって、特に、井戸層内に含有される酸
素原子の濃度を適量としたので、更に発光強度に優れる
量子井戸構造発光素子を提供できる効果がある。Further, according to the ninth aspect of the present invention, as described in the eighth aspect of the present invention, a low indium composition ratio and
In forming the terminal well layer from a gallium nitride-indium mixed crystal having a multi-phase structure, a quantum well structure light emitting device having a further excellent light emission intensity, particularly because the concentration of oxygen atoms contained in the well layer is adjusted to an appropriate amount. There is an effect that can be provided.
【図1】単一量子井戸(SQW)構造の発光層を備えた
pn接合型DH構造発光部のエネルギー帯構造を示す図
である。FIG. 1 is a diagram showing an energy band structure of a pn junction type DH structure light emitting unit having a light emitting layer of a single quantum well (SQW) structure.
【図2】多重量子井戸(MQW)構造の発光層を備えた
pn接合型DH構造発光部のエネルギー帯構造を示す図
である。FIG. 2 is a diagram illustrating an energy band structure of a pn junction type DH structure light emitting unit including a light emitting layer having a multiple quantum well (MQW) structure.
【図3】本発明に係わるSQW構造に於けるポテンシャ
ル構成を示すダイヤグラムである。FIG. 3 is a diagram showing a potential configuration in an SQW structure according to the present invention.
【図4】本発明に係わるMQW構造に於けるポテンシャ
ル構成を示すダイヤグラムである。FIG. 4 is a diagram showing a potential configuration in an MQW structure according to the present invention.
【図5】実施例1のLEDの断面構造模式図である。FIG. 5 is a schematic sectional view of the LED of Example 1.
【図6】実施例2のLEDの断面構造模式図である。FIG. 6 is a schematic sectional view of an LED according to a second embodiment.
【図7】実施例3及び比較例1に記載のLEDの発光ス
ペクトルである。FIG. 7 is an emission spectrum of the LED described in Example 3 and Comparative Example 1.
【図8】実施例4に記載の終端井戸層内部の結晶構成を
示すTEM像の模式図である。FIG. 8 is a schematic TEM image showing a crystal structure inside a terminal well layer described in Example 4.
【図9】従来の単一量子井戸(SQW)構造の基本的な
エネルギー帯構造を示す図である。FIG. 9 is a diagram showing a basic energy band structure of a conventional single quantum well (SQW) structure.
【図10】SQW構造のエネルギー帯構造の矩形ポテン
シャル構成を示す図である。FIG. 10 is a diagram showing a rectangular potential configuration of an energy band structure of an SQW structure.
010、011、10、404、500、500a、5
00b:バリア層 012、11、11a、11b、11c、11d、11
e、501a、501b、501c、501d:井戸層 013、24:井戸層を構成する材料の本来の禁止帯幅 014、015:バリア層の禁止帯幅 016:ポテンシャル井戸部 017、16:伝導帯 018、20:価電子帯 019、020:伝導帯側に形成される量子準位 021、022:価電子帯側に形成される量子準位 023、024、23:遷移エネルギー 1:発光部 1a:発光層 1b:単一量子井戸 1d:多重量子井戸 11a、405、501a:終端井戸層 11b、501b:第2近接井戸層 12、406、503:介在層 13、403:n形クラッド層 14、407:p形クラッド層 15a、43:終端井戸層と介在層との接合界面 15b:終端井戸層と障壁層との接合界面 15c:第2近接井戸層と障壁層との介在層側の接合界
面 15d:第2近接井戸層と障壁層との接合界面 16a:伝導帯レベル(Eco) 16b:伝導帯の曲折端(Ec) 16c:伝導帯のポテンシャル差 17:フェルミレベル 18:伝導帯側の低ポテンシャル部 19:電子 20a:価電子帯レベル(Evo) 20b:価電子帯の曲折端(Ev) 20c:価電子帯のポテンシャル差 21:価電子帯側の低ポテンシャル部 22:正孔 25a:終端井戸層内の伝導帯側の曲折の程度 25b:終端井戸層内の価電子帯側の曲折の程度 25c:第2近接井戸層内の伝導帯側の曲折の程度 25d:第2近接井戸層内の価電子帯側の曲折の程度 40、50:LED 41、51:積層構造体 400:結晶基板 401:緩衝層 402:n形GaN層 408:コンタクト層 409:n形オーミック電極 410:p形オーミック電極 51a:量子井戸構成単位 51b:多重量子井戸構造 52:発光層 53、54:発光スペクトル 53a:主たる発光スペクトル 53b:副次的な発光スペクトル S:主体相 T:従属相 U:歪含有領域010,011,10,404,500,500a, 5
