JP2000109390A - Production of single crystal - Google Patents
Production of single crystalInfo
- Publication number
- JP2000109390A JP2000109390A JP10281827A JP28182798A JP2000109390A JP 2000109390 A JP2000109390 A JP 2000109390A JP 10281827 A JP10281827 A JP 10281827A JP 28182798 A JP28182798 A JP 28182798A JP 2000109390 A JP2000109390 A JP 2000109390A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- single crystal
- solid
- liquid interface
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 85
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 71
- 239000004065 semiconductor Substances 0.000 claims abstract description 17
- 238000013459 approach Methods 0.000 claims description 14
- 239000004973 liquid crystal related substance Substances 0.000 claims description 2
- 239000010453 quartz Substances 0.000 abstract description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 29
- 230000002265 prevention Effects 0.000 abstract 1
- 238000002425 crystallisation Methods 0.000 description 20
- 230000008025 crystallization Effects 0.000 description 20
- 230000010355 oscillation Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004033 diameter control Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、MCZ法(磁場
印加チョクラルスキー法)によって、石英ルツボ内に収
容された半導体融液から単結晶を引き上げるに際し、融
液対流による温度振動を抑制し、単結晶化率を向上させ
ることができる単結晶製造方法に関するものである。BACKGROUND OF THE INVENTION The present invention suppresses temperature oscillations caused by convection of a melt when a single crystal is pulled from a semiconductor melt contained in a quartz crucible by an MCZ method (magnetic field applying Czochralski method). The present invention relates to a method for producing a single crystal capable of improving a single crystallization ratio.
【0002】[0002]
【従来の技術】従来、シリコン(Si)やガリウムヒ素
(GaAs)等の半導体単結晶を成長させる装置とし
て、図10に示すように、MCZ法(磁場印加チョクラ
ルスキー法)を用いた単結晶引き上げ装置10が知られ
ている。このような単結晶引き上げ装置10には、チャ
ンバ2の内部に石英ルツボ3とヒータ4とが配設されて
いる。石英ルツボ3はサセプタ5を介して昇降自在、か
つ、回転自在な下軸6に支持されている。また、ヒータ
4は半導体融液を加熱するためのものであり、石英ルツ
ボ3の周囲に配置されている。2. Description of the Related Art Conventionally, as an apparatus for growing a semiconductor single crystal such as silicon (Si) or gallium arsenide (GaAs), as shown in FIG. 10, a single crystal using an MCZ method (Czochralski method applying a magnetic field) is used. A lifting device 10 is known. In such a single crystal pulling apparatus 10, a quartz crucible 3 and a heater 4 are provided inside a chamber 2. The quartz crucible 3 is supported via a susceptor 5 on a rotatable lower shaft 6 that can freely move up and down. The heater 4 is for heating the semiconductor melt, and is disposed around the quartz crucible 3.
【0003】チャンバ2上部からは、種結晶を下端部に
把持するワイヤ7が昇降自在、かつ、回転自在に吊り下
げられている。また、チャンバ2の外側には半導体融液
の対流を抑制するカスプ磁場を印加する電磁石8,9が
設置されている。[0003] A wire 7 for holding a seed crystal at a lower end thereof is suspended from the upper portion of the chamber 2 so as to be vertically movable and rotatable. Electromagnets 8 and 9 for applying a cusp magnetic field for suppressing convection of the semiconductor melt are provided outside the chamber 2.
【0004】従来の単結晶製造方法は、炉上部からアル
ゴンガスを供給しつつ、上方より種結晶を半導体融液に
浸漬させ、石英ルツボ3を回転させながら種結晶を引き
上げることにより、半導体の単結晶13を得るものであ
る。単結晶の引き上げ中には、図11に示すように、石
英ルツボ3の壁面と半導体融液が反応して、半導体融液
内に酸素が溶出するが、電磁石8,9によってカスプ磁
場11(破線で示す)が印加されると、石英ルツボ3の
底面及び側面の両方に直角な磁界成分が加わるため、石
英ルツボ3内壁付近の対流が抑制される。言い換えれ
ば、溶解した酸素が石英ルツボ3の壁面付近に滞留する
ため、さらなる酸素の溶解が起こり難くなる。また、酸
素を比較的高濃度に含む融液の結晶直下への流入を抑制
する。In a conventional single crystal manufacturing method, a seed crystal is immersed in a semiconductor melt from above while supplying an argon gas from an upper part of the furnace, and the seed crystal is pulled up while rotating a quartz crucible 3 to obtain a single crystal of the semiconductor. A crystal 13 is obtained. During the pulling of the single crystal, as shown in FIG. 11, the wall surface of the quartz crucible 3 reacts with the semiconductor melt and oxygen is eluted in the semiconductor melt. Is applied, a perpendicular magnetic field component is applied to both the bottom surface and the side surfaces of the quartz crucible 3, so that convection near the inner wall of the quartz crucible 3 is suppressed. In other words, the dissolved oxygen stays in the vicinity of the wall surface of the quartz crucible 3, so that it is difficult for oxygen to be further dissolved. In addition, the inflow of the melt containing oxygen at a relatively high concentration directly below the crystal is suppressed.
【0005】このように、カスプ磁場11を印加させる
ことで、単結晶中の酸素濃度を低減することができる。
尚、単結晶の成長に伴って半導体融液の固液界面12の
位置が低下するのを補うように図12に示すように石英
ルツボ3が下軸6により上昇するようになっている。こ
の種の技術としては、例えば、特許第2706165号
公報に開示されている。As described above, by applying the cusp magnetic field 11, the oxygen concentration in the single crystal can be reduced.
The quartz crucible 3 is raised by the lower shaft 6 as shown in FIG. 12 to compensate for the lowering of the position of the solid-liquid interface 12 of the semiconductor melt as the single crystal grows. This type of technique is disclosed in, for example, Japanese Patent No. 2706165.
【0006】[0006]
【発明が解決しようとする課題】上記従来技術において
は、図11,12に示すように、上下方向の磁場中心を
固液界面12に位置させた状態で単結晶13の引き上げ
を行うようにしているため、融液の中心部(結晶直下)
は低磁界領域となる。In the prior art, as shown in FIGS. 11 and 12, the single crystal 13 is pulled up with the vertical magnetic field center positioned at the solid-liquid interface 12. The center of the melt (below the crystal)
Is a low magnetic field region.
