[go: up one dir, main page]

JP2000121468A - Anodic bonding method - Google Patents

Anodic bonding method

Info

Publication number
JP2000121468A
JP2000121468A JP29182598A JP29182598A JP2000121468A JP 2000121468 A JP2000121468 A JP 2000121468A JP 29182598 A JP29182598 A JP 29182598A JP 29182598 A JP29182598 A JP 29182598A JP 2000121468 A JP2000121468 A JP 2000121468A
Authority
JP
Japan
Prior art keywords
thin film
conductive thin
substrate
borosilicate glass
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29182598A
Other languages
Japanese (ja)
Inventor
Katsumi Taniguchi
克己 谷口
Tomoaki Gotou
友彰 後藤
Koji Matsushita
浩二 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29182598A priority Critical patent/JP2000121468A/en
Publication of JP2000121468A publication Critical patent/JP2000121468A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an anodic bonding method in which air bubbles are not generated, in which it is not required to strip a lattice like conductive thin film and in which a uniform bonding operation can be performed efficiently by a method wherein the lattice like conductive thin film whose pattern is identical to that of the cutting margion of a substrate is formed on a boardlike glass when the substrate is cut so as to be changed into chips. SOLUTION: A conductive thin film 13 is formed on one face of a borosilicate glass 11 to be a film thickness if several hundred to several thousand Å by a sputtering technique or the like, and a lattice like conductive thin film pattern having a width of several tens to several hundred μm is obtained by a photolithographic technique or the like. That is to say, a single-crystal silicon substrate or a metal whose coefficient of thermal expansion is approximate to that of the borosilicate glass such as an Fe-Co-Ni-based alloy or the like is placed on a heater electrode, the borosilicate glass 11 on which the lattice-like conductive thin film 13 is formed is placed, and a needle electrode is brought into contact with the lattice like conductive thin film 13. The substrate is heated to, e.g. 300 to 700 deg.C via the heater electrode, and an anode voltage of 200 to 1000 V is applied to the needle electrode. After a bonding operation, the substrate is cut along the thin film 13 so as to be changed into chips. A lattice width is set at the cutting margin or lower of the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はホウケイ酸ガラス
と基板の陽極接合方法に係り、特に気泡の発生がない上
に導電性薄膜の剥離が不要であり、且つ能率的に均一な
接合が得られる陽極接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for anodic bonding of borosilicate glass and a substrate, in particular, there is no generation of bubbles, no need to peel off a conductive thin film, and an efficient uniform bonding can be obtained. It relates to an anodic bonding method.

【0002】[0002]

【従来の技術】ホウケイ酸ガラスと単結晶シリコン基板
等は、ホウケイ酸ガラスの一主面に導電性薄膜を設け、
次いで前記した導電性薄膜に陽極電圧を印加してホウケ
イ酸ガラス中のアルカリイオンの電場拡散によりホウケ
イ酸ガラスの他の主面を単結晶シリコン基板と接合す
る。この陽極接合方法には針状電極や板状電極を用いて
導電性薄膜に陽極電圧を印加する。ホウケイ酸ガラスに
は導電性薄膜を設けない場合もある。基板はホウケイ酸
ガラスと同等の熱膨張率を有する金属を用いることがで
きるし、また導電性薄膜はセラミックスを介してホウケ
イ酸ガラスに設けてもよい。
2. Description of the Related Art Borosilicate glass and single crystal silicon substrates are provided with a conductive thin film on one main surface of borosilicate glass.
Next, an anode voltage is applied to the conductive thin film, and the other main surface of the borosilicate glass is bonded to the single crystal silicon substrate by electric field diffusion of alkali ions in the borosilicate glass. In this anodic bonding method, an anodic voltage is applied to the conductive thin film using a needle electrode or a plate electrode. In some cases, the borosilicate glass is not provided with a conductive thin film. As the substrate, a metal having a coefficient of thermal expansion equivalent to that of borosilicate glass can be used, and the conductive thin film may be provided on borosilicate glass via ceramics.

【0003】このような陽極接合方法によるホウケイ酸
ガラスと単結晶シリコン基板の接合は、カーエレクトロ
ニクス等に用いられる圧力センサにその例をみることが
できる。圧力センサは圧力変動により伸縮する単結晶シ
リコンダイアフラムとホウケイ酸ガラスに設けられた電
極が形成するコンデンサーの容量変化を計測する。
[0003] An example of the bonding of a borosilicate glass and a single crystal silicon substrate by such an anodic bonding method can be found in a pressure sensor used for car electronics and the like. The pressure sensor measures a change in capacitance of a capacitor formed by a single crystal silicon diaphragm that expands and contracts due to pressure fluctuation and an electrode provided on borosilicate glass.

【0004】図6は従来の陽極接合方法につき陽極電圧
印加工程の素子を示す断面図である。
FIG. 6 is a sectional view showing an element in an anode voltage applying step according to a conventional anodic bonding method.

【0005】ヒータ電極22上に基板21,ホウケイ酸
ガラス11が順次載置され、次いで針状電極23を用い
て陽極電圧が印加される。針状電極23を中心として接
合が広がる。
A substrate 21 and a borosilicate glass 11 are sequentially placed on a heater electrode 22, and then an anode voltage is applied by using a needle electrode 23. The bonding spreads around the needle electrode 23.

【0006】図7は従来の異なる陽極接合方法につき陽
極電圧印加工程の素子を示す断面図である。
FIG. 7 is a cross-sectional view showing an element in an anode voltage applying step according to a different conventional anodic bonding method.

【0007】ヒータ電極22上に基板21,ホウケイ酸
ガラス11が順次載置され、次いで板状電極61を用い
て陽極電圧が印加される。板状電極61を用いるために
短時間に全面が同時に接合される。
[0007] The substrate 21 and the borosilicate glass 11 are sequentially placed on the heater electrode 22, and then an anode voltage is applied using the plate electrode 61. Since the plate-shaped electrode 61 is used, the entire surface is simultaneously bonded in a short time.

【0008】図8は従来のさらに異なる陽極接合方法に
つき陽極電圧印加工程の素子を示す断面図である。
FIG. 8 is a sectional view showing an element in an anode voltage applying step according to another conventional anodic bonding method.

【0009】ヒータ電極22上に基板21,導電性薄膜
12を設けたホウケイ酸ガラス11が順次載置され、次
いで針状電極23を用いて陽極電圧が印加される。均一
な接合がなされる。
A borosilicate glass 11 provided with a substrate 21 and a conductive thin film 12 is sequentially placed on a heater electrode 22, and an anode voltage is applied using a needle electrode 23. Uniform bonding is achieved.

【0010】[0010]

【発明が解決しようとする課題】しかしながら従来の陽
極接合方法には以下に述べるような問題があった。
However, the conventional anodic bonding method has the following problems.

【0011】即ち、板状電極61を用いる陽極接合方法
においては短時間に全面が同時に接合されるが部分的に
気泡が発生して接合不能の場所が残る。
That is, in the anodic bonding method using the plate-shaped electrode 61, the entire surface is simultaneously bonded in a short time, but air bubbles are partially generated, and a portion where bonding is impossible remains.

【0012】針状電極23を用いる場合のうち導電性薄
膜のないケースは針状電極23を中心として接合が広が
るために面全体の接合が終了するのに長時間を要し、ま
た絶縁性の大きいホウケイ酸ガラスやセラミックスにお
いては外周部まで接合が達しない場合も生じる。さらに
針状電極下部の接合面と針状電極から離れた接合面では
ホウケイ酸ガラス内部のアルカリイオンの拡散量が異な
り、接合強度や応力に差異を生じる。
In the case where the needle-shaped electrode 23 is used, the case having no conductive thin film requires a long time to complete the bonding of the entire surface because the bonding is spread around the needle-shaped electrode 23 and the insulating property is low. In the case of large borosilicate glass or ceramics, the bonding may not reach the outer periphery. Furthermore, the diffusion amount of alkali ions inside the borosilicate glass differs between the bonding surface below the needle-like electrode and the bonding surface apart from the needle-like electrode, resulting in a difference in bonding strength and stress.

【0013】針状電極23を用いる場合のうち導電性薄
膜のあるケースは板状電極を用いる場合のような気泡の
発生はないが、導電性薄膜の剥離工程を要するという問
題がある。
In the case where the needle-shaped electrode 23 is used, the case having the conductive thin film does not generate bubbles as in the case where the plate-shaped electrode is used, but there is a problem that a step of peeling the conductive thin film is required.

【0014】この発明は上述の点に鑑みてなされその目
的は、導電性薄膜に改良を加えて気泡の発生がない上に
導電性薄膜の剥離が不要であり、且つ能率的に均一な接
合が可能な陽極接合方法を提供することにある。
The present invention has been made in view of the above points, and has as its object to improve the conductive thin film so that no bubbles are generated, the conductive thin film is not required to be peeled off, and efficient and uniform bonding is achieved. It is to provide a possible anodic bonding method.

【0015】[0015]

【課題を解決するための手段】上述の目的はこの発明に
よれば一主面に導電性薄膜を設けたホウケイ酸ガラスに
導電性薄膜を介して陽極電圧を印加してホウケイ酸ガラ
スの他の主面と基板を接合する陽極接合方法において、
基板を切断してチップ化する際の基板の切りしろと同一
パターンの格子状導電性薄膜をホウケイ酸ガラスに設け
ることにより達成される。
According to the present invention, an anode voltage is applied to a borosilicate glass provided with a conductive thin film on one principal surface through the conductive thin film to thereby form another borosilicate glass. In the anodic bonding method for bonding the main surface and the substrate,
This is achieved by providing a borosilicate glass with a lattice-like conductive thin film having the same pattern as the cutting margin of the substrate when the substrate is cut into chips.

【0016】上述の発明において、基板は従来用いられ
ている単結晶シリコンに替えて、ホウケイ酸ガラスと同
等の熱膨張係数を有する金属を用いることができ、また
導電性薄膜がセラミックスを介してホウケイ酸ガラスに
設けられることが熱膨張係数の整合を図って接合の確実
性を図る観点から有効である。
In the above-mentioned invention, the substrate may be made of a metal having a thermal expansion coefficient equivalent to that of borosilicate glass, instead of the conventionally used single crystal silicon, and the conductive thin film may be made of borosilicate glass via ceramics. It is effective to be provided on the acid glass from the viewpoint of matching the thermal expansion coefficients and ensuring the reliability of bonding.

【0017】格子状導電性薄膜に陽極電圧を加えると、
ホウケイ酸ガラスの電場分布がほぼ均一になり、ホウケ
イ酸ガラス内のアルカリイオンの電場拡散が接合領域全
体で瞬時に起こる。
When an anode voltage is applied to the grid-like conductive thin film,
The electric field distribution of the borosilicate glass becomes almost uniform, and the electric field diffusion of the alkali ions in the borosilicate glass occurs instantaneously in the entire bonding region.

【0018】格子状導電性薄膜のパターンを基板の切り
しろと同一にすると、基板をチップ化する際に格子状導
電性薄膜は全て除去され、格子状導電性薄膜の剥離工程
が不要になる。
If the pattern of the grid-like conductive thin film is made the same as the cutting margin of the substrate, all the grid-like conductive thin film is removed when the substrate is chipped, and the step of peeling the grid-like conductive thin film becomes unnecessary.

【0019】導電性薄膜を格子状にし、格子状の任意の
一点から電圧を加えると、その一点より順次接合が広が
りガスの逃散が容易になる。
When the conductive thin film is formed in a lattice shape and a voltage is applied from any one point in the lattice shape, the junction is sequentially expanded from one point to facilitate the escape of gas.

【0020】[0020]

【発明の実施の形態】図1はこの発明の陽極接合方法の
工程を示し、(1- a)は導電性薄膜を形成した素子の
平面図、(1- b)は導電性薄膜を形成した素子の断面
図である。
FIG. 1 shows the steps of an anodic bonding method according to the present invention, wherein (1-a) is a plan view of an element having a conductive thin film formed thereon, and (1-b) is a plan view of a device having a conductive thin film formed thereon. It is sectional drawing of an element.