00b: barrier layers 012, 11, 11a, 11b, 11c, 11d, 11
e, 501a, 501b, 501c, 501d: Well layer 013, 24: Original bandgap of the material constituting the well layer 014, 015: Bandgap of barrier layer 016: Potential well 017, 16: Conduction band 018 , 20: valence band 019, 020: quantum level formed on the conduction band side 021, 022: quantum level formed on the valence band side 023, 024, 23: transition energy 1: light emitting portion 1a: light emission Layer 1b: Single quantum well 1d: Multiple quantum well 11a, 405, 501a: Terminal well layer 11b, 501b: Second proximity well layer 12, 406, 503: Intermediate layer 13, 403: N-type cladding layer 14, 407: p-type cladding layers 15a, 43: junction interface between terminal well layer and intervening layer 15b: junction interface between terminal well layer and barrier layer 15c: second adjacent well layer and barrier layer Junction interface on the side of the intervening layer 15d: Junction interface between the second proximity well layer and the barrier layer 16a: Conduction band level (Eco) 16b: Bend end of the conduction band (Ec) 16c: Potential difference in the conduction band 17: Fermi level 18 : Low potential portion on the conduction band side 19: electron 20 a: valence band level (Evo) 20 b: bent end of the valence band (Ev) 20 c: potential difference of the valence band 21: low potential portion on the valence band side 22 : Hole 25a: Degree of bending on the conduction band side in the terminal well layer 25b: Degree of bending on the valence band side in the terminal well layer 25c: Degree of bending on the conduction band side in the second adjacent well layer 25d: Degree of bending on the valence band side in the second proximity well layer 40, 50: LED 41, 51: stacked structure 400: crystal substrate 401: buffer layer 402: n-type GaN layer 408: contact layer 409: -Type ohmic electrode 410: p-type ohmic electrode 51a: quantum well constituent unit 51b: multiple quantum well structure 52: light emitting layer 53, 54: emission spectrum 53a: main emission spectrum 53b: secondary emission spectrum S: main phase T: Dependent phase U: Strain-containing region
Claims (9)
窒化物半導体結晶層からなるn形及びp形クラッド層に
挟持されたn形発光層を備えた、pn接合型ダブルヘテ
ロ(DH)構造の発光素子において、 前記n形発光層は、単一若しくは多重の量子井戸構造を
有し、 該量子井戸構造の終端を構成する井戸層(終端井戸層)
とp形クラッド層との中間に、n形のIII 族窒化物半導
体から成る介在層が配置され、 該終端井戸層が、前記n形介在層と終端井戸層との接合
界面近傍の領域において、該終端井戸層の伝導帯を、フ
ェルミレベル(Fermi level)に向けて低ポ
テンシャル側に下に凸に曲折させたポテンシャル構成を
有する、インジウム(In)を含有するn形のIII 族窒
化物半導体結晶層から成ることを特徴とする量子井戸構
造発光素子。A pn junction double hetero (DH) formed on one surface of a crystal substrate and having an n-type light emitting layer sandwiched between n-type and p-type cladding layers made of a group III nitride semiconductor crystal layer. In the light emitting device having the structure, the n-type light emitting layer has a single or multiple quantum well structure, and a well layer (terminating well layer) which constitutes an end of the quantum well structure.
