[go: up one dir, main page]

JP2000100456A - Method for producing joined body of solid polymer electrolyte membrane and electrode and solid polymer electrolyte fuel cell - Google Patents

Method for producing joined body of solid polymer electrolyte membrane and electrode and solid polymer electrolyte fuel cell

Info

Publication number
JP2000100456A
JP2000100456A JP10267951A JP26795198A JP2000100456A JP 2000100456 A JP2000100456 A JP 2000100456A JP 10267951 A JP10267951 A JP 10267951A JP 26795198 A JP26795198 A JP 26795198A JP 2000100456 A JP2000100456 A JP 2000100456A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
electrolyte membrane
electrode
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10267951A
Other languages
Japanese (ja)
Inventor
Chiaki Yamada
千秋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP10267951A priority Critical patent/JP2000100456A/en
Publication of JP2000100456A publication Critical patent/JP2000100456A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the battery performance and prevent the breakdown of a solid polymer electrolyte film. SOLUTION: In this manufacturing method of a joint 10 of a solid polymer electrolyte film 1 and electrodes, the solid polymer electrolyte film 1 is pinched by an anode electrode 2 and a cathode electrode 3, and they are jointed under pressure so that the film thickness of the electrode faying portion of the power generation region 6 of the solid polymer electrolyte film 1 is made thinner than the film thickness of the periphery section (seal section 7) of the power generation region 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体高分子電解質膜
と電極の接合体及びその製造方法及び固体高分子電解質
型燃料電池に関する。
The present invention relates to a solid polymer electrolyte membrane-electrode assembly, a method for producing the same, and a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】近年、固体高分子電解質型燃料電池は低
温で作動し出力密度が高く小型軽量電源としての研究と
自動車、住生活、レジャー、その他への応用が展開され
つつあり、その性能レベルは実用域に達しているが、一
般的に電池の構成単位は数十枚から数百枚の固体高分子
電解質膜の積層体からなり1枚の膜面内での均一な発電
と共に前記固体高分子電解質膜が1枚でも膜破れがない
ような高い強度的信頼性が求められている。
2. Description of the Related Art In recent years, solid polymer electrolyte fuel cells operate at low temperatures, have high output densities, are being researched as small and lightweight power sources, and are being applied to automobiles, living, leisure, and other applications. Has reached the practical range, but in general, the structural unit of the battery is composed of a stack of several tens to several hundreds of solid polymer electrolyte membranes, and a uniform power generation within one membrane surface and the solid height. There is a demand for high strength reliability such that even a single molecular electrolyte membrane does not break.

【0003】前記固体高分子電解質膜は、前記固体高分
子電解質型燃料電池の電解質であると同時にアノード電
極側の燃料ガスとカソード電極側の酸化剤ガスを分離す
るガスシールの役割を担っている。
The solid polymer electrolyte membrane serves as an electrolyte for the solid polymer electrolyte fuel cell and also serves as a gas seal for separating a fuel gas on the anode electrode side and an oxidizing gas on the cathode electrode side. .

【0004】図2は一般的な固体高分子電解質型燃料電
池の単セルの概略断面図である。前記固体高分子電解質
型燃料電池の単セルは固体高分子電解質膜11をアノー
ド電極12とカソード電極13でホットプレス等で接合
して挟持した固体高分子電解質膜と電極の接合体20を
燃料ガス又は酸化剤ガスの通流溝を有し前記固体高分子
電解質膜と電極の接合体20で発電した電気を外部に取
り出す機能を有するセパレータ14a、14bで挟んだ
構造をしている。
FIG. 2 is a schematic sectional view of a single cell of a general solid polymer electrolyte fuel cell. In the single cell of the solid polymer electrolyte fuel cell, a solid polymer electrolyte membrane-electrode assembly 20 in which a solid polymer electrolyte membrane 11 is sandwiched between an anode electrode 12 and a cathode electrode 13 by hot pressing or the like is sandwiched between fuel cells. Alternatively, it has a structure in which separators 14a and 14b having a flow groove for an oxidizing gas and having a function of extracting electricity generated by the assembly 20 of the solid polymer electrolyte membrane and the electrode to the outside are provided.

【0005】前記固体高分子電解質膜11の電極12、
13との接合部である発電領域16の周辺部17を利用
してシールリング15で前記燃料ガスと前記酸化剤ガス
をシールしている。前記固体高分子電解質膜11は一定
の膜厚である。
The electrode 12 of the solid polymer electrolyte membrane 11,
The fuel gas and the oxidizing gas are sealed by a seal ring 15 using a peripheral portion 17 of a power generation region 16 which is a joint portion with the fuel gas 13. The solid polymer electrolyte membrane 11 has a constant thickness.

【0006】前記アノード電極12では前記燃料ガス中
の水素が触媒に接触することにより下記の反応が生ず
る。
At the anode electrode 12, the following reaction occurs when hydrogen in the fuel gas comes into contact with the catalyst.

【0007】2H → 4H +4eは、前記固体高分子電解質膜11中を移動し前記カ
ソード電極13の触媒に達し前記酸化剤ガス中の酸素と
反応して水となる。
2H 2 → 4H + + 4e H + moves through the solid polymer electrolyte membrane 11, reaches the catalyst of the cathode electrode 13, reacts with oxygen in the oxidant gas to form water.

【0008】 4H +4e +O → 2HO 固体高分子電解質型燃料電池は上記の反応により起電力
が生ずる。
[0008] 4H + + 4e + O 2 → 2H 2 O In a solid polymer electrolyte fuel cell, an electromotive force is generated by the above reaction.

【0009】電気を外部に取り出した時、前記固体高分
子電解質膜11は内部抵抗として働き、該内部抵抗が低
い方が電池性能が良いので、性能面からは前記固体高分
子電解質膜11の発電領域16の膜厚は薄い方が望まし
い。
When electricity is taken out, the solid polymer electrolyte membrane 11 functions as an internal resistance, and the lower the internal resistance, the better the battery performance. It is desirable that the thickness of the region 16 be thin.

【0010】一方、前記固体高分子電解質膜11の周辺
部17は、ガスによる圧縮応力及びシールしているガス
の圧力が変動し繰り返し曲げ応力が働くので、膜厚が薄
いと破損するという問題が生じる。前記固体高分子電解
質膜11の周辺部17が破損すると前記燃料ガスと前記
酸化剤ガスが直接接触し燃料電池で使用される量が減少
するため発電効率が低下し固体高分子電解質型燃料電池
の出力低下となる。
On the other hand, the peripheral portion 17 of the solid polymer electrolyte membrane 11 has a problem that the compressive stress caused by the gas and the pressure of the sealing gas fluctuate and the bending stress acts repeatedly, so that the thin film thickness is damaged. Occurs. When the peripheral portion 17 of the solid polymer electrolyte membrane 11 is damaged, the fuel gas and the oxidizing gas come into direct contact with each other and the amount used in the fuel cell decreases. The output drops.

【0011】従来技術として、特開平8―185881
号公報に固体高分子電解質膜をスピンコーティング装置
のステージにのせて回転させ、回転中心上部より固体高
分子電解質膜の溶液を滴下し、前記固体高分子電解質膜
の溶液の溶媒が蒸発するまで回転を続けて、遠心力の作
用を利用して膜厚の変化を作り出し、前記固体高分子電
解質膜の中央部の膜厚を周辺部より薄くした固体高分子
電解質膜の製造方法が開示されている。
As a prior art, Japanese Patent Application Laid-Open No. 8-185883
In the publication, the solid polymer electrolyte membrane is placed on the stage of the spin coating apparatus and rotated, the solution of the solid polymer electrolyte membrane is dropped from above the center of rotation, and the solid polymer electrolyte membrane is rotated until the solvent of the solution is evaporated. A method for producing a solid polymer electrolyte membrane is disclosed in which a change in film thickness is created by utilizing the action of centrifugal force, and the thickness of the central portion of the solid polymer electrolyte membrane is made thinner than the peripheral portion. .

【0012】具体的には前記。More specifically, as described above.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、従来技
術は、スピンコートの原理から中央部を薄く周辺部を厚
くしようとすると、膜厚は均一にならず固体高分子電解
質膜の中心部は薄く円周方向に向かって厚く徐変する。
However, according to the prior art, if the central portion is made thinner and the peripheral portion is made thicker due to the principle of spin coating, the film thickness is not uniform and the central portion of the solid polymer electrolyte membrane is thinner and circular. It gradually changes thickly in the circumferential direction.

【0014】こうして作製された固体高分子電解質膜を
用いて固体高分子電解質型燃料電池を製造し発電させる
と、より薄い部分に電流集中が起こるので、局所的な発
熱があるなど電池としての不具合が発生する。
When a solid polymer electrolyte fuel cell is manufactured using the solid polymer electrolyte membrane produced in this manner and power is generated, current concentration occurs in a thinner portion, causing local heat generation such as local heat generation. Occurs.

【0015】また、スピンコートによる製造方法は、固
体高分子電解質膜の溶液中の溶媒が蒸発して固体高分子
電解質膜として固化するまでスピンコーティング装置の
回転を続けなければならないため生産性が悪く高コスト
になるし、品質的にもばらつきが大きく問題がある。
Further, in the production method by spin coating, since the solvent in the solution of the solid polymer electrolyte membrane has to evaporate and solidify as the solid polymer electrolyte membrane, the spin coating apparatus must continue to rotate, resulting in poor productivity. There is a problem in that the cost is high, and the quality varies widely.

【0016】本発明は上記課題を解決したもので、固体
高分子電解質膜の破損が防止でき、且つ電池性能が向上
できる低コストの固体高分子電解質膜と電極の接合体及
びその製造方法及び固体高分子電解質型燃料電池を提供
する。
The present invention has solved the above-mentioned problems, and it is a low-cost assembly of a polymer electrolyte membrane and an electrode capable of preventing breakage of the polymer electrolyte membrane and improving battery performance, a method of manufacturing the same, and a method of manufacturing the same. Provided is a polymer electrolyte fuel cell.

【0017】[0017]

【課題を解決するための手段】上記技術的課題を解決す
るために、本発明の請求項1において講じた技術的手段
(以下、第1の技術的手段と称する。)は、固体高分子
電解質膜を電極で挟持して、該固体高分子電解質膜の発
電領域である電極接合部分の膜厚を、該発電領域の周辺
部の膜厚より薄くするように圧力をかけて接合したこと
を特徴とする固体高分子電解質膜と電極の接合体の製造
方法である。
Means for Solving the Problems In order to solve the above technical problems, the technical means (hereinafter referred to as first technical means) taken in claim 1 of the present invention is a solid polymer electrolyte. The membrane is sandwiched between the electrodes, and the solid polymer electrolyte membrane is joined by applying pressure so that the film thickness of the electrode bonding portion, which is the power generation region, is smaller than the film thickness of the peripheral portion of the power generation region. A method for producing a joined body of a solid polymer electrolyte membrane and an electrode.

【0018】上記第1の技術的手段による効果は、以下
のようである。
The effects of the first technical means are as follows.

【0019】即ち、ガスシール部分である前記発電領域
の周辺部の強度が向上でき、且つ固体高分子電解質型燃
料電池の内部抵抗を低くすることができるので、電池性
能が高く、且つ固体高分子電解質膜の破損が防止できる
固体高分子電解質膜と電極の接合体を簡単な方法で低コ
ストに製造することができる。
That is, the strength of the peripheral portion of the power generation region, which is the gas seal portion, can be improved, and the internal resistance of the solid polymer electrolyte fuel cell can be reduced. A joined body of a solid polymer electrolyte membrane and an electrode that can prevent the electrolyte membrane from being damaged can be manufactured at a low cost by a simple method.

【0020】上記技術的課題を解決するために、本発明
の請求項2において講じた技術的手段(以下、第2の技
術的手段と称する。)は、前記固体高分子電解質膜がパ
ーフルオロカーボンスルホン酸系樹脂であることを特徴
とする請求項1記載の固体高分子電解質膜と電極の接合
体の製造方法である。
In order to solve the above technical problem, the technical means (hereinafter referred to as the second technical means) taken in claim 2 of the present invention is that the solid polymer electrolyte membrane is made of perfluorocarbon sulfone. 2. The method for producing a joined body of a solid polymer electrolyte membrane and an electrode according to claim 1, wherein the joined body is an acid-based resin.

【0021】上記第2の技術的手段による効果は、以下
のようである。
The effects of the second technical means are as follows.

【0022】即ち、上記材料を使用することにより、高
性能な固体高分子電解質型燃料電池ができるといった効
果を有する。
That is, the use of the above-mentioned materials has an effect that a high-performance solid polymer electrolyte fuel cell can be obtained.

【0023】上記技術的課題を解決するために、本発明
の請求項3において講じた技術的手段(以下、第3の技
術的手段と称する。)は、前記固体高分子電解質膜が炭
化フッ素系ビニルモノマーと炭化水素系ビニルモノマー
の共重合体のスルホン酸系樹脂であることを特徴とする
請求項1記載の固体高分子電解質膜と電極の接合体の製
造方法である。
In order to solve the above technical problem, the technical means (hereinafter referred to as the third technical means) taken in claim 3 of the present invention is that the solid polymer electrolyte membrane is made of a fluorocarbon-based material. The method for producing a solid polymer electrolyte membrane / electrode assembly according to claim 1, wherein the sulfonic acid resin is a copolymer of a vinyl monomer and a hydrocarbon vinyl monomer.

【0024】上記第3の技術的手段による効果は、以下
のようである。
The effects of the third technical means are as follows.

【0025】即ち、上記材料を使用することにより、高
性能で低コストの固体高分子電解質型燃料電池ができる
といった効果を有する。
That is, the use of the above-mentioned materials has an effect that a high-performance and low-cost solid polymer electrolyte fuel cell can be obtained.

【0026】上記技術的課題を解決するために、本発明
の請求項4において講じた技術的手段(以下、第4の技
術的手段と称する。)は、固体高分子電解質膜を電極で
挟持して、該固体高分子電解質膜の発電領域である電極
接合部分の膜厚を、該発電領域の周辺部の膜厚より薄く
するように圧力をかけて接合した固体高分子電解質膜と
電極の接合体をセパレータで挟持したことを特徴とする
固体高分子電解質型燃料電池である。
In order to solve the above technical problem, a technical means (hereinafter referred to as a fourth technical means) taken in claim 4 of the present invention is to sandwich a solid polymer electrolyte membrane between electrodes. Thus, the bonding between the solid polymer electrolyte membrane and the electrode is performed by applying pressure so that the film thickness of the electrode joining portion which is the power generation region of the solid polymer electrolyte membrane is made smaller than the film thickness of the peripheral portion of the power generation region. A solid polymer electrolyte fuel cell characterized in that the body is sandwiched between separators.

【0027】上記第4の技術的手段による効果は、以下
のようである。
The effects of the fourth technical means are as follows.

【0028】即ち、固体高分子電解質膜の破損が防止で
き、且つ発電領域での内部抵抗を下げることができるの
で、電池性能が高く且つ信頼性の高い固体高分子電解質
型燃料電池が低コスト化できる。
That is, since the solid polymer electrolyte membrane can be prevented from being damaged and the internal resistance in the power generation region can be reduced, a solid polymer electrolyte fuel cell having high cell performance and high reliability can be reduced in cost. it can.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施例について、
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
This will be described with reference to the drawings.

【0030】性能面からは固体高分子電解質膜の発電領
域は低抵抗即ち膜厚が薄い状態が望ましく、一方、前記
固体高分子電解質膜の支持固定を兼ねた周辺部は圧縮、
繰り返し曲げに対する耐久性から膜厚を厚くすることが
望ましい。
From the viewpoint of performance, the power generating region of the solid polymer electrolyte membrane desirably has a low resistance, that is, a thin film thickness. On the other hand, the periphery of the solid polymer electrolyte membrane which supports and fixes the solid polymer electrolyte membrane is compressed,
It is desirable to increase the film thickness in view of durability against repeated bending.

【0031】本発明は、前記固体高分子電解質膜の発電
領域の膜厚を、該発電領域の周辺部の膜厚より薄くした
固体高分子電解質膜と電極の接合体を工業的有利に製造
するものである。
According to the present invention, an assembly of a solid polymer electrolyte membrane and an electrode in which the thickness of the power generation region of the solid polymer electrolyte membrane is thinner than the thickness of the periphery of the power generation region is industrially advantageously produced. Things.

【0032】本発明の固体高分子電解質膜と電極の接合
体は、前記固体高分子電解質膜を前記電極で上下から挟
持して、室温又は加温状態でプレス等で加圧することに
より製造する。この時、前記固体高分子電解質膜は乾
燥、湿潤または完全に吸水した状態のいずれでもよい。
The joined body of the solid polymer electrolyte membrane and the electrode of the present invention is produced by sandwiching the solid polymer electrolyte membrane between the electrodes from above and below and pressing it with a press at room temperature or in a heated state. At this time, the solid polymer electrolyte membrane may be in a dry, wet or completely absorbed state.

【0033】前記電極で挟まれた部分の固体高分子電解
質膜は温度、圧力に応じて薄くなり、その周辺部にあた
るプレス圧のかからないガスシールする部分の固体高分
子電解質膜は押しつぶされることなく元の膜厚が確保さ
れる。
The portion of the solid polymer electrolyte membrane sandwiched between the electrodes becomes thinner in accordance with the temperature and pressure, and the portion of the solid polymer electrolyte membrane that is gas-sealed around the periphery thereof and is not subjected to a press pressure is not crushed and is not crushed. Is ensured.

【0034】なお、本発明に使用できる固体高分子電解
質膜は、すでに食塩電解工業分野等で上市されているナ
フィオン(デュポン社製)を中心とするパーフルオロカ
ーボンスルホン酸系樹脂、又は炭化フッ素系ビニルモノ
マーと炭化水素系ビニルモノマーの共重合体のスルホン
酸系樹脂、炭化水素スルホン酸系樹脂を材料とするもの
等固体高分子電解質型燃料電池に使用できる固体高分子
電解質膜ならすべて適用できる。
The solid polymer electrolyte membrane that can be used in the present invention is a perfluorocarbon sulfonic acid resin centered on Nafion (manufactured by DuPont) already marketed in the field of salt electrolysis, or a fluorocarbon vinyl resin. Any solid polymer electrolyte membrane that can be used for a solid polymer electrolyte fuel cell, such as a sulfonic acid-based resin of a copolymer of a monomer and a hydrocarbon-based vinyl monomer, or a material made of a hydrocarbon-sulfonic acid-based resin can be applied.

【0035】また電極の形状の詳細については、膜厚が
変化する部位に接する前記電極の最外周角部の直線部と
コーナ部は膜への応力集中をさけるに足りる面取りをす
ることは固体高分子電解質膜の強度確保にとって有利で
あり、より信頼性が高くなることは言うまでもない。
Regarding the details of the shape of the electrode, the straight portion and the corner portion of the outermost peripheral portion of the electrode which are in contact with the portion where the film thickness changes are chamfered to avoid stress concentration on the film. Needless to say, this is advantageous for securing the strength of the molecular electrolyte membrane, and the reliability is further improved.

【0036】(実施例)本実施例で使用した固体高分子
電解質膜は、炭化フッ素系ビニールモノマーと炭化水素
系ビニールモノマーの共重合体を主鎖とし、スルホン酸
基を有する炭化水素系側鎖からなる陽イオン交換膜であ
る。
(Embodiment) The solid polymer electrolyte membrane used in this embodiment has a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer as a main chain, and a hydrocarbon side chain having a sulfonic acid group. It is a cation exchange membrane consisting of

【0037】具体的には、エチレンテトラフルオロエチ
レンにγ線を照射し、生成するラジカルを起点にスチレ
ンをグラフトし、引続きスルホン化反応によりスルホン
酸基を導入し前記固体高分子電解質膜を作製した。
Specifically, ethylene tetrafluoroethylene was irradiated with γ-rays, styrene was grafted starting from the generated radicals, and then a sulfonic acid group was introduced by a sulfonation reaction to prepare the solid polymer electrolyte membrane. .

【0038】前記固体高分子電解質膜の膜厚は100℃
絶乾状態で75μm、室温飽和含水状態で90μmであ
った。
The thickness of the solid polymer electrolyte membrane is 100 ° C.
It was 75 μm in a completely dry state, and 90 μm in a water-saturated state at room temperature.

【0039】一辺200mm正方形の前記固体高分子電
解質膜を室温で飽和含水させた後、厚さ180μmのカ
ーボンペーパーの一方の面に白金・カーボンペーストを
塗布し乾燥させた厚みが210μm、一辺185mm正
方形の電極2枚で前記固体高分子電解質膜の外周部が
7.5mmの幅で残るように前記固体高分子電解質膜を
挟持し、ホットプレス条件160℃、80Kg/cm
で全体の厚みが460μmになる迄圧縮し、この状態を
1分間保持した。
The solid polymer electrolyte membrane having a side of 200 mm square was saturated and hydrated at room temperature, and then one side of a 180 μm thick carbon paper was coated with platinum / carbon paste and dried to obtain a 210 μm square, 185 mm side. The solid polymer electrolyte membrane is sandwiched between the two electrodes so that the outer peripheral portion of the solid polymer electrolyte membrane remains with a width of 7.5 mm, and hot pressing conditions are 160 ° C. and 80 kg / cm 2.
, Until the total thickness became 460 μm, and this state was maintained for 1 minute.

【0040】出来上がった固体高分子電解質膜と電極の
接合体の前記固体高分子電解質膜は、ほぼ絶乾状態に仕
上がり断面の観察を実施した。前記電極が存在する発電
領域の全体の厚みは460μm、前記固体高分子電解質
膜の電極に挟まれた発電領域の膜厚は40μmとほぼ均
一に圧縮されていた。前記固体高分子電解質膜の発電領
域の周辺部の膜厚は75μmで、初期の膜厚のままだっ
た。
The finished solid polymer electrolyte membrane of the joined body of the solid polymer electrolyte membrane and the electrode was almost completely dried, and the cross section was observed. The entire thickness of the power generation region where the electrodes were present was 460 μm, and the thickness of the power generation region sandwiched between the electrodes of the solid polymer electrolyte membrane was approximately 40 μm, which was almost uniformly compressed. The thickness of the solid polymer electrolyte membrane at the periphery of the power generation region was 75 μm, which was the initial thickness.

【0041】図1は本発明の実施例の固体高分子電解質
膜と電極の接合体の評価に使用した固体高分子電解質型
燃料電池の単セルの概略断面図である。
FIG. 1 is a schematic cross-sectional view of a single cell of a solid polymer electrolyte fuel cell used for evaluating a solid polymer electrolyte membrane-electrode assembly according to an embodiment of the present invention.

【0042】10は、上記で作製した固体高分子電解質
膜と電極の接合体である。1が固体高分子電解質膜であ
り、発電領域6の膜厚は均一で薄く、該発電領域6の周
辺部7の膜厚は厚くなっている。2はアノード電極、3
はカソード電極である。
Reference numeral 10 denotes a joined body of the solid polymer electrolyte membrane and the electrode prepared above. Reference numeral 1 denotes a solid polymer electrolyte membrane. The thickness of the power generation region 6 is uniform and thin, and the thickness of the peripheral portion 7 of the power generation region 6 is large. 2 is the anode electrode, 3
Is a cathode electrode.

【0043】前記固体高分子電解質型燃料電池の単セル
は前記固体高分子電解質膜と電極の接合体10を燃料ガ
ス又は酸化剤ガスの通流溝を有し前記固体高分子電解質
膜と電極の接合体10で発電した電気を外部に取り出す
機能を有するセパレータ4a、4bで挟んだ構造をして
いる。
In the single cell of the solid polymer electrolyte fuel cell, the assembly 10 of the solid polymer electrolyte membrane and the electrode is provided with a fuel gas or oxidant gas flow groove, and the solid polymer electrolyte membrane is connected to the electrode. It has a structure sandwiched between separators 4a and 4b having a function of extracting electricity generated by the joined body 10 to the outside.

【0044】前記発電領域6の周辺部7を利用してシー
ルリング5で前記燃料ガス及び前記酸化剤ガスをシール
している。
The fuel gas and the oxidizing gas are sealed by a seal ring 5 using a peripheral portion 7 of the power generation region 6.

【0045】セパレータ4aには水素供給口21a、水
素通流溝22a、水素排出口23aが設けられ、セパレ
ータ4bには空気供給口21b、空気通流溝22b、空
気排出口23bが設けられている。
The separator 4a is provided with a hydrogen supply port 21a, a hydrogen flow groove 22a, and a hydrogen discharge port 23a, and the separator 4b is provided with an air supply port 21b, an air flow groove 22b, and an air discharge port 23b. .

【0046】前記水素供給口21aより前記水素通流溝
22aを介して前記アノード電極2に2.5atmの燃
料ガスである水素を、前記空気供給口21bより前記空
気通流溝22bを介して前記カソード電極3に2.5a
tmの酸化剤ガスである空気を供給した。
Hydrogen, which is a fuel gas of 2.5 atm, is supplied from the hydrogen supply port 21a to the anode electrode 2 through the hydrogen flow groove 22a, and is supplied from the air supply port 21b through the air flow groove 22b. 2.5a for cathode electrode 3
tm of oxidant gas air was supplied.

【0047】前記空気及び前記水素にはバブリング法に
より水蒸気を供給して加湿を行った。前記セパレータ4
aと前記セパレータ4bの電気端子から発電した電気を
取り出し、外部の可変抵抗8で抵抗を変えて電流密度と
セル電圧を測定して評価した。
Steam was supplied to the air and the hydrogen by a bubbling method to perform humidification. The separator 4
a and the electricity generated from the electrical terminals of the separator 4b were taken out, and the resistance was changed by an external variable resistor 8 to measure and evaluate the current density and the cell voltage.

【0048】セル温度80℃、水素・空気の利用率80
%・40%で性能評価を実施した結果、電流密度1A/
cmで630mVの出力を得た。
Cell temperature 80 ° C., utilization rate of hydrogen / air 80
% And 40%, the current density was 1 A /
An output of 630 mV was obtained in cm 2 .

【0049】一方、圧縮されていない固体高分子電解質
膜の周辺部7の引張強度をJISK―6251(6号形
ダンベル)の方法で測定したところ3.5Kg/cm
で、接合体を作製する前の前記固体高分子電解質膜の引
張強度と比較した引張強度である強度保持率はほぼ10
0%であることが分かり、ガスシール部の強度として信
頼性の高い状態であることが確認できた。
On the other hand, the tensile strength of the peripheral portion 7 of the uncompressed solid polymer electrolyte membrane was measured by the method of JIS K-6251 (No. 6 dumbbell) to be 3.5 kg / cm.
The strength retention rate, which is the tensile strength as compared with the tensile strength of the solid polymer electrolyte membrane before preparing the joined body, is almost 10%.
It was found that it was 0%, and it was confirmed that the strength of the gas seal portion was high.

【0050】(比較例)実施例と同じ方法で膜厚だけが
異なる固体高分子電解質膜を作製した。該固体高分子電
解質膜の膜厚は100℃絶乾状態で40μmであった。
乾燥状態の前記固体高分子電解質膜を使用し、該固体高
分子電解質膜の表面に少量のイオン交換溶液(和光純薬
製、ナフィオン5wt%溶液)を塗布した後、実施例と
同様の電極で挟んで実施例と同じプレス条件で固体高分
子電解質膜と電極の接合体を作製した。
(Comparative Example) A solid polymer electrolyte membrane having only a different film thickness was produced in the same manner as in the example. The thickness of the solid polymer electrolyte membrane was 40 μm in a 100 ° C. absolute dry state.
After using the solid polymer electrolyte membrane in a dry state, a small amount of an ion exchange solution (manufactured by Wako Pure Chemical Industries, Nafion 5 wt% solution) was applied to the surface of the solid polymer electrolyte membrane, and the same electrode as in the example was used. An assembly of the solid polymer electrolyte membrane and the electrode was produced under the same pressing conditions as in the example.

【0051】前記電極が存在する発電領域の全体の厚み
は460μm、前記固体高分子電解質膜の電極に挟まれ
た発電領域の膜厚、前記固体高分子電解質膜の発電領域
の周辺部の膜厚は同じ40μmの厚さに仕上がった。
The entire thickness of the power generation area where the electrodes are present is 460 μm, the thickness of the power generation area sandwiched between the electrodes of the solid polymer electrolyte membrane, and the thickness of the solid polymer electrolyte membrane at the periphery of the power generation area. Was finished to the same thickness of 40 μm.

【0052】実施例と同じ方法で電池性能を評価したと
ころ、実施例とほぼ同じレベルの電流密度1A/cm
で600mVの出力を得た。
When the battery performance was evaluated in the same manner as in the example, the current density was 1 A / cm 2 at almost the same level as in the example.
Output of 600 mV.

【0053】前記固体高分子電解質膜の発電領域の周辺
部の引張強度を実施例と同様にJIS K―6251
(6号形ダンベル)の方法で測定したところ2.0Kg
/cmで、実施例の引張強度の57%であった。前記引
張強度は、ほぼ膜厚に比例しているが、固体高分子電解
質膜の破損を防止するためには前記引張強度が大きいこ
とが重要である。
The tensile strength of the solid polymer electrolyte membrane at the peripheral portion of the power generation region was measured in the same manner as in the embodiment according to JIS K-6251.
(No. 6 type dumbbell) 2.0 kg
/ Cm, which is 57% of the tensile strength of the example. Although the tensile strength is almost proportional to the film thickness, it is important that the tensile strength is large in order to prevent breakage of the solid polymer electrolyte membrane.

【0054】以上のように、実施例は固体高分子電解質
膜の電極に挟まれた発電領域の膜厚が均一且つ薄く、前
記固体高分子電解質膜の発電領域以外の電極の周辺部の
引張強度が大きくなっているので、電池性能が高いまま
ガスシール部の強度を大きくすることができ、前記固体
高分子電解質膜の破損を防止できることが確認できた。
As described above, in the embodiment, the thickness of the power generation region sandwiched between the electrodes of the solid polymer electrolyte membrane is uniform and thin, and the tensile strength of the peripheral portion of the electrode other than the power generation region of the solid polymer electrolyte membrane is increased. It has been confirmed that the strength of the gas seal portion can be increased while the battery performance is high, and the breakage of the solid polymer electrolyte membrane can be prevented.

【0055】実施例の固体高分子電解質膜と電極の接合
体の製造方法は、新たな工程を設ける必要がないので低
コストで製造することができる。
The method for manufacturing a joined body of a solid polymer electrolyte membrane and an electrode according to the embodiment can be manufactured at low cost because there is no need to provide a new step.

【0056】[0056]

【発明の効果】以上のように、本発明は、固体高分子電
解質膜を電極で挟持して、該固体高分子電解質膜の発電
領域である電極接合部分の膜厚を、該発電領域の周辺部
の膜厚より薄くするように圧力をかけて接合したことを
特徴とする固体高分子電解質膜と電極の接合体の製造方
法及び固体高分子電解質型燃料電池であるので、電池性
能が高く、前記固体高分子電解質膜の破損を防止できる
固体高分子電解質膜と電極の接合体及び固体高分子電解
質型燃料電池が低コストでできる。
As described above, according to the present invention, the solid polymer electrolyte membrane is sandwiched between the electrodes, and the film thickness of the electrode junction portion, which is the power generation region of the solid polymer electrolyte membrane, is set at the periphery of the power generation region. Since the manufacturing method and the solid polymer electrolyte fuel cell of the assembly of the solid polymer electrolyte membrane and the electrode characterized by being joined by applying pressure so as to be thinner than the film thickness of the part, the cell performance is high, A solid polymer electrolyte membrane-electrode assembly and a solid polymer electrolyte fuel cell which can prevent the solid polymer electrolyte membrane from being damaged can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の固体高分子電解質膜と電極の
接合体の評価に使用した固体高分子電解質型燃料電池の
単セルの概略断面図
FIG. 1 is a schematic cross-sectional view of a single cell of a solid polymer electrolyte fuel cell used for evaluating a solid polymer electrolyte membrane-electrode assembly according to an embodiment of the present invention.

【図2】一般的な固体高分子電解質型燃料電池の単セル
の概略断面図
FIG. 2 is a schematic sectional view of a single cell of a general solid polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1…固体高分子電解質膜 2…電極(アノード) 3…電極(カソード) 4a、4b…セパレータ 6…発電領域 7…電極の周辺部 10…固体高分子電解質膜と電極の接合体 DESCRIPTION OF SYMBOLS 1 ... Solid polymer electrolyte membrane 2 ... Electrode (anode) 3 ... Electrode (cathode) 4a, 4b ... Separator 6 ... Power generation area 7 ... Peripheral part of electrode 10 ... Joint body of solid polymer electrolyte membrane and electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を電極で挟持して、
該固体高分子電解質膜の発電領域である電極接合部分の
膜厚を、該発電領域の周辺部の膜厚より薄くするように
圧力をかけて接合したことを特徴とする固体高分子電解
質膜と電極の接合体の製造方法。
1. A solid polymer electrolyte membrane sandwiched between electrodes,
A solid polymer electrolyte membrane characterized in that the solid polymer electrolyte membrane is joined by applying pressure so that the film thickness of an electrode bonding portion that is a power generation region is smaller than the film thickness of a peripheral portion of the power generation region. A method for manufacturing an electrode assembly.
【請求項2】 前記固体高分子電解質膜がパーフルオロ
カーボンスルホン酸系樹脂であることを特徴とする請求
項1記載の固体高分子電解質膜と電極の接合体の製造方
法。
2. The method according to claim 1, wherein the solid polymer electrolyte membrane is a perfluorocarbon sulfonic acid-based resin.
【請求項3】 前記固体高分子電解質膜が炭化フッ素系
ビニルモノマーと炭化水素系ビニルモノマーの共重合体
のスルホン酸系樹脂であることを特徴とする請求項1記
載の固体高分子電解質膜と電極の接合体の製造方法。
3. The solid polymer electrolyte membrane according to claim 1, wherein the solid polymer electrolyte membrane is a sulfonic acid resin of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer. A method for manufacturing an electrode assembly.
【請求項4】 固体高分子電解質膜を電極で挟持して、
該固体高分子電解質膜の発電領域である電極接合部分の
膜厚を、該発電領域の周辺部の膜厚より薄くするように
圧力をかけて接合した固体高分子電解質膜と電極の接合
体をセパレータで挟持したことを特徴とする固体高分子
電解質型燃料電池。
4. A solid polymer electrolyte membrane sandwiched between electrodes,
The joined body of the solid polymer electrolyte membrane and the electrode joined by applying pressure so that the film thickness of the electrode joining portion which is the power generation region of the solid polymer electrolyte membrane is thinner than the film thickness of the peripheral portion of the power generation region. A solid polymer electrolyte fuel cell characterized by being sandwiched between separators.
JP10267951A 1998-09-22 1998-09-22 Method for producing joined body of solid polymer electrolyte membrane and electrode and solid polymer electrolyte fuel cell Pending JP2000100456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267951A JP2000100456A (en) 1998-09-22 1998-09-22 Method for producing joined body of solid polymer electrolyte membrane and electrode and solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10267951A JP2000100456A (en) 1998-09-22 1998-09-22 Method for producing joined body of solid polymer electrolyte membrane and electrode and solid polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2000100456A true JP2000100456A (en) 2000-04-07

Family

ID=17451874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267951A Pending JP2000100456A (en) 1998-09-22 1998-09-22 Method for producing joined body of solid polymer electrolyte membrane and electrode and solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2000100456A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025582A (en) * 2000-07-06 2002-01-25 Toyota Central Res & Dev Lab Inc Patterned electrolyte membrane
JP2004063099A (en) * 2002-07-24 2004-02-26 Honda Motor Co Ltd Automotive fuel cell stack
JP2005285350A (en) * 2004-03-26 2005-10-13 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2005285677A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Polymer electrolyte fuel cell
JP2009009916A (en) * 2007-06-29 2009-01-15 Dainippon Printing Co Ltd Electrolyte membrane with catalyst layer
JP2009505341A (en) * 2005-08-12 2009-02-05 ビーエーエスエフ、フューエル、セル、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Long life improved membrane electrode unit and fuel cell
JP2009509311A (en) * 2005-09-23 2009-03-05 コーニング インコーポレイテッド Stress reduction mount for assembled electrolyte sheets in solid oxide fuel cells
JP2009245796A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Membrane-electrode assembly for fuel cell and its method for manufacturing
US20100173226A1 (en) * 2007-05-28 2010-07-08 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2010257669A (en) * 2009-04-23 2010-11-11 Toppan Printing Co Ltd Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
WO2011158286A1 (en) * 2010-06-15 2011-12-22 トヨタ自動車株式会社 Fuel cell and method for manufacturing fuel cell
EP2161772A4 (en) * 2007-06-15 2011-12-28 Sumitomo Chemical Co MEMBRANE ASSEMBLY, ELECTRODE, GAS DIFFUSION LAYER AND SEAL, METHOD OF MANUFACTURE, AND SEMICONDUCTOR POLYMER FUEL CELL

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025582A (en) * 2000-07-06 2002-01-25 Toyota Central Res & Dev Lab Inc Patterned electrolyte membrane
JP2004063099A (en) * 2002-07-24 2004-02-26 Honda Motor Co Ltd Automotive fuel cell stack
US7595125B2 (en) 2002-07-24 2009-09-29 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack for vehicle
JP2005285350A (en) * 2004-03-26 2005-10-13 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2005285677A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Polymer electrolyte fuel cell
JP2009505341A (en) * 2005-08-12 2009-02-05 ビーエーエスエフ、フューエル、セル、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Long life improved membrane electrode unit and fuel cell
JP2009509311A (en) * 2005-09-23 2009-03-05 コーニング インコーポレイテッド Stress reduction mount for assembled electrolyte sheets in solid oxide fuel cells
US20100173226A1 (en) * 2007-05-28 2010-07-08 Toyota Jidosha Kabushiki Kaisha Fuel cell
EP2161772A4 (en) * 2007-06-15 2011-12-28 Sumitomo Chemical Co MEMBRANE ASSEMBLY, ELECTRODE, GAS DIFFUSION LAYER AND SEAL, METHOD OF MANUFACTURE, AND SEMICONDUCTOR POLYMER FUEL CELL
JP2009009916A (en) * 2007-06-29 2009-01-15 Dainippon Printing Co Ltd Electrolyte membrane with catalyst layer
JP2009245796A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Membrane-electrode assembly for fuel cell and its method for manufacturing
JP2010257669A (en) * 2009-04-23 2010-11-11 Toppan Printing Co Ltd Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
WO2011158286A1 (en) * 2010-06-15 2011-12-22 トヨタ自動車株式会社 Fuel cell and method for manufacturing fuel cell

Similar Documents

Publication Publication Date Title
JP3052536B2 (en) Solid polymer electrolyte fuel cell
JPH07220742A (en) Solid polymer electrolyte fuel cell and method for producing electrode-ion exchange membrane assembly of the fuel cell
JP2000215903A (en) Solid high-molecular electrolyte type fuel cell
JP2007035621A (en) High temperature fuel cell system
JP2000100456A (en) Method for producing joined body of solid polymer electrolyte membrane and electrode and solid polymer electrolyte fuel cell
JP5070817B2 (en) Membrane / electrode assembly of solid polymer electrolyte fuel cell and production method thereof
WO2003081707A1 (en) Electrolyte membrane/electrode union for fuel cell and process for producing the same
JP4766014B2 (en) Manufacturing method of membrane electrode assembly
CN1299373C (en) Electrode for fuel cell and method of manufacturing the electrode
JP2010536151A (en) Electrode for hydrocarbon membrane electrode assembly of direct oxidation fuel cell
JP2002343377A (en) Electrolyte membrane-electrode assembly for fuel cell and method for producing the same
JPH1116584A (en) Cell for solid high polymer type fuel cell and its manufacture
KR20070112978A (en) How to improve durability of fuel cell electrode and fuel cell electrode
JP2008123941A (en) Polyelectrolyte membrane, catalytic electrode, membrane electrode assembly, their manufacturing methods and binder
JP4046706B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, method for producing the same and polymer electrolyte fuel cell
JP2012109074A (en) Fuel cell system
JPH09161827A (en) Solid polymer electrolyte fuel cell
JP4965833B2 (en) Solid polymer electrolyte membrane electrode assembly and solid polymer fuel cell
KR20020074582A (en) Polymer Electrolyte Membrane for Fuel Cells and Manufacturing Method of the Same
JP2002184412A (en) Gas diffusion layer, electrolyte membrane / electrode assembly using the same and polymer electrolyte fuel cell
JP2004071324A (en) Polymer electrolyte fuel cell and method of manufacturing the same
JP2004349180A (en) Membrane electrode assembly
KR20200071199A (en) Membrane Electrode Assembly for Polymer Electrolyte Fuel Cell and Method of Preparing the Same
JP2005150005A (en) Ionic conductor, method for producing the same, and electrochemical device
JP2010536150A (en) Surface-treated hydrocarbon polymer electrolyte membrane for direct oxidation fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014