【0021】図2はこの発明の陽極接合方法の工程を示
し、(2- a)は格子状導電性薄膜を形成した素子の平
面図、(2- b)は格子状導電性薄膜を形成した素子の
断面図である。
FIG. 2 shows the steps of the anodic bonding method of the present invention, wherein (2-a) is a plan view of a device having a lattice-like conductive thin film formed thereon, and (2-b) is a lattice-form conductive thin film formed thereon. It is sectional drawing of an element.

【0022】パイレックスガラス等のホウケイ酸ガラス
の片面にスパッタリング等の手法により導電性薄膜を数
百〜数千Åの膜厚に成膜し、フォトリソグラフィー等の
手法で数十〜数百μm 幅の格子状の導電性薄膜パターン
を得る。
A conductive thin film is formed on one surface of borosilicate glass such as Pyrex glass by a method such as sputtering to a thickness of several hundreds to several thousand Å, and a film having a width of several tens to several hundreds μm is formed by a method such as photolithography. A lattice-shaped conductive thin film pattern is obtained.

【0023】図3はこの発明の陽極接合方法につき陽極
電圧印加工程の素子を示す断面図である。
FIG. 3 is a sectional view showing an element in an anode voltage applying step in the anodic bonding method of the present invention.

【0024】ヒータ電極22上に単結晶シリコン基板ま
たはFe-Co-Ni系合金等の熱膨張係数がホウケイ酸ガラス
に近似する金属を載置し、さらに格子状導電性薄膜13
を形成したホウケイ酸ガラス11を載置して格子状導電
性薄膜13に針状電極23を接触させる。ヒータ電極を
介して基板21を300 〜700 ℃に加熱し、200 〜1000V
の陽極電圧を針状電極23に数秒〜数十秒間印加する。
接合後に格子状導電性薄膜13に沿って切断し、チップ
化する。格子状導電性薄膜の格子幅は切断の切りしろ以
下にする。
A metal such as a single crystal silicon substrate or an Fe—Co—Ni alloy having a coefficient of thermal expansion similar to borosilicate glass is placed on the heater electrode 22.
The borosilicate glass 11 on which is formed is placed, and the needle-like electrode 23 is brought into contact with the grid-like conductive thin film 13. The substrate 21 is heated to 300 to 700 ° C. through a heater electrode, and
Is applied to the needle electrode 23 for several seconds to several tens of seconds.
After joining, the wafer is cut along the grid-like conductive thin film 13 to form a chip. The grid width of the grid-like conductive thin film is set to be equal to or less than the cutting margin.

【0025】図4はこの発明の異なる陽極接合方法の工
程を示し、(4- a)は格子状導電性薄膜を形成した素
子の平面図、(4- b)は格子状導電性薄膜を形成した
素子の断面図、(4- c)は格子状導電性薄膜を形成し
た素子の背面図である。
FIG. 4 shows the steps of a different anodic bonding method according to the present invention. (4-a) is a plan view of an element having a lattice-like conductive thin film formed thereon, and (4-b) is a lattice-form conductive thin film formation. FIG. 4C is a cross-sectional view of the element, and FIG.

【0026】セラミックスの片面にスパッタリング等の
手法により導電性薄膜を数百〜数千Åの膜厚に成膜し、
フォトリソグラフィー等の手法で数十〜数百μm 幅の格
子状導電性薄膜のパターンを得る。セラミックスの他面
にはホウケイ酸ガラス薄膜32が形成される。
A conductive thin film is formed on one surface of the ceramic by sputtering or the like to a thickness of several hundreds to several thousand Å,
A pattern of a grid-like conductive thin film having a width of several tens to several hundreds μm is obtained by a method such as photolithography. On the other surface of the ceramic, a borosilicate glass thin film 32 is formed.

【0027】図5はこの発明の異なる陽極接合方法につ
き陽極電圧印加工程の素子を示す断面図である。
FIG. 5 is a sectional view showing an element in an anode voltage applying step according to a different anodic bonding method of the present invention.

【0028】ヒータ電極22上に単結晶シリコン基板ま
たはFe-Co-Ni系合金等の熱膨張係数がホウケイ酸ガラス
に近似する金属を載置し、さらに片面に格子状導電性薄
膜13を形成し他面にホウケイ酸ガラス薄膜32を形成
したセラミックス31を載置して格子状導電性薄膜13
に針状電極23を接触させる。ヒータ電極を介して基板
21を300 〜700 ℃に加熱し、200 〜1000Vの陽極電圧
を針状電極23に数秒〜数十秒間印加する。接合後に格
子状導電性薄膜13に沿って切断し、チップ化する。格
子状導電性薄膜の格子幅は切断の切りしろ以下にする。
A metal such as a single-crystal silicon substrate or a Fe-Co-Ni alloy having a coefficient of thermal expansion similar to borosilicate glass is placed on the heater electrode 22, and a grid-like conductive thin film 13 is formed on one surface. A ceramic 31 having a borosilicate glass thin film 32 formed on the other surface is placed thereon to form a lattice-shaped conductive thin film 13.
To the needle electrode 23. The substrate 21 is heated to 300 to 700 ° C. through the heater electrode, and an anode voltage of 200 to 1000 V is applied to the needle electrode 23 for several seconds to several tens of seconds. After joining, the wafer is cut along the grid-like conductive thin film 13 to form a chip. The grid width of the grid-like conductive thin film is set to be equal to or less than the cutting margin.

【0029】[0029]

【発明の効果】この発明によれば一主面に導電性薄膜を
設けたホウケイ酸ガラスに導電性薄膜を介して陽極電圧
を印加してホウケイ酸ガラスの他の主面と基板を接合す
る陽極接合方法において、基板を切断してチップ化する
際の基板の切りしろと同一パターンの格子状導電性薄膜
をホウケイ酸ガラスに設けるので、格子状導電性薄膜に
加えられた陽極電圧によりホウケイ酸ガラスには均一に
電場が分布することとなり、ホウケイ酸ガラス内のアル
カリイオンの電場拡散が接合領域全体で瞬時に起こり能
率的に均一な陽極接合ができる。また格子状導電性薄膜
のパターンを基板の切りしろと同一であることにより、
基板をチップ化する際に格子状導電性薄膜は全て除去さ
れ、格子状導電性薄膜の剥離工程が不要になる。さらに
導電性薄膜が格子状であるために導電性薄膜の存在しな
い場所が生じ、ガスの逃散が容易になり気泡の発生がな
くなる。
According to the present invention, an anode for applying an anode voltage to a borosilicate glass having a conductive thin film provided on one main surface via a conductive thin film to join the other main surface of the borosilicate glass to a substrate. In the bonding method, the borosilicate glass is provided with a lattice-like conductive thin film having the same pattern as the cutting margin of the substrate when the substrate is cut into chips, so that the borosilicate glass is formed by the anode voltage applied to the lattice-like conductive thin film. And the electric field is uniformly distributed, and the electric field diffusion of the alkali ions in the borosilicate glass instantaneously occurs in the entire bonding region, so that efficient anodic bonding can be performed efficiently. Also, by making the pattern of the grid-like conductive thin film the same as the cutting margin of the substrate,
When the substrate is formed into chips, all of the grid-like conductive thin film is removed, and a step of removing the grid-like conductive thin film becomes unnecessary. Further, since the conductive thin film has a lattice shape, a place where no conductive thin film exists is generated, so that gas escapes easily and bubbles are not generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の陽極接合方法の工程を示し、(1-
a)は導電性薄膜を形成した素子の平面図、(1- b)
は導電性薄膜を形成した素子の断面図
FIG. 1 shows the steps of the anodic bonding method of the present invention,
a) is a plan view of an element on which a conductive thin film is formed, and (1-b)
Is a cross-sectional view of an element with a conductive thin film

【図2】この発明の陽極接合方法の工程を示し、(2-
a)は格子状導電性薄膜を形成した素子の平面図、(2
- b)は格子状導電性薄膜を形成した素子の断面図
FIG. 2 shows the steps of the anodic bonding method of the present invention,
a) is a plan view of an element on which a grid-like conductive thin film is formed, (2)
-b) is a cross-sectional view of a device on which a grid-like conductive thin film is formed.

【図3】この発明の陽極接合方法につき陽極電圧印加工
程の素子を示す断面図
FIG. 3 is a cross-sectional view showing an element in an anode voltage applying step according to the anodic bonding method of the present invention.

【図4】この発明の異なる陽極接合方法の工程を示し、
(4- a)は格子状導電性薄膜を形成した素子の平面
図、(4- b)は格子状導電性薄膜を形成した素子の断
面図、(4- c)は格子状導電性薄膜を形成した素子の
背面図
FIG. 4 shows the steps of a different anodic bonding method according to the invention,
(4-a) is a plan view of an element having a lattice-like conductive thin film formed thereon, (4-b) is a cross-sectional view of an element having a lattice-like conductive thin film formed thereon, and (4-c) is a sectional view of the element having a lattice-like conductive thin film. Back view of formed device

【図5】この発明の異なる陽極接合方法につき陽極電圧
印加工程の素子を示す断面図
FIG. 5 is a sectional view showing an element in an anode voltage applying step according to a different anodic bonding method of the present invention.

【図6】従来の陽極接合方法につき陽極電圧印加工程の
素子を示す断面図
FIG. 6 is a cross-sectional view showing an element in an anode voltage applying step according to a conventional anodic bonding method.

【図7】従来の異なる陽極接合方法につき陽極電圧印加
工程の素子を示す断面図
FIG. 7 is a cross-sectional view showing an element in an anode voltage applying step according to different conventional anodic bonding methods.

【図8】従来のさらに異なる陽極接合方法につき陽極電
圧印加工程の素子を示す断面図
FIG. 8 is a cross-sectional view showing an element in an anode voltage applying step according to another conventional anodic bonding method.

【符号の説明】[Explanation of symbols]

11 ホウケイ酸ガラス 12 導電性薄膜 13 格子状導電性薄膜 21 基板 22 ヒータ電極 23 針状電極 31 セラミックス 32 ホウケイ酸ガラス薄膜 61 板状電極 DESCRIPTION OF SYMBOLS 11 Borosilicate glass 12 Conductive thin film 13 Lattice conductive thin film 21 Substrate 22 Heater electrode 23 Needle electrode 31 Ceramics 32 Borosilicate glass thin film 61 Plate electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松下 浩二 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 2F055 AA40 BB20 CC02 DD01 DD05 DD07 DD09 EE25 FF43 GG01 GG12 4M112 AA01 BA07 CA15 DA18 DA20 EA13  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Koji Matsushita 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term in Fuji Electric Co., Ltd. (Reference) 2F055 AA40 BB20 CC02 DD01 DD05 DD07 DD09 EE25 FF43 GG01 GG12 4M112 AA01 BA07 CA15 DA18 DA20 EA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一主面に導電性薄膜を設けたホウケイ酸ガ
ラスに導電性薄膜を介して陽極電圧を印加してホウケイ
酸ガラスの他の主面と基板を接合する陽極接合方法にお
いて、基板を切断してチップ化する際の基板の切りしろ
と同一パターンの格子状導電性薄膜をホウケイ酸ガラス
に設けることを特徴とする陽極接合方法。
An anodic bonding method for applying an anodic voltage to a borosilicate glass having a conductive thin film provided on one main surface via a conductive thin film to bond the other main surface of the borosilicate glass to the substrate. An anodic bonding method comprising: providing a borosilicate glass with a grid-like conductive thin film having the same pattern as a cutting margin of a substrate when cutting into chips.
【請求項2】基板が、ホウケイ酸ガラスと同等の熱膨張
係数を有する金属である請求項1に記載の陽極接合方
法。
2. The anodic bonding method according to claim 1, wherein the substrate is a metal having a thermal expansion coefficient equivalent to that of borosilicate glass.
【請求項3】導電性薄膜がセラミックスを介してホウケ
イ酸ガラスに設けられる請求項1に記載の陽極接合方
法。
3. The anodic bonding method according to claim 1, wherein the conductive thin film is provided on the borosilicate glass via a ceramic.
JP29182598A 1998-10-14 1998-10-14 Anodic bonding method Withdrawn JP2000121468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29182598A JP2000121468A (en) 1998-10-14 1998-10-14 Anodic bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29182598A JP2000121468A (en) 1998-10-14 1998-10-14 Anodic bonding method

Publications (1)