【0007】したがって、上記のように酸素濃度を低減
させる点では有利である反面、融液対流による温度振動
の顕著化を抑制できないため、同じ石英ルツボ3に横磁
場を印加した場合に比較して径制御が困難になり(特に
シード工程)、単結晶化率が低下するという問題があ
る。とりわけ、石英ルツボ3が大容量化している今日で
は温度振動をなくして単結晶化率を向上できる単結晶製
造方法が要望されてきている。そこで、この発明は、と
りわけ、大口径ルツボによるカスプ磁界下での結晶成長
において、融液対流による温度振動を防止して単結晶化
率を向上させることができる単結晶製造方法を提供する
ものである。Therefore, although it is advantageous in that the oxygen concentration is reduced as described above, the remarkable temperature oscillation due to the convection of the melt cannot be suppressed, so that it is compared with the case where a transverse magnetic field is applied to the same quartz crucible 3. There is a problem that diameter control becomes difficult (particularly in a seeding step), and the single crystallization ratio is reduced. In particular, today, when the capacity of the quartz crucible 3 is increased, there is a demand for a single crystal manufacturing method capable of improving the single crystallization rate by eliminating temperature oscillation. Therefore, the present invention provides a single crystal manufacturing method capable of preventing a temperature oscillation due to a convection of a melt and improving a single crystallization ratio, particularly in crystal growth under a cusp magnetic field by a large diameter crucible. is there.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
に、請求項1に記載した発明は、カスプ磁場下におかれ
たルツボ内の半導体融液から単結晶を引き上げる単結晶
製造方法において、上下方向の磁場中心を固液界面から
下方にずらし、かつ、固液界面の磁界強度を500ガウ
ス以上に設定した状態で引き上げを行い、固液界面が単
結晶のボトム部付近にさしかかったら上記上下方向の磁
場中心を徐々に固液界面に移動することを特徴とする。Means for Solving the Problems In order to solve the above problems, an invention according to claim 1 is directed to a single crystal manufacturing method for pulling a single crystal from a semiconductor melt in a crucible placed under a cusp magnetic field, The center of the magnetic field in the vertical direction is shifted downward from the solid-liquid interface, and the magnetic field strength at the solid-liquid interface is set to 500 gauss or more, and the liquid crystal is pulled up. The center of the magnetic field in the direction is gradually moved to the solid-liquid interface.
【0009】このように構成することで、単結晶がボト
ム部付近にさしかかるまでは、温度振動を防止すること
で単結晶化率を向上させることができる条件(上記磁場
中心位置、及び、磁場強度条件)で引き上げを行い、単
結晶がボトム部付近に到達したら、転位が起きないよう
な条件(磁場中心を固液界面に設定する)で引き上げを
行う。With such a configuration, until the single crystal approaches the bottom portion, it is possible to improve the single crystallization ratio by preventing temperature oscillation (the above-described magnetic field center position and magnetic field strength). When the single crystal reaches the vicinity of the bottom portion, the single crystal is pulled under a condition that dislocation does not occur (the center of the magnetic field is set at the solid-liquid interface).
【0010】請求項2に記載した発明は、カスプ磁場下
におかれたルツボ内の半導体融液から単結晶を引き上げ
る単結晶製造方法において、上側の電磁石と下側の電磁
石とのコイル電流を一致させた状態で上側の電磁石と下
側の電磁石との上下方向の中間レベル位置を固液界面か
ら下方にずらし、かつ、固液界面の磁界強度を500ガ
ウス以上に設定した状態で引き上げを行い、固液界面が
単結晶のボトム部付近にさしかかったら上記中間レベル
位置を徐々に固液界面に移動することを特徴とする。According to a second aspect of the present invention, in the single crystal manufacturing method for pulling a single crystal from a semiconductor melt in a crucible placed under a cusp magnetic field, the coil currents of the upper electromagnet and the lower electromagnet are matched. In the state in which the upper and lower electromagnets are vertically shifted from the solid-liquid interface with respect to the vertical intermediate level between the lower electromagnet and the upper electromagnet, and the magnetic field strength at the solid-liquid interface is set to 500 gauss or more, the lifting is performed, When the solid-liquid interface approaches the vicinity of the bottom of the single crystal, the intermediate level position is gradually moved to the solid-liquid interface.
【0011】このように構成することで、単結晶がボト
ム部付近にさしかかるまでは、例えば、上下同じ電磁石
で、かつ、コイル電流を同じにして、両電磁石の位置を
下げることにより上下の磁場中心を固液界面から下方に
ずらすことができ、単結晶がボトム部付近に到達した
ら、両電磁石の位置を上げることで磁場中心を固液界面
に移動することが可能となる。With such a configuration, until the single crystal approaches the vicinity of the bottom portion, for example, the upper and lower electromagnets are made the same and the coil currents are made the same to lower the upper and lower magnetic field centers by lowering the positions of both electromagnets. Can be shifted downward from the solid-liquid interface, and when the single crystal reaches the vicinity of the bottom portion, the center of the magnetic field can be moved to the solid-liquid interface by raising the positions of both electromagnets.
【0012】請求項3に記載した発明は、カスプ磁場下
におかれたルツボ内の半導体融液から単結晶を引き上げ
る単結晶製造方法において、上側の電磁石と下側の電磁
石とのコイル電流に差を持たせることにより上下方向の
磁場中心を固液界面から下方にずらし、かつ、固液界面
の磁界強度を500ガウス以上に設定した状態で引き上
げを行い、固液界面が単結晶のボトム部付近にさしかか
ったら上記上下方向の磁場中心を上下の電磁石のコイル
電流を変化させることによって徐々に固液界面に移動す
ることを特徴とする。According to a third aspect of the present invention, there is provided a single crystal manufacturing method for pulling a single crystal from a semiconductor melt in a crucible placed under a cusp magnetic field, wherein a difference in coil current between an upper electromagnet and a lower electromagnet is provided. , The center of the magnetic field in the vertical direction is shifted downward from the solid-liquid interface, and the magnetic field strength at the solid-liquid interface is set to 500 gauss or more. The solid-liquid interface is near the bottom of the single crystal. When approaching, the vertical magnetic field center is gradually moved to the solid-liquid interface by changing the coil current of the upper and lower electromagnets.
