JP2000080482A - Ion plating method of synthetic resin and synthetic resin molding having ion plating film - Google Patents
Ion plating method of synthetic resin and synthetic resin molding having ion plating filmInfo
- Publication number
- JP2000080482A JP2000080482A JP11057697A JP5769799A JP2000080482A JP 2000080482 A JP2000080482 A JP 2000080482A JP 11057697 A JP11057697 A JP 11057697A JP 5769799 A JP5769799 A JP 5769799A JP 2000080482 A JP2000080482 A JP 2000080482A
- Authority
- JP
- Japan
- Prior art keywords
- synthetic resin
- plating
- film
- metal
- ion plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007733 ion plating Methods 0.000 title claims abstract description 102
- 229920003002 synthetic resin Polymers 0.000 title claims abstract description 84
- 239000000057 synthetic resin Substances 0.000 title claims abstract description 84
- 238000000465 moulding Methods 0.000 title claims abstract description 8
- 238000007747 plating Methods 0.000 claims abstract description 93
- 229910052751 metal Inorganic materials 0.000 claims abstract description 73
- 239000002184 metal Substances 0.000 claims abstract description 73
- 238000011282 treatment Methods 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000000137 annealing Methods 0.000 claims abstract description 9
- 229920005989 resin Polymers 0.000 claims description 60
- 239000011347 resin Substances 0.000 claims description 60
- 238000007872 degassing Methods 0.000 claims description 10
- 208000005156 Dehydration Diseases 0.000 claims description 5
- 230000018044 dehydration Effects 0.000 claims description 5
- 238000006297 dehydration reaction Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 abstract description 5
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 4
- 150000004706 metal oxides Chemical class 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 50
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 36
- 239000000758 substrate Substances 0.000 description 31
- 238000012545 processing Methods 0.000 description 28
- 238000000576 coating method Methods 0.000 description 26
- 239000011248 coating agent Substances 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 229910001868 water Inorganic materials 0.000 description 20
- 239000007789 gas Substances 0.000 description 16
- 229910052759 nickel Inorganic materials 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 238000005406 washing Methods 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 8
- 229920006122 polyamide resin Polymers 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 239000004954 Polyphthalamide Substances 0.000 description 6
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- ISDDBQLTUUCGCZ-UHFFFAOYSA-N dipotassium dicyanide Chemical compound [K+].[K+].N#[C-].N#[C-] ISDDBQLTUUCGCZ-UHFFFAOYSA-N 0.000 description 6
- 239000002659 electrodeposit Substances 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229920006375 polyphtalamide Polymers 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 5
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229920000106 Liquid crystal polymer Polymers 0.000 description 4
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 4
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 229920006351 engineering plastic Polymers 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229910018104 Ni-P Inorganic materials 0.000 description 3
- 229910018536 Ni—P Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- OBITVHZFHDIQGH-UHFFFAOYSA-N [Au].[K]C#N Chemical compound [Au].[K]C#N OBITVHZFHDIQGH-UHFFFAOYSA-N 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 3
- XTFKWYDMKGAZKK-UHFFFAOYSA-N potassium;gold(1+);dicyanide Chemical compound [K+].[Au+].N#[C-].N#[C-] XTFKWYDMKGAZKK-UHFFFAOYSA-N 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- UPPLJLAHMKABPR-UHFFFAOYSA-H 2-hydroxypropane-1,2,3-tricarboxylate;nickel(2+) Chemical compound [Ni+2].[Ni+2].[Ni+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O UPPLJLAHMKABPR-UHFFFAOYSA-H 0.000 description 2
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 239000004956 Amodel Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910017392 Au—Co Inorganic materials 0.000 description 2
- 229910015363 Au—Sn Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 101000576320 Homo sapiens Max-binding protein MNT Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910017709 Ni Co Inorganic materials 0.000 description 2
- 229910003267 Ni-Co Inorganic materials 0.000 description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 239000001508 potassium citrate Substances 0.000 description 2
- 229960002635 potassium citrate Drugs 0.000 description 2
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 2
- 235000011082 potassium citrates Nutrition 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- NJYFRQQXXXRJHK-UHFFFAOYSA-N (4-aminophenyl) thiocyanate Chemical compound NC1=CC=C(SC#N)C=C1 NJYFRQQXXXRJHK-UHFFFAOYSA-N 0.000 description 1
- 229910002708 Au–Cu Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- SIOXPEMLGUPBBT-UHFFFAOYSA-N Picolinic acid Natural products OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920003776 Reny® Polymers 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910020938 Sn-Ni Inorganic materials 0.000 description 1
- 229910008937 Sn—Ni Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920004738 ULTEM® Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- LXWJYIBQIPSFSE-UHFFFAOYSA-N dipotassium;nickel(2+);tetracyanide Chemical compound [K+].[K+].[Ni+2].N#[C-].N#[C-].N#[C-].N#[C-] LXWJYIBQIPSFSE-UHFFFAOYSA-N 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910000337 indium(III) sulfate Inorganic materials 0.000 description 1
- XGCKLPDYTQRDTR-UHFFFAOYSA-H indium(iii) sulfate Chemical compound [In+3].[In+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O XGCKLPDYTQRDTR-UHFFFAOYSA-H 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- JTFWYZCRONEZFE-UHFFFAOYSA-N potassium;cadmium(2+);tricyanide Chemical compound [K+].[Cd+2].N#[C-].N#[C-].N#[C-] JTFWYZCRONEZFE-UHFFFAOYSA-N 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- YWFDDXXMOPZFFM-UHFFFAOYSA-H rhodium(3+);trisulfate Chemical compound [Rh+3].[Rh+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O YWFDDXXMOPZFFM-UHFFFAOYSA-H 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- DKNJHLHLMWHWOI-UHFFFAOYSA-L ruthenium(2+);sulfate Chemical compound [Ru+2].[O-]S([O-])(=O)=O DKNJHLHLMWHWOI-UHFFFAOYSA-L 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- RCIVOBGSMSSVTR-UHFFFAOYSA-L stannous sulfate Chemical compound [SnH2+2].[O-]S([O-])(=O)=O RCIVOBGSMSSVTR-UHFFFAOYSA-L 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- VXKWYPOMXBVZSJ-UHFFFAOYSA-N tetramethyltin Chemical compound C[Sn](C)(C)C VXKWYPOMXBVZSJ-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910000375 tin(II) sulfate Inorganic materials 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Physical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、合成樹脂表面にイ
オンプレーティング(以下、単にIPと言うことがあ
る)処理によりIP被膜を施すIP方法と該IP方法で
被覆された合成樹脂製品に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an IP method for applying an IP coating to a synthetic resin surface by ion plating (hereinafter sometimes simply referred to as IP) and a synthetic resin product coated with the IP method. It is.
【0002】[0002]
【従来の技術】従来より、各種製品における外装部材の
表面強度を向上させたり、あるいは製品の装飾性を高め
るための着色効果を得るために、金属からなる外装部材
の表面に対して金属窒化物被膜、金属炭化物被膜、金属
酸化物被膜あるいはそれらの混合被膜を形成するイオン
プレーティング法が多方面にわたって用いられている。2. Description of the Related Art Conventionally, metal nitride has been applied to the surface of a metal exterior member in order to improve the surface strength of the exterior member in various products or to obtain a coloring effect for enhancing the decorativeness of the product. An ion plating method for forming a coating, a metal carbide coating, a metal oxide coating or a mixed coating thereof has been used in various fields.
【0003】イオンプレーティング法は、よく知られて
いるように図1に示す1×10−5Torr程度の真空
状態にまで排気された真空チャンバー1内でチタン(T
i)などの金属成分からなる蒸発源2に対してガス供給
機構3から導入したチッ素ガス、アセチレンガス、酸素
ガスなどのガスの存在下に電子銃4により電子ビームを
照射して前記金属元素を蒸発させ、その蒸発した金属元
素をイオン化電極5によりイオン化し、対象となる被処
理基材6の表面に堆積させるによって、被処理基材6の
表面に金属窒化物被膜、金属炭化物被膜または金属酸化
物被膜あるいはそれらの混合被膜を形成する方法であ
る。As is well known, the ion plating method uses titanium (T) in a vacuum chamber 1 evacuated to a vacuum state of about 1 × 10 −5 Torr shown in FIG.
The electron source is irradiated with an electron beam by an electron gun 4 in the presence of a gas such as nitrogen gas, acetylene gas or oxygen gas introduced from a gas supply mechanism 3 to an evaporation source 2 made of a metal component such as i). Is evaporated, and the evaporated metal element is ionized by the ionization electrode 5 and deposited on the surface of the target substrate 6 to be treated, so that a metal nitride film, a metal carbide film or a metal This is a method of forming an oxide film or a mixed film thereof.
【0004】イオンプレーティング法で得られた金属窒
化物被膜、金属炭化物被膜または金属酸化物被膜あるい
はそれらの混合被膜は通常0.2〜3ミクロン程度の膜
厚であり、非常に薄い被膜ではあるが、硬度が約600
〜3,000HV程度と非常に硬く、このためキズが付
きにくく、その上防食性に優れ、また生体に対してアレ
ルギー性のない、生体適合性の良い被膜である。The metal nitride film, metal carbide film, metal oxide film or mixed film obtained by the ion plating method usually has a thickness of about 0.2 to 3 μm and is a very thin film. But the hardness is about 600
It is very hard, about 3,000 HV, which makes it hard to be scratched, and is also excellent in anticorrosion properties.
【0005】真空メッキ法にはIP法の外に蒸着法、ス
パッタリンク法などがある。例えば蒸着法は真空チャン
バー内の温度を低く抑えてアルミニウムを蒸発させて樹
脂などに付着させる方法であるが、この蒸着法で形成さ
れた金属膜は硬度、密着度が劣るので一般雑貨物用とし
て位置付けられていて化粧品の容器の装飾被膜などの製
造に利用されている。[0005] In addition to the IP method, a vacuum plating method includes a vapor deposition method and a sputter link method. For example, the vapor deposition method is a method of evaporating aluminum while keeping the temperature inside the vacuum chamber low and attaching it to resin, etc., but the metal film formed by this vapor deposition method has poor hardness and adhesion, so it is used for general cargo. It is positioned and used for the production of decorative coatings for cosmetic containers.
【0006】また、スパッタリング法は真空チャンバー
内で金属をスパッタさせ、その金属を被処理基材に堆積
させる方法であるが、IP法に比べイオン化率が低くガ
スとの反応性に乏しく、金属としてはアルミニウムなど
が使用され、自動車内の内装部品の被膜などとして用い
られている。The sputtering method is a method in which a metal is sputtered in a vacuum chamber and the metal is deposited on a substrate to be processed. However, the ionization rate is lower than the IP method and the reactivity with a gas is poor. Is made of aluminum or the like, and is used as a coating for interior parts in automobiles.
【0007】これに対してIP法は最も苛酷な条件で被
膜が基材上にコーティングされる代わりに、ガスとの反
応性が良く、その表面硬度が硬いという特徴がある。I
P法で得られた硬い表面の特徴を生かして切削工具の表
面被膜など耐摩耗性の要求される製品の被膜として利用
されるだけでなく、当該被膜が光沢を有することから装
飾品の表面処理に用いられ、傷が付き難い美感の有るカ
ラー表面被膜としても利用されている。On the other hand, the IP method is characterized in that a film is coated on a substrate under the most severe conditions, but has good reactivity with gas and has a high surface hardness. I
Utilizing the characteristics of the hard surface obtained by the P method, it is used not only as a coating for products requiring abrasion resistance, such as a surface coating for cutting tools, but also for surface treatment of decorative articles because the coating has luster. It is also used as a color surface coating having a beautiful appearance that is hardly damaged.
【0008】この被処理基材に対するIP処理は真空中
で行われ、またイオンが運ぶエネルギーとチタンなどの
金属を気化させるための輻射熱で目的とする被膜によっ
ては200〜300℃以上の高温に曝されることと、I
P処理膜の被処理基材への密着性を良くする目的で金属
イオンを加速させるためにバイアス電圧をかけることの
ために、被処理基材は金属とされており、さらに、その
基材はIP処理膜との密着性を確保する上で錆びにくい
ものであることが必要である。[0008] The IP treatment of the substrate to be treated is performed in a vacuum, and is exposed to a high temperature of 200 to 300 ° C or more depending on the target film due to the energy carried by the ions and radiant heat for vaporizing a metal such as titanium. And I
The substrate to be treated is made of metal in order to apply a bias voltage to accelerate metal ions for the purpose of improving the adhesion of the P treatment film to the substrate to be treated, and the substrate to be treated is made of metal. In order to ensure the adhesion to the IP processing film, it is necessary that the material be resistant to rust.
【0009】[0009]
【発明が解決しようとする課題】前記従来のIP方法で
は、前記のように処理中の被処理基材が200〜300
℃の高温状態に曝されるため、あるいは、被処理基材に
対する被膜の密着を良くする目的で金属イオンを加速す
るためにバイアス電圧をかけるため、被処理基材として
は、その処理環境に対応することができる特性を備えた
ものでなければ、変形などの不具合を生じてしまい、実
用品として用いることができない。このため、従来はイ
オンプレーティングの被処理品としては金属材料が用い
られていた。In the conventional IP method, as described above, the substrate to be processed is 200 to 300
The substrate to be processed is compatible with the processing environment, because it is exposed to high temperature of ℃ or bias voltage is applied to accelerate the metal ions to improve the adhesion of the film to the substrate. If they do not have the characteristics that they can perform, they may cause defects such as deformation and cannot be used as practical products. For this reason, conventionally, a metal material has been used as a workpiece for ion plating.
【0010】しかしながら、金属材料を使用するにして
も、その製品により使用することができる金属材料の制
約およびその製造上の制約などから製品ごとに画一的な
設計、意匠のものしか得られない傾向にあった。However, even when a metal material is used, only a uniform design and design can be obtained for each product due to restrictions on the metal material that can be used for the product and restrictions on its manufacture. There was a tendency.
【0011】一方、前記金属材料に比べて合成樹脂材料
は複雑な形状であっても、その形状に容易に成形できる
など、加工性が優れていることおよび広範囲な材質を有
する材料の中から目的とする用途に応じたものを選択で
きることなどの理由で多方面に利用されている。そし
て、合成樹脂の成形表面に金属メッキを浸漬法や蒸着法
などの各種方法で施すことで、その商品価値を高める工
夫がなされている。しかし、その金属メッキ被膜はイオ
ンプレーティング(IP)によって得られる金属窒化物
被膜、金属炭化物被膜あるいは金属酸化物被膜あるいは
それらの混合被膜に比べて機械的強度などの特性がかな
り落ちる。On the other hand, even if the synthetic resin material has a complicated shape as compared with the above-mentioned metal material, it can be easily formed into the shape, and has excellent workability. It is widely used because it can be selected according to the intended use. In addition, various methods, such as immersion and vapor deposition, are applied to the synthetic resin molding surface to increase its commercial value. However, the metal plating film has considerably reduced properties such as mechanical strength as compared with a metal nitride film, a metal carbide film, a metal oxide film, or a mixed film obtained by ion plating (IP).
【0012】そこで、合成樹脂表面に対しても実用上の
問題がない程度の品質を備えたIP処理ができれば、高
品質の合成樹脂のIP被覆品を得ることができ、また合
成樹脂材料の特性を活かして多様な意匠を有し、また広
範囲な用途に適用できる合成樹脂の成形品を得ることが
できる。Therefore, if the surface of the synthetic resin can be subjected to the IP treatment with such a quality that there is no practical problem, a high quality IP coated product of the synthetic resin can be obtained, and the characteristics of the synthetic resin material can be obtained. By utilizing this, it is possible to obtain a molded article of a synthetic resin having various designs and applicable to a wide range of uses.
【0013】しかし、従来はIP処理は合成樹脂のよう
に熱で容易に軟化し、またガスが発生して真空チャンバ
ー内を汚染するおそれのある素材に適用しても、商品価
値のある製品を得ることは実質的に不可能とされてい
た。[0013] However, conventionally, the IP treatment is easily softened by heat, such as a synthetic resin, and even if it is applied to a material that may generate gas and contaminate the inside of the vacuum chamber, a product having a commercial value is obtained. It was virtually impossible to get.
【0014】そこで本発明の課題は合成樹脂製部材に対
してイオンプレーティングを施す方法を確立してイオン
プレーティングによる被膜を設け、実用品として充分に
評価することができるような耐久性と表面状態を呈する
IP被膜が施された合成樹脂製品を得ることである。Accordingly, an object of the present invention is to establish a method of applying ion plating to a synthetic resin member, to provide a coating by ion plating, and to provide a durability and a surface which can be sufficiently evaluated as a practical product. The purpose is to obtain a synthetic resin product provided with an IP coating exhibiting a state.
【0015】[0015]
【課題を解決するための手段】本発明者らは、鋭意研究
を進めた結果、合成樹脂製部材に対して高品質なIP被
膜を安定的に施すことができる方法を開発した。合成樹
脂基材にIP法を適用する場合の問題点について、以下
に述べる。まず、IP被膜の合成樹脂基材に対する密着
性を良くする目的で金属イオンを加速するためにバイア
ス電圧を印加するので、合成樹脂基材に導電性を持たせ
なければならない。このため合成樹脂基材にメッキを付
けて導電性を持たせることが必要である。Means for Solving the Problems As a result of intensive studies, the present inventors have developed a method for stably applying a high-quality IP coating to a synthetic resin member. Problems when the IP method is applied to a synthetic resin substrate will be described below. First, since a bias voltage is applied to accelerate the metal ions for the purpose of improving the adhesion of the IP coating to the synthetic resin substrate, the synthetic resin substrate must have conductivity. For this reason, it is necessary to apply plating to the synthetic resin base material so as to have conductivity.
【0016】本発明者の研究及び実験の過程において、
合成樹脂基材に金属メッキにより金属の被覆膜を形成し
た後に、IP処理を行うことによってIP被膜の形成が
なされることが分かったが、最も問題となったことは基
材である合成樹脂の耐熱性特性、組成成分及び含有ガス
成分などによる表面状態に与える影響であった。In the course of the research and experiments of the present inventors,
After forming a metal coating film on the synthetic resin substrate by metal plating, it was found that an IP coating was formed by performing an IP treatment, but the most problematic was that the synthetic resin substrate was used. Was the effect on the surface state due to the heat resistance characteristics, compositional components, and contained gas components.
【0017】すなわち、IP処理雰囲気による熱変形お
よび合成樹脂基材内部に含まれる組成物質のガス化によ
ると考えられる形成した被膜の膨れが発生すること、あ
るいは合成樹脂の耐熱性の補強のために樹脂に含有され
るガラス繊維などの物質がIP処理により形成される被
膜表面における平滑度、光沢性を低下させること等がI
P処理した合成樹脂の市場性のある製品化の阻害要因で
あった。これらの問題は、特に合成樹脂製品が外装品と
して使用されるものでは、さらに重要な問題であった。In other words, in order to cause swelling of the formed film, which is considered to be caused by thermal deformation due to the IP treatment atmosphere and gasification of the composition contained in the synthetic resin substrate, or to enhance the heat resistance of the synthetic resin. The fact that substances such as glass fibers contained in the resin reduce the smoothness and glossiness of the surface of the coating film formed by the IP treatment,
This was an obstacle to commercialization of the P-treated synthetic resin with marketability. These problems were even more important, especially when a synthetic resin product was used as an exterior product.
【0018】基材をIP処理する場合には、基材の温度
はIP処理時にイオンが運ぶエネルギーとチタンなどの
金属を気化させるための輻射熱で200〜300℃にな
り、金属基材などの耐熱性の高い基材は十分この温度で
IP処理ができるが、ほとんどの合成樹脂は熱変形して
しまうので、合成樹脂はより低温でIP処理ができない
と、製品価値のあるIP処理品は得られない。When the base material is subjected to IP treatment, the temperature of the base material becomes 200 to 300 ° C. due to the energy carried by the ions during the IP treatment and the radiant heat for vaporizing a metal such as titanium. High-performance base materials can be sufficiently IP-treated at this temperature, but most synthetic resins are thermally deformed, so if synthetic resins cannot be IP-processed at lower temperatures, IP-treated products with product value will be obtained. Absent.
【0019】また、合成樹脂基材のIP処理過程で20
0〜300℃付近まで加熱すると、前述のように合成樹
脂内部のガスが発生し、膨張し易いので、これを避ける
ために、より低温でIP処理をする必要がある。また、
吸水性の高い合成樹脂基材をIP処理する場合には、合
成樹脂に吸水された水分が200〜300℃程度の高温
では気化、膨張することは避けられない。In addition, during the IP treatment of the synthetic resin substrate, 20
When heated to around 0 to 300 ° C., the gas inside the synthetic resin is generated as described above and tends to expand. Therefore, in order to avoid this, it is necessary to perform the IP treatment at a lower temperature. Also,
When performing IP processing on a synthetic resin substrate having high water absorbency, it is inevitable that water absorbed by the synthetic resin vaporizes and expands at a high temperature of about 200 to 300 ° C.
【0020】したがって、200〜300℃より低温で
金属メッキされた合成樹脂をIP処理ができる条件及び
このIP処理に適した合成樹脂の選択などを試行錯誤で
行わざるを得なかった。Therefore, the conditions under which the synthetic resin metal-plated at a temperature lower than 200 to 300 ° C. can be subjected to the IP treatment and the selection of the synthetic resin suitable for the IP treatment have to be performed by trial and error.
【0021】例えば、耐熱性の樹脂であって金属メッキ
が可能なものであれば、IP処理が可能であると考えら
れるが、実際に耐熱性のあるエンジニアリングプラスチ
ックまたはスーパーエンジニアリングプラスチックを用
いてIP処理をしても、IP被膜が膨れたり、剥がれた
りすることがあった。これは樹脂と金属メツキ層との間
の熱膨張率の差などに起因するものと考えられ、樹脂と
金属メッキの種類、物性などを適切に選択することまた
は金属メッキとIP被膜との間の適切な関係を見い出す
ことが樹脂のIP処理技術を完成させるためには不可欠
であることを予想させた。For example, if it is a heat-resistant resin that can be plated with metal, it is considered that IP processing can be performed. However, IP processing is actually performed using heat-resistant engineering plastic or super-engineering plastic. In some cases, the IP coating swelled or peeled off. This is considered to be due to the difference in the coefficient of thermal expansion between the resin and the metal plating layer, and by appropriately selecting the type of the resin and the metal plating, physical properties, etc., or between the metal plating and the IP coating. He predicted that finding the right relationship would be indispensable for perfecting the resin IP processing technology.
【0022】合成樹脂の表面処理方法として金属メッキ
処理を行うには、一般的に銅(Cu)とニッケル(N
i)とクロム(Cr)からなる金属で多層金属メッキを
する場合が多い。そして、最外層部分に用いる金属メッ
キは用途に応じてCrに替えて金(Au)メッキ、パラ
ジュウム(Pd)メッキまたはそれらの合金メッキなど
を行う方法が汎用され、主に自動車の外装部品、取っ
手、バンパーなどに使われている。In order to perform metal plating as a surface treatment method for a synthetic resin, copper (Cu) and nickel (N
In many cases, multi-layer metal plating is performed using a metal consisting of i) and chromium (Cr). The metal plating used for the outermost layer is gold (Au) plating, palladium (Pd) plating or an alloy plating thereof instead of Cr depending on the application, and is mainly used for exterior parts and handles of automobiles. , Bumpers and so on.
【0023】そこで、合成樹脂成型品の表面にIP処理
被膜を施すに際して、まず前述のように合成樹脂にCu
とNiとCrからなる金属メッキを施した後、この金属
メッキ層が施された合成樹脂を用いてIP処理の可能性
を検討した。Therefore, when applying the IP coating to the surface of the synthetic resin molded product, first, as described above,
After applying a metal plating made of Ni and Cr, the possibility of IP treatment was examined using the synthetic resin provided with the metal plating layer.
【0024】まず、IP処理の可能性のある樹脂とし
て、耐熱性がありメッキ可能なエンジニアリングプラス
チック及びスーパーエンジニアリングプラスチックの中
から十数種類選定し、IP処理を行った所、ほとんどの
樹脂でIP処理時の熱環境のため、膨れや金属メッキ膜
の剥がれが起きた。First, as a resin having a possibility of IP processing, more than a dozen kinds were selected from engineering plastics and super-engineering plastics which are heat-resistant and capable of being plated, and subjected to IP processing. Due to the thermal environment, swelling and peeling of the metal plating film occurred.
【0025】しかし、ポリフタルアミド樹脂とシンジオ
タクチックポリスチレン樹脂の二種類のIP処理が可能
な樹脂が特定できた。また、前記二種類の樹脂に用途に
より物性、耐熱強化のためにガラス繊維又はミネラル強
化を施した樹脂からも安定したIP処理樹脂製品が得ら
れた。すなわち、ポリフタルアミド樹脂はミネラル強化
型のポリフタルアミド樹脂でも良いし、シンジオタクチ
ックポリスチレン樹脂はガラス繊維強化型のシンジオタ
クチック樹脂でも同様に品質の高いIP処理品が得られ
た。However, two types of IP-processable resins, a polyphthalamide resin and a syndiotactic polystyrene resin, could be identified. In addition, a stable IP-treated resin product was obtained from a resin in which glass fibers or minerals were reinforced to enhance physical properties and heat resistance depending on the use of the two resins. That is, the polyphthalamide resin may be a mineral-reinforced polyphthalamide resin, and the syndiotactic polystyrene resin may be a glass fiber-reinforced syndiotactic resin, and similarly, a high-quality IP-treated product is obtained.
【0026】ところが、上記二種類の樹脂であってもI
P処理品の品質が安定しない場合があり、IP処理膜表
面には約20%の小さい膨れが出ているものもあった。
上記不良品が発生する原因の一つは、IP処理時におい
て約200〜300℃と熱変形し易い高温環境下に合成
樹脂基材がおかれて、合成樹脂内でのガス発生及び膨張
と合成樹脂の熱膨張率と金属メッキ層の熱膨張率が異な
ることにより金属メッキ膜に膨れが生じるためと考えら
れる。その対策としてIP処理時における合成樹脂近傍
の温度を低く抑えるために、IP処理時間を短くするこ
とを検討したが、IP処理時間を短くすると、実用に適
する充分な被膜が得られなかった。However, even with the above two types of resins, I
In some cases, the quality of the P-treated product was not stable, and in some cases, a small swelling of about 20% appeared on the surface of the IP-treated film.
One of the causes of the above-mentioned defective products is that the synthetic resin base material is placed in a high-temperature environment that is easily deformed by heat at about 200 to 300 ° C. during IP processing, and gas generation, expansion, and synthesis in the synthetic resin. It is considered that the difference between the coefficient of thermal expansion of the resin and the coefficient of thermal expansion of the metal plating layer causes swelling of the metal plating film. As a countermeasure, to reduce the IP processing time in order to keep the temperature near the synthetic resin low during the IP processing, the IP processing time was shortened. However, if the IP processing time was shortened, a sufficient film suitable for practical use could not be obtained.
【0027】しかし、このような問題点に対しては、本
発明者は次のような解決策を見い出した。 (1)合成樹脂中に吸水された水分がIP処理中の高温
により、蒸気化して膨張することを防ぐために、吸水性
の少ない合成樹脂を選定するかあるいは吸水性樹脂を予
め合成樹脂が吸水しない環境下において置く。また、吸
水した合成樹脂は脱水処理を行った後に金属メッキとI
P処理を行う。 (2)水分以外のガスが合成樹脂より発生するおそれが
ある場合は脱ガス熱処理を行う。通常、樹脂成形品に金
属メッキを施す前には、金属メッキの密着性を良くする
ために合成樹脂の成形歪みを除去する目的でアニールと
呼ばれる熱処理を施すが、このアニールは100〜15
0℃で30分程度の熱処理である。しかし、金属メッキ
した合成樹脂にIP処理を施す場合は合成樹脂の成形歪
みを除去すると共に、真空、高温で処理した時に、合成
樹脂からガスが発生することを防ぐために、脱ガスを目
的とした高温で、長時間の脱ガス熱処理を行うことが必
要である。However, the present inventor has found the following solution to such a problem. (1) In order to prevent the water absorbed in the synthetic resin from evaporating due to the high temperature during the IP processing and expanding, select a synthetic resin having low water absorption or prevent the synthetic resin from absorbing the water in advance. Place in an environment. The dehydrated synthetic resin that has absorbed water is subjected to metal plating and
P processing is performed. (2) When gas other than water is likely to be generated from the synthetic resin, degassing heat treatment is performed. Usually, before metal plating is applied to a resin molded product, a heat treatment called annealing is performed in order to remove molding distortion of the synthetic resin in order to improve adhesion of the metal plating.
This is a heat treatment at 0 ° C. for about 30 minutes. However, when IP treatment is performed on a metal-plated synthetic resin, the purpose is to remove molding distortion of the synthetic resin and to prevent gas from being generated from the synthetic resin when the resin is processed in a vacuum and at a high temperature. It is necessary to perform degassing heat treatment at a high temperature for a long time.
【0028】IP処理前に合成樹脂の脱ガス処理をしな
い場合には金属メッキ層が膨らみ、外観不良の原因にな
る。樹脂によって、又同じ樹脂でもガラス繊維、ミネラ
ル強化等により耐熱性が変化するので、耐熱性がない樹
脂の場合は低温で長く、耐熱性がある樹脂の場合は高温
で短時間に処理することが経済的である。合成樹脂の脱
ガス処理は、例えば、200℃で1〜2時間、又は18
0℃で1.5〜3時間、又は150℃で2〜4時間の熱
処理により行う。If the degassing treatment of the synthetic resin is not performed before the IP treatment, the metal plating layer swells and causes a poor appearance. The heat resistance changes depending on the resin and even the same resin due to glass fiber, mineral reinforcement, etc., so if the resin does not have heat resistance, it can be treated at low temperature for a long time, and if it has heat resistance, it can be treated at high temperature for a short time. It is economical. The degassing treatment of the synthetic resin is performed, for example, at 200 ° C. for 1 to 2 hours, or for 18 hours.
The heat treatment is performed at 0 ° C. for 1.5 to 3 hours or at 150 ° C. for 2 to 4 hours.
【0029】上記熱処理により、合成樹脂の脱ガスがな
されると同時にアニール処理と脱水処理が行われる。上
記熱処理温度における熱処理時間が短いと十分に脱ガ
ス、脱水、アニール処理がなされず、上記熱処理温度に
おける熱処理時間が長すぎると不経済である。By the above heat treatment, the synthetic resin is degassed, and at the same time, the annealing treatment and the dehydration treatment are performed. If the heat treatment time at the above heat treatment temperature is short, degassing, dehydration and annealing treatments are not sufficiently performed, and if the heat treatment time at the above heat treatment temperature is too long, it is uneconomical.
【0030】こうして、ポリフタルアミド樹脂とシンジ
オタクチックポリスチレン樹脂以外にもABS樹脂、ポ
リアミド樹脂、ポリフェニレンサルファイド樹脂、液晶
ポリマー樹脂でもそれぞれ適正な前処理を施すことで、
IP処理が可能であることを本発明者は見い出した。[0030] Thus, in addition to the polyphthalamide resin and the syndiotactic polystyrene resin, an ABS resin, a polyamide resin, a polyphenylene sulfide resin, and a liquid crystal polymer resin are each subjected to appropriate pretreatment, whereby:
The present inventor has found that IP processing is possible.
【0031】次に合成樹脂基材に対するIP処理前に行
う金属メッキについて述べる。前述のようにCuとNi
とCrからなる金属でメッキ以外に、合成樹脂のIP処
理に適した金属メッキとそのメッキ条件を見い出すべく
鋭意検討した結果、次のような場合には良好な合成樹脂
基材に対するIP処理が可能な場合があることが判明し
た。 (a)合成樹脂の熱膨張を抑えるに十分な膜厚の金属メ
ッキを樹脂に施す。 本来金属メッキはIP処理時に被処理基材にバイアス電
圧を掛けるために導電性のない被処理基材に施すもので
あるが、合成樹脂の熱膨張を抑えるに十分な膜厚の金属
メッキを施す。Next, metal plating performed before the IP processing on the synthetic resin substrate will be described. As described above, Cu and Ni
In addition to plating with metal consisting of chromium and Cr, as a result of diligent studies to find metal plating suitable for IP processing of synthetic resin and its plating conditions, IP processing can be performed on a good synthetic resin substrate in the following cases It turned out that there was a case. (A) A metal plating having a thickness sufficient to suppress thermal expansion of the synthetic resin is applied to the resin. Originally, metal plating is applied to a non-conductive substrate to apply a bias voltage to the substrate during IP processing, but metal plating with a film thickness sufficient to suppress thermal expansion of the synthetic resin is applied. .
【0032】IP処理中の高温(200℃〜300℃程
度)環境下で合成樹脂と共にメッキされた金属は膨張す
る。しかし、合成樹脂とメッキされた金属膜とは膨張率
が異なり、一般的には合成樹脂の方がメッキされた金属
膜より熱膨張率が高い。従って合成樹脂がメッキされた
金属膜を押し広げようとする力が発生する。メッキ金属
膜が合成樹脂により、その金属の熱膨張率以上に押し広
げられると、金属膜は伸び、場合によっては破れること
がある。The metal plated with the synthetic resin expands under a high temperature (about 200 ° C. to 300 ° C.) environment during the IP processing. However, the synthetic resin and the plated metal film have different coefficients of expansion, and generally the synthetic resin has a higher coefficient of thermal expansion than the plated metal film. Accordingly, a force is generated that pushes the synthetic resin plated metal film. When the plated metal film is spread out by the synthetic resin to a temperature equal to or higher than the coefficient of thermal expansion of the metal, the metal film is stretched and may be broken in some cases.
【0033】高温時に伸びた金属膜は、常温に戻ったと
きに収縮するが、合成樹脂と金属膜との収縮率の違いに
よりメッキ金属膜と合成樹脂との間はかい離し、または
膨れが発生する。これを防ぐためには、膜厚の大きいメ
ッキ金属膜を合成樹脂に施し、合成樹脂の膨張をメッキ
金属膜により抑え込む方法を採ると有効な場合がある。The metal film that has grown at a high temperature contracts when the temperature returns to normal temperature, but the plating metal film and the synthetic resin separate from each other or swell due to the difference in shrinkage between the synthetic resin and the metal film. I do. In order to prevent this, it may be effective to adopt a method in which a plating metal film having a large thickness is applied to the synthetic resin, and expansion of the synthetic resin is suppressed by the plating metal film.
【0034】例えば、Cu(20μm)+Ni(10μ
m〜30μm)+(Pd−Ni)(1μm)などの20
〜50μmの膜厚の金属メッキ膜を合成樹脂上に施すこ
とが望ましい。For example, Cu (20 μm) + Ni (10 μm)
20 to 30 μm) + (Pd—Ni) (1 μm)
It is desirable to apply a metal plating film having a thickness of about 50 μm on the synthetic resin.
【0035】50μm以上の膜厚のメッキ金属膜を設け
ることはメッキ処理コストがかさみ不経済である。ま
た、20μm以下の膜厚のメッキ金属膜では合成樹脂の
熱膨張を抑えることはできない。It is uneconomical to provide a plating metal film having a thickness of 50 μm or more because the plating processing cost increases. Further, a plated metal film having a thickness of 20 μm or less cannot suppress the thermal expansion of the synthetic resin.
【0036】次にIP処理により得られる被膜として次
のような組成の被膜を用いる。窒化チタン、炭化チタ
ン、酸化チタン、及びそれらの混合された膜などであ
る。Next, a film having the following composition is used as a film obtained by the IP treatment. Examples include titanium nitride, titanium carbide, titanium oxide, and a mixed film thereof.
【0037】上記本発明の樹脂IP処理により得られる
製品としては、例えば、腕時計用周辺パーツ(ケース、
時計バンド、飾りリング)、釣り具周辺パーツ(リール
のボビン、ハンドル、ボディ、釣り竿用のガイドなどの
部品)、カメラ関係部品(カメラボディ)、家電製品周
辺パーツ(ボディ、ツマミ、スイッチ、携帯電話。MD
プレイヤー、CDプレイヤーなどの外装部品)、日用
品、生活用品(食器、メガネフレーム)、装飾品(ペン
ダント、キーホルダー)、自動車(エンブレム、内装部
品)、住宅関連品(外装、内装用の飾り)、事務用品
(文房具、筆記具)、鞄などの止め具、洋服のボタンな
ど、その他の樹脂部品に用いられる。The products obtained by the resin IP treatment of the present invention include, for example, peripheral parts for watches (cases,
Watch bands, decoration rings), fishing gear peripheral parts (reels bobbin, handle, body, guides for fishing rods, etc.), camera-related parts (camera body), peripheral parts of home appliances (body, knobs, switches, mobile phones) MD
Exterior parts such as players and CD players), daily necessities, daily necessities (tableware, eyeglass frames), ornaments (pendants, key chains), automobiles (emblems, interior parts), housing-related articles (exterior and interior decorations), office work It is used for other resin parts such as supplies (stationery, writing utensils), fasteners for bags, buttons for clothes, and the like.
【0038】[0038]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明の実施の形態でイオンプレーティン
グ(IP)処理を行った樹脂成形品の素材としてシンジ
オタクテックポリスチレン樹脂(商品名ザレック(出光
石油化学(株))、ポリフタルアミド樹脂(商品名アモ
デル(テイジンアモコ(株)))、ABS樹脂(商品名
ダイヤペットABS(三菱レイヨン(株))、ポリアミ
ド樹脂(PA):MXD6(商品名レニー(三菱ガス化
学(株))、ポリアミド樹脂(PA):ナイロン−6
(商品名東洋紡ナイロン(東洋紡績(株))、ポリフェ
ニレンサルファイド樹脂(PPS)(商品名サスティー
ル(東ソー(株))、液晶ポリマー樹脂(LCP)(商
品名ベクトラ(ポリプラスチックス(株))、ポリエー
テルスルホン樹脂(PES)(商品名スミカエクセル
(住友化学工業(株)),ポリアリレート樹脂(PA
R)(商品名Uポリマー(ユニチカ(株))、ポリエー
テルイミド樹脂(PEI)(商品名ウルテム(日本ジー
イープラスチック(株))、ポリエチレンテレフタレー
ト樹脂(PET)(商品名G−PET(ユニチカ
(株))を用いた。Embodiments of the present invention will be described below. Syndiotactic polystyrene resin (trade name: Zarek (Idemitsu Petrochemical Co., Ltd.)), polyphthalamide resin (trade name: Amodel (trade name) as a material of a resin molded product subjected to ion plating (IP) treatment in the embodiment of the present invention. Teijin Amoko), ABS resin (trade name: Diapet ABS (Mitsubishi Rayon Co., Ltd.), polyamide resin (PA): MXD6 (trade name: Reny (Mitsubishi Gas Chemical Co., Ltd.), polyamide resin (PA): Nylon-6
(Trade name Toyobo Nylon (Toyobo Co., Ltd.), polyphenylene sulfide resin (PPS) (trade name Sastile (Tosoh Corporation), liquid crystal polymer resin (LCP) (trade name Vectra (Polyplastics Co., Ltd.)) Polyether sulfone resin (PES) (trade name: Sumika Excel (Sumitomo Chemical Co., Ltd.)), polyarylate resin (PA
R) (trade name: U-Polymer (Unitika), polyetherimide resin (PEI) (trade name: Ultem (Nippon GE Plastics)), polyethylene terephthalate resin (PET) (trade name: G-PET (Unitika) )) Was used.
【0039】上記した樹脂の中で主なものの熱的性質に
ついて列挙する。 (a)シンジオタクチックポリスチレン樹脂(商品名ザ
レック(出光石油化学(株)) (a−1)スタンダート品 荷重たわみ温度(ASTMD648で試験) 1.80MPa:95℃ 0.45MPa:110℃ 線膨張率(MD)(ASTMD696で試験) 9.2×10−5/℃ (a−2)ガラス繊維強化非難燃性品(ガラス繊維15
重量%含有) 荷重たわみ温度(ASTMD648で試験) 1.80MPa:170℃ 0.45MPa:260℃ 線膨張率(MD)(ASTMD696で試験) 3.9×10−5/℃The thermal properties of the main resins among the above-mentioned resins are listed. (A) Syndiotactic polystyrene resin (trade name: Zarek (Idemitsu Petrochemical Co., Ltd.) (a-1) Standard product Deflection temperature under load (tested by ASTM D648) 1.80 MPa: 95 ° C. 0.45 MPa: 110 ° C. Linear expansion coefficient (MD) (Tested with ASTM D696) 9.2 × 10 −5 / ° C. (a-2) Glass fiber reinforced non-flame retardant product (glass fiber 15
Deflection temperature under load (tested by ASTM D648) 1.80 MPa: 170 ° C. 0.45 MPa: 260 ° C. Linear expansion coefficient (MD) (tested by ASTM D696) 3.9 × 10 −5 / ° C.
【0040】(a−3)ガラス繊維強化難燃性品(ガラ
ス繊維40重量%含有) 荷重たわみ温度(ASTMD648で試験) 1.80MPa:245℃ 0.45MPa:268℃ 線膨張率(MD)(ASTMD696で試験) 2.3×10−5/℃ (a−4)炭酸カルシウム強化品(炭酸カルシウム20
重量%含有) 荷重たわみ温度(ASTMD648で試験) 1.80MPa:97℃ 線膨張率(MD)(ASTMD696で試験) 11×10−5/℃(A-3) Glass fiber reinforced flame-retardant product (containing 40% by weight of glass fiber) Deflection temperature under load (tested by ASTM D648) 1.80 MPa: 245 ° C. 0.45 MPa: 268 ° C. Linear expansion coefficient (MD) ( 2.3 × 10 −5 / ° C. (a-4) Calcium carbonate reinforced product (calcium carbonate 20)
Deflection temperature under load (tested with ASTM D648) 1.80 MPa: 97 ° C. Linear expansion coefficient (MD) (tested with ASTM D696) 11 × 10 −5 / ° C.
【0041】(b)ポリフタルアミド樹脂(商品名アモ
デル(アモコ社)) (b−1)スタンダート品 荷重たわみ温度(ASTMD648で試験) 18.6kg/cm2:120℃ (b−2)ミネラル強化品(炭酸カルシウムからなるミ
ネラルを20重量%含有) 荷重たわみ温度(ASTMD648で試験) 18.6kg/cm2:179℃ 線膨張率(MD/TD)(ASTME831で試験) 3.4/4.0×10−5cm/cm・℃ ここで、MDは流れ方向、TDは流れに直角方向を表
す。(B) Polyphthalamide resin (trade name: Amodel (Amoco)) (b-1) Standard product Deflection temperature under load (tested with ASTM D648) 18.6 kg / cm 2 : 120 ° C. (b-2) Mineral reinforcement Product (containing 20% by weight of a mineral composed of calcium carbonate) Deflection temperature under load (tested by ASTM D648) 18.6 kg / cm 2 : 179 ° C Linear expansion coefficient (MD / TD) (tested by ASTM E831) 3.4 / 4.0 × 10 −5 cm / cm · ° C. Here, MD represents a flow direction, and TD represents a direction perpendicular to the flow.
【0042】(c)ポリアミド樹脂MXD6(商品名レ
ニー(三菱ガス化学(株)) 荷重たわみ温度(ASTMD648で試験) 18.5kg/cm2:160℃ 熱膨張率(ASTMD696で試験) 2.7×10−5cm/cm・℃ 成形収縮率(ASTMD955で試験)0.92%(C) Polyamide resin MXD6 (trade name: Lenny (Mitsubishi Gas Chemical Co., Ltd.)) Load deflection temperature (tested by ASTM D648) 18.5 kg / cm 2 : 160 ° C. Coefficient of thermal expansion (tested by ASTM D696) 2.7 × 10 −5 cm / cm · ° C. Mold shrinkage (tested with ASTM D955) 0.92%
【0043】(d)ポリアミド樹脂ナイロン−6(商品
名東洋紡ナイロン(東洋紡績(株)) (d−1)スタンダート品 荷重たわみ温度(ASTMD648で試験) 18.6kg/cm2:143℃ 4.6kg/cm2:204℃ 線膨張率(MD/TD)(ASTMD696で試験) 7.0×10−5cm/cm・℃ (d−2)ガラス繊維15wt%とミネラル20wt%
による強化品 荷重たわみ温度(ASTMD648で試験) 18.6kg/cm2:155℃ 4.6kg/cm2:205℃ 線膨張率(ASTMD696で試験) 4.3×10−5cm/cm・℃(D) Polyamide resin nylon-6 (trade name: Toyobo Nylon (Toyobo Co., Ltd.) (d-1) Standard product Deflection temperature under load (tested by ASTM D648) 18.6 kg / cm 2 : 143 ° C. 4.6 kg / Cm 2 : 204 ° C. Linear expansion coefficient (MD / TD) (tested with ASTM D696) 7.0 × 10 −5 cm / cm · ° C. (d-2) 15 wt% of glass fiber and 20 wt% of mineral
Deflection temperature under load (tested by ASTM D648) 18.6 kg / cm 2 : 155 ° C 4.6 kg / cm 2 : 205 ° C. Linear expansion coefficient (tested by ASTM D696) 4.3 × 10 −5 cm / cm · ° C.
【0044】(e)ABS樹脂(商品名ダイヤペットA
BS(三菱レイヨン(株)) 荷重たわみ温度(ASTMD648で試験) 18.56kg/cm2:92℃ 4.64kg/cm2:99℃ 熱膨張率(ASTMD696で試験) 8.5×10−5cm/cm・℃ 成形収縮率(ASTMD955で試験)0.5%(E) ABS resin (trade name: Diapet A)
BS (Mitsubishi Rayon Co., Ltd.) Deflection temperature under load (tested by ASTM D648) 18.56 kg / cm 2 : 92 ° C 4.64 kg / cm 2 : 99 ° C. Coefficient of thermal expansion (tested by ASTM D696) 8.5 × 10 −5 cm / Cm ・ ℃ Molding shrinkage (tested with ASTM D955) 0.5%
【0045】(f)液晶ポリマー樹脂(商品名ベクトラ
(ポリプラスチックス(株)) 荷重たわみ温度(ASTMD648で試験) 18.56kg/cm2:200℃ (g)ポリフェニレンサルファイド樹脂(商品名サステ
ィール