Publication Number Publication Date
JP2000121468A true JP2000121468A (en) 2000-04-28

Family

ID=17773912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29182598A Withdrawn JP2000121468A (en) 1998-10-14 1998-10-14 Anodic bonding method

Country Status (1)

Country Link
JP (1) JP2000121468A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145676A (en) * 2000-11-06 2002-05-22 Fuji Electric Co Ltd Anodic bonding method
US7153759B2 (en) 2004-04-20 2006-12-26 Agency For Science Technology And Research Method of fabricating microelectromechanical system structures
US7192841B2 (en) 2002-04-30 2007-03-20 Agency For Science, Technology And Research Method of wafer/substrate bonding
JP2007078378A (en) * 2005-09-12 2007-03-29 Seiko Instruments Inc Dynamic quantity sensor, electronic equipment, and manufacturing method for dynamic quantity sensor
US7259466B2 (en) 2002-12-17 2007-08-21 Finisar Corporation Low temperature bonding of multilayer substrates
US7361593B2 (en) 2002-12-17 2008-04-22 Finisar Corporation Methods of forming vias in multilayer substrates
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145676A (en) * 2000-11-06 2002-05-22 Fuji Electric Co Ltd Anodic bonding method
US7192841B2 (en) 2002-04-30 2007-03-20 Agency For Science, Technology And Research Method of wafer/substrate bonding
US7259466B2 (en) 2002-12-17 2007-08-21 Finisar Corporation Low temperature bonding of multilayer substrates
US7361593B2 (en) 2002-12-17 2008-04-22 Finisar Corporation Methods of forming vias in multilayer substrates
US7153759B2 (en) 2004-04-20 2006-12-26 Agency For Science Technology And Research Method of fabricating microelectromechanical system structures
US7405466B2 (en) 2004-04-20 2008-07-29 Agency For Science, Technology And Research Method of fabricating microelectromechanical system structures
JP2007078378A (en) * 2005-09-12 2007-03-29 Seiko Instruments Inc Dynamic quantity sensor, electronic equipment, and manufacturing method for dynamic quantity sensor
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
US8389385B2 (en) 2009-02-04 2013-03-05 Micron Technology, Inc. Semiconductor material manufacture

Similar Documents

Publication Publication Date Title
RU2121733C1 (en) Method for manufacturing single-crystalline silicon pads on crystal substrate
JP4465315B2 (en) Structure including cavity of wafer substrate and manufacturing method thereof
WO2011099381A1 (en) Piezoelectric device, and piezoelectric device manufacturing method
EP2182560A2 (en) Method for manufacturing piezoelectric device
JPH07506938A (en) How to manufacture microelectronic devices using different substrates
JP2000121468A (en) Anodic bonding method
US9496165B1 (en) Method of forming a flexible semiconductor layer and devices on a flexible carrier
WO1998056035A1 (en) Method of anodizing silicon substrate and method of producing acceleration sensor of surface type
JPH0362927A (en) Semiconductor device and manufacture thereof
JP4369142B2 (en) Pressure wave generator and manufacturing method thereof
RU2449412C1 (en) Method for manufacturing multipurpose gas composition sensors
JPH0945233A (en) Manufacture of electric field emitting element
JP3751801B2 (en) Thermal sensor
JPS618938A (en) Manufacture of semiconductor device
US10825719B2 (en) Methods of fabricating silicon-on-insulator (SOI) semiconductor devices using blanket fusion bonding
JP2019525481A (en) Circuit board and method for forming the same
JP2003121466A (en) Probe unit and its manufacturing method
JP2003207521A (en) Probe unit, manufacturing method thereof, and energization inspection device
JP4182630B2 (en) Diaphragm structure, microtransducer, and manufacturing method thereof
JP3197884B2 (en) Implementation method
JPS5815242A (en) Manufacture of semiconductor device
JPH09329508A (en) Force converting element and its manufacture
JPS6187863A (en) Sputter coating method
JPS592192B2 (en) handoutaiatsuriyokuhenkansouchi
JPH01287624A (en) Production of image display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A761 Written withdrawal of application

Effective date: 20050418

Free format text: JAPANESE INTERMEDIATE CODE: A761