An intermediate layer made of an n-type group III nitride semiconductor is disposed between the p-type clad layer and the p-type clad layer, and the terminal well layer is located in a region near a junction interface between the n-type intermediate layer and the terminal well layer. Indium (In) -containing n-type group III nitride semiconductor crystal having a potential configuration in which a conduction band of the terminal well layer is bent downward and convex toward a lower potential side toward a Fermi level. A quantum well structure light emitting device comprising a layer.
該n形介在層に終端井戸層を挟んで対峙するn形障壁層
との間に挟持されていることを特徴とする請求項1に記
載の量子井戸構造発光素子。2. The terminal well layer, wherein the n-type intervening layer comprises:
2. The quantum well structure light emitting device according to claim 1, wherein the n-type intervening layer is interposed between the n-type barrier layer and an opposing n-type barrier layer with a terminal well layer interposed therebetween.
同一の組成で略同一の層厚から成ることを特徴とする請
求項2に記載の量子井戸構造発光素子。3. The quantum well structure light emitting device according to claim 2, wherein the n-type barrier layer has substantially the same composition and substantially the same thickness as the n-type intervening layer.
接合界面近傍の領域において、該終端井戸層の価電子帯
をフェルミレベルに向けて上に凸に曲折させた低ポテン
シャル領域を有することを特徴とする請求項2または3
に記載の量子井戸構造発光素子。4. The terminal well layer has a low potential region in a region near a junction interface with the n-type barrier layer, in which a valence band of the terminal well layer is bent upward and convex toward Fermi level. 4. The device according to claim 2, wherein
3. The quantum well structure light emitting device according to item 1.
ンシャルレベル(Eco)とフェルミレベル側へ落ち込
んだ低ポテンシャル端(Ec)とのエネルギー差(ΔE
c=|Eco−Ec|)と、価電子帯の本来のポテンシ
ャルレベル(Evo)とフェルミレベル側へ落ち込んだ
低ポテンシャル端(Ev)とのエネルギー差(ΔEv=
|Evo−Ev|)との合計のエネルギー差(ΔEc+
ΔEv)を、0.4エレクトロンボルト(eV)以上と
する伝導帯及び価電子帯の曲折を有することを特徴とす
る請求項4に記載の量子井戸構造発光素子。5. The terminal well layer has an energy difference (ΔE) between an original potential level (Eco) of a conduction band and a low potential end (Ec) dropped to the Fermi level side.
c = | Eco−Ec |) and the energy difference (ΔEv =) between the original potential level (Evo) of the valence band and the low potential end (Ev) that has dropped to the Fermi level side.
| Evo−Ev |) and the total energy difference (ΔEc +
The quantum well structure light emitting device according to claim 4, wherein the quantum well structure has a conduction band and a valence band that make ΔEv) 0.4 electron volts (eV) or more.
を有し、前記終端井戸層の層厚は、上記の合計のエネル
ギー差(ΔEc+ΔEv)を他の井戸層の合計のエネル
ギー差よりも大とすることを特徴とする請求項4または
5に記載の量子井戸構造発光素子。6. The n-type light-emitting layer has a multiple quantum well structure, and the layer thickness of the terminal well layer is such that the total energy difference (ΔEc + ΔEv) is larger than the total energy difference of other well layers. The quantum well structure light emitting device according to claim 4, wherein the light emitting device has a large diameter.
を有し、前記終端井戸層の層厚を、他の井戸層の層厚以
下としたことを特徴とする請求項1乃至6の何れかに記
載の量子井戸構造発光素子。7. The n-type light emitting layer has a multiple quantum well structure, and the thickness of the terminal well layer is less than the thickness of another well layer. The quantum well structure light emitting device according to any one of the above.
(=X)を0.3以下から成る主体相と、該主体相とは
インジウム組成比を相違し主体相との接合境界領域に歪
層を存在させた従属相とを含む多相構造のn形窒化ガリ
ウム・インジウム(Ga1-X InX N:0≦X≦0.
3)から構成したことを特徴とする請求項1乃至7の何
れかに記載の量子井戸構造発光素子。8. The terminal well layer includes a main phase having an indium composition ratio (= X) of 0.3 or less and a strained layer having a different indium composition ratio from the main phase and having a junction boundary region with the main phase. N -type gallium indium nitride (Ga 1-x In x N: 0 ≦ X ≦ 0.
8. A light emitting device having a quantum well structure according to claim 1, wherein the light emitting device comprises:
素原子濃度を5×1017cm-3以上で5×1020cm-3
以下とする、n形のGa1-X InX N(0≦X≦0.
3)結晶から構成したことを特徴とする請求項8に記載
の量子井戸構造発光素子。9. The method according to claim 1, wherein the terminal well layer having the multiphase structure has an oxygen atom concentration of 5 × 10 17 cm −3 or more and 5 × 10 20 cm −3.
N -type Ga 1-x In x N (0 ≦ X ≦ 0.
3) The quantum well structure light emitting device according to claim 8, comprising a crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30295998A JP3399374B2 (en) | 1998-10-23 | 1998-10-23 | Light emitting device with quantum well structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30295998A JP3399374B2 (en) | 1998-10-23 | 1998-10-23 | Light emitting device with quantum well structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000133884A true JP2000133884A (en) | 2000-05-12 |
JP3399374B2 JP3399374B2 (en) | 2003-04-21 |
Family
ID=17915222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30295998A Expired - Lifetime JP3399374B2 (en) | 1998-10-23 | 1998-10-23 | Light emitting device with quantum well structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3399374B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000196142A (en) * | 1998-12-25 | 2000-07-14 | Nichia Chem Ind Ltd | Light emitting element |
WO2002003517A1 (en) * | 2000-07-03 | 2002-01-10 | Toyoda Gosei Co., Ltd. | Iii group nitride compound semiconductor light emitting element |
WO2004051759A1 (en) * | 2002-12-03 | 2004-06-17 | Nec Corporation | Semiconductor optical device having quantum well structure and its manufacturing method |
US6909120B2 (en) | 2000-11-10 | 2005-06-21 | Sharp Kabushiki Kaisha | Nitride semiconductor luminous element and optical device including it |
US6936863B2 (en) | 2002-11-18 | 2005-08-30 | Showa Denko K.K. | Boron phosphide-based semiconductor light-emitting device, production method thereof and light-emitting diode |
WO2005122289A1 (en) * | 2004-06-09 | 2005-12-22 | Showa Denko K.K. | Gallium nitride-based semiconductor stacked structure |
JP2006295128A (en) * | 2005-04-06 | 2006-10-26 | Samsung Electro Mech Co Ltd | Nitride semiconductor device |
JP2010141134A (en) * | 2008-12-11 | 2010-06-24 | Taiyo Nippon Sanso Corp | Additive gas for manufacturing gallium nitride compound semiconductor, method of manufacturing gallium nitride compound semiconductor, and gallium nitride compound semiconductor manufacturing device |
JP2014116542A (en) * | 2012-12-12 | 2014-06-26 | Stanley Electric Co Ltd | Semiconductor light-emitting element and manufacturing method of the same |
CN116344693A (en) * | 2023-05-31 | 2023-06-27 | 江西兆驰半导体有限公司 | A high-efficiency light-emitting diode epitaxial wafer and its preparation method |
-
1998
- 1998-10-23 JP JP30295998A patent/JP3399374B2/en not_active Expired - Lifetime
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000196142A (en) * | 1998-12-25 | 2000-07-14 | Nichia Chem Ind Ltd | Light emitting element |
KR100680430B1 (en) * | 2000-07-03 | 2007-02-08 | 도요다 고세이 가부시키가이샤 | Group III nitride compound semiconductor light emitting device |
WO2002003517A1 (en) * | 2000-07-03 | 2002-01-10 | Toyoda Gosei Co., Ltd. | Iii group nitride compound semiconductor light emitting element |
US6838706B2 (en) | 2000-07-03 | 2005-01-04 | Toyoda Gosei Co., Ltd. | Group III nitride compound semiconductor light-emitting device which emits light having a wavelength in a range from 360 to 550 NM |
US6909120B2 (en) | 2000-11-10 | 2005-06-21 | Sharp Kabushiki Kaisha | Nitride semiconductor luminous element and optical device including it |
US6936863B2 (en) | 2002-11-18 | 2005-08-30 | Showa Denko K.K. | Boron phosphide-based semiconductor light-emitting device, production method thereof and light-emitting diode |
US7479448B2 (en) | 2002-12-03 | 2009-01-20 | Nec Corporation | Method of manufacturing a light emitting device with a doped active layer |
WO2004051759A1 (en) * | 2002-12-03 | 2004-06-17 | Nec Corporation | Semiconductor optical device having quantum well structure and its manufacturing method |
WO2005122289A1 (en) * | 2004-06-09 | 2005-12-22 | Showa Denko K.K. | Gallium nitride-based semiconductor stacked structure |
US7759149B2 (en) | 2004-06-09 | 2010-07-20 | Showa Denko K.K. | Gallium nitride-based semiconductor stacked structure |
JP2006295128A (en) * | 2005-04-06 | 2006-10-26 | Samsung Electro Mech Co Ltd | Nitride semiconductor device |
JP2010141134A (en) * | 2008-12-11 | 2010-06-24 | Taiyo Nippon Sanso Corp | Additive gas for manufacturing gallium nitride compound semiconductor, method of manufacturing gallium nitride compound semiconductor, and gallium nitride compound semiconductor manufacturing device |
JP2014116542A (en) * | 2012-12-12 | 2014-06-26 | Stanley Electric Co Ltd | Semiconductor light-emitting element and manufacturing method of the same |
CN116344693A (en) * | 2023-05-31 | 2023-06-27 | 江西兆驰半导体有限公司 | A high-efficiency light-emitting diode epitaxial wafer and its preparation method |
CN116344693B (en) * | 2023-05-31 | 2023-09-08 | 江西兆驰半导体有限公司 | A high-efficiency light-emitting diode epitaxial wafer and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP3399374B2 (en) | 2003-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6906352B2 (en) | Group III nitride LED with undoped cladding layer and multiple quantum well | |
US7365369B2 (en) | Nitride semiconductor device | |
KR100458145B1 (en) | Semiconductor light emitting device and method for manufacturing same | |
US7615804B2 (en) | Superlattice nitride semiconductor LD device | |
EP2273572B1 (en) | A nitride semiconductor device | |
JP4947035B2 (en) | Nitride semiconductor device | |
JP3282174B2 (en) | Nitride semiconductor light emitting device | |
JPH06177423A (en) | Blue light emitting element | |
JPH10335757A (en) | Nitride semiconductor element | |
US6307219B1 (en) | Light-emitting device comprising gallium-nitride-group compound semiconductor | |
JPH10145000A (en) | Nitride semiconductor element and its manufacture | |
JP3399374B2 (en) | Light emitting device with quantum well structure | |
JPH10145002A (en) | Nitride semiconductor device and method for growing the nitride semiconductor | |
JP3361964B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
JPH11191639A (en) | Nitride semiconductor device | |
KR100475005B1 (en) | Nitride semiconductor device | |
JPH11195812A (en) | Nitride semiconductor light-emitting element | |
JPH10290047A (en) | Nitride semiconductor element | |
JP3371828B2 (en) | Nitride semiconductor light emitting device | |
JPH09326508A (en) | Semiconductor optical device | |
JPH10242585A (en) | Semiconductor light emitting device | |
JP4277363B2 (en) | Group III nitride semiconductor light emitting device | |
JP2006135215A (en) | Manufacturing method of semiconductor light emitting device | |
JP2001015803A (en) | AlGaInP LIGHT EMITTING DIODE | |
JP2006135001A (en) | Semiconductor element and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120221 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120221 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130221 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140221 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140221 Year of fee payment: 11 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140221 Year of fee payment: 11 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140221 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |