JP2000087139A - Electromagnetic steel sheet and method of manufacturing the same - Google Patents
Electromagnetic steel sheet and method of manufacturing the sameInfo
- Publication number
- JP2000087139A JP2000087139A JP11189399A JP18939999A JP2000087139A JP 2000087139 A JP2000087139 A JP 2000087139A JP 11189399 A JP11189399 A JP 11189399A JP 18939999 A JP18939999 A JP 18939999A JP 2000087139 A JP2000087139 A JP 2000087139A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- less
- annealing
- magnetic
- secondary recrystallization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
(57)【要約】 (修正有)
【課題】 圧延方向と圧延直角方向の磁気特性のバラン
スに優れた電磁鋼板。
【解決手段】 化学組成が重量%で、1.0≦Si<
3.0、Mn:0〜0.80、P:0〜0.10で、以
下、いずれも、C:0.010、S:0.030、so
l.Al:0.020、N:0.010以下を含有し、
残部がFeおよび不可避的不純物からなり、厚さが0.
1〜0.5μmである樹脂を含有した絶縁皮膜を少なく
とも片面に備えた電磁鋼板であって、圧延方向の磁束密
度B50が、1.85T以上、ビッカース硬さが100以
上、180未満である、電磁鋼板。(57) [Summary] (Modified) [Problem] An electrical steel sheet having an excellent balance of magnetic properties in a rolling direction and a direction perpendicular to the rolling direction. SOLUTION: The chemical composition is expressed by weight% and 1.0 ≦ Si <
3.0, Mn: 0 to 0.80, P: 0 to 0.10, C: 0.010, S: 0.030, so
l. Al: 0.020, N: 0.010 or less,
The balance consists of Fe and unavoidable impurities, and has a thickness of 0.
An electromagnetic steel sheet provided with an insulating film containing a resin of 1 to 0.5 μm on at least one surface, wherein the magnetic flux density B 50 in the rolling direction is 1.85 T or more, and the Vickers hardness is 100 or more and less than 180. , Electrical steel sheets.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、圧延方向と圧延直
角方向の磁気特性のバランスに優れた電磁鋼板およびそ
の製造方法に関する。とりわけ分割型ステータ鉄心を用
いる小型モータに好適な電磁鋼板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrical steel sheet having an excellent balance of magnetic properties in a rolling direction and a direction perpendicular to a rolling direction, and a method for manufacturing the same. In particular, the present invention relates to an electromagnetic steel sheet suitable for a small motor using a split stator core.
【0002】[0002]
【従来の技術】近年、地球環境問題やエネルギー問題が
クローズアップされ、エネルギー変換機器であるモータ
の効率改善が求められている。例えば自動車においても
化石燃料を消費しない電気自動車や、2種類以上の動力
源を備えて燃料消費効率を改善したハイブリッド自動車
が注目されているが、これらにはいずれも効率の良いモ
ータの適用が望まれている。2. Description of the Related Art In recent years, global environmental problems and energy problems have been highlighted, and there is a demand for improving the efficiency of motors as energy conversion devices. For example, electric vehicles that do not consume fossil fuels and hybrid vehicles that have more than two types of power sources and have improved fuel consumption efficiency are attracting attention. For these, it is desired to use an efficient motor. It is rare.
【0003】モータ効率にはステータ鉄心の性能が大き
く影響する。図1はモータのステータ鉄心(以下、単に
「鉄心」と記す)を構成する鉄心片であって、電磁鋼板
から一体として打ち抜かれた鉄心片(以下、単に「一体
型」とも記す)の形状例を示す概念図である。図1で符
号3はヨーク部、符号4はティース部(歯部)である。
なお、符号1はロータ、符号2はティース部に巻かれる
巻線、符号5は鉄心内部の磁束の流れを模式的に示すも
ので、磁束はティース部4とヨーク部3を経てロータ1
に至る。[0003] The motor efficiency is greatly affected by the performance of the stator core. FIG. 1 shows an example of a shape of an iron core piece (hereinafter, also simply referred to as “integrated type”) which is a core piece constituting a stator iron core (hereinafter, simply referred to as “iron core”) of a motor and is integrally punched from an electromagnetic steel sheet. FIG. In FIG. 1, reference numeral 3 denotes a yoke portion, and reference numeral 4 denotes a teeth portion (teeth portion).
Reference numeral 1 denotes a rotor, reference numeral 2 denotes a winding wound around the teeth, reference numeral 5 schematically shows a flow of magnetic flux inside the iron core, and the magnetic flux passes through the teeth 4 and the yoke 3 to the rotor 1.
Leads to.
【0004】小型モータの鉄心は従来、一体型が使用さ
れてきたが、最近では、モータ製造効率の向上や性能向
上を目的として、以下に示すような種々の形態の分割鉄
心片からなる鉄心(以下、単に「分割鉄心」とも記す)
が提案され、実用化が進んでいる。[0004] Conventionally, the core of a small motor has been used as an integral type, but recently, in order to improve the motor manufacturing efficiency and performance, an iron core composed of various types of divided core pieces as shown below is used. Hereinafter, it is simply referred to as “split core”)
Has been proposed and its practical use is progressing.
【0005】図2はヨーク部とティース部をT型に配置
した鉄心片6(T型分割鉄心片)の例を示す概念図であ
る。図3はリング状のヨーク部7とI形状のティース部
8で構成される分割型鉄心片(I型分割鉄心片)の例を
示す概念図である。図4(a)は複数のT型鉄心片6の
ヨーク部9を直線状に連ねて打ち抜き加工した鉄心片
(展開型分割鉄心片)の例を示す概念図である。図4
(b)は前記展開型分割鉄心片のティース部10に巻線
2を施し、全体を円環状に折り曲げて得た鉄心の概念図
である。FIG. 2 is a conceptual diagram showing an example of a core piece 6 (T-type split core piece) in which a yoke portion and a tooth portion are arranged in a T-shape. FIG. 3 is a conceptual diagram showing an example of a split-type core piece (I-type split core piece) composed of a ring-shaped yoke portion 7 and an I-shaped tooth portion 8. FIG. 4A is a conceptual diagram showing an example of an iron core piece (expandable split iron core piece) obtained by punching out the yoke portions 9 of a plurality of T-shaped iron core pieces 6 in a straight line. FIG.
(B) is a conceptual diagram of an iron core obtained by applying a winding 2 to a teeth portion 10 of the above-mentioned split-type iron core piece and bending the whole into an annular shape.
【0006】従来の一体型鉄心では、隣接するティース
部間の間隔が小さく、巻線施工時に空間的な制約がある
ために、巻線の密度が低くなりモータの効率が制限され
ると共に巻線施工時の生産性も低かった。[0006] In the conventional integrated iron core, the spacing between adjacent teeth is small, and there is a spatial restriction at the time of winding, so that the density of the winding is reduced and the efficiency of the motor is limited. Productivity during construction was also low.
【0007】これに対して分割鉄心では上記のような巻
線施工時の空間的な制約が少なく、隣接するティースの
干渉されないで巻線施工できるため、一体型鉄心に比較
して巻線密度を高めることが可能で、モータ効率向上に
有効であると共に、巻線施工が容易であるので生産性も
改善できるという利点がある。[0007] On the other hand, in the case of the split core, since the above-described space restriction at the time of winding is small and the winding can be performed without interference of adjacent teeth, the winding density can be reduced as compared with the integrated core. This has the advantage of being able to increase the motor efficiency, which is effective for improving the motor efficiency, and that the winding work is easy, so that the productivity can be improved.
【0008】モータ、特に小型モータの鉄心用素材とし
ては、従来、一方向性電磁鋼板に比較して安価であり、
打ち抜き加工もし易い無方向性電磁鋼板が使用されてい
るが、その性能改善のために電磁鋼板の磁気特性改善方
法が開示されている。Conventionally, as a material for the core of a motor, especially a small motor, it is inexpensive as compared with a unidirectional magnetic steel sheet.
A non-oriented electrical steel sheet that can be easily punched is used, and a method for improving the magnetic properties of the electrical steel sheet has been disclosed to improve its performance.
【0009】特開平5−70833号公報には、重量%
でC:0.010〜0.10%、Si:4.0%以下、
Seおよび/またはS:0.005〜0.030%を含
有する鋼を熱間圧延し冷間圧延した後、脱炭焼鈍し、さ
らに900〜1200℃で連続焼鈍する、無方向性珪素
鋼板よりも磁気特性が優れた電磁鋼板の製造方法が開示
されている。Japanese Patent Application Laid-Open No. 5-70833 discloses that the weight%
C: 0.010 to 0.10%, Si: 4.0% or less,
From a non-oriented silicon steel sheet, a steel containing Se and / or S: 0.005 to 0.030% is hot-rolled and cold-rolled, then decarburized and then continuously annealed at 900 to 1200 ° C. Also disclosed is a method for producing an electromagnetic steel sheet having excellent magnetic properties.
【0010】特開平7−18334号公報には、重量%
でC:0.010%以下、Si:1.5〜4.0%、M
n:1.0〜4.0%、S:0.010%以下、so
l.Al:0.003〜0.030%、N:0.001
〜0.010%を含む鋼スラブを、熱間圧延してそのま
ま冷間圧延、あるいは熱間圧延後に焼鈍を施してから冷
間圧延し、その後一次再結晶のための連続焼鈍および1
00%水素雰囲気中での二次再結晶焼鈍を施す、磁気特
性の異方性のバランスが優れた電磁鋼板の製造方法が開
示されている。Japanese Patent Application Laid-Open No. 7-18334 discloses that
C: 0.010% or less, Si: 1.5 to 4.0%, M
n: 1.0 to 4.0%, S: 0.010% or less, so
l. Al: 0.003 to 0.030%, N: 0.001
A steel slab containing 0.00.010% is hot-rolled and cold-rolled as it is, or subjected to annealing after hot-rolling and then cold-rolled, and then subjected to continuous annealing for primary recrystallization and 1
A method for producing an electrical steel sheet which is subjected to secondary recrystallization annealing in a 00% hydrogen atmosphere and has an excellent balance of anisotropy of magnetic properties is disclosed.
【0011】[0011]
【発明が解決しようとする課題】鉄心のティース部では
長手方向に磁束が集中する。分割鉄心では、全てのティ
ース部の磁化方向を磁気特性に優れた鋼板の圧延方向
(以下、単に「L方向」とも記す)に揃えることができ
るので、分割鉄心を有するモータのモータ効率改善には
L方向の磁気特性が優れていることが重要である。ま
た、鉄心のヨーク部の磁化方向が磁気特性がよくない圧
延直角方向(以下、単に「T方向」とも記す)に揃えら
れる場合には、T方向の磁気特性が悪くないことも重要
である。At the teeth of the iron core, magnetic flux concentrates in the longitudinal direction. In the split core, the magnetization directions of all the teeth can be aligned with the rolling direction of the steel sheet having excellent magnetic properties (hereinafter, also simply referred to as “L direction”). It is important that the magnetic properties in the L direction are excellent. Further, when the magnetization direction of the yoke portion of the iron core is aligned with the direction perpendicular to the rolling direction (hereinafter, also simply referred to as “T direction”) where the magnetic characteristics are not good, it is also important that the magnetic characteristics in the T direction are not bad.
【0012】また、小型モータではモータ効率に対する
鉄心の占積率の影響度が大きく、鉄心の占積率を高める
ことも重要である。さらに鉄心片の加工に際しては、発
電機や大型モータの場合に比べて鉄心打ち抜き回数が多
いこと、およびトランス用鉄心に比較して打ち抜き加工
される鉄心形状が複雑であることから、鉄心素材の打ち
抜き加工性が優れていることも必要である。In a small motor, the space factor of the iron core has a large influence on the motor efficiency, and it is important to increase the space factor of the iron core. Furthermore, when processing iron core pieces, the core material is punched more frequently than generators and large motors, and the core shape to be punched is more complex than that for transformer cores. It is also necessary that workability is excellent.
【0013】一方向性電磁鋼板はL方向の磁気特性は優
れる。しかしながらT方向の磁化力5000A/mにお
ける磁束密度(B50)が1.55T前後と極めて劣るう
え、Si含有量が高く鋼が硬質であり、また鋼板素地と
絶縁皮膜の間にフォルステライトを主とする厚さが3μ
m〜10μmもある硬質な酸化皮膜があるため、打ち抜
き性が良くないうえ、占積率も低いという問題がある。
またその製造時には脱炭焼鈍や1000℃を超える高温
での二次再結晶焼鈍が必要となり、製造コストも高い。
従って一方向性電磁鋼板は、分割鉄心を有する小型モー
タ用素材としては好ましくない。The grain-oriented electrical steel sheet has excellent magnetic properties in the L direction. However, the magnetic flux density (B 50 ) at a magnetization force of 5000 A / m in the T direction is extremely inferior to about 1.55 T, the steel content is high, the steel is hard, and forsterite is mainly used between the base steel sheet and the insulating film. Thickness is 3μ
Since there is a hard oxide film having a thickness of 10 to 10 μm, there is a problem that the punching property is not good and the space factor is low.
Further, during the production, decarburization annealing and secondary recrystallization annealing at a high temperature exceeding 1000 ° C. are required, and the production cost is high.
Therefore, the unidirectional magnetic steel sheet is not preferable as a material for a small motor having a split core.
【0014】特開平5−70833号公報に開示されて
いる方法で得られる製品はSi含有量が高く、小型モー
タ用鉄心素材としては打ち抜き性がよくない。また、そ
の製造に際しては短時間の連続焼鈍で二次再結晶させる
ため磁気特性変動が大きくなりやすいうえ、脱炭焼鈍を
必須工程として含むために必ずしも低コストとはならな
いという問題もある。また、短時間の連続焼鈍ではイン
ヒビターとする微細なMnSおよび/またはMnSe析
出物が製品に残存して磁気特性を損なうおそれもある。A product obtained by the method disclosed in Japanese Patent Application Laid-Open No. 5-70833 has a high Si content and does not have good punching properties as a core material for a small motor. In addition, in the production thereof, there is a problem that magnetic properties tend to fluctuate greatly because secondary recrystallization is performed by short-time continuous annealing, and the cost is not necessarily low because decarburizing annealing is included as an essential step. Further, in the case of continuous annealing for a short time, fine MnS and / or MnSe precipitates serving as inhibitors may remain in the product and impair magnetic properties.
【0015】特開平7−18334号公報に開示されて
いる方法で得られる製品はSiおよびMn含有量が高
く、小型モータ用鉄心素材としては打ち抜き性が十分で
はないうえ、高価なMn源を大量に含有させるために製
造コストが高いという問題もある。The product obtained by the method disclosed in Japanese Patent Application Laid-Open No. 7-18334 has a high Si and Mn content, does not have sufficient punching properties as a core material for a small motor, and requires a large amount of an expensive Mn source. In addition, there is also a problem that the production cost is high due to the inclusion in the steel.
【0016】以上述べたように、モータ効率の向上、特
に分割鉄心を有する小型モータのモータ効率改善に好適
な、L方向とT方向の望ましい磁気特性バランスと、鉄
心片の打ち抜き加工時の生産効率を阻害しないような適
度な硬さとを同時に満足する電磁鋼板は未だ開示されて
いない。As described above, a desirable balance between the magnetic properties in the L direction and the T direction, which is suitable for improving the motor efficiency, particularly for a small motor having a split iron core, and the production efficiency at the time of punching the iron core piece. An electrical steel sheet satisfying the appropriate hardness at the same time as not impairing the hardness has not yet been disclosed.
【0017】本発明の目的はこれらの問題点を解決し、
従来の無方向性電磁鋼板に比較してL方向の磁気特性が
大幅に良好で、一方向性電磁鋼板に比べてT方向の磁気
特性が良好であり、さらに打ち抜き性にも優れた、特に
分割鉄心を有する小型モータの効率改善に好適な電磁鋼
板およびその製造方法を提供することにある。An object of the present invention is to solve these problems,
The magnetic properties in the L direction are significantly better than conventional non-oriented electrical steel sheets, the magnetic properties in the T direction are better than unidirectional electrical steel sheets, and the punching properties are also excellent. An object of the present invention is to provide an electromagnetic steel sheet suitable for improving the efficiency of a small motor having an iron core and a method for manufacturing the same.
【0018】[0018]
【課題を解決するための手段】本発明者らはティース部
の磁化方向を電磁鋼板のL方向に揃えて打ち抜いた分割
鉄心を用いた小型モータのエネルギー変換効率に対する
電磁鋼板の磁気特性、その他の望ましい鋼板性状との関
係について鋭意研究を進めた。さらにそのような鋼板の
製造方法について研究を重ねた。その結果以下に述べる
ような新たな知見を得た。なお、本発明でいうエネルギ
ー変換効率は、モータの出力エネルギーの入力エネルギ
ーに対する比([出力エネルギー]/[入力エネルギ
ー])を意味し、単に「モータ効率」とも記す。Means for Solving the Problems The inventors of the present invention have studied the magnetic characteristics of the magnetic steel sheet with respect to the energy conversion efficiency of a small motor using a split core punched out with the magnetization direction of the teeth aligned with the L direction of the magnetic steel sheet, and other factors. We conducted intensive research on the relationship with desirable steel sheet properties. Furthermore, the research on the manufacturing method of such a steel plate was repeated. As a result, the following new knowledge was obtained. The energy conversion efficiency referred to in the present invention means the ratio of the output energy of the motor to the input energy ([output energy] / [input energy]), and is also simply referred to as “motor efficiency”.
【0019】a.モータの作動時には、鉄心のティース
部に高磁場の磁界が作用するため、モータ効率には鉄心
素材となる電磁鋼板の高磁場での磁気特性が大きく影響
する。上記のような分割鉄心を用いたモータの場合、電
磁鋼板のL方向のB50が1.85T以上である場合にモ
ータ効率が著しく改善された。また、鉄心素材のT方向
のB50が1.58Tに満たない場合にはモータ効率の改
善効果は得られなかった。A. During operation of the motor, a magnetic field of a high magnetic field acts on the teeth of the iron core, so that the magnetic properties of the magnetic steel sheet as a material of the iron core at a high magnetic field greatly affect the motor efficiency. For motor using the split core as described above, the motor efficiency when L direction of B 50 of the electromagnetic steel sheet is not less than 1.85T it was markedly improved. Moreover, the effect of improving the motor efficiency when the T direction of B 50 of the core material is less than 1.58T was obtained.
【0020】さらに、複雑な形状での打ち抜き加工時の
生産効率を高めるには、鋼素材の硬さを適正範囲にする
ことが重要であり、また、電磁鋼板製造時に発生し易い
硬質な酸化皮膜の抑制と絶縁皮膜の最適化も有効であっ
た。Further, in order to enhance the production efficiency during the punching process with a complicated shape, it is important to keep the hardness of the steel material in an appropriate range, and a hard oxide film which is liable to be generated during the production of magnetic steel sheets. It was also effective in suppressing the noise and optimizing the insulating film.
【0021】b.電磁鋼板の磁気特性は、二次再結晶焼
鈍時に、インヒビターと称される析出物により多くの方
位の結晶粒成長が抑制される中で、ミラー指数の{11
0}<001>で表示されるゴス方位の結晶粒が選択的
に成長することにより形成される集合組織により大きく
影響される。B. The magnetic properties of the electrical steel sheet are such that during secondary recrystallization annealing, the growth of crystal grains in many directions is suppressed by precipitates called inhibitors, and the
It is greatly influenced by the texture formed by the selective growth of goss crystal grains represented by 0} <001>.
【0022】従来の一方向性電磁鋼板では、インヒビタ
ーによる結晶粒成長抑制効果が極めて強く、ゴス方位へ
の集積度が極めて高い二次再結晶が生じるため、L方向
の磁気特性は著しく良好になるがT方向の磁気特性が極
端に劣化する。In the conventional grain-oriented electrical steel sheet, the inhibitor has an extremely strong effect of inhibiting the growth of crystal grains, and secondary recrystallization with a very high degree of integration in the Goss orientation occurs, so that the magnetic properties in the L direction are significantly improved. However, the magnetic characteristics in the T direction are extremely deteriorated.
【0023】これに対し、極低炭素でSi、Al、Nな
どの含有量を特定範囲に限定した化学組成を有する熱延
鋼板を冷間圧延した後、特定の条件で焼鈍を施すことに
より、従来の方向性電磁鋼板の場合よりもインヒビター
効果を弱くした二次再結晶焼鈍が可能となり、これによ
りゴス方位の集積度を適正化してL方向とT方向の磁気
特性バランスを改善し上記したような所望の電磁鋼板を
容易に製造できる。この方法によれば、Si、Mnなど
の合金含有量が少なく、好ましい硬さを有する電磁鋼板
の製造ができる。On the other hand, a hot-rolled steel sheet having extremely low carbon and a chemical composition in which the content of Si, Al, N, etc. is limited to a specific range is cold-rolled, and then annealed under specific conditions. As described above, it is possible to perform secondary recrystallization annealing with a weaker inhibitor effect than in the case of conventional grain-oriented electrical steel sheets, thereby optimizing the degree of integration of Goss orientation and improving the magnetic property balance in the L and T directions. A desired electromagnetic steel sheet can be easily manufactured. According to this method, it is possible to produce an electromagnetic steel sheet having a low alloy content such as Si and Mn and a preferable hardness.
【0024】本発明はこれらの知見を基にして完成され
たものであり、その要旨は下記(1)および(2)に記
載の電磁鋼板ならびに(3)に記載のその製造方法にあ
る。The present invention has been completed on the basis of these findings, and the gist of the present invention resides in the following electromagnetic steel sheets (1) and (2) and a method for producing the same according to (3).
【0025】(1)化学組成が重量%で、C:0.01
0%以下、Si:1.0%以上、3.0%未満、Mn:
0〜0.80%、P:0〜0.10%、S:0.030
%以下、sol.Al:0.020%以下、N:0.0
10%以下を含有し、残部がFeおよび不可避的不純物
からなり、厚さが0.1μm以上0.5μm以下である
樹脂を含有した絶縁皮膜を少なくとも片面に備えた電磁
鋼板であって、圧延方向の磁束密度B50が1.85T以
上、ビッカース硬さが100以上、180未満であるこ
とを特徴とする電磁鋼板。(1) The chemical composition is% by weight and C: 0.01
0% or less, Si: 1.0% or more and less than 3.0%, Mn:
0 to 0.80%, P: 0 to 0.10%, S: 0.030
% Or less, sol. Al: 0.020% or less, N: 0.0
An electromagnetic steel sheet comprising 10% or less, the balance being Fe and inevitable impurities, and having at least one surface of an insulating film containing a resin having a thickness of 0.1 μm or more and 0.5 μm or less. the magnetic flux density B 50 is more than 1.85 T, 100 or more Vickers hardness, electrical steel sheet and less than 180.
【0026】(2)鋼板素地と絶縁皮膜との間の酸化皮
膜の厚さが1μm以下であることを特徴とする上記
(1)に記載の電磁鋼板。(2) The electromagnetic steel sheet according to the above (1), wherein the thickness of the oxide film between the steel sheet substrate and the insulating film is 1 μm or less.
【0027】(3)化学組成が重量%で、C:0.01
0%以下、Si:1.0以上、3.0%未満、Mn:0
〜0.80%、P:0〜0.10%、S:0.030%
以下、sol.Al:0.003〜0.020%、N:
0.001〜0.010%を含有し、残部がFeおよび
不可避的不純物からなる鋼のスラブを熱間圧延し、冷間
圧延し、860〜980℃に加熱して一次再結晶焼鈍を
施し、窒素含有量が5体積%以下、残部が水素ガスおよ
び/または窒素を除く不活性ガスからなる雰囲気中で7
50℃以上、Ac1変態点以下に加熱して二次再結晶焼
鈍した後、樹脂を含有する絶縁皮膜を施すことを特徴と
する上記(1)または(2)に記載の電磁鋼板の製造方
法。(3) The chemical composition is% by weight and C: 0.01
0% or less, Si: 1.0 or more and less than 3.0%, Mn: 0
-0.80%, P: 0-0.10%, S: 0.030%
Hereinafter, sol. Al: 0.003 to 0.020%, N:
A steel slab containing 0.001 to 0.010%, the balance being Fe and unavoidable impurities, is hot-rolled, cold-rolled, heated to 860 to 980 ° C., and subjected to primary recrystallization annealing, In an atmosphere having a nitrogen content of 5% by volume or less and a balance of hydrogen gas and / or an inert gas other than nitrogen,
The method for producing an electromagnetic steel sheet according to the above (1) or (2), wherein after heating to 50 ° C. or more and below the Ac1 transformation point and performing secondary recrystallization annealing, an insulating film containing a resin is applied.
【0028】[0028]
【発明の実施の形態】以下に、本発明の実施の形態を詳
細に説明する。なお、以下に記す化学組成の%表示は重
量%を意味する。Embodiments of the present invention will be described below in detail. The percentages of the chemical compositions described below mean% by weight.
【0029】鋼の化学組成: C:製品中に残存すると鉄損に悪影響を及ぼすので少な
いほど好ましい。C含有量が0.010%以下であれば
磁気特性への悪影響は小さいのでC含有量は0.010
%を上限とする。好ましくは0.005%以下である。Chemical composition of steel: C: Since remaining in the product has an adverse effect on iron loss, it is preferable that the content is as small as possible. If the C content is 0.010% or less, the adverse effect on magnetic properties is small, so the C content is 0.010%.
% As the upper limit. Preferably it is 0.005% or less.
【0030】Si:鋼の電気抵抗を高め、渦電流損が低
下し鉄損を減少させる効果がある。Si含有量が1.0
%に満たない場合には本発明が目的とする低鉄損が得ら
れないため、Siは1.0%以上含有させる。好ましく
は1.1%以上である。Si: has the effect of increasing the electrical resistance of steel, reducing eddy current loss and reducing iron loss. Si content is 1.0
%, Si is contained in an amount of 1.0% or more because the low iron loss desired by the present invention cannot be obtained. It is preferably at least 1.1%.
【0031】他方、Siを過度に含有させると飽和磁束
密度の低下が著しくなり、鉄心を小型化するのが困難に
なる。また、鋼板が過度に硬くなり、打ち抜き性が損な
われる。このためSi含有量は3.0%未満とする。好
ましくは2.8%以下、さらに好ましくは2.0%以
下、なお好ましくは1.8%以下である。On the other hand, when Si is excessively contained, the saturation magnetic flux density is significantly reduced, and it is difficult to reduce the size of the iron core. Further, the steel sheet becomes excessively hard, and the punching property is impaired. Therefore, the Si content is set to less than 3.0%. It is preferably at most 2.8%, more preferably at most 2.0%, even more preferably at most 1.8%.
【0032】Mn:本発明の鋼の二次再結晶挙動にはさ
ほど影響せず磁気特性の異方性に対する影響は小さい。
従ってMnは必須元素ではないが、Mnには鋼の電気抵
抗を高め鉄損を減少させ、鋼を硬くして打ち抜き性を改
善するなどの作用があり、これらの効果を得るために含
有させてもよい。これらの効果を得るにはMnを0.0
5%以上、より好ましくは0.10%を超えて含有させ
るのがよい。Mn含有量が0.8%を超えると飽和磁束
密度が小さくなるうえ、鋼素材の硬さが増し打ち抜き性
が劣化し製造コストも高くなる。従ってMnを含有させ
る場合でもその上限は0.80%とするのがよい。より
好ましくは0.70%以下がよい。Mn: Does not significantly affect the secondary recrystallization behavior of the steel of the present invention, and has little effect on the anisotropy of the magnetic properties.
Therefore, Mn is not an essential element, but Mn has an effect of increasing the electrical resistance of the steel, reducing iron loss, hardening the steel and improving the punching property, etc. Is also good. To obtain these effects, Mn is set to 0.0
The content is preferably 5% or more, more preferably more than 0.10%. If the Mn content exceeds 0.8%, the saturation magnetic flux density decreases, and the hardness of the steel material increases, the punching property deteriorates, and the manufacturing cost increases. Therefore, even when Mn is contained, the upper limit is preferably set to 0.80%. More preferably, it is 0.70% or less.
【0033】P:磁気特性への影響が少ないので必須元
素ではないが、鋼を硬くして打ち抜き性を向上させる作
用があるので、0.10%以下の範囲で含有させてもよ
い。P含有量が0.10%を超えると鋼が脆くなり、冷
間圧延時に破断しやすくなるのでPを含有させる場合で
もその上限は0.10%とするのがよい。P: P is not an essential element because it has little effect on magnetic properties. However, since it has the effect of hardening steel to improve punchability, it may be contained in an amount of 0.10% or less. If the P content exceeds 0.10%, the steel becomes brittle and easily breaks during cold rolling. Therefore, even when P is contained, the upper limit is preferably set to 0.10%.
【0034】S:Mnと結合してMnSとなり鋼の磁気
特性を損なうのでSは少ないほどよく、0.030%以
下、より好ましくは0.015%以下、なおさらに好ま
しくは0.005%未満とするのがよい。S: MnS is combined with Mn to form MnS, which impairs the magnetic properties of steel. Therefore, the smaller the S, the better. Good to do.
【0035】sol.Al:製品としての電磁鋼板では
必須元素ではないので、製品としての電磁鋼板には含有
させなくてもよい。しかしながらsol.Alはその製
造過程で良好な二次再結晶を生じさせるのに重要なイン
ヒビターであるAlNや、(Al、Si)Nを形成する
元素であるので、圧延前の鋼においてはsol.Alを
0.003%以上含有させるのがよい。好ましくは0.
005%以上含有させるのがよい。Sol. Al: Since it is not an essential element in a magnetic steel sheet as a product, it need not be contained in a magnetic steel sheet as a product. However, sol. Al is an element that forms AlN and (Al, Si) N, which are important inhibitors for causing good secondary recrystallization in the production process, so that sol. It is preferable to contain 0.003% or more of Al. Preferably 0.
005% or more is preferably contained.
【0036】sol.Al含有量が0.020%を超え
るとインヒビターが過剰になると共にその分散状態が不
適切になり、二次再結晶が不安定になる。従って圧延前
の鋼ではsol.Al含有量を0.020%以下とする
のがよい。好ましくは0.018%以下がよい。上記圧
延前の鋼に含有されるsol.Alは焼鈍時に減少する
こともあるが、そのまま鋼中に残留することもある。従
って製品としての電磁鋼板のsol.Al含有量は0.
020%以下である。Sol. If the Al content exceeds 0.020%, the inhibitor becomes excessive and its dispersion state becomes inappropriate, and secondary recrystallization becomes unstable. Therefore, in steel before rolling, sol. The Al content is preferably set to 0.020% or less. Preferably, the content is 0.018% or less. Sol. Contained in the steel before rolling. Al may decrease during annealing, but may remain in the steel as it is. Therefore, the sol. Al content is 0.
020% or less.
【0037】N:製品としての電磁鋼板では必須元素で
はないので、製品としての電磁鋼板には含有させなくて
も構わない。しかしながらNはインヒビターとなる窒化
物を形成するのに必要な元素であるので、圧延前の鋼に
おいてはNを0.001%以上含有させるのがよい。好
ましくは0.002%以上がよい。また、N含有量が
0.010%を超えるとインヒビター効果が飽和するの
で、圧延前の鋼におけるN含有量は0.010%以下と
するのがよい。好ましくは0.008%以下がよい。上
記圧延前の鋼に含有されるNは焼鈍時に減少することも
あるがそのまま鋼中に残留することもある。従って製品
としての電磁鋼板のN含有量は0.010%以下であ
る。残部はFeおよび不可避的不純物である。N: Since it is not an essential element in a magnetic steel sheet as a product, it may not be contained in a magnetic steel sheet as a product. However, since N is an element necessary for forming a nitride serving as an inhibitor, it is preferable that the steel before rolling contains 0.001% or more of N. Preferably, the content is 0.002% or more. When the N content exceeds 0.010%, the inhibitor effect is saturated. Therefore, the N content in the steel before rolling is preferably set to 0.010% or less. Preferably, the content is 0.008% or less. N contained in the steel before rolling may decrease during annealing, but may remain in the steel as it is. Therefore, the N content of the magnetic steel sheet as a product is 0.010% or less. The balance is Fe and inevitable impurities.
【0038】磁気特性:本発明の電磁鋼板は、モータ効
率を改善するために、JIS−C−2550の規定に従
って測定したL方向の磁束密度がB50で1.85T以上
のものとする。好ましくは1.88T以上である。T方
向のB50は1.59T以上が好ましい。より好ましくは
T方向のB50を1.60T以上とするのがよい。[0038] Magnetic properties: electrical steel sheet of the present invention, in order to improve the motor efficiency, L direction of the magnetic flux density measured in accordance with the provisions of JIS-C-2550 is a more than 1.85T in B 50. Preferably it is 1.88T or more. T direction of B 50 is more than 1.59T is preferred. More preferably preferably set to more than 1.60T to T direction of B 50.
【0039】ここでいうモータ効率とはモータの出力エ
ネルギーの入力エネルギーに対する比([出力エネルギ
ー]/[入力エネルギー])を意味する。入力エネルギ
ーは、モータに加えられる電圧と電流から算出され、出
力エネルギーはトルクと回転数から計算される。The motor efficiency mentioned here means a ratio of the output energy of the motor to the input energy ([output energy] / [input energy]). Input energy is calculated from the voltage and current applied to the motor, and output energy is calculated from torque and rotation speed.
【0040】絶縁皮膜:本発明の電磁鋼板は、電磁鋼板
の打ち抜き性を良好に保ち、かつ、積層された鉄心片間
の絶縁性を確保するために、電磁鋼板の少なくとも片面
に、一般に無方向性電磁鋼板に使用されている公知の樹
脂と無機成分が含有された絶縁皮膜を備える。この絶縁
皮膜としては、例えば、重クロム酸塩−ホウ酸−樹脂か
らなる皮膜、リン酸塩−樹脂からなる皮膜、シリカ−樹
脂からなる皮膜等がある。Insulating film: The electromagnetic steel sheet of the present invention is generally non-directional on at least one surface of the electromagnetic steel sheet in order to maintain good punching property of the electromagnetic steel sheet and to ensure insulation between the laminated iron core pieces. It is provided with an insulating film containing a known resin and an inorganic component used for a conductive electromagnetic steel sheet. Examples of the insulating film include a film composed of dichromate-boric acid-resin, a film composed of phosphate-resin, and a film composed of silica-resin.
【0041】樹脂としてはアクリル系樹脂、アクリルス
チレン系樹脂、アクリルシリコン系樹脂、シリコン系樹
脂、ポリエステル系樹脂、エポキシ系樹脂、フッ素系樹
脂などが使用できる。塗工性(ロールコート性)をよく
するためにエマルジョンタイプの樹脂が好ましい。As the resin, an acrylic resin, an acrylic styrene resin, an acrylic silicon resin, a silicon resin, a polyester resin, an epoxy resin, a fluorine resin, or the like can be used. Emulsion type resins are preferred for improving coating properties (roll coating properties).
【0042】絶縁皮膜の構成内容は乾燥後の皮膜重量に
対する比で、無機成分:50〜99%、樹脂:1〜50
%であればよい。絶縁皮膜の上記以外の構成物質とし
て、アルミナ、ジルコニア、チタニア等の顔料を含有さ
せてもよい。The composition of the insulating film is as follows: relative to the film weight after drying: inorganic component: 50 to 99%; resin: 1 to 50
%. Pigments such as alumina, zirconia, and titania may be contained as constituent materials other than the above for the insulating film.
【0043】絶縁皮膜が薄すぎると絶縁性が不足し鉄損
が大きくなるので、その厚さは0.1μm以上とする。
絶縁皮膜の厚さが0.5μmを超えると占積率が低下し
有効な断面積当たりの磁束密度が低下してモータの効率
が低下する。これを防ぐために絶縁皮膜の厚さは0.5
μm以下とする。好ましくは0.4μm以下である。絶
縁皮膜は鋼板の両面に備えるのがよいが、片面のみでも
構わない。If the insulating film is too thin, the insulating property becomes insufficient and the iron loss increases, so the thickness is set to 0.1 μm or more.
If the thickness of the insulating film exceeds 0.5 μm, the space factor decreases, the effective magnetic flux density per sectional area decreases, and the efficiency of the motor decreases. To prevent this, the thickness of the insulating film should be 0.5
μm or less. Preferably it is 0.4 μm or less. The insulating film is preferably provided on both sides of the steel sheet, but may be provided on only one side.
【0044】酸化皮膜:本発明の電磁鋼板のL方向の磁
束密度を向上させるには、焼鈍前の鋼板のL方向に<0
01>軸を有する核(ゴス核)を源にして、十分な二次
再結晶をおこなわせる必要があるため、二次再結晶焼鈍
は、無方向性電磁鋼板の製造に一般的に用いられている
焼鈍時間が短い連続焼鈍法ではなく、鋼板を高温で長時
間焼鈍できる箱焼鈍法でおこなうのがよい。箱焼鈍前に
は焼付防止用の焼鈍分離剤を鋼板に塗布し、焼鈍後にこ
れを除去するが、除去困難な酸化皮膜が鋼板表面に残存
することがある。Oxide film: In order to improve the magnetic flux density in the L direction of the magnetic steel sheet of the present invention, <0 in the L direction of the steel sheet before annealing.
Since it is necessary to perform sufficient secondary recrystallization from a nucleus having a 01> axis (Goth nucleus), secondary recrystallization annealing is generally used in the production of non-oriented electrical steel sheets. It is preferable to carry out not the continuous annealing method in which the annealing time is short but the box annealing method in which the steel sheet can be annealed at a high temperature for a long time. Before the box annealing, an annealing separating agent for preventing seizure is applied to the steel sheet, and is removed after the annealing. However, an oxide film that is difficult to remove may remain on the steel sheet surface.
【0045】酸化皮膜が過度に厚くなると連続打ち抜き
性が損なわれるうえ、占積率が低下し、特に小型モータ
の効率を大きく損なう。従って酸化膜の厚さは1μm以
下、さらに好ましくは0.4μm以下とするのがよい。If the oxide film is excessively thick, the continuous punching property is impaired, and the space factor is reduced, and especially the efficiency of a small motor is greatly impaired. Therefore, the thickness of the oxide film is preferably 1 μm or less, more preferably 0.4 μm or less.
【0046】硬さ:鋼板が硬すぎると鉄心を打ち抜き加
工する際に金型の摩耗が著しく生産性が損なわれるう
え、製品の破面性状や平坦形状が悪くなる。また、展開
型鉄心を環状に成形する際にはヨーク部外周には引張変
形が加えられるので、電磁鋼板にはこれに耐えるだけの
延性が必要とされる。このため本発明の電磁鋼板は、試
験荷重1kgでのビッカース硬さ(以下、単に「HV」
と記す)で180未満とする必要がある。好ましくはH
Vが175以下がよい。Hardness: If the steel plate is too hard, the die will be significantly worn when the iron core is punched, thereby impairing the productivity and deteriorating the fracture surface and flatness of the product. Further, when the deployable iron core is formed into an annular shape, tensile deformation is applied to the outer periphery of the yoke portion, so that the magnetic steel sheet needs to have ductility enough to withstand this. For this reason, the electrical steel sheet of the present invention has a Vickers hardness at a test load of 1 kg (hereinafter simply referred to as “HV”).
) Must be less than 180. Preferably H
V is preferably 175 or less.
【0047】鋼板が軟らかすぎると打ち抜き破面性状が
悪くなるうえダレも大きくなる。これを避けるためには
鋼板の硬さ(HV)を100以上とする必要がある。好
ましくは110以上である。If the steel sheet is too soft, the properties of the punched fracture surface deteriorate and the sag increases. In order to avoid this, the hardness (HV) of the steel sheet needs to be 100 or more. Preferably it is 110 or more.
【0048】焼きなまし状態である電磁鋼板の硬さと化
学組成とは一定の関係がある。例えば、Si:3.3
%、Al:0.6%、Mn:0.15%を含有した一般
の無方向性電磁鋼板は、HV:200程度、Siを3%
含有する一般の一方向性電磁鋼板のHVは190程度で
ある。There is a certain relationship between the hardness of the magnetic steel sheet in the annealed state and the chemical composition. For example, Si: 3.3
%, Al: 0.6%, Mn: 0.15%, a general non-oriented electrical steel sheet has an HV of about 200 and a Si content of 3%.
The HV of the contained general-oriented electrical steel sheet is about 190.
【0049】電磁鋼板の厚さ:電磁鋼板の厚さは特に限
定するものではないが、打ち抜き加工時や組み立て時の
生産性を確保するために0.20mm以上とするのが良
い。さらに好ましくは0.35mm以上とするのがよ
い。厚さを過度に厚くすると鉄損が大きくなりモータ効
率が低下するので厚さは1.0mm以下、より好ましく
は0.65mm以下とするのがよい。Thickness of electromagnetic steel sheet: The thickness of the electromagnetic steel sheet is not particularly limited, but is preferably 0.20 mm or more in order to secure productivity during punching and assembly. More preferably, it is good to be 0.35 mm or more. If the thickness is excessively large, iron loss increases and motor efficiency decreases, so the thickness is preferably 1.0 mm or less, more preferably 0.65 mm or less.
【0050】製造方法:本発明の鋼板は以下の方法で製
造するのが好適である。上記の化学組成を有する鋼(但
し、sol.Alを0.003%以上、およびNを0.
001%以上含有する鋼)は、転炉、電気炉などで溶製
し、必要があれば真空脱ガスなどの処理を施した溶鋼を
連続鋳造するか、または鋼塊にしてから分塊圧延するこ
とでスラブとされ、熱間圧延される。Manufacturing method: The steel sheet of the present invention is preferably manufactured by the following method. Steel having the above chemical composition (provided that sol.
001% or more) is melted in a converter, an electric furnace, etc., and if necessary, continuously cast molten steel subjected to a process such as vacuum degassing, or formed into a steel ingot and then subjected to slab rolling. The slab is formed by hot rolling.
【0051】熱間圧延の条件は特に限定されるものでは
ないが、熱間圧延に先立ってスラブ加熱を施す場合には
その温度は1050〜1270℃とするのがよい。連続
鋳造後や分塊圧延後のスラブの温度が十分高い場合には
スラブ加熱を施さないで直接熱間圧延しても構わない。
熱間圧延での仕上温度は700〜950℃、巻取温度は
450〜800℃の範囲とするのがよい。The conditions for the hot rolling are not particularly limited, but when slab heating is performed prior to hot rolling, the temperature is preferably set to 1050 to 1270 ° C. If the temperature of the slab after continuous casting or slab rolling is sufficiently high, hot rolling may be performed directly without performing slab heating.
The finishing temperature in hot rolling is preferably in the range of 700 to 950 ° C, and the winding temperature is preferably in the range of 450 to 800 ° C.
【0052】熱間圧延後は、常法に従って酸洗し、その
まま冷間圧延するのが経済性に優れるので好ましいが、
酸洗の前または後に熱延板焼鈍を施しても構わない。熱
延板焼鈍を施す場合の焼鈍温度は、箱焼鈍方式であれば
600℃以上、800℃未満、連続焼鈍方式であれば8
00℃以上、950℃未満とするのが好ましい。After hot rolling, it is preferable to perform pickling in accordance with a conventional method and then perform cold rolling as it is because of excellent economic efficiency.
Before or after pickling, hot rolled sheet annealing may be performed. The annealing temperature for hot-rolled sheet annealing is 600 ° C. or more and less than 800 ° C. for the box annealing method, and 8 for the continuous annealing method.
It is preferable that the temperature is not lower than 00 ° C and lower than 950 ° C.
【0053】冷間圧延は1回の冷間圧延で製品の厚さま
で冷間圧延する方法(1回冷間圧延法)が経済性に優れ
るので好ましいが、中間焼鈍を挟んだ2回の冷間圧延で
おこなう方法(2回冷間圧延法)でも構わない。For cold rolling, a method of performing cold rolling to a product thickness by one cold rolling (one time cold rolling method) is preferable because it is excellent in economical efficiency, but two cold rolling steps including intermediate annealing are preferable. A method of performing rolling (twice cold rolling) may be used.
【0054】冷間圧延の圧下率は特に限定するものでは
ないが、65%に満たない場合には二次再結晶が不安定
となる場合があるので、65%以上とするのが好まし
い。65%に満たない場合には、二次再結晶時にゴス方
位の結晶粒が成長するのに好適な{111}方位の強い
一次再結晶集合組織が形成できないからである。より好
ましくは70%以上である。Although the rolling reduction of the cold rolling is not particularly limited, if the rolling reduction is less than 65%, the secondary recrystallization may be unstable. If the content is less than 65%, a strong primary recrystallized texture having a {111} orientation suitable for growing crystal grains with a Goss orientation during secondary recrystallization cannot be formed. It is more preferably at least 70%.
【0055】冷間圧延圧下率が85%を超えると一次再
結晶集合組織のゴス方位が少なくなり、二次再結晶が不
安定となる場合があるので圧下率は85%以下とするの
が好ましい。より好ましくは83%以下である。2回冷
間圧延法の場合の圧下率は、熱延板から最終製品の厚さ
までの総圧下率を上記の範囲とするのがよい。If the rolling reduction of the cold rolling exceeds 85%, the Goss orientation of the primary recrystallization texture decreases, and the secondary recrystallization may become unstable. Therefore, the rolling reduction is preferably 85% or less. . It is more preferably at most 83%. The rolling reduction in the case of the double cold rolling method is preferably such that the total rolling reduction from the hot-rolled sheet to the thickness of the final product falls within the above range.
【0056】一次再結晶焼鈍温度は860〜980℃の
範囲とする。焼鈍温度が860℃に満たない場合には一
次再結晶粒径が小さく、ゴス方位に集積した二次再結晶
が生じない。好ましくは880℃以上である。焼鈍温度
が980℃を超える場合には、一次再結晶粒径が大きく
なりすぎて、次工程の二次再結晶焼鈍時に二次再結晶が
生じにくい。好ましくは960℃以下である。The primary recrystallization annealing temperature is in the range of 860 to 980 ° C. When the annealing temperature is lower than 860 ° C., the primary recrystallized grain size is small, and secondary recrystallization accumulated in the Goss orientation does not occur. Preferably it is 880 ° C or higher. If the annealing temperature exceeds 980 ° C., the primary recrystallization particle size becomes too large, and secondary recrystallization hardly occurs during secondary recrystallization annealing in the next step. Preferably it is 960 ° C or lower.
【0057】焼鈍時間(均熱時間)は5秒以上、10分
以下とするのがよい。焼鈍時間が5秒に満たない場合に
は鋼板内での一次再結晶粒径がばらついて安定した二次
再結晶が生じにくい。また、10分を超える場合には一
次再結晶粒径のばらつき抑制の効果が飽和するために経
済的に無意味である。The annealing time (soaking time) is preferably not shorter than 5 seconds and not longer than 10 minutes. If the annealing time is less than 5 seconds, the primary recrystallized grain size in the steel sheet varies, and stable secondary recrystallization hardly occurs. If the time exceeds 10 minutes, the effect of suppressing the variation in the primary recrystallized grain size is saturated, so that it is economically meaningless.
【0058】一次再結晶焼鈍温度への加熱速度は、後述
する二次再結晶焼鈍で安定した二次再結晶を生じさせる
ために、1℃/秒以上の急速加熱とするのがよい。この
ためには、連続焼鈍方法で焼鈍するのが好適である。The heating rate to the primary recrystallization annealing temperature is preferably a rapid heating of 1 ° C./sec or more in order to generate a stable secondary recrystallization in the secondary recrystallization annealing described later. For this purpose, it is preferable to perform annealing by a continuous annealing method.
【0059】二次再結晶焼鈍温度は750℃以上、Ac
1変態点以下とする。二次再結晶焼鈍の目的は適度のゴ
ス方位集積度を持つ結晶組織を得ることにある。従って
二次再結晶が生じる温度域でインヒビター強度を適切に
制御することが重要である。The secondary recrystallization annealing temperature is at least 750 ° C.
Not more than one transformation point. The purpose of the secondary recrystallization annealing is to obtain a crystal structure having an appropriate degree of Goss orientation accumulation. Therefore, it is important to appropriately control the inhibitor strength in the temperature range where secondary recrystallization occurs.
【0060】二次再結晶焼鈍温度が750℃に満たない
場合には、インヒビター効果が強すぎて二次再結晶が生
じない。好ましくは800℃以上である。二次再結晶焼
鈍温度がAc1変態点を超えるとオーステナイト変態が
生じるうえ、インヒビター効果も弱くなるためにゴス方
位に集積した二次再結晶が生じないのでよくない。好ま
しくは950℃以下、さらに好ましくは900℃以下が
よい。When the secondary recrystallization annealing temperature is lower than 750 ° C., the inhibitor effect is too strong to cause secondary recrystallization. Preferably it is 800 degreeC or more. If the secondary recrystallization annealing temperature exceeds the Ac1 transformation point, austenite transformation occurs and the inhibitor effect is weakened, so that secondary recrystallization accumulated in the Goss orientation does not occur. Preferably it is 950 ° C. or lower, more preferably 900 ° C. or lower.
【0061】二次再結晶焼鈍の焼鈍時間は4〜100時
間とするのがよい。焼鈍時間が4時間に満たない場合に
は、二次再結晶がコイル全長全幅で均一かつ十分に発達
できないことがある。より好ましくは8時間以上がよ
い。100時間以内の保持で二次再結晶は十分に完了す
る。より好ましくは80時間以下である。The annealing time of the secondary recrystallization annealing is preferably 4 to 100 hours. If the annealing time is less than 4 hours, secondary recrystallization may not be uniform and sufficiently developed over the entire length of the coil. More preferably, it is 8 hours or more. Secondary recrystallization is sufficiently completed within 100 hours. More preferably, it is 80 hours or less.
【0062】二次再結晶焼鈍の雰囲気は、窒素含有量が
5体積%以下、残部が水素ガスおよび/または窒素を除
く不活性ガスからなる雰囲気とする。窒素含有量が5体
積%を超える場合には、雰囲気ガスから鋼板への窒化が
生じてインヒビター効果が強くなり、ゴス方位への集積
度が過度に大きい二次再結晶が生じる。この場合には、
L方向の磁気特性は良好であるが、T方向のそれは劣化
し、所望の磁気特性のバランスが得られない。好ましく
は窒素含有量は3体積%以下とするのがよい。The atmosphere for the secondary recrystallization annealing is an atmosphere having a nitrogen content of 5% by volume or less and a balance of hydrogen gas and / or an inert gas other than nitrogen. If the nitrogen content exceeds 5% by volume, nitriding from the atmospheric gas to the steel sheet occurs, the inhibitor effect becomes strong, and secondary recrystallization with an excessively high degree of integration in the Goss orientation occurs. In this case,
Although the magnetic properties in the L direction are good, those in the T direction deteriorate and the desired balance of magnetic properties cannot be obtained. Preferably, the nitrogen content is 3% by volume or less.
【0063】窒素以外の雰囲気ガス組成は水素ガスがよ
い。100%水素ガス(工業的な意味での純水素雰囲
気)を用いても構わない。これは、二次再結晶が生じる
750〜950℃の温度域でインヒビターとなる析出物
が焼鈍の進行にしたがって徐々に粗大化するとともに、
脱窒反応も生じるため、比較的弱いインヒビター効果が
生じて、適度なゴス方位への集積度を持つ二次再結晶が
生じるからである。なおこの場合でも、経済性の観点か
ら窒化が生じにくい700℃未満の温度域を100%窒
素ガスあるいは水素と窒素の混合ガスとしても構わな
い。The atmosphere gas composition other than nitrogen is preferably hydrogen gas. 100% hydrogen gas (a pure hydrogen atmosphere in an industrial sense) may be used. This is because, in the temperature range of 750 to 950 ° C. where secondary recrystallization occurs, the precipitate serving as an inhibitor gradually becomes coarser as the annealing progresses,
This is because a denitrification reaction also occurs, so that a relatively weak inhibitor effect occurs, and secondary recrystallization having an appropriate degree of integration in the Goss orientation occurs. Even in this case, a temperature range of less than 700 ° C. in which nitriding hardly occurs from the viewpoint of economy may be 100% nitrogen gas or a mixed gas of hydrogen and nitrogen.
【0064】二次再結晶焼鈍の前に、鋼板間での焼付を
防止するために、公知の焼鈍分離剤を鋼板の両面または
片面に塗布してもよい。塗布方法は、スラリー状にして
塗布する方法や、粉体を静電塗布する方法などがあるが
いずれでも構わない。また、無機系の絶縁コーティング
を鋼板の片面あるいは両面に塗布して、焼鈍分離剤の機
能を持たせてもよい。Prior to the secondary recrystallization annealing, a known annealing separator may be applied to both sides or one side of the steel sheet to prevent seizure between the steel sheets. As a coating method, there are a method of applying in a slurry state, a method of electrostatically applying powder, and the like. Further, an inorganic insulating coating may be applied to one or both surfaces of the steel sheet to have a function of an annealing separator.
【0065】二次再結晶焼鈍後の工程としては通常の方
向性電磁鋼板と同様に、焼鈍分離剤を除去し、必要によ
り公知の方法で平坦化焼鈍をおこなった後、少なくとも
一方の面に上述の無機成分と樹脂を含有する絶縁皮膜組
成物を乾燥膜厚が0.1〜0.5μmとなるようにスプ
レー法、浸漬法など公知の方法で塗布し、公知の方法で
乾燥させるのがよい。In the step after the secondary recrystallization annealing, as in the case of a normal grain-oriented electrical steel sheet, the annealing separator is removed, and if necessary, flattening annealing is performed by a known method. It is preferred that the insulating coating composition containing the inorganic component and the resin is applied by a known method such as a spray method or an immersion method so that the dry film thickness becomes 0.1 to 0.5 μm, and dried by a known method. .
【0066】本発明の電磁鋼板は優れた磁気特性と打ち
抜き性を兼ね備えているので、分割鉄心を備えたモータ
のみならず、EI鉄心などトランス用素材としても好適
である。Since the magnetic steel sheet of the present invention has both excellent magnetic properties and punching properties, it is suitable not only for motors having split iron cores but also for transformer materials such as EI iron cores.
【0067】[0067]
【実施例】(実施例1)表1に示す種々の化学組成を有
する鋼を転炉で溶製し、真空脱ガス処理して成分調整し
た後、連続鋳造してスラブとした。EXAMPLES (Example 1) Steels having various chemical compositions shown in Table 1 were smelted in a converter, vacuum degassed, adjusted for components, and continuously cast into slabs.
【0068】[0068]
【表1】 [Table 1]
【0069】これらのスラブを熱間圧延して厚さ:2.
3mmの熱延板とし、酸洗して脱スケールした後、厚
さ:0.50mmに冷間圧延した。次いで、加熱速度1
5℃/秒で900℃に加熱して30秒間保持した後冷却
する一次再結晶焼鈍を施した後、アルミナを主成分とす
る焼鈍分離剤を塗布し、水素100体積%の雰囲気で加
熱速度:40℃/時で850℃に加熱し24時間保持し
て炉冷する二次再結晶焼鈍を施した。These slabs were hot-rolled to a thickness of 2.
A hot-rolled sheet of 3 mm was formed, pickled, descaled, and then cold-rolled to a thickness of 0.50 mm. Then, heating rate 1
After performing primary recrystallization annealing in which the material is heated to 900 ° C. at 5 ° C./second, held for 30 seconds, and then cooled, an annealing separating agent containing alumina as a main component is applied, and the heating rate is set in an atmosphere of 100% by volume of hydrogen. A second recrystallization annealing was performed in which the temperature was raised to 850 ° C. at 40 ° C./hour, held for 24 hours, and cooled in a furnace.
【0070】その後焼鈍分離剤を除去し、820℃で3
0秒間保持する平坦化のための連続焼鈍をおこなった。
連続焼鈍後の鋼板表面には酸化皮膜は観察されなかっ
た。平坦化焼鈍後、重クロム酸マグネシウムとホウ酸を
乾燥後の皮膜に対して80重量%、アクリルエマルジョ
ン樹脂を20重量%含む絶縁皮膜組成物を乾燥膜厚が
0.4μmになるように両面に塗布して乾燥し、種々の
磁気特性を有する電磁鋼板を得た。Thereafter, the annealing separating agent was removed,
Continuous annealing for flattening for 0 second was performed.
No oxide film was observed on the steel sheet surface after continuous annealing. After the flattening annealing, an insulating coating composition containing 80% by weight of magnesium dichromate and boric acid and 20% by weight of an acrylic emulsion resin with respect to the dried film is applied on both sides so that the dry film thickness becomes 0.4 μm. It was applied and dried to obtain electromagnetic steel sheets having various magnetic properties.
【0071】これらの電磁鋼板の硬度を測定すると共
に、L方向とT方向のB50をJIS−C2550の規定
に従って測定した。エプスタイン試験片には一般のフル
プロセス無方向性電磁鋼板と同様に応力除去焼きなまし
を施さなかった。The hardness of these magnetic steel sheets was measured, and the B 50 values in the L and T directions were measured in accordance with JIS-C2550. Epstein test pieces were not subjected to stress relief annealing as in general full-process non-oriented electrical steel sheets.
【0072】鋼板の打ち抜き性を、打ち抜き片の寸法が
15mmの正方形であり、ポンチとダイのクリアランス
を鋼板厚さの5%としたSKD11製の打ち抜き工具と
市販の打ち抜き油を使用し、打ち抜き速度が350スト
ローク/分である連続打ち抜きをおこない、打ち抜き片
のカエリ高さが50μmに達するまでの打ち抜き回数を
求めて以下の基準で評価し、打ち抜き回数が100万回
以上である場合を良好と判断した。The punching performance of the steel plate was determined by using a punching tool made of SKD11 having a punched piece size of 15 mm square with a clearance of punch and die of 5% of the steel plate thickness and a commercially available punching oil. Is performed at 350 strokes / minute, and the number of punches until the burrow height of the punched piece reaches 50 μm is determined and evaluated according to the following criteria. A case where the number of punches is 1,000,000 or more is judged to be good. did.
【0073】 ◎:200万回以上、 ○:100万回以上、200万回未満、 ×:100万回未満。◎: 2,000,000 times or more, :: 1,000,000 times or more, less than 2,000,000 times, ×: Less than 1,000,000 times.
【0074】得られた電磁鋼板の性能を表1に示す。表
1に示された結果からわかるように、化学組成が本発明
の規定する条件を満足する鋼は良好な磁気特性と優れた
打ち抜き性を備えていた。Table 1 shows the performance of the obtained electromagnetic steel sheet. As can be seen from the results shown in Table 1, the steel whose chemical composition satisfies the conditions specified by the present invention had good magnetic properties and excellent punchability.
【0075】(実施例2)表1に記載の鋼の内で、S
i:1.8%、Mn:0.6%前後を含有する鋼a、g
およびiのスラブを実施例1に記載したのと同様の条件
で、熱間圧延し、酸洗し、冷間圧延し、一次再結晶焼鈍
を施し、アルミナを主成分とする焼鈍分離剤を塗布し、
二次再結晶焼鈍を施した。一部のコイルは酸洗前に熱延
板焼鈍を施した。その後焼鈍分離剤を除去し、実施例1
に記載したのと同様の条件で平坦化焼鈍をおこない、同
様の絶縁皮膜組成物を種々の乾燥膜厚になるように塗布
し、乾燥して種々の電磁鋼板を得た。得られた電磁鋼板
の硬さ(HV)はいずれも145程度であった。これら
の電磁鋼板の磁束密度を実施例1に記載したのと同様の
条件で測定した。(Example 2) Of the steels listed in Table 1, S
Steels a and g containing i: 1.8% and Mn: around 0.6%
And slabs of i and i were hot-rolled, pickled, cold-rolled, subjected to primary recrystallization annealing, and coated with an alumina-based annealing separator under the same conditions as described in Example 1. And
Secondary recrystallization annealing was performed. Some coils were subjected to hot rolled sheet annealing before pickling. Then, the annealing separator was removed, and
, Flattening annealing was performed under the same conditions as described above, and the same insulating film composition was applied to various dry film thicknesses and dried to obtain various magnetic steel sheets. The hardness (HV) of each of the obtained magnetic steel sheets was about 145. The magnetic flux densities of these magnetic steel sheets were measured under the same conditions as described in Example 1.
【0076】占積率をJIS−C2550に規定される
方法に従って測定し、98.5%以上を◎、98.5未
満、98.0%以上を○、98%未満を×として評価し
た。The space factor was measured in accordance with the method specified in JIS-C2550, and 98.5% or more was evaluated as ◎, less than 98.5%, 98.0% or more as ○, and less than 98% as x.
【0077】得られた種々の電磁鋼板から図3に示す形
状のI型分割鉄心片を打ち抜いた。ティースは、その磁
化方向が電磁鋼板のL方向に平行になるようにして打ち
抜いた。ティースに巻線を施し、リング状のヨークと組
み合わせてI型分割鉄心を作製し、これを用いて出力が
750wである3相4極の、回転子表面に永久磁石を配
置したモータである表面磁石型モータを作製した。これ
らのモータのモータ効率として、3600rpmにおけ
る入力エネルギーに対する出力エネルギーの比を調査
し、この比が84%以上であった場合を極めて良好
(◎)、84%未満、83%以上を良好(○)、83%
未満を不良(×)として評価した。入力エネルギーをモ
ータに加えられる電圧と電流から、出力エネルギーをト
ルクと回転数から計算した。得られた結果を表2に示
す。From the various magnetic steel sheets obtained, I-shaped split iron core pieces having the shape shown in FIG. 3 were punched. The teeth were punched out so that their magnetization directions were parallel to the L direction of the magnetic steel sheet. A surface is a motor in which permanent magnets are arranged on a rotor surface of a three-phase four-pole rotor having an output of 750 watts by using a tooth wound and combined with a ring-shaped yoke to produce an I-shaped split core. A magnet type motor was manufactured. As the motor efficiency of these motors, the ratio of the output energy to the input energy at 3600 rpm was investigated, and when this ratio was 84% or more, it was very good (◎), less than 84%, and 83% or more was good (○). , 83%
Less than was evaluated as poor (x). Input energy was calculated from voltage and current applied to the motor, and output energy was calculated from torque and rotation speed. Table 2 shows the obtained results.
【0078】[0078]
【表2】 [Table 2]
【0079】表2に示された結果からわかるように、L
方向のB50と占積率が優れた電磁鋼板を使用したモータ
は優れたモータ効率を有していた。また、試験番号1と
6のモータについて、半径10mmのプーリーに糸を巻
き付けて摩擦ブレーキとする方法で駆動トルクを測定し
た結果、本発明の規定する条件を満たす電磁鋼板を使用
した試験番号1は試験番号6と比較して3%のトルク増
加が認められた。As can be seen from the results shown in Table 2, L
Motor using good electromagnetic steel sheet the direction of B 50 and lamination factor had an excellent motor efficiency. In addition, as for the motors of Test Nos. 1 and 6, the drive torque was measured by winding a thread around a pulley having a radius of 10 mm to form a friction brake. As a result, Test No. 1 using an electromagnetic steel sheet satisfying the conditions specified in the present invention was A 3% increase in torque compared to Test No. 6 was observed.
【0080】(実施例3)表1に記載のSiを1.4
%、Mnを0.17%含有する鋼hのスラブを熱間圧延
して厚さが2.5mmの熱延コイルを得た。これを酸洗
し、冷間圧延して0.5mm厚とし、水素75体積%、
窒素25体積%、露点50℃の雰囲気で90秒保持する
一次再結晶焼鈍をし、MgOを乾燥固形分換算で80重
量%含有するスラリーを乾燥固形分換算で5g/m2 と
なるように両面に塗布、乾燥させて焼鈍分離剤とした
後、水素雰囲気中で880℃で48時間保持する二次再
結晶焼鈍をおこなった。その後50℃、10%塩酸で酸
洗して、表面に浮いていた焼鈍分離剤を除去した。この
時点で鋼板表面には、フォルステライトを主成分とする
酸化膜が約3.2μm残存していた。この後、40℃、
10%のフッ化水素酸に鋼板を浸漬し、浸漬時間を種々
変更して酸化皮膜を溶解し、種々の厚さの酸化皮膜を有
する電磁鋼板を得た。その後平坦化を目的とした焼鈍を
おこない、実施例1に記載したのと同様の組成で乾燥膜
厚が0.2μmである絶縁皮膜を施した。Example 3 Si shown in Table 1 was replaced with 1.4.
%, And a slab of steel h containing 0.17% of Mn was hot-rolled to obtain a hot-rolled coil having a thickness of 2.5 mm. This is pickled, cold-rolled to a thickness of 0.5 mm, hydrogen 75% by volume,
Primary recrystallization annealing was performed for 90 seconds in an atmosphere having a nitrogen content of 25% by volume and a dew point of 50 ° C., and a slurry containing 80% by weight of MgO in terms of dry solid content was adjusted to 5 g / m 2 in terms of dry solid content. After coating and drying to obtain an annealing separator, secondary recrystallization annealing was performed in a hydrogen atmosphere at 880 ° C. for 48 hours. Thereafter, the resultant was washed with 50% and 10% hydrochloric acid to remove the annealing separator floating on the surface. At this point, about 3.2 μm of an oxide film containing forsterite as a main component remained on the surface of the steel sheet. After this, at 40 ° C,
The steel sheet was immersed in 10% hydrofluoric acid, the immersion time was changed variously to dissolve the oxide film, and an electromagnetic steel sheet having oxide films of various thicknesses was obtained. Thereafter, annealing for flattening was performed, and an insulating film having the same composition as described in Example 1 and a dry film thickness of 0.2 μm was applied.
【0081】また、従来例として、Si:3.2%、M
n:0.10%含有し、両面に厚さ:3.0μmの燐酸
とコロイダルシリカからなる無機皮膜を有する厚さ0.
35mmの市販の一方向性電磁鋼板と、Si:2.0
%、Mn:0.20%含有し、両面に厚さ:0.35μ
mの重クロム酸マグネシウム−ほう酸−アクリル樹脂か
らなる絶縁皮膜を有する厚さ:0.50mmの市販の無
方向性電磁鋼板も供試材として使用した。As a conventional example, Si: 3.2%, M:
n: 0.10%, having a thickness of 3.0 μm on both sides having an inorganic coating of 3.0 μm phosphoric acid and colloidal silica.
35 mm commercially available unidirectional electrical steel sheet and Si: 2.0
%, Mn: 0.20%, thickness on both sides: 0.35μ
A commercially available non-oriented electrical steel sheet having a thickness of 0.50 mm and an insulating film made of m-magnesium dichromate-boric acid-acrylic resin was also used as a test material.
【0082】これらの電磁鋼板を用いて実施例2に記載
したのと同様のI型分割鉄心を有する3相4極の表面磁
石型モータを作製し、実施例2に記載したのと同様の条
件でモータ効率を調査した。また、打ち抜き性を実施例
1に記載したのと同様の方法で調査した。得られた結果
を表3に示した。Using these magnetic steel sheets, a three-phase four-pole surface magnet type motor having an I-type split iron core similar to that described in Example 2 was manufactured, and under the same conditions as described in Example 2. The motor efficiency was investigated. Further, the punching property was investigated by the same method as described in Example 1. Table 3 shows the obtained results.
【0083】[0083]
【表3】 [Table 3]
【0084】表3に示された結果からわかるように、酸
化皮膜の厚さが1.0μm以下の場合に打ち抜き性とモ
ータ効率が良好であった。市販の一方向性電磁鋼板は打
ち抜き性が良くなく、市販の無方向性電磁鋼板はモータ
効率が良くなかった。As can be seen from the results shown in Table 3, when the thickness of the oxide film was 1.0 μm or less, the punching property and the motor efficiency were good. The commercially available non-oriented electrical steel sheet had poor punching properties, and the commercially available non-oriented electrical steel sheet had poor motor efficiency.
【0085】(実施例4)実施例1に記載の鋼gのスラ
ブを1180℃に加熱して仕上温度860℃で熱間圧延
し、厚さが2.3mmの熱延鋼板を得た。また鋼hのス
ラブを1150℃に加熱して仕上温度840℃、巻取温
度530℃で熱間圧延し、厚さ:2.3mmの熱延板を
得た。Ac1変態点は、鋼g、鋼hとも1000℃程度
であった。これらの熱延鋼板を酸洗し、厚さ:0.50
mmに冷間圧延し、種々の温度で連続焼鈍する一次再結
晶焼鈍を施した。焼鈍温度への加熱速度は、鋼gは加熱
速度10℃/秒、鋼hは加熱速度15℃/秒とした。そ
の後、アルミナを主体とする焼鈍分離剤を塗布した後、
水素雰囲気または水素−窒素混合雰囲気中で種々の温度
に加熱し、箱焼鈍法による二次再結晶焼鈍を施した。そ
の後焼鈍分離剤を除去し、820℃で30秒間保持する
平坦化のための連続焼鈍をおこない、絶縁コーティング
を施した。これらの鋼板の硬さ(HV)は、鋼gでは1
45前後、鋼hでは124前後であった。これらの鋼板
のL方向とT方向の磁気特性を実施例1に記載したのと
同様の方法で測定した。表4に焼鈍条件と得られた鋼板
の磁気特性を示した。Example 4 The slab of steel g described in Example 1 was heated to 1180 ° C. and hot-rolled at a finishing temperature of 860 ° C. to obtain a hot-rolled steel sheet having a thickness of 2.3 mm. The slab of steel h was heated to 1150 ° C. and hot-rolled at a finishing temperature of 840 ° C. and a winding temperature of 530 ° C. to obtain a hot-rolled sheet having a thickness of 2.3 mm. The Ac1 transformation point was about 1000 ° C. for both steel g and steel h. These hot-rolled steel sheets are pickled and have a thickness of 0.50.
mm, and subjected to primary recrystallization annealing in which continuous annealing was performed at various temperatures. The heating rate to the annealing temperature was set to 10 ° C./sec for steel g and to 15 ° C./sec for steel h. Then, after applying an annealing separator mainly composed of alumina,
It was heated to various temperatures in a hydrogen atmosphere or a hydrogen-nitrogen mixed atmosphere and subjected to secondary recrystallization annealing by a box annealing method. Thereafter, the annealing separator was removed, and continuous annealing was performed for flattening at 820 ° C. for 30 seconds, and an insulating coating was applied. The hardness (HV) of these steel plates is 1 for steel g.
It was around 45 and around 124 for steel h. The magnetic properties of these steel sheets in the L and T directions were measured in the same manner as described in Example 1. Table 4 shows the annealing conditions and the magnetic properties of the obtained steel sheet.
【0086】[0086]
【表4】 [Table 4]
【0087】表4に示されているように、焼鈍条件が好
ましい範囲内であった試験番号32、35、36、37
および39では良好な磁気特性のものが得られた。これ
に対し一次再結晶焼鈍または二次再結晶焼鈍の条件が好
ましい範囲でなかったものは、安定した二次再結晶が生
じなかったためにL方向の特性が良くなかった。二次再
結晶焼鈍雰囲気のN濃度が高かった試験番号40では、
L方向のB50は優れていたがT方向のB50が良くなかっ
た。As shown in Table 4, Test Nos. 32, 35, 36, and 37 in which the annealing conditions were within the preferable range.
In Examples 39 and 39, good magnetic properties were obtained. On the other hand, when the conditions of the primary recrystallization annealing or the secondary recrystallization annealing were not in the preferable ranges, the characteristics in the L direction were not good because stable secondary recrystallization did not occur. In Test No. 40 where the N concentration in the secondary recrystallization annealing atmosphere was high,
L direction of B 50 was excellent but not good T direction of B 50.
【0088】[0088]
【発明の効果】本発明の電磁鋼板は、従来の無方向性電
磁鋼板に比べてL方向の磁気特性が大幅に良好であるの
で、モータやトランスのエネルギー変換効率の改善に有
効な鋼板である。本発明の電磁鋼板は打ち抜き性も優れ
ているので、特に分割型鉄心を備えた小型モータの効率
改善を生産性良く実現できる。The electromagnetic steel sheet of the present invention is a steel sheet effective for improving the energy conversion efficiency of motors and transformers because the magnetic properties in the L direction are significantly better than conventional non-oriented electrical steel sheets. . Since the electromagnetic steel sheet of the present invention has excellent punching properties, it is possible to improve the efficiency of a small motor having a split iron core with high productivity.
【図1】モータのステータ鉄心であって、電磁鋼板から
一体として打ち抜かれた鉄心片の例を示す概念図であ
る。FIG. 1 is a conceptual diagram showing an example of a stator core of a motor, which is an iron core piece integrally punched from an electromagnetic steel plate.
【図2】ヨーク部とティース部がT型に配置された鉄心
片を組み合わせて構成される分割型鉄心片の例を示す概
念図である。FIG. 2 is a conceptual diagram illustrating an example of a split core piece configured by combining iron pieces in which a yoke portion and a tooth portion are arranged in a T-shape.
【図3】リング状のヨーク部とI形状のティース部で構
成される分割型鉄心片の例を示す概念図である。FIG. 3 is a conceptual diagram showing an example of a split-type core piece composed of a ring-shaped yoke portion and an I-shaped tooth portion.
【図4】(a)は複数のT型鉄心片のヨーク部を直線状
に連ねて打ち抜き加工した鉄心片の例を示す概念図であ
る。(b)は前記展開型分割鉄心片のティース部に巻線
を施し、全体を円環状に折り曲げて得た鉄心の概念図で
ある。FIG. 4A is a conceptual view showing an example of an iron core piece obtained by punching out a plurality of T-shaped iron core pieces by connecting the yokes in a straight line. (B) is a conceptual diagram of an iron core obtained by winding a tooth portion of the above-mentioned split-type split iron core piece and bending the whole into an annular shape.
1:ロータ、2:巻線、3:ヨーク部、4:ティース
部、5:磁束、6:T型鉄心片、7:リング状のヨーク
部品、8:I型のティース部品、9:T型鉄心片、1
0:T型鉄心片のヨーク部、11:T型鉄心片のティー
ス部。1: rotor, 2: winding, 3: yoke, 4: teeth, 5: magnetic flux, 6: T-shaped iron core, 7: ring-shaped yoke, 8: I-type teeth, 9: T-type Iron core piece, 1
0: Yoke part of T-shaped iron core piece, 11: Teeth part of T-shaped iron core piece.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 光代 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 屋鋪 裕義 和歌山市湊1850番地 住友金属工業株式会 社和歌山製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuyo Maeda 4-5-33 Kitahama, Chuo-ku, Osaka City Inside Sumitomo Metal Industries Co., Ltd. (72) Inventor Hiroyoshi Yasu 1850 Minato, Wakayama Sumitomo Metal Industries, Ltd. Wakayama Works
Claims (3)
以下、Si:1.0%以上、3.0%未満、Mn:0〜
0.80%、P:0〜0.10%、S:0.030%以
下、sol.Al:0.020%以下、N:0.010
%以下を含有し、残部がFeおよび不可避的不純物から
なり、厚さが0.1μm以上0.5μm以下である樹脂
を含有した絶縁皮膜を少なくとも片面に備えた電磁鋼板
であって、圧延方向の磁束密度B50が1.85T以上、
ビッカース硬さが100以上、180未満であることを
特徴とする電磁鋼板。1. The chemical composition in weight%, C: 0.010%
Hereinafter, Si: 1.0% or more and less than 3.0%, Mn: 0 to 0%
0.80%, P: 0 to 0.10%, S: 0.030% or less, sol. Al: 0.020% or less, N: 0.010
% Or less, the balance being Fe and unavoidable impurities, and having at least one side of an insulating film containing a resin having a thickness of 0.1 μm or more and 0.5 μm or less, wherein the magnetic flux density B 50 is more than 1.85 T,
An electromagnetic steel sheet having a Vickers hardness of 100 or more and less than 180.
厚さが1μm以下であることを特徴とする請求項1に記
載の電磁鋼板。2. The magnetic steel sheet according to claim 1, wherein the thickness of the oxide film between the base material of the steel sheet and the insulating film is 1 μm or less.
以下、Si:1.0以上、3.0%未満、Mn:0〜
0.80%、P:0〜0.10%、S:0.030%以
下、sol.Al:0.003〜0.020%、N:
0.001〜0.010%を含有し、残部がFeおよび
不可避的不純物からなる鋼のスラブを熱間圧延し、冷間
圧延し、860〜980℃に加熱して一次再結晶焼鈍を
施し、窒素含有量が5体積%以下、残部が水素ガスおよ
び/または窒素を除く不活性ガスからなる雰囲気中で7
50℃以上、Ac1変態点以下に加熱して二次再結晶焼
鈍した後、樹脂を含有する絶縁皮膜を施すことを特徴と
する請求項1または2に記載の電磁鋼板の製造方法。3. The chemical composition in weight%, C: 0.010%
Hereinafter, Si: 1.0 or more and less than 3.0%, Mn: 0 to 0
0.80%, P: 0 to 0.10%, S: 0.030% or less, sol. Al: 0.003 to 0.020%, N:
A steel slab containing 0.001 to 0.010%, the balance being Fe and unavoidable impurities, is hot-rolled, cold-rolled, heated to 860 to 980 ° C., and subjected to primary recrystallization annealing, In an atmosphere having a nitrogen content of 5% by volume or less and a balance of hydrogen gas and / or an inert gas other than nitrogen,
The method for producing an electromagnetic steel sheet according to claim 1 or 2, wherein an insulating film containing a resin is applied after heating to 50 ° C or higher and below the Ac1 transformation point for secondary recrystallization annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18939999A JP3799878B2 (en) | 1998-07-16 | 1999-07-02 | Electrical steel sheet and method for manufacturing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-202002 | 1998-07-16 | ||
JP20200298 | 1998-07-16 | ||
JP18939999A JP3799878B2 (en) | 1998-07-16 | 1999-07-02 | Electrical steel sheet and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000087139A true JP2000087139A (en) | 2000-03-28 |
JP3799878B2 JP3799878B2 (en) | 2006-07-19 |
Family
ID=26505452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18939999A Expired - Fee Related JP3799878B2 (en) | 1998-07-16 | 1999-07-02 | Electrical steel sheet and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3799878B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002302745A (en) * | 2001-04-06 | 2002-10-18 | Kawasaki Steel Corp | Magnetic steel sheet for iron core |
JP2002309379A (en) * | 2001-04-12 | 2002-10-23 | Kawasaki Steel Corp | Electrical steel sheet with insulating coating for excellent workability |
JP2007291491A (en) * | 2006-03-28 | 2007-11-08 | Jfe Steel Kk | Non-oriented electrical steel sheet |
US7371291B2 (en) | 2001-01-19 | 2008-05-13 | Jfe Steel Corporation | Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics |
JP2015122891A (en) * | 2013-12-24 | 2015-07-02 | Jfeスチール株式会社 | Motor core and manufacturing method thereof |
JP2015122893A (en) * | 2013-12-24 | 2015-07-02 | Jfeスチール株式会社 | Manufacturing method of motor core |
EP2980241A4 (en) * | 2013-03-29 | 2016-11-23 | Kobe Steel Ltd | STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE AND EXCELLENT MAGNETIC PROPERTIES AND PROCESS FOR PRODUCING THE SAME |
-
1999
- 1999-07-02 JP JP18939999A patent/JP3799878B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7371291B2 (en) | 2001-01-19 | 2008-05-13 | Jfe Steel Corporation | Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics |
JP2002302745A (en) * | 2001-04-06 | 2002-10-18 | Kawasaki Steel Corp | Magnetic steel sheet for iron core |
JP2002309379A (en) * | 2001-04-12 | 2002-10-23 | Kawasaki Steel Corp | Electrical steel sheet with insulating coating for excellent workability |
JP2007291491A (en) * | 2006-03-28 | 2007-11-08 | Jfe Steel Kk | Non-oriented electrical steel sheet |
EP2980241A4 (en) * | 2013-03-29 | 2016-11-23 | Kobe Steel Ltd | STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE AND EXCELLENT MAGNETIC PROPERTIES AND PROCESS FOR PRODUCING THE SAME |
US10593451B2 (en) | 2013-03-29 | 2020-03-17 | Kobe Steel, Ltd. | Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor |
JP2015122891A (en) * | 2013-12-24 | 2015-07-02 | Jfeスチール株式会社 | Motor core and manufacturing method thereof |
JP2015122893A (en) * | 2013-12-24 | 2015-07-02 | Jfeスチール株式会社 | Manufacturing method of motor core |
Also Published As
Publication number | Publication date |
---|---|
JP3799878B2 (en) | 2006-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5437476B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP4855222B2 (en) | Non-oriented electrical steel sheet for split core | |
WO2018135414A1 (en) | Non-oriented electromagnetic steel sheet and production method therefor | |
US11802319B2 (en) | Double oriented electrical steel sheet and method for manufacturing same | |
JP5671872B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP3307872B2 (en) | Motor for electric vehicle using non-oriented electrical steel sheet and method of manufacturing the electrical steel sheet | |
JP5447167B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2012036459A (en) | Non-oriented magnetic steel sheet and production method therefor | |
JP5671871B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP4265166B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP2012036456A (en) | Non-oriented magnetic steel sheet and production method therefor | |
JP4311127B2 (en) | High tension non-oriented electrical steel sheet and method for producing the same | |
JP3799878B2 (en) | Electrical steel sheet and method for manufacturing the same | |
JP2910508B2 (en) | Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics | |
JP2011174103A (en) | Magnetic material for iron core, method for producing the same, and iron core | |
JP4613414B2 (en) | Electrical steel sheet for motor core and method for manufacturing the same | |
JP3835216B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JPH0888114A (en) | Non-oriented electrical steel sheet manufacturing method | |
JP3488333B2 (en) | Low iron loss grain-oriented electrical steel sheet | |
JP2002294416A (en) | Low iron loss grain-oriented electrical steel sheet and its manufacturing method and manufacturing apparatus | |
JPH0860311A (en) | Thin non-oriented electrical steel sheet with low iron loss and method of manufacturing the same | |
CN108431244B (en) | Oriented electrical steel sheet and method for manufacturing the same | |
JP4568999B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP4265508B2 (en) | Non-oriented electrical steel sheet for rotor and manufacturing method thereof | |
JPH06228645A (en) | Manufacturing method of electrical steel sheet for small static device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050809 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060417 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3799878 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140512 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |