JP2000111527A - Magnetic particle inspection apparatus - Google Patents
Magnetic particle inspection apparatusInfo
- Publication number
- JP2000111527A JP2000111527A JP10282824A JP28282498A JP2000111527A JP 2000111527 A JP2000111527 A JP 2000111527A JP 10282824 A JP10282824 A JP 10282824A JP 28282498 A JP28282498 A JP 28282498A JP 2000111527 A JP2000111527 A JP 2000111527A
- Authority
- JP
- Japan
- Prior art keywords
- flaw
- image
- differential
- performs
- magnetic particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006249 magnetic particle Substances 0.000 title claims abstract description 49
- 238000007689 inspection Methods 0.000 title abstract description 3
- 238000012545 processing Methods 0.000 claims abstract description 68
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 37
- 239000010959 steel Substances 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 36
- 230000010354 integration Effects 0.000 claims abstract description 26
- 238000001514 detection method Methods 0.000 claims description 49
- 238000011156 evaluation Methods 0.000 claims description 32
- 239000006247 magnetic powder Substances 0.000 claims description 26
- 238000002372 labelling Methods 0.000 claims description 20
- 230000004069 differentiation Effects 0.000 claims description 7
- 229910002056 binary alloy Inorganic materials 0.000 claims 1
- 238000003705 background correction Methods 0.000 abstract description 7
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 238000003384 imaging method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000007781 pre-processing Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 101100537375 Homo sapiens TMEM107 gene Proteins 0.000 description 1
- 102100036728 Transmembrane protein 107 Human genes 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は,磁粉探傷装置に係
り,詳しくは,磁化された鋼片の表面に蛍光磁粉を付着
させ,該鋼片に付着した蛍光磁粉が発する蛍光を撮像
し,得られた撮像画像に基づいて上記鋼片の疵を探傷す
る磁粉探傷装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic particle flaw detector, and more particularly, to a method for attaching fluorescent magnetic powder to the surface of a magnetized steel slab and imaging fluorescence generated by the fluorescent magnetic powder attached to the steel slab. The present invention relates to a magnetic particle flaw detection device for flaw detection of the steel slab based on a captured image obtained.
【0002】[0002]
【従来の技術】鋼片の表面に形成された疵を探傷する代
表的な技術の一つに蛍光磁粉探傷方法と呼ばれるものが
ある。この蛍光磁粉探傷方法は,磁化された鋼片に蛍光
磁粉を付着させ,疵の存在する部分に付着した蛍光磁粉
の蛍光輝度と,存在しない部分に付着した蛍光磁粉の蛍
光輝度との差により探傷を行うものである。ここで,図
5に蛍光磁粉探傷方法を実施するための磁粉探傷装置の
概略構成を示す。図5に示すように,上記磁粉探傷装置
は,搬送装置1により所定方向DDに搬送される鋼片2
を磁化する励起マグネット3,上記励起マグネット3に
より磁化された鋼片2に蛍光磁粉液を散布する磁粉散布
装置4,鋼片2に紫外線を照射して鋼片2表面に付着し
ている蛍光磁粉を蛍光させるための紫外線照射装置6,
上記紫外線照射装置6による紫外線の照射により上記蛍
光磁粉から発せられる蛍光を撮像する撮像部7,上記撮
像部7により撮像された撮像画像に基づいて鋼片2の疵
を探傷する画像処理装置8等を具備して構成される。上
記磁粉探傷装置において,まず鋼片2は励起マグネット
3により磁化される。次に,磁化された鋼片2の表面
に,磁粉散布装置4により水等を媒体にして蛍光磁粉が
散布される。鋼片2表面で疵の存在する部分には,例え
ば図6に示すような漏洩磁束が存在するために,疵の無
い部分よりも強い磁界が生じており,散布された蛍光磁
粉は鋼片表面の疵付近に高密度に付着する。次に,鋼片
2表面に紫外線照射部6から紫外線が照射され,該紫外
線の照射により蛍光磁粉から発せられる蛍光が,CCD
等を備えた撮像部7により撮像される。上記撮像部7に
より撮像された撮像画像は,画像処理装置8へ供給さ
れ,所定の画像処理が施され,鋼片2の疵が探傷され
る。ところで,鋼片2表面に形成される疵は,例えば図
7に示す如く,鋼片2の長手方向に沿って生じる縦疵
と,鋼片2の幅方向に沿って生じる横疵とに大きく分類
されるが,疵種に応じてその長さや形状等の特徴が異な
るため,例えば特開平8−82616号公報に記載の技
術では,上記撮像画像に対して複数のしきい値により複
数の2値化画像を生成し,各2値化画像に現れた疵の面
積,長さ等の特徴量から,上記鋼片の疵の弁別を行って
いる。2. Description of the Related Art One of the typical techniques for detecting flaws formed on the surface of a steel slab is a method called a fluorescent magnetic particle flaw detection method. This fluorescent magnetic particle flaw detection method involves applying fluorescent magnetic powder to a magnetized steel slab and detecting the difference between the fluorescent luminance of the fluorescent magnetic powder adhered to the part where the flaw is present and the fluorescent luminance of the fluorescent magnetic powder adhered to the non-existent part. Is what you do. Here, FIG. 5 shows a schematic configuration of a magnetic particle flaw detector for performing the fluorescent magnetic particle flaw detection method. As shown in FIG. 5, the magnetic particle flaw detector comprises a steel slab 2 transported in a predetermined direction DD by a transport device 1.
Magnet 3 for magnetizing the magnet 3, a magnetic powder dispersing device 4 for spraying a fluorescent magnetic powder solution to the steel slab 2 magnetized by the excitation magnet 3, and a fluorescent magnetic powder attached to the surface of the steel slab 2 by irradiating the steel slab 2 with ultraviolet rays. UV irradiation device for fluorescing
An imaging unit 7 for imaging the fluorescence emitted from the fluorescent magnetic powder by the irradiation of the ultraviolet light from the ultraviolet irradiation device 6, an image processing device 8 for flaw detection of the steel slab 2 based on the image captured by the imaging unit 7, and the like. It comprises. In the magnetic particle flaw detector, first, the steel piece 2 is magnetized by the excitation magnet 3. Next, fluorescent magnetic powder is sprayed on the surface of the magnetized steel slab 2 by a magnetic powder spraying device 4 using water or the like as a medium. For example, since a magnetic flux leakage as shown in FIG. 6 is present in a portion where a flaw exists on the surface of the steel slab 2, a stronger magnetic field is generated than in a portion having no flaw. Adheres at high density near the flaws. Next, the surface of the steel slab 2 is irradiated with ultraviolet light from the ultraviolet light irradiating unit 6, and the fluorescence emitted from the fluorescent magnetic powder by the irradiation of the ultraviolet light is emitted to the CCD.
The image is captured by the image capturing unit 7 including the above. The image picked up by the image pickup unit 7 is supplied to an image processing device 8, where predetermined image processing is performed, and flaws on the billet 2 are detected. Incidentally, the flaws formed on the surface of the billet 2 are largely classified into vertical flaws generated along the longitudinal direction of the billet 2 and lateral flaws generated along the width direction of the billet 2, as shown in FIG. However, since the characteristics such as length and shape are different depending on the type of flaw, for example, in the technique described in JP-A-8-82616, a plurality of binary A coded image is generated, and the flaw of the steel slab is discriminated from the feature amount such as the area and length of the flaw appearing in each binarized image.
【0003】[0003]
【発明が解決しようとする課題】しかしながら,上記公
報に記載の技術のように,上記撮像画像をそのまま2値
化処理して疵の検出を行う場合,鋼片の表面性状によっ
て鋼片地肌に残った蛍光磁粉からの蛍光強度が大きく上
記撮像画像のS/N比が小さいと,深さが浅かったり,
大きさが小さいために蛍光強度の弱い疵を検出できなか
ったり,疵以外のノイズを疵として検出してしまう恐れ
がある。また,上記紫外線照射装置6から照射される紫
外線強度にムラがあったり,鋼片2に付着した蛍光磁粉
にムラがあると,図8に示す如く,疵部以外にも輝度変
化が生じるため,上記撮像画像をそのまま2値化して疵
の検出を行う場合,しきい値の設定が困難となってしま
う。このため,輝度ムラの無い光源を必要としたり,画
像処理において地肌の輝度を一定とするようなシェーデ
ィング補正等の前処理を行う必要がある等の問題があっ
た。本発明は,このような従来の技術における課題を解
決するために,磁粉探傷装置を改良し,横方向及び縦方
向にそれぞれ差分処理を行うとともに各方向に直角な方
向に積算処理を行う差分フィルタを用いることによっ
て,横疵及び縦疵を感度良く検出すると共に,シェーデ
ィング補正等の前処理の必要のない磁粉探傷装置を提供
することを目的とするものである。また,横方向及び縦
方向にそれぞれ差分処理を行って横疵及び縦疵を検出す
る場合,本来一つである疵が横疵及び縦疵の両方として
検出されてしまう恐れがある。この場合には,後工程に
ある自動疵取装置の負荷を増大させることになる。そこ
で,本発明の他の目的は,横疵及び縦疵に基づいて疵を
統合する処理を行うことによって,後工程にある自動疵
取装置の負荷を軽減することである。However, when the flaws are detected by binarizing the captured image as it is, as in the technique disclosed in the above-mentioned publication, the surface of the steel slab remains on the slab surface due to the surface properties of the slab. If the fluorescence intensity from the fluorescent magnetic powder is large and the S / N ratio of the captured image is small, the depth becomes shallow,
Due to its small size, flaws with weak fluorescence intensity may not be detected, or noise other than flaws may be detected as flaws. If the intensity of the ultraviolet light emitted from the ultraviolet irradiation device 6 is uneven, or if the fluorescent magnetic powder adhering to the steel slab 2 is uneven, as shown in FIG. When the flaw is detected by binarizing the captured image as it is, it becomes difficult to set a threshold value. For this reason, there have been problems such as the need for a light source having no luminance unevenness, and the necessity of performing pre-processing such as shading correction to make the luminance of the background constant in image processing. In order to solve the problems in the prior art, the present invention has improved a magnetic particle flaw detector, and performs a differential process in each of a horizontal direction and a vertical direction, and performs an integration process in a direction perpendicular to each direction. It is an object of the present invention to provide a magnetic particle flaw detection apparatus which detects horizontal flaws and vertical flaws with high sensitivity and does not require preprocessing such as shading correction. Further, when the difference processing is performed in the horizontal direction and the vertical direction to detect the horizontal flaw and the vertical flaw, the flaw which is originally one may be detected as both the horizontal flaw and the vertical flaw. In this case, the load on the automatic flaw removing device in the post-process increases. Therefore, another object of the present invention is to reduce the load on an automatic flaw removal device in a subsequent process by performing a process of integrating flaws based on horizontal flaws and vertical flaws.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するため
に,請求項1に係る発明は,磁化された鋼片の表面に蛍
光磁粉を付着させ,該鋼片に付着した蛍光磁粉が発する
蛍光を撮像し,得られた撮像画像に基づいて上記鋼片の
疵を探傷する磁粉探傷装置において,第1の方向に微分
操作を行い該第1の方向と直角な方向に積算操作を行う
矩形状の微分フィルタを用いて,上記撮像画像について
微分処理を行って第1の微分画像を生成し,上記第1の
微分画像に基づいて上記第1の方向と直角な方向の疵を
検出する第1の疵検出手段と,上記第1の方向と異なる
第2の方向に微分操作を行い該第2の方向と直角な方向
に積算操作を行う矩形状の微分フィルタを用いて,上記
撮像画像について微分処理を行って第2の微分画像を生
成し,上記第2の微分画像に基づいて上記第2の方向と
直角な方向の疵を検出する第2の疵検出手段とを具備し
てなることを特徴とする磁粉探傷装置として構成されて
いる。また,請求項2に係る発明は,上記請求項1に記
載の磁粉探傷装置において,上記第1の疵検出手段及び
上記第2の疵検出手段が,上記第1の微分画像又は上記
第2の微分画像を2値化処理した2値化画像を生成する
2値化処理手段と,該2値化画像についてラベリング処
理を行い連結した画素をグループにまとめるラベリング
処理手段と,上記ラベリング処理手段によりまとめられ
た各グループを評価する評価手段と,上記評価手段によ
る各グループの評価結果に基づいて疵の有無を判定する
疵判定手段とをそれぞれ具備してなることをその要旨と
する。また,請求項3に係る発明は,上記請求項1又は
2に記載の磁粉探傷装置において,上記評価手段が,上
記各グループの面積と,各グループに含まれる上記第1
又は第2の微分画像の最大輝度値から2値化しきい値を
差し引いた値との積を用いて,各グループの評価を行う
ものであることをその要旨とする。また,請求項4に係
る発明は,上記請求項1〜3のいずれか1項に記載の磁
粉探傷装置において,上記第1の疵検出手段及び上記第
2の疵検出手段により検出された各疵のうち,所定の基
準を満たす疵を統合する疵統合手段を具備してなること
をその要旨とする。また,請求項5に係る発明は,上記
請求項4に記載の磁粉探傷装置において,上記所定の基
準が,上記第1の疵検出手段及び第2の疵検出手段によ
り検出された各疵の間の距離が所定のしきい値より小さ
いことであることをその要旨とする。上記請求項1〜5
のいずれか1項に記載の磁粉探傷装置によれば,第1の
方向に微分操作を行い該第1の方向と直角な方向に積算
操作を行う矩形状の微分フィルタを用いて,上記撮像画
像について微分処理を行って第1の微分画像が生成さ
れ,上記第1の微分画像に基づいて上記第1の方向と直
角な方向の疵が検出され,上記第1の方向と異なる第2
の方向に微分操作を行い該第2の方向と直角な方向に積
算操作を行う矩形状の微分フィルタを用いて,上記撮像
画像について微分処理を行って第2の微分画像が生成さ
れ,上記第2の微分画像に基づいて上記第2の方向と直
角な方向の疵が検出されるため,シェーディング補正等
の前処理の必要がなく,横疵及び縦疵を感度良く検出す
ることができる。特に,上記請求項4又は5に記載の磁
粉探傷装置では,検出された横疵及び縦疵のうち,例え
ば疵間の距離が所定のしきい値より小さい場合に疵の統
合処理が行われるため,後工程にある自動疵取装置の負
荷を軽減することができる。In order to achieve the above object, according to the first aspect of the present invention, a fluorescent magnetic powder is attached to a surface of a magnetized steel slab, and the fluorescent magnetic powder attached to the steel slab emits a fluorescent magnetic powder. In a magnetic particle flaw detection device for imaging flaws of the steel slab based on the obtained captured image, a differential operation is performed in a first direction and an integration operation is performed in a direction perpendicular to the first direction. A first differential image is generated by performing a differentiation process on the captured image using a differential filter of the first type, and a flaw in a direction perpendicular to the first direction is detected based on the first differential image. Using the flaw detection means of the above and a rectangular differential filter that performs a differentiation operation in a second direction different from the first direction and performs an integration operation in a direction perpendicular to the second direction. Processing to generate a second differential image, Based on the partial image is configured as a magnetic particle flaw detection apparatus characterized by comprising comprises a second defect detecting means for detecting a flaw in the second direction perpendicular to the direction. According to a second aspect of the present invention, in the magnetic particle flaw detector according to the first aspect, the first flaw detecting means and the second flaw detecting means are arranged so that the first differential image or the second Binarization processing means for generating a binarized image obtained by binarizing the differential image, labeling processing means for performing labeling processing on the binarized image and grouping connected pixels into a group, and collecting by the labeling processing means The gist of the present invention is to provide an evaluation means for evaluating each group obtained and a flaw determination means for determining the presence or absence of a flaw based on the evaluation result of each group by the evaluation means. According to a third aspect of the present invention, in the magnetic particle flaw detection apparatus according to the first or second aspect, the evaluation means includes an area of each of the groups and a first area included in each of the groups.
Alternatively, the gist is that each group is evaluated using the product of the maximum luminance value of the second differential image and the value obtained by subtracting the binarization threshold value. According to a fourth aspect of the present invention, in the magnetic particle flaw detector according to any one of the first to third aspects, each flaw detected by the first flaw detection means and the second flaw detection means is provided. The gist of the invention is to provide a flaw integrating means for integrating flaws satisfying a predetermined standard. Further, according to a fifth aspect of the present invention, in the magnetic particle flaw detector according to the fourth aspect, the predetermined criterion is set between each of the flaws detected by the first flaw detection means and the second flaw detection means. Is smaller than a predetermined threshold value. Claims 1 to 5 above
According to the magnetic particle flaw detection apparatus described in any one of the above, the captured image is obtained by using a rectangular differential filter that performs a differentiation operation in a first direction and performs an integration operation in a direction perpendicular to the first direction. , A first differential image is generated, a flaw in a direction perpendicular to the first direction is detected based on the first differential image, and a second flaw different from the first direction is detected.
A differential operation is performed on the captured image using a rectangular differential filter that performs a differential operation in the direction of and performs an integration operation in a direction perpendicular to the second direction to generate a second differential image. Since flaws in a direction perpendicular to the second direction are detected based on the differential image of No. 2, it is not necessary to perform preprocessing such as shading correction, and horizontal flaws and vertical flaws can be detected with high sensitivity. In particular, in the magnetic particle flaw detector according to the fourth or fifth aspect, among the detected horizontal flaws and vertical flaws, for example, when the distance between the flaws is smaller than a predetermined threshold value, the flaw integration processing is performed. The load on the automatic flaw removing device in the post-process can be reduced.
【0005】[0005]
【発明の実施の形態】以下,添付図面を参照して,本発
明の実施の形態につき説明し,本発明の理解に供する。
尚,以下の実施の形態は,本発明の具体的な一例であっ
て,本発明の技術的範囲を限定する性格のものではな
い。ここで,図1は,本発明の一実施の形態に係る磁粉
探傷装置の要部を説明するための機能ブロック図であ
る。本発明の一実施の形態に係る磁粉探傷装置は,磁化
された鋼片の表面に蛍光磁粉を付着させ,該鋼片に付着
した蛍光磁粉が発する蛍光を撮像し,得られた撮像画像
に基づいて上記鋼片の疵を探傷するものであって,図5
に既に示した従来の磁粉探傷装置と共通する構成を備え
る。即ち,本実施の形態に係る磁粉探傷装置は,搬送装
置1により所定方向DDに搬送される鋼片2を磁化する
励起マグネット3,上記励起マグネット3により磁化さ
れた鋼片2に蛍光磁粉液を散布する磁粉散布装置4,鋼
片2に紫外線を照射して鋼片2表面に付着している蛍光
磁粉を蛍光させるための紫外線照射装置6,上記紫外線
照射装置6による紫外線の照射により上記蛍光磁粉から
発せられる蛍光を撮像する撮像部7,上記撮像部7によ
り撮像された撮像画像に基づいて鋼片2の疵を探傷する
画像処理装置8等を具備する点で従来のものとほぼ同様
である。一方,本実施の形態に係る磁粉探傷装置が,従
来のものと特に異なるのは,図1に示す如く,上記画像
処理装置8が,鋼片2の長手方向に沿った縦方向の差分
操作を行い鋼片2の幅方向に沿った横方向に積算操作を
行う矩形状の差分フィルタを用いて,上記撮像画像につ
いて差分処理を行って縦方向の差分画像を生成し,該縦
方向の差分画像に基づいて横方向に沿った横疵を検出す
る横疵検出装置10(横疵検出手段の一例)と,上記横
方向の差分操作を行い上記縦方向に積算操作を行う矩形
状の差分フィルタを用いて,上記撮像画像について差分
処理を行って横方向の差分画像を生成し,該横方向の差
分画像に基づいて縦方向に沿った縦疵を検出する縦疵検
出装置11(縦疵検出手段の一例)と,上記横疵検出装
置10により検出された横疵及び上記縦疵検出装置11
により検出された縦疵のうち,各疵間の距離が所定のし
きい値よりも小さい疵の統合を行う疵判定結果統合装置
12(疵統合手段の一例)とを具備してなる点である。Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention.
The following embodiment is a specific example of the present invention and does not limit the technical scope of the present invention. Here, FIG. 1 is a functional block diagram for explaining a main part of the magnetic particle flaw detector according to one embodiment of the present invention. A magnetic particle flaw detector according to one embodiment of the present invention attaches a fluorescent magnetic powder to a surface of a magnetized steel slab, captures an image of fluorescence emitted by the fluorescent magnetic powder attached to the steel slab, and, based on the obtained captured image. 5 to detect flaws on the steel slab.
Has the same configuration as the conventional magnetic particle flaw detection apparatus already shown in FIG. That is, the magnetic particle flaw detection apparatus according to the present embodiment includes an excitation magnet 3 for magnetizing a steel slab 2 conveyed in a predetermined direction DD by a conveyance device 1, and a fluorescent magnetic powder solution applied to the steel slab 2 magnetized by the excitation magnet 3. A magnetic powder dispersing device 4 for spraying, an ultraviolet irradiator 6 for irradiating ultraviolet rays to the steel slab 2 to fluoresce the fluorescent magnetic powder attached to the surface of the steel slab 2, This is almost the same as the conventional one in that an imaging unit 7 that captures the fluorescence emitted from the camera and an image processing device 8 that detects flaws on the steel slab 2 based on the image captured by the imaging unit 7 are provided. . On the other hand, the magnetic particle flaw detector according to the present embodiment is particularly different from the conventional one, as shown in FIG. 1 in that the image processing device 8 performs a differential operation in the longitudinal direction along the longitudinal direction of the billet 2. Using a rectangular difference filter that performs a multiplication operation in the horizontal direction along the width direction of the billet 2, the captured image is subjected to difference processing to generate a vertical difference image, and the vertical difference image is generated. A side flaw detection device 10 (an example of a side flaw detection unit) that detects a side flaw along the horizontal direction based on the above, and a rectangular difference filter that performs the horizontal difference operation and performs the vertical integration operation A vertical flaw detection device 11 (vertical flaw detection means) that performs a difference process on the captured image to generate a horizontal difference image, and detects a vertical flaw along the vertical direction based on the horizontal difference image. And an example of the lateral flaws detected by the lateral flaw detection device 10. And the vertical flaw detection apparatus 11
And a flaw determination result integration device 12 (an example of flaw integration means) that integrates flaws in which the distance between the flaws is smaller than a predetermined threshold value among the vertical flaws detected by the method. .
【0006】以下,上記磁粉探傷装置の詳細について説
明する。ただし,従来のものと共通する構成については
既述した通りであるので,必要のない限り,その説明を
省略する。上記磁粉探傷装置において,鋼片2表面の疵
SD近傍等に付着した蛍光磁粉から発せられた蛍光を撮
像した撮像画像は,撮像部7から画像処理装置8へ供給
される。上記画像処理装置8では,上記撮像画像が上記
横疵検出装置10と上記縦疵検出装置11とにそれぞれ
入力される。上記横疵検出装置10は,例えば図2
(a)に示すような上記縦方向の差分操作を行い上記横
方向に積算操作を行う矩形状の差分フィルタ101aを
用いて,上記撮像画像について差分処理を行って縦方向
の差分画像を生成する横疵差分フィルタ処理手段101
と,上記横疵差分フィルタ処理手段101により生成さ
れた縦方向の差分画像について2値化処理を行って横疵
2値化画像を生成する横疵2値化処理手段102(2値
化処理手段の一例)と,上記横疵2値化処理手段102
により生成された横疵2値化画像についてラベリング処
理を行い該横疵2値化画像中の連結した画素をグループ
にまとめる横疵ラベリング処理手段103(ラベリング
処理手段の一例)と,上記横疵ラベリング処理手段10
3によりまとめられた各グループについて評価値を算出
する横疵評価値算出手段104(評価手段の一例)と,
上記横疵評価値算出手段104により算出された評価値
に基づいて上記横方向に沿った横疵の有無を判定する横
疵判定手段105(疵判定手段の一例)とを具備してお
り,上記横疵検出装置10に入力された撮像画像は,上
記横疵差分フィルタ処理手段101により,上記差分フ
ィルタ101aを用いて差分処理が行われる。この差分
処理により,上記縦方向の急峻な輝度変化が抽出された
縦方向の差分画像が生成される。これにより,横疵の深
さが浅かったり,横疵の大きさが小さかったりして弱い
蛍光輝度でしか横疵が撮像されないような場合でも,効
果的に横疵を検出することが可能となる。また,上記差
分フィルタ101aによる横方向の積算処理により,紫
外線照射装置6から照射される紫外線強度にムラがあっ
たり,鋼片2状に付着した蛍光磁粉にムラがある等し
て,例えば図8に示したような輝度変化が生じている場
合でも,その輝度変化の影響が平均化されて抑制される
ため,照射ムラの無い光源を用いたり,前処理としてシ
ェーディング補正を行ったりする必要がなくなり,装置
構成及び画像処理を簡素化することができる。さらに,
油よごれによるノイズ成分等の排除も容易となる。そし
て,上記横疵差分フィルタ処理手段101により生成さ
れた縦方向の差分画像は,上記横疵2値化処理手段10
2により,所定のしきい値を用いて2値化処理され,横
疵2値化画像が生成される。この2値化処理により,疵
とそれ以外の背景部分とが分離されることになる。この
横疵2値化画像は,上記横疵ラベリング処理手段103
によりラベリング処理される。即ち,上記疵に対応する
画素のうち,連結した画素が1つのグループにまとめら
れ,各グループ毎に異なる番号が割り付けられる。上記
横疵ラベリング処理手段103によりまとめられた各グ
ループの情報は,上記横疵評価値算出手段104に供給
され,各グループについて評価値が演算される。ここ
で,上記評価値は,例えば,同じ番号が割り付けられた
領域の面積×(該領域の差分画像の最大値−2値化しき
い値)という式に従って算出される。即ち,同じ番号が
割り付けられた領域の面積が小さい場合でも,差分輝度
が明るい場合には評価値が大きくなるように設定されて
いる。このようにして算出された評価値は,上記横疵判
定手段105に供給される。そして,上記横疵判定手段
105では,上記評価値が所定のしきい値よりも大きい
か否かに基づいて横疵であるか否かの判定が行われる。
上記横疵判定手段105により横疵であると判定された
領域については,その位置や大きさ,方向等の情報とと
もに上記疵判定結果統合装置12へ出力される。一方,
上記縦疵検出装置11は,例えば図2(b)に示すよう
な上記横方向の差分操作を行い上記縦方向に積算操作を
行う矩形状の差分フィルタ111bを用いて,上記撮像
画像について差分処理を行って横方向の差分画像を生成
する縦疵差分フィルタ処理手段111と,上記縦疵差分
フィルタ処理手段111により生成された横方向の差分
画像について2値化処理を行って縦疵2値化画像を生成
する縦疵2値化処理手段112(2値化処理手段の一
例)と,上記縦疵2値化処理手段112により生成され
た縦疵2値化画像についてラベリング処理を行い連結し
た画素をグループにまとめる縦疵ラベリング処理手段1
13(ラベリング処理手段の一例)と,上記縦疵ラベリ
ング処理手段113によりまとめられた各グループにつ
いて評価値を算出する縦疵評価値算出手段114(評価
手段の一例)と,上記縦疵評価値算出手段114により
算出された評価値に基づいて上記縦方向に沿った縦疵の
有無を判定する縦疵判定手段115(疵判定手段の一
例)とを備えており,上記横疵検出装置10と同様に,
縦疵を検出して,その情報とともに上記疵判定結果統合
装置12に出力する。尚,上記縦疵2値化処理手段11
2の2値化処理で用いられるしきい値は,上記横疵2値
化処理手段102の2値化処理で用いられるしきい値と
同じものに設定する必要はなく,それぞれにおいて最適
な値が予め選択される。そして,上記疵判定結果統合装
置12の疵統合手段121では,上記横疵検出装置10
により検出された横疵,及び上記縦疵検出装置11によ
り検出された縦疵のうち,所定の基準を満たす疵の統合
が行われる。上記疵の統合処理は,例えば図3に示す如
く,上記横疵検出装置10及び縦疵検出装置11により
検出された各疵の外接矩形の間隔dx,dyが,所定の
しきい値thx,thyより小さいときに行われる。こ
のとき,横疵と縦疵が1つの疵に統合されてしまう場合
があるが,この場合には,例えば,含まれる横疵と縦疵
の数や面積の大きい方を統合された疵の疵種とする。こ
の疵の統合処理により,上記縦方向及び横方向の差分処
理によって1つの疵が複数に分割されたままになること
が防止され,後工程である自動疵取装置の負荷を軽減す
ることができる。そして,上記疵統合手段121により
統合された疵の情報は,上記疵判定結果統合装置12が
備える送信手段122によりプロセスコンピュータ等に
出力される。このように,本実施の形態に係る磁粉探傷
装置によれば,縦方向と横方向とについてそれぞれ差分
を行われるため,深さが浅い等の理由により蛍光輝度が
小さい場合でも,双方の疵を感度良く検出することがで
きる。また,疵と同方向に積算処理を行うことによっ
て,輝度ムラや蛍光磁粉の付着ムラの影響を排除するこ
とができる。さらに,縦疵と横疵とを並行して検出する
ため,順列的に処理を行う場合と較べて,処理速度を向
上させることができる。しかも,縦疵と横疵は疵統合手
段により統合されてから,後工程の自動疵取装置等に供
給されるため,自動疵取装置の負荷を軽減し,さらには
疵取時間を短縮することができる。The details of the magnetic particle flaw detector will be described below. However, since the configuration common to the conventional one is as described above, the description will be omitted unless necessary. In the above-described magnetic particle flaw detector, a captured image obtained by capturing the fluorescence emitted from the fluorescent magnetic particles attached to the vicinity of the flaw SD on the surface of the steel piece 2 is supplied from the imaging unit 7 to the image processing device 8. In the image processing device 8, the captured image is input to the lateral flaw detection device 10 and the vertical flaw detection device 11, respectively. The side flaw detection device 10 is, for example, as shown in FIG.
As shown in (a), a vertical difference image is generated by performing a difference process on the captured image using a rectangular difference filter 101a that performs the above-described vertical difference operation and performs the above-described horizontal integration operation. Side flaw difference filter processing means 101
And a horizontal flaw binarization processing means 102 (a binarization processing means) for performing a binarization process on the vertical difference image generated by the horizontal flaw difference filter processing means 101 to generate a horizontal flaw binary image. And the above-mentioned side flaw binarization processing means 102
Flaw labeling processing means 103 (an example of labeling processing means) for performing labeling processing on the horizontal flaw binarized image generated by the above and grouping the connected pixels in the horizontal flaw binarized image into groups, and the above-mentioned horizontal flaw labeling Processing means 10
3. A lateral flaw evaluation value calculation means 104 (an example of an evaluation means) for calculating an evaluation value for each group compiled by 3;
A lateral flaw determining means 105 (an example of a flaw determining means) for determining the presence or absence of a lateral flaw along the lateral direction based on the evaluation value calculated by the lateral flaw evaluation value calculating means 104; The captured image input to the side flaw detection device 10 is subjected to difference processing by the side flaw difference filter processing means 101 using the difference filter 101a. By this difference processing, a vertical difference image is generated from which the steep vertical luminance change is extracted. This makes it possible to detect the lateral flaws effectively even when the lateral flaws are shallow or the size of the lateral flaws is small, so that the lateral flaws can be imaged only with a weak fluorescent luminance. . In addition, due to the integration process in the horizontal direction performed by the difference filter 101a, the intensity of the ultraviolet light emitted from the ultraviolet irradiation device 6 becomes uneven, and the fluorescent magnetic powder adhered in the shape of the billet 2 becomes uneven. Even if there is a change in brightness as shown in (1), the effect of the change in brightness is averaged and suppressed, so there is no need to use a light source without irradiation unevenness or perform shading correction as preprocessing. , Device configuration and image processing can be simplified. further,
Elimination of noise components and the like due to oil contamination is also facilitated. Then, the difference image in the vertical direction generated by the horizontal flaw difference filter processing means 101 is combined with the horizontal flaw binarization processing means 10.
In step 2, a binarization process is performed using a predetermined threshold value to generate a side flaw binarized image. By this binarization processing, the flaw and the other background portion are separated. The binarized image of side flaws is used as the side flaw labeling processing means 103.
Is subjected to labeling processing. That is, among the pixels corresponding to the flaws, the connected pixels are grouped into one group, and a different number is assigned to each group. The information of each group compiled by the lateral flaw labeling processing means 103 is supplied to the lateral flaw evaluation value calculating means 104, and an evaluation value is calculated for each group. Here, the evaluation value is calculated, for example, in accordance with the formula of the area of the region to which the same number is assigned × (the maximum value of the difference image of the region—the threshold for binarization). That is, even when the area of the region assigned the same number is small, the evaluation value is set to be large when the difference luminance is bright. The evaluation value calculated in this way is supplied to the lateral flaw determining means 105. Then, the side flaw determining means 105 determines whether the side flaw is a side flaw based on whether or not the evaluation value is larger than a predetermined threshold value.
The region determined to be a lateral flaw by the lateral flaw determining means 105 is output to the flaw determination result integrating device 12 together with information on its position, size, direction, and the like. on the other hand,
The vertical flaw detection device 11 performs a difference process on the captured image using a rectangular difference filter 111b that performs the horizontal difference operation and performs the vertical integration operation as shown in FIG. 2B, for example. And a vertical flaw difference filter processing means 111 for generating a horizontal difference image, and performing a binarization process on the horizontal difference image generated by the vertical flaw difference filter processing means 111 to binarize the vertical flaw. Vertical flaw binarization processing means 112 (an example of a binarization processing means) for generating an image, and pixels connected by performing a labeling process on the vertical flaw binary image generated by the vertical flaw binarization processing means 112 and connected Flaw labeling processing means 1 for grouping
13 (an example of labeling processing means), a vertical flaw evaluation value calculating means 114 (an example of evaluation means) for calculating an evaluation value for each group compiled by the vertical flaw labeling processing means 113, and a vertical flaw evaluation value calculation A vertical flaw determining means 115 (an example of a flaw determining means) for determining the presence or absence of a vertical flaw along the vertical direction based on the evaluation value calculated by the means 114; In
Vertical flaws are detected and output to the flaw determination result integrating device 12 together with the information. The vertical flaw binarization processing means 11
It is not necessary to set the threshold value used in the binarization process of 2 to be the same as the threshold value used in the binarization process of the side flaw binarization processing means 102. Pre-selected. Then, the flaw integration means 121 of the flaw determination result integration device 12 uses the lateral flaw detection device 10.
Of the horizontal flaws detected by the above and the vertical flaws detected by the vertical flaw detection device 11 are integrated. As shown in FIG. 3, for example, as shown in FIG. 3, in the flaw integration processing, the intervals dx and dy of the circumscribed rectangles of the flaws detected by the horizontal flaw detection device 10 and the vertical flaw detection device 11 are set to predetermined threshold values thx and thy. It is done when smaller. At this time, the horizontal flaw and the vertical flaw may be integrated into one flaw. In this case, for example, the flaw of the flaw in which the number or area of the included horizontal flaw and vertical flaw is larger is integrated. Seeds. This flaw integration processing prevents one flaw from being divided into a plurality of parts due to the above-described vertical and horizontal difference processing, and can reduce the load on an automatic flaw removing device that is a post-process. . The information of the flaw integrated by the flaw integration means 121 is output to a process computer or the like by the transmission means 122 provided in the flaw determination result integration device 12. As described above, according to the magnetic particle flaw detector according to the present embodiment, since the difference is made in the vertical direction and the horizontal direction, even when the fluorescent luminance is small due to a shallow depth or the like, both flaws are removed. Detection can be performed with high sensitivity. In addition, by performing the integration process in the same direction as the flaw, it is possible to eliminate the effects of luminance unevenness and fluorescent magnetic powder adhesion unevenness. Further, since the vertical flaws and the horizontal flaws are detected in parallel, the processing speed can be improved as compared with the case where the processing is performed in a permuted manner. Moreover, since the vertical flaws and the horizontal flaws are integrated by the flaw integrating means and then supplied to an automatic flaw removing device in a subsequent process, the load on the automatic flaw removing device can be reduced, and the flaw removing time can be further reduced. Can be.
【0007】[0007]
【実施例】上記実施の形態では,所定の方向に差分処理
を行い該所定の方向と直角な方向に積算処理を行う矩形
状の差分フィルタとして,5×3マスクのものと,3×
11マスクのものとを用いたが,これに限られるもので
はなく,マスクの大きさや重み係数の異なる他の矩形状
差分フィルタを用いるようにしてもよい。さらに,上記
実施の形態では,縦方向及び横方向について差分処理を
行ったが,これに限られるものではない。このような磁
粉探傷装置も本発明における磁粉探傷装置の一例であ
る。また,上記実施の形態では,ラベリング処理により
同じ番号が割り付けられた領域の面積×(該領域の差分
画像の最大値−2値化しきい値)という評価式を用いて
評価値を算出したが,これに限られるものではなく,例
えば輝度や面積のみを評価値としてもよいし,輝度×面
積という評価式を用いて評価値を算出するようにしても
よい。このような磁粉探傷装置も本発明における磁粉探
傷装置の一例である。また,上記実施の形態では,鋼片
2の一面のみについて画像を撮像し,当該鋼片2の表面
に形成された疵の探傷を行ったが,これに限られるもの
ではなく,例えば図4に示すように,上記鋼片2の周り
に撮像部6を例えば8つ設け,鋼片2の4面及び4角を
同時に検査するようにしてもよい。この場合,上記画像
処理装置6を対応する台数だけ設けてもよいし,上記横
疵検出装置10及び縦疵検出装置11を対応する数だけ
備えた一つの画像処理装置6を設けるようにしてもよ
い。また,上記8台の撮像部6を必ずしも同時に用いる
必要はなく,例えば5台と3台の2段階に分けて疵の探
傷を行うようにしてもよい。このような磁粉探傷装置も
本発明における磁粉探傷装置の一例である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the above-described embodiment, a rectangular differential filter for performing a differential process in a predetermined direction and performing an integrating process in a direction perpendicular to the predetermined direction has a 5 × 3 mask and a 3 × 3 mask.
Although 11 masks are used, the present invention is not limited to this, and other rectangular difference filters having different mask sizes and different weighting coefficients may be used. Further, in the above embodiment, the difference processing is performed in the vertical direction and the horizontal direction, but the present invention is not limited to this. Such a magnetic particle flaw detector is also an example of the magnetic particle flaw detector according to the present invention. In the above-described embodiment, the evaluation value is calculated using the evaluation formula of “area of region to which the same number is assigned by the labeling process × (maximum value of difference image of this region−threshold for binarization)”. However, the present invention is not limited to this. For example, only the luminance or the area may be used as the evaluation value, or the evaluation value may be calculated using an evaluation expression of luminance × area. Such a magnetic particle flaw detector is also an example of the magnetic particle flaw detector according to the present invention. Further, in the above-described embodiment, an image is captured only on one surface of the billet 2 and flaw detection formed on the surface of the billet 2 is performed. However, the present invention is not limited to this. For example, FIG. As shown in the figure, for example, eight imaging units 6 may be provided around the steel slab 2 so as to inspect four surfaces and four corners of the steel slab 2 at the same time. In this case, the corresponding number of the image processing devices 6 may be provided, or one image processing device 6 including the corresponding number of the horizontal flaw detection devices 10 and the vertical flaw detection devices 11 may be provided. Good. Further, it is not always necessary to use the eight imaging units 6 at the same time. For example, flaw detection may be performed in two stages of five and three units. Such a magnetic particle flaw detector is also an example of the magnetic particle flaw detector according to the present invention.
【0008】[0008]
【発明の効果】以上説明した通り,上記請求項1〜5の
いずれか1項に記載の磁粉探傷装置によれば,第1の方
向に微分操作を行い該第1の方向と直角な方向に積算操
作を行う矩形状の微分フィルタを用いて,上記撮像画像
について微分処理を行って第1の微分画像が生成され,
上記第1の微分画像に基づいて上記第1の方向と直角な
方向の疵が検出され,上記第1の方向と異なる第2の方
向に微分操作を行い該第2の方向と直角な方向に積算操
作を行う矩形状の微分フィルタを用いて,上記撮像画像
について微分処理を行って第2の微分画像が生成され,
上記第2の微分画像に基づいて上記第2の方向と直角な
方向の疵が検出されるため,シェーディング補正等の前
処理の必要がなく,横疵及び縦疵を感度良く検出するこ
とができる。特に,上記請求項4又は5に記載の磁粉探
傷装置では,検出された横疵及び縦疵のうち,例えば疵
間の距離が所定のしきい値より小さい場合に疵の統合処
理が行われるため,後工程にある自動疵取装置の負荷を
軽減することができる。As described above, according to the magnetic particle flaw detector according to any one of the first to fifth aspects, the differential operation is performed in the first direction, and the differential operation is performed in the direction perpendicular to the first direction. A first differential image is generated by performing a differential process on the captured image using a rectangular differential filter that performs an integrating operation,
A flaw in a direction perpendicular to the first direction is detected based on the first differential image, and a differential operation is performed in a second direction different from the first direction to perform a differential operation in a direction perpendicular to the second direction. A second differential image is generated by performing a differential process on the captured image using a rectangular differential filter that performs an integrating operation,
Since flaws in a direction perpendicular to the second direction are detected based on the second differential image, preprocessing such as shading correction is not required, and horizontal flaws and vertical flaws can be detected with high sensitivity. . In particular, in the magnetic particle flaw detector according to the fourth or fifth aspect, among the detected horizontal flaws and vertical flaws, for example, when the distance between the flaws is smaller than a predetermined threshold value, the flaw integration processing is performed. The load on the automatic flaw removing device in the post-process can be reduced.
【図1】 本発明の一実施の形態に係る磁粉探傷装置の
要部を説明するための機能ブロック図。FIG. 1 is a functional block diagram for explaining a main part of a magnetic particle flaw detector according to an embodiment of the present invention.
【図2】 上記磁粉探傷装置において用いられる差分フ
ィルタの例を説明するための図。FIG. 2 is a view for explaining an example of a differential filter used in the magnetic particle inspection apparatus.
【図3】 上記磁粉探傷装置における疵の統合処理を説
明するための図。FIG. 3 is a diagram for explaining a flaw integration process in the magnetic particle flaw detection apparatus.
【図4】 本発明の一実施例に係る磁粉探傷装置の概略
構成を示す図。FIG. 4 is a diagram showing a schematic configuration of a magnetic particle flaw detector according to one embodiment of the present invention.
【図5】 従来の磁粉探傷装置の一例を示す図。FIG. 5 is a view showing an example of a conventional magnetic particle flaw detector.
【図6】 蛍光磁粉探傷方法を説明するための図。FIG. 6 is a view for explaining a fluorescent magnetic particle flaw detection method.
【図7】 疵種を説明するための図。FIG. 7 is a view for explaining types of flaws.
【図8】 シェーディング補正処理等を説明するための
図。FIG. 8 is a diagram illustrating a shading correction process and the like.
2…鋼片 8…画像処理装置 10…横疵検出装置 11…縦疵検出装置 12…疵判定結果統合装置 101…横疵差分フィルタ処理手段 102…横疵2値化処理手段 103…横疵ラベリング処理手段 104…横疵評価値算出手段 105…横疵判定手段 111…縦疵差分フィルタ処理手段 112…縦疵2値化処理手段 113…縦疵ラベリング処理手段 114…縦疵評価値算出手段 115…縦疵判定手段 121…疵統合手段 Reference Signs List 2 steel billet 8 image processing device 10 lateral flaw detection device 11 vertical flaw detection device 12 flaw determination result integration device 101 horizontal flaw difference filter processing means 102 horizontal flaw binarization processing means 103 horizontal flaw labeling Processing means 104 ... Horizontal flaw evaluation value calculation means 105 ... Horizontal flaw determination means 111 ... Vertical flaw difference filter processing means 112 ... Vertical flaw binarization processing means 113 ... Vertical flaw labeling processing means 114 ... Vertical flaw evaluation value calculation means 115 ... Vertical flaw determination means 121 ... flaw integration means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 陽 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 赤松 勝 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 小川 岳夫 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 2G051 AA37 AB02 EA08 EA11 EB01 GD02 GD03 2G053 AA11 AB22 CB24 CB27 DC17 DC20 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yo Okamoto 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Research Institute, Kobe Steel, Ltd. (72) Inventor Masaru Akamatsu Takatsuka, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel Co., Ltd. Kobe Institute of Technology, Kobe Steel Ltd. (72) Inventor Takeo Ogawa 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel Co., Ltd. Kobe Research Institute F-term ( Reference) 2G051 AA37 AB02 EA08 EA11 EB01 GD02 GD03 2G053 AA11 AB22 CB24 CB27 DC17 DC20
Claims (5)
させ,該鋼片に付着した蛍光磁粉が発する蛍光を撮像
し,得られた撮像画像に基づいて上記鋼片の疵を探傷す
る磁粉探傷装置において,第1の方向に微分操作を行い
該第1の方向と直角な方向に積算操作を行う矩形状の微
分フィルタを用いて,上記撮像画像について微分処理を
行って第1の微分画像を生成し,上記第1の微分画像に
基づいて上記第1の方向と直角な方向の疵を検出する第
1の疵検出手段と,上記第1の方向と異なる第2の方向
に微分操作を行い該第2の方向と直角な方向に積算操作
を行う矩形状の微分フィルタを用いて,上記撮像画像に
ついて微分処理を行って第2の微分画像を生成し,上記
第2の微分画像に基づいて上記第2の方向と直角な方向
の疵を検出する第2の疵検出手段とを具備してなること
を特徴とする磁粉探傷装置。1. A fluorescent magnetic powder is attached to the surface of a magnetized steel slab, the fluorescence emitted by the fluorescent magnetic powder attached to the steel slab is imaged, and flaws on the steel slab are detected based on the obtained captured image. In the magnetic particle flaw detection apparatus, a differentiation process is performed on the captured image using a rectangular differential filter that performs a differentiation operation in a first direction and performs an integration operation in a direction perpendicular to the first direction to perform a first differentiation. First flaw detecting means for generating an image and detecting a flaw in a direction perpendicular to the first direction based on the first differential image; and performing a differential operation in a second direction different from the first direction. And performing a differentiation process on the captured image using a rectangular differential filter that performs an integration operation in a direction perpendicular to the second direction to generate a second differential image. Detecting a flaw in a direction perpendicular to the second direction based on the second direction A magnetic particle flaw detector comprising a flaw detecting means.
検出手段が,上記第1の微分画像又は上記第2の微分画
像を2値化処理した2値化画像を生成する2値化処理手
段と,該2値化画像についてラベリング処理を行い連結
した画素をグループにまとめるラベリング処理手段と,
上記ラベリング処理手段によりまとめられた各グループ
を評価する評価手段と,上記評価手段による各グループ
の評価結果に基づいて疵の有無を判定する疵判定手段と
をそれぞれ具備してなる請求項1に記載の磁粉探傷装
置。2. A binary system wherein said first flaw detection means and said second flaw detection means generate a binarized image obtained by binarizing the first differential image or the second differential image. Labeling processing means for performing labeling processing on the binarized image to group connected pixels into groups;
2. The apparatus according to claim 1, further comprising: evaluation means for evaluating each group compiled by said labeling processing means; and flaw determination means for determining the presence or absence of a flaw based on the evaluation result of each group by said evaluation means. Magnetic particle flaw detector.
と,各グループに含まれる上記第1又は第2の微分画像
の最大輝度値から2値化しきい値を差し引いた値との積
を用いて,各グループの評価を行うものである請求項1
又は2に記載の磁粉探傷装置。3. The evaluation means uses a product of an area of each group and a value obtained by subtracting a binarization threshold from a maximum luminance value of the first or second differential image included in each group. And the evaluation of each group.
Or the magnetic particle flaw detector according to 2.
検出手段により検出された各疵のうち,所定の基準を満
たす疵を統合する疵統合手段を具備してなる請求項1〜
3のいずれか1項に記載の磁粉探傷装置。4. A flaw integrating means for integrating flaws satisfying a predetermined standard among the flaws detected by the first flaw detection means and the second flaw detection means.
4. The magnetic particle flaw detector according to any one of the items 3 to 5.
段及び第2の疵検出手段により検出された各疵の間の距
離が所定のしきい値より小さいことである請求項4に記
載の磁粉探傷装置。5. The method according to claim 4, wherein the predetermined criterion is that a distance between the flaws detected by the first flaw detection means and the second flaw detection means is smaller than a predetermined threshold value. The magnetic particle flaw detector according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10282824A JP2000111527A (en) | 1998-10-05 | 1998-10-05 | Magnetic particle inspection apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10282824A JP2000111527A (en) | 1998-10-05 | 1998-10-05 | Magnetic particle inspection apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000111527A true JP2000111527A (en) | 2000-04-21 |
Family
ID=17657566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10282824A Pending JP2000111527A (en) | 1998-10-05 | 1998-10-05 | Magnetic particle inspection apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000111527A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007513649A (en) * | 2003-11-19 | 2007-05-31 | シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド | Anatomical structure detection and matching system and method using appearance and shape |
JP2013119102A (en) * | 2011-12-07 | 2013-06-17 | Nippon Steel & Sumitomo Metal Corp | Steel material maintenance support device |
-
1998
- 1998-10-05 JP JP10282824A patent/JP2000111527A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007513649A (en) * | 2003-11-19 | 2007-05-31 | シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド | Anatomical structure detection and matching system and method using appearance and shape |
JP2011031052A (en) * | 2003-11-19 | 2011-02-17 | Siemens Medical Solutions Usa Inc | Method for detecting object in image |
JP2013119102A (en) * | 2011-12-07 | 2013-06-17 | Nippon Steel & Sumitomo Metal Corp | Steel material maintenance support device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3492509B2 (en) | Surface defect inspection apparatus and fluorescent magnetic particle inspection method | |
JP2011013007A (en) | Magnetic particle flaw inspection apparatus | |
JPH03160349A (en) | Device for detecting crack | |
JPH1194804A (en) | Automatic flaw detection method and apparatus | |
JP3333568B2 (en) | Surface defect inspection equipment | |
JP2001281226A (en) | Fluorescent magnetic particle inspection method and fluorescent magnetic particle inspection device | |
Ma et al. | A machine vision assisted system for fluorescent magnetic particle inspection of railway wheelsets | |
JP2000111527A (en) | Magnetic particle inspection apparatus | |
JP3440569B2 (en) | Magnetic particle flaw detection method and apparatus | |
JPH07333197A (en) | Automatic surface flaw detector | |
JP2010038723A (en) | Flaw inspecting method | |
JPH09210969A (en) | Automatic magnetic particle flaw detector | |
JP4015436B2 (en) | Gold plating defect inspection system | |
JP3089079B2 (en) | Circuit pattern defect inspection method | |
JPH04106460A (en) | Detecting method of defect | |
JP3135075B2 (en) | Appearance inspection method and apparatus, magnetic head inspection method and apparatus, and magnetic head manufacturing facility | |
JP2000111528A (en) | Magnetic particle inspection apparatus | |
JP4074837B2 (en) | Method and apparatus for detecting the marking position of a steel piece | |
JP2000321220A (en) | X-ray foreign matter detection method | |
JPH08190633A (en) | Defect judging method | |
JPH1019801A (en) | Surface defect detector | |
JP4474006B2 (en) | Inspection device | |
GB2222879A (en) | Crack detecting apparatus | |
JPH0337564A (en) | Automatic magnetic-particle examination apparatus | |
JP3297945B2 (en) | Steel sheet surface defect detection method |