【0013】このように構成することで、単結晶がボト
ム部付近にさしかかるまでは、例えば、上下同じ電磁石
で、かつ、コイル電流を下側の電磁石の方を小さくする
ことで上下方向の磁場中心を固液界面から下方にずらす
ことができ、単結晶がボトム部付近に到達したら、下側
の電磁石のコイル電流を徐々に増加させることにより上
下方向の磁場中心を固液界面に移動することが可能とな
る。With this configuration, until the single crystal approaches the vicinity of the bottom portion, for example, the same electromagnet is used in the upper and lower directions, and the coil current is made smaller in the lower electromagnet. Can be shifted downward from the solid-liquid interface, and when the single crystal reaches near the bottom, the vertical magnetic field center can be moved to the solid-liquid interface by gradually increasing the coil current of the lower electromagnet. It becomes possible.
【0014】請求項4に記載した発明は、上記固液界面
位置から下方にずらした上下方向の磁場中心のオフセッ
ト量をルツボ内径の4.0%±2.5%に設定したこと
を特徴とする。オフセット量を上記値、最適にはルツボ
内径の4.0%に設定することで、単結晶の胴体部の単
結晶化率を高めることが可能となる。The invention described in claim 4 is characterized in that the offset amount of the vertical magnetic field center shifted downward from the solid-liquid interface position is set to 4.0% ± 2.5% of the inner diameter of the crucible. I do. By setting the offset amount to the above value, optimally 4.0% of the crucible inner diameter, it becomes possible to increase the single crystallization ratio of the body portion of the single crystal.
【0015】[0015]
【発明の実施の形態】以下、この発明の実施形態を図面
と共に説明する。尚、以下の説明において、この実施形
態の単結晶製造方法に使用される単結晶引き上げ装置の
基本的構造は従来技術と同様であるので、同一部分に同
一符号を付して説明する。Embodiments of the present invention will be described below with reference to the drawings. In the following description, since the basic structure of the single crystal pulling apparatus used in the single crystal manufacturing method of this embodiment is the same as that of the prior art, the same parts are denoted by the same reference numerals.
【0016】第1実施形態を図1ないし図5によって説
明する。図1において、石英ルツボ3周囲の電磁石8,
9により石英ルツボ3内の半導体融液をカスプ磁場11
下におく。ここで電磁石8,9は同一のものを使用して
いる。このとき、上下方向の磁場中心pを固液界面12
から下方にずらしておく。尚、磁場中心pは上側の電磁
石8と下側の電磁石9との上下方向の中間レベル位置で
あり、磁界強度0位置である。ここで、磁場中心pを固
液界面12から下方にずらすオフセット量dは、ルツボ
径の4.0%±2.5%(最適には4.0%)、例え
ば、32インチ径の石英ルツボ3を使用する場合、石英
ルツボ3の内径が790mmであるのでその4.0%±
2.5である30mm±20mm(最適には30mm)
とする。また、固液界面12の石英ルツボ側壁における
磁界強度を1000ガウスに設定する。この状態で従来
と同様に引き上げ作業を行う。A first embodiment will be described with reference to FIGS. In FIG. 1, electromagnets 8 around quartz crucible 3
9, the semiconductor melt in the quartz crucible 3 is cusped by a magnetic field 11
Put it down. Here, the same electromagnets 8 and 9 are used. At this time, the vertical magnetic field center p is aligned with the solid-liquid interface 12.
From below. Note that the magnetic field center p is a vertical intermediate position between the upper electromagnet 8 and the lower electromagnet 9, that is, a zero magnetic field intensity position. Here, the offset amount d for shifting the magnetic field center p downward from the solid-liquid interface 12 is 4.0% ± 2.5% (optimally 4.0%) of the crucible diameter, for example, a 32 inch diameter quartz crucible. When using the quartz crucible 3, the inner diameter of the quartz crucible 3 is 790 mm, which is 4.0% ±
30mm ± 20mm which is 2.5 (optimally 30mm)
And Further, the magnetic field strength on the side wall of the quartz crucible at the solid-liquid interface 12 is set to 1000 gauss. In this state, the lifting operation is performed as in the conventional case.
【0017】そして、単結晶13の胴体部13Aの引き
上げが終わり固液界面12が単結晶13のボトム部13
B付近、具体的には、図2、図3に示すように単結晶1
3の胴部13Aとボトム部13Bとの境界部分にさしか
かったら(図3参照)、電磁石8,9を石英ルツボ3に
対して徐々に上昇させ、上記上下方向の磁場中心pを徐
々に固液界面12に移動し、単結晶13のボトム部13
Bの直径が胴体部13Aの直径Dの半分(1/2・D)
になったときに(図4参照)、上下方向の磁場中心pが
固液界面12に位置させるようにする。そして、その後
さらに単結晶13を引き上げる(図5参照)。When the body portion 13A of the single crystal 13 has been pulled up, the solid-liquid interface 12 is connected to the bottom portion 13A of the single crystal 13.
B, specifically, as shown in FIG. 2 and FIG.
When the electromagnets 8 and 9 are gradually raised with respect to the quartz crucible 3 when the boundary between the body portion 13A and the bottom portion 13B is reached (see FIG. 3), the vertical magnetic field center p is gradually solid-liquid. Moving to the interface 12, the bottom portion 13 of the single crystal 13
The diameter of B is half (1/2 · D) of the diameter D of the body 13A.
(See FIG. 4), the vertical magnetic field center p is positioned at the solid-liquid interface 12. Then, the single crystal 13 is further pulled up (see FIG. 5).
【0018】このように構成することで、単結晶13が
ボトム部13B付近にさしかかるまでは、結晶が固化す
る固液界面12における温度振動を確実に防止して単結
晶化率を向上させることができ、単結晶13がボトム部
13B付近に到達したら、有転位化させずに引き上げを
行うことができる。With this configuration, it is possible to reliably prevent the temperature oscillation at the solid-liquid interface 12 where the crystal is solidified and improve the single crystallization rate until the single crystal 13 approaches the vicinity of the bottom portion 13B. When the single crystal 13 reaches the vicinity of the bottom portion 13B, the single crystal 13 can be pulled without causing dislocation.
【0019】具体的な実験結果を表1、表2に示す。表
1は、単結晶化率とカスプ磁場0ガウス位置の依存性に
ついての実験結果である。Tables 1 and 2 show specific experimental results. Table 1 shows the results of experiments on the dependence of the single crystallization rate on the position of the cusp magnetic field at 0 Gauss.
【0020】[0020]
【表1】 [Table 1]
【0021】実験条件 ルツボ径:32インチ、チャージ:180Kg、シード
回転数:10rpm ルツボ回転数:5rpm、アルゴンガス流量:90L/
min 炉内圧:15Torr 上記実験の結果、固液界面12から−30mmの位置で
磁界強度を0にし、かつ、固液界面レベルの石英ルツボ
側壁における磁界強度が1000ガウスの場合に最高の
単結晶率比0.89を確保することができた。尚。この
単結晶化率比は後述する表2の横磁場の場合を1とした
ときの単結晶化率の比である。Experimental conditions Crucible diameter: 32 inches, charge: 180 kg, seed rotation speed: 10 rpm, crucible rotation speed: 5 rpm, argon gas flow rate: 90 L /
min Furnace internal pressure: 15 Torr As a result of the above experiment, the highest single crystal ratio was obtained when the magnetic field strength was 0 at a position -30 mm from the solid-liquid interface 12 and the magnetic field strength at the side wall of the quartz crucible at the solid-liquid interface level was 1000 Gauss. The ratio of 0.89 could be secured. still. This single crystallization ratio is a ratio of the single crystallization ratio when the case of the transverse magnetic field in Table 2 described later is set to 1.
【0022】ここで、固液界面12から0mmの場合で
は、上記と同様に磁界強度1000ガウスにおいては単
結晶化率比0.62であり、固液界面12から−30m
mの場合に比べると低い値になるが、その内容を調べる
と、15本中でボトム部13B終了まで単結晶化が成立
したのは(ボトム○数)5本であった。また、このとき
胴体部13Aが単結晶化した数は7本であった。これに
比べ、磁界強度0位置が固液界面12から−30mmの
場合では、16本中でボトム○数は1本であった。ま
た、このとき胴体部13Aが単結晶化した数は12本で
あった。Here, in the case where the distance from the solid-liquid interface 12 is 0 mm, the single crystallization ratio is 0.62 at a magnetic field strength of 1000 Gauss and -30 m from the solid-liquid interface 12 as described above.
Although the value is lower than that in the case of m, the content thereof was examined, and it was found that, out of the fifteen, single crystallization was achieved (the number of bottom circles) five until the end of the bottom portion 13B. At this time, the number of single crystallized bodies 13A was seven. In contrast, when the magnetic field intensity 0 position was −30 mm from the solid-liquid interface 12, the number of bottom circles was 1 out of 16 lines. At this time, the number of single-crystallized body portions 13A was 12.
【0023】これにより単結晶13の胴体部13Aを製
造する場合には、磁界強度0位置を固液界面12から−
30mmの位置として製造し、単結晶13のボトム部1
3Bを製造する場合には、磁界強度0位置を固液界面1
2から0mmの位置(固液界面上)として製造すること
が、単結晶化率を最大にできることが判明した。表2
は、単結晶化率と温度振動の依存性についての実験結果
である。When the body portion 13A of the single crystal 13 is manufactured in this manner, the position of the magnetic field strength 0 is set at −0 from the solid-liquid interface 12.
Manufactured at a position of 30 mm, the bottom 1 of the single crystal 13
In the case of manufacturing 3B, the magnetic field intensity 0 position is set to the solid-liquid interface 1
It was found that manufacturing at a position of 2 to 0 mm (on the solid-liquid interface) could maximize the single crystallization ratio. Table 2
Is the result of an experiment on the dependence of single crystallinity on temperature oscillation.
【0024】[0024]
【表2】 [Table 2]
【0025】実験条件 5000ガウス(0.5T)の横磁場下でルツボ回転数
(CR)1の場合と、1000ガウス(0.1T)のカ
スプ磁場下でルツボ回転数(CR)5の場合について比
較した。尚、カスプ磁場においては表1のように磁界強
度0の位置を変えた場合(0,−30,+30mm)に
ついて実験した。ここで、ルツボ径等のデータは前記実
験のものと同様である。尚、本発明の場合については後
述する。EXPERIMENTAL CONDITIONS A crucible rotation speed (CR) of 1 under a transverse magnetic field of 5000 Gauss (0.5 T) and a crucible rotation speed (CR) of 5 under a cusp magnetic field of 1000 Gauss (0.1 T). Compared. In the case of the cusp magnetic field, an experiment was performed when the position of the magnetic field intensity 0 was changed as shown in Table 1 (0, -30, +30 mm). Here, the data such as the crucible diameter are the same as those in the experiment. The case of the present invention will be described later.
【0026】融液温度の標準偏差は、石英ルツボ3の中
心部と結晶端部について測定した。単結晶化率比は横磁
場とカスプ磁場における3つのケースについて、横磁場
の場合を1として測定した。ボトム部13Bまで無転位
でボトム成長中に有転位化する確率についても横磁場と
カスプ磁場における3つのケースについて測定を行っ
た。ここで、上記標準偏差は以下の式によって求めた。 ((nΣx2−(Σx)2)/n2)1/2 また、測定は、0.1sec間隔で410sec行われ
た。The standard deviation of the melt temperature was measured at the center of the quartz crucible 3 and at the crystal end. The single crystallization ratio was measured in three cases of a transverse magnetic field and a cusp magnetic field, with the case of a transverse magnetic field being 1. The probability of dislocations during the bottom growth without dislocations up to the bottom portion 13B was also measured for three cases in the transverse magnetic field and the cusp magnetic field. Here, the standard deviation was determined by the following equation. ((NΣx 2 − (Σx) 2 ) / n 2 ) 1/2 The measurement was performed 410 sec at 0.1 sec intervals.
【0027】この実験によれば、磁界強度0の位置を−
30mmとした場合が温度分布のばらつきが少ないこと
が判明した。すなわち、石英ルツボ3の中心部だけをみ
ると、磁界強度0の位置を+30mmとした場合が一番
ばらつきが小さいが、φ300mm結晶の端部を含めて
トータルで考えると、磁界強度0の位置を−30mmと
した場合が最適なのである。そして、ボトム部13Bま
で無転位でボトム成長中に有転位化する確率では圧倒的
に磁界強度0の位置を−30mmとした場合が有利であ
ることが判明した。ここで、この磁界強度0の位置を−
30mmとした場合については、固液界面12がボトム
部13Bにさしかかったとき(図3の状態)から徐々に
磁界強度0位置を固液界面12に移動させ、胴体部13
Aの直径Dの半分になったとき(図4の状態)に磁界強
度0位置が固液界面12に整合するようにしている。こ
のようにして、単結晶化率を高めると共にボトム部13
Bまで有転位化が起きないようにできるのである。According to this experiment, the position where the magnetic field strength is 0 is-
It was found that when the thickness was 30 mm, the variation in the temperature distribution was small. That is, when only the center of the quartz crucible 3 is viewed, the variation is smallest when the position of the magnetic field strength 0 is +30 mm, but when considering the total including the end of the φ300 mm crystal, the position of the magnetic field strength 0 is The case of −30 mm is optimal. And it turned out that the case where the position of the magnetic field intensity 0 is overwhelmingly −30 mm is advantageous for the probability of dislocation during the bottom growth without dislocation up to the bottom portion 13B. Here, the position of this magnetic field strength 0 is-
In the case of 30 mm, the position where the magnetic field intensity is zero is gradually moved to the solid-liquid interface 12 from the time when the solid-liquid interface 12 approaches the bottom portion 13B (the state of FIG. 3), and the body 13
When the diameter D becomes half of the diameter D of A (the state shown in FIG. 4), the position of the magnetic field intensity 0 matches the solid-liquid interface 12. In this manner, the single crystallization ratio is increased and the bottom portion 13 is formed.
It is possible to prevent dislocations from occurring up to B.
【0028】次に、第2実施形態について説明する。こ
の実施形態は、カスプ磁界を発生させる電磁石8,9の
位置を変えないで、電磁石の電流値を変化させること
で、上記第1実施形態と同様に、単結晶13がボトム部
13Bにさしかかったら、固液界面の磁界強度を0に近
づけるようにしたものである。Next, a second embodiment will be described. In this embodiment, by changing the current value of the electromagnet without changing the position of the electromagnets 8 and 9 for generating the cusp magnetic field, when the single crystal 13 approaches the bottom portion 13B as in the first embodiment described above. The magnetic field strength at the solid-liquid interface is made to approach zero.
【0029】具体的に、使用されるルツボの寸法、及
び、電磁石8,9の配置等について説明する。図6にお
いて、ルツボは高さH=450mm、直径R0=813
mm、小半径R1=160mm、大半径R2=813m
m、メルト重量ML=250Kg、メルト深さMD=2
49.6mmである。また、電磁石の基準位置における
配置寸法は、図7に示すように固液界面12よりも上方
140mmの位置に上側の電磁石8のクライオスタット
の下面が、また、固液界面12よりも下方140mmの
位置に下側の電磁石9のクライオスタット上面が位置し
ており、配置内径は1640mmになっている。尚、電
磁石のクライオスタットの高さは355mm、幅は12
0mmである。Specifically, the dimensions of the crucible used and the arrangement of the electromagnets 8 and 9 will be described. In FIG. 6, the crucible has a height H = 450 mm and a diameter R0 = 813.
mm, small radius R1 = 160 mm, large radius R2 = 813 m
m, melt weight ML = 250 kg, melt depth MD = 2
49.6 mm. In addition, as shown in FIG. 7, the arrangement size of the electromagnet at the reference position is such that the lower surface of the cryostat of the upper electromagnet 8 is located 140 mm above the solid-liquid interface 12 and 140 mm below the solid-liquid interface 12. , The cryostat upper surface of the lower electromagnet 9 is located, and the arrangement inner diameter is 1640 mm. The height of the cryostat of the electromagnet is 355 mm and the width is 12 mm.
0 mm.
【0030】このような電磁石8,9を使用して、電磁
石8,9の電流を上下で異ならせることによって、石英
ルツボ3内に作用する磁力成分を変化させることができ
る点について説明する。まず、後述する図9の参考例と
して上下の電磁石8,9のコイル電流を同じ値にし、か
つ、コイル位置を下げた場合の磁界強度の分布を図8に
示す。図8において上下の電磁石8,9のコイル電流は
同様の5000Aであり、電磁石8,9のコイル位置は
固液界面12から−30mmの位置に設定されている。
このとき、カスプ磁界0ガウス位置は十分に石英ルツボ
3内の固液界面12から−30mmに位置し、固液界面
12付近の磁界強度は528.6ガウス(500ガウス
以上)となる。A description will be given of the fact that the magnetic components acting on the quartz crucible 3 can be changed by using the electromagnets 8 and 9 and making the currents of the electromagnets 8 and 9 different vertically. First, as a reference example of FIG. 9 described later, FIG. 8 shows the distribution of the magnetic field strength when the coil currents of the upper and lower electromagnets 8 and 9 are set to the same value and the coil positions are lowered. In FIG. 8, the coil currents of the upper and lower electromagnets 8 and 9 are similarly 5000 A, and the coil positions of the electromagnets 8 and 9 are set at positions −30 mm from the solid-liquid interface 12.
At this time, the position of the cusp magnetic field of 0 gauss is sufficiently located -30 mm from the solid-liquid interface 12 in the quartz crucible 3, and the magnetic field intensity near the solid-liquid interface 12 is 528.6 gauss (500 gauss or more).
【0031】次に、図9においては、上側の電磁石8の
コイル電流を5000A、下側の電磁石9のコイル電流
を上側の電磁石よりも小さい4700Aとし、電磁石
8,9のコイル位置を固液界面12上に設定すると、等
磁界強度の分布はコイル電流が上下でアンバランスであ
るため、カスプ磁界0ガウス位置はコイル電流が少ない
下側の電磁石9の方に歪むようにして沈み込む。このと
き、カスプ磁界0ガウス位置は十分に石英ルツボ3内の
固液界面12から−30mmに位置し、固液界面12付
近の磁界強度の絶対値は528.6ガウス(500ガウ
ス以上)となる。Next, in FIG. 9, the coil current of the upper electromagnet 8 is 5000 A, the coil current of the lower electromagnet 9 is 4700 A, which is smaller than that of the upper electromagnet, and the coil positions of the electromagnets 8 and 9 are set at the solid-liquid interface. When it is set above 12, the uniform magnetic field strength distribution is such that the coil current is unbalanced up and down, so that the cusp magnetic field of 0 gauss is distorted toward the lower electromagnet 9 where the coil current is small. At this time, the position of the cusp magnetic field of 0 gauss is sufficiently located -30 mm from the solid-liquid interface 12 in the quartz crucible 3, and the absolute value of the magnetic field intensity near the solid-liquid interface 12 is 528.6 gauss (500 gauss or more). .
【0032】したがって、図9に示すような電磁石8と
電磁石9を用いて、単結晶13の胴体部13Aについて
は、カスプ磁界0ガウス位置を石英ルツボ3内−30m
mに位置させておき、ボトム部13Bにさしかかった
ら、例えば、下側の電磁石9のコイル電流を5000A
に近づけるようにすることでカスプ磁界0ガウス位置を
固液界面12に移動させることが可能となるのである。
よって、この実施形態によれば、電磁石8,9のコイル
電流値を変化させることで、カスプ磁界0ガウス位置を
調整できるため、電磁石8,9自体を上下させる場合に
比較して装置の複雑化を回避できる。本発明の実施形態
として、図9に示す電磁石8,9仕様で単結晶の引き上
げ終期に磁場変更によって固液界面の磁場強度を0にす
るようにした場合について実験してみると、表2に示す
ように、単結晶化率においても、ボトム部まで無転位で
ボトム成長中に有転位化する確率においても優れている
結果が得られた。ここで、図8は実際の磁場強度を示す
例として開示したが、この図8に示すような電磁石8,
9の仕様は第1実施形態において利用可能である。Therefore, using the electromagnet 8 and the electromagnet 9 as shown in FIG. 9, the cusp magnetic field 0 Gauss position of the body 13A of the single crystal 13 is set to -30 m within the quartz crucible 3.
m, and when approaching the bottom portion 13B, for example, the coil current of the lower electromagnet 9 is increased to 5000 A
, It is possible to move the cusp magnetic field 0 Gauss position to the solid-liquid interface 12.
Therefore, according to this embodiment, the position of the cusp magnetic field can be adjusted to 0 gauss by changing the coil current value of the electromagnets 8 and 9, which makes the apparatus more complicated than when the electromagnets 8 and 9 are moved up and down. Can be avoided. As an embodiment of the present invention, an experiment was conducted on the case where the magnetic field strength at the solid-liquid interface was changed to 0 by changing the magnetic field at the end of pulling up the single crystal with the electromagnets 8 and 9 shown in FIG. As shown, excellent results were obtained both in single crystallinity and in the probability of dislocations during bottom growth without dislocations up to the bottom. Here, FIG. 8 is disclosed as an example showing the actual magnetic field strength, but as shown in FIG.
9 are available in the first embodiment.
【0033】尚、この発明は上記実施形態に限られるも
のではなく、例えば、上下の電磁石の上下方向の移動
と、上下の電磁石のコイル電流の変化を組み合わせるこ
とにより、固液界面付近の磁界強度をコントロールする
ようにしても良い。The present invention is not limited to the above embodiment. For example, by combining the vertical movement of the upper and lower electromagnets and the change in the coil current of the upper and lower electromagnets, the magnetic field strength near the solid-liquid interface can be improved. May be controlled.
【0034】[0034]
【発明の効果】以上説明してきたように、請求項1に記
載した発明によれば、単結晶がボトム部付近にさしかか
るまでは、温度振動を防止することで単結晶化率を向上
させることができる条件(上記磁場中心位置、及び、磁
場強度条件)で引き上げを行い、単結晶がボトム部付近
に到達したら、転位が起きないような条件(磁場中心を
固液界面に設定する)で引き上げを行うことができるた
め、ボトム部における転位による結晶欠陥の発生(有転
位化)を抑えつつ、温度振動を効果的に抑制して単結晶
全体としての単結晶化率を高めることができる効果があ
る。As described above, according to the first aspect of the present invention, it is possible to improve the single crystallization ratio by preventing temperature oscillation until the single crystal approaches the bottom portion. When the single crystal reaches near the bottom, pull up under conditions that allow dislocation to occur (set the magnetic field center to the solid-liquid interface). Since it can be performed, there is an effect that it is possible to effectively suppress the temperature oscillation and increase the single crystallization ratio of the entire single crystal while suppressing generation of crystal defects (dislocation) due to dislocation in the bottom portion. .
【0035】請求項2に記載した発明によれば、単結晶
がボトム部付近にさしかかるまでは、例えば、上下同じ
電磁石で、かつ、コイル電流を同じにして、両電磁石の
位置を下げることにより上下の磁場中心を固液界面から
下方にずらすことができ、単結晶がボトム部付近に到達
したら、両電磁石の位置を上げることで磁場中心を固液
界面に移動することが可能となるため、電磁石の単純な
上下動で単結晶化率を高めることができる効果がある。According to the second aspect of the invention, until the single crystal approaches the vicinity of the bottom portion, for example, the upper and lower electromagnets are made the same and the coil currents are made the same to lower the positions of both electromagnets. The center of the magnetic field can be shifted downward from the solid-liquid interface, and when the single crystal reaches near the bottom, the center of the magnetic field can be moved to the solid-liquid interface by raising the position of both electromagnets. Has the effect of increasing the single crystallization rate by simple vertical movement.
【0036】請求項3に記載した発明によれば、単結晶
がボトム部付近にさしかかるまでは、例えば、上下同じ
電磁石で、かつ、コイル電流を下側の電磁石の方を小さ
くすることで上下方向の磁場中心を固液界面から下方に
ずらすことができ、単結晶がボトム部付近にさしかかっ
たら、下側の電磁石のコイル電流を徐々に増加させるこ
とにより上下方向の磁場中心を固液界面に移動すること
が可能となるため、電磁石を上下させるための機械的な
装置が必要なく、装置の複雑化を回避できる効果があ
る。According to the third aspect of the present invention, until the single crystal approaches the vicinity of the bottom portion, for example, the same electromagnet is used in the upper and lower directions, and the coil current is made smaller in the lower electromagnet, so that the upper and lower directions are reduced. Magnetic field center can be shifted downward from the solid-liquid interface, and when the single crystal approaches the bottom, the coil current of the lower electromagnet is gradually increased to move the vertical magnetic field center to the solid-liquid interface. Therefore, there is no need for a mechanical device for moving the electromagnet up and down, and there is an effect that the device can be prevented from becoming complicated.
【0037】請求項4に記載した発明によれば、オフセ
ット量をルツボ内径の4.0%±2.5%に設定するこ
とで、単結晶の胴体部の単結晶化率を高めることが可能
となるため、温度振動を効果的に抑制し単結晶化率を高
めることができる効果がある。According to the fourth aspect of the invention, by setting the offset amount to 4.0% ± 2.5% of the inner diameter of the crucible, it is possible to increase the single crystallization ratio of the body portion of the single crystal. Therefore, there is an effect that the temperature oscillation can be effectively suppressed and the single crystallization ratio can be increased.
【図1】 この発明の第1実施形態の説明図である。FIG. 1 is an explanatory diagram of a first embodiment of the present invention.
【図2】 図1の単結晶をボトム部付近まで引き上げた
状態を示す説明図である。FIG. 2 is an explanatory view showing a state where the single crystal of FIG. 1 is pulled up to near a bottom portion.
【図3】 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2;
【図4】 図3から更に引き上げた状態を示す説明図で
ある。FIG. 4 is an explanatory view showing a state further raised from FIG. 3;
【図5】 引き上げ終了状態を示す図1に相当する説明
図である。FIG. 5 is an explanatory view corresponding to FIG. 1 and showing a pull-up ending state.
【図6】 石英ルツボの寸法図である。FIG. 6 is a dimensional diagram of a quartz crucible.
【図7】 電磁石の配置を示す寸法図である。FIG. 7 is a dimensional diagram showing an arrangement of electromagnets.
【図8】 上下の電磁石の磁界強度を同じにした状態の
カスプ磁界の等磁界強度の分布を示す説明図である。FIG. 8 is an explanatory diagram showing the distribution of the equal magnetic field strength of the cusp magnetic field when the magnetic field strengths of the upper and lower electromagnets are the same.
【図9】 上下の電磁石の磁界強度を変えた状態のカス
プ磁界の等磁界強度の分布を示す説明図である。FIG. 9 is an explanatory diagram showing a distribution of equal magnetic field strength of a cusp magnetic field in a state where magnetic field strengths of upper and lower electromagnets are changed.
【図10】 従来技術の単結晶引き上げ装置の全体説明
図である。FIG. 10 is an overall explanatory view of a conventional single crystal pulling apparatus.
【図11】 従来技術の単結晶の引き上げ初期の説明図
である。FIG. 11 is an explanatory diagram of an initial stage of pulling a single crystal according to a conventional technique.
【図12】 従来技術の単結晶の引き上げ終期の説明図
である。FIG. 12 is an explanatory diagram of a final stage of pulling up a single crystal according to a conventional technique.
3 石英ルツボ 8 上側の電磁石 9 下側の電磁石 12 固液界面 13 単結晶 13B ボトム部 d オフセット量 p 磁場中心 3 Quartz crucible 8 Upper electromagnet 9 Lower electromagnet 12 Solid-liquid interface 13 Single crystal 13B Bottom part d Offset amount p Magnetic field center
───────────────────────────────────────────────────── フロントページの続き (72)発明者 工藤 智司 東京都千代田区大手町一丁目5番1号 三 菱マテリアルシリコン株式会社内 (72)発明者 熱海 貴 東京都千代田区大手町一丁目5番1号 三 菱マテリアルシリコン株式会社内 (72)発明者 小野 直樹 東京都千代田区大手町一丁目5番1号 三 菱マテリアルシリコン株式会社内 (72)発明者 降屋 久 東京都千代田区大手町一丁目5番1号 三 菱マテリアルシリコン株式会社内 Fターム(参考) 4G077 AA02 BB03 BE46 EH07 EJ02 PA16 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoshi Kudo 1-5-1, Otemachi, Chiyoda-ku, Tokyo Mitsubishi Materials Silicon Co., Ltd. (72) Inventor Takashi Atami 1-5, Otemachi, Chiyoda-ku, Tokyo No. 1 Inside Mitsubishi Material Silicon Co., Ltd. (72) Naoki Ono 1-5-1, Otemachi, Chiyoda-ku, Tokyo F-term (reference) in Mitsui Material Silicon Co., Ltd. 5-1, Chome 5G077 AA02 BB03 BE46 EH07 EJ02 PA16
Claims (4)
体融液から単結晶を引き上げる単結晶製造方法におい
て、上下方向の磁場中心を固液界面から下方にずらし、
かつ、固液界面の磁界強度を500ガウス以上に設定し
た状態で引き上げを行い、固液界面が単結晶のボトム部
付近にさしかかったら上記上下方向の磁場中心を徐々に
固液界面に移動することを特徴とする単結晶製造方法。In a single crystal manufacturing method for pulling a single crystal from a semiconductor melt in a crucible placed under a cusp magnetic field, a vertical magnetic field center is shifted downward from a solid-liquid interface,
In addition, when the magnetic field strength of the solid-liquid interface is set to 500 gauss or more, pulling up is performed, and when the solid-liquid interface approaches the bottom of the single crystal, the vertical magnetic field center is gradually moved to the solid-liquid interface. A method for producing a single crystal, comprising:
体融液から単結晶を引き上げる単結晶製造方法におい
て、上側の電磁石と下側の電磁石とのコイル電流を一致
させた状態で上側の電磁石と下側の電磁石との上下方向
の中間レベル位置を固液界面から下方にずらし、かつ、
固液界面の磁界強度を500ガウス以上に設定した状態
で引き上げを行い、固液界面が単結晶のボトム部付近に
さしかかったら上記中間レベル位置を徐々に固液界面に
移動することを特徴とする単結晶製造方法。2. A single crystal manufacturing method for pulling a single crystal from a semiconductor melt in a crucible placed under a cusp magnetic field, wherein the upper electromagnet and the lower electromagnet are made to have the same coil current. The middle level position in the vertical direction between the and the lower electromagnet is shifted downward from the solid-liquid interface, and
Pulling up is performed with the magnetic field strength of the solid-liquid interface set to 500 gauss or more, and when the solid-liquid interface approaches the bottom of the single crystal, the intermediate level position is gradually moved to the solid-liquid interface. Single crystal manufacturing method.
体融液から単結晶を引き上げる単結晶製造方法におい
て、上側の電磁石と下側の電磁石とのコイル電流に差を
持たせることにより上下方向の磁場中心を固液界面から
下方にずらし、かつ、固液界面の磁界強度を500ガウ
ス以上に設定した状態で引き上げを行い、固液界面が単
結晶のボトム部付近にさしかかったら上記上下方向の磁
場中心を上下の電磁石のコイル電流を変化させることに
よって徐々に固液界面に移動することを特徴とする単結
晶製造方法。3. A single crystal manufacturing method for pulling a single crystal from a semiconductor melt in a crucible placed under a cusp magnetic field, wherein the coil current between the upper electromagnet and the lower electromagnet has a difference in the vertical direction. The center of the magnetic field is shifted downward from the solid-liquid interface, and the magnetic field strength at the solid-liquid interface is set to 500 gauss or more, and the liquid crystal is pulled up. A method for producing a single crystal, characterized in that a magnetic field center is gradually moved to a solid-liquid interface by changing coil currents of upper and lower electromagnets.
下方向の磁場中心のオフセット量をルツボ内径の4.0
%±2.5%に設定したことを特徴とする請求項1ない
し請求項3に記載の単結晶製造方法。4. An offset amount of a center of a magnetic field in a vertical direction shifted downward from the solid-liquid interface position is set to 4.0 of the inner diameter of the crucible.
%. The method for producing a single crystal according to claim 1, wherein the value is set to ± 2.5%. 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28182798A JP3758381B2 (en) | 1998-10-02 | 1998-10-02 | Single crystal manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28182798A JP3758381B2 (en) | 1998-10-02 | 1998-10-02 | Single crystal manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000109390A true JP2000109390A (en) | 2000-04-18 |
JP3758381B2 JP3758381B2 (en) | 2006-03-22 |
Family
ID=17644563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28182798A Expired - Fee Related JP3758381B2 (en) | 1998-10-02 | 1998-10-02 | Single crystal manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3758381B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002010485A1 (en) * | 2000-07-28 | 2002-02-07 | Shin-Etsu Handotai Co.,Ltd. | Method for manufacturing semiconductor single crystal and apparatus for manufacturing semiconductor single crystal |
KR100470231B1 (en) * | 2001-12-31 | 2005-02-05 | 학교법인 한양학원 | Czochralski puller using magnetic field and method of growing single crystal ingot using the same |
KR100827028B1 (en) | 2006-10-17 | 2008-05-02 | 주식회사 실트론 | Method for manufacturing semiconductor single crystal using Czochralski method, and semiconductor single crystal ingot and wafer manufactured by this method |
CN103060902A (en) * | 2013-01-10 | 2013-04-24 | 上海大学 | Direct forming preparation method of ribbon silicon and direct forming device of silicon wafer |
WO2019167986A1 (en) * | 2018-02-28 | 2019-09-06 | 株式会社Sumco | Method of controlling convection patterns of silicon melt and method of manufacturing silicon single crystal |
-
1998
- 1998-10-02 JP JP28182798A patent/JP3758381B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002010485A1 (en) * | 2000-07-28 | 2002-02-07 | Shin-Etsu Handotai Co.,Ltd. | Method for manufacturing semiconductor single crystal and apparatus for manufacturing semiconductor single crystal |
KR100470231B1 (en) * | 2001-12-31 | 2005-02-05 | 학교법인 한양학원 | Czochralski puller using magnetic field and method of growing single crystal ingot using the same |
KR100827028B1 (en) | 2006-10-17 | 2008-05-02 | 주식회사 실트론 | Method for manufacturing semiconductor single crystal using Czochralski method, and semiconductor single crystal ingot and wafer manufactured by this method |
CN103060902A (en) * | 2013-01-10 | 2013-04-24 | 上海大学 | Direct forming preparation method of ribbon silicon and direct forming device of silicon wafer |
CN103060902B (en) * | 2013-01-10 | 2016-04-27 | 上海大学 | Direct forming prepares method and the silicon chip direct-forming device of band silicon |
WO2019167986A1 (en) * | 2018-02-28 | 2019-09-06 | 株式会社Sumco | Method of controlling convection patterns of silicon melt and method of manufacturing silicon single crystal |
JP2019151501A (en) * | 2018-02-28 | 2019-09-12 | 株式会社Sumco | Method for controlling convection pattern of silicon melt and method for manufacturing silicon single crystal |
US11261540B2 (en) | 2018-02-28 | 2022-03-01 | Sumco Corporation | Method of controlling convection patterns of silicon melt and method of manufacturing silicon single crystal |
Also Published As
Publication number | Publication date |
---|---|
JP3758381B2 (en) | 2006-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5344822B2 (en) | Control of melt-solid interface shape of growing silicon crystal using variable magnetic field | |
KR100840751B1 (en) | High quality silicon single crystal ingot manufacturing method, growth apparatus and ingot, wafer made therefrom | |
JP2008100904A (en) | Semiconductor single crystal manufacturing method using Czochralski method, semiconductor single crystal ingot and wafer manufactured by this method | |
JP2009114054A (en) | Method for producing semiconductor single crystal having improved oxygen concentration characteristics | |
US12291796B2 (en) | Method for growing single-crystal silicon ingots and single-crystal silicon ingots | |
US20090293804A1 (en) | Method of shoulder formation in growing silicon single crystals | |
KR100793950B1 (en) | Silicon monocrystalline ingot and its growth method | |
KR101022933B1 (en) | Semiconductor single crystal manufacturing apparatus and manufacturing method using selective magnetic shield | |
JP2688137B2 (en) | Method of pulling silicon single crystal | |
JP2000109390A (en) | Production of single crystal | |
JP4045666B2 (en) | Method for producing silicon single crystal | |
JP3750440B2 (en) | Single crystal pulling method | |
JP2004189559A (en) | Single crystal growth method | |
JP4013324B2 (en) | Single crystal growth method | |
KR100991088B1 (en) | Semiconductor single crystal ingot manufacturing apparatus and manufacturing method using cusp magnetic field | |
JP4151148B2 (en) | Method for producing silicon single crystal | |
JP4801869B2 (en) | Single crystal growth method | |
JP2001019592A (en) | Device for pulling single crystal | |
JP3521862B2 (en) | Single crystal growth method | |
JP4951186B2 (en) | Single crystal growth method | |
JP2007210865A (en) | Silicon single crystal pulling device | |
US20250019863A1 (en) | Magnet for single crystal production apparatus, single crystal production apparatus, and method of producing single crystal | |
KR102781133B1 (en) | Method for producing single crystals | |
JP7424282B2 (en) | Method for manufacturing single crystal silicon ingot | |
JPH08333189A (en) | Crystal pulling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051226 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090113 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100113 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110113 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120113 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130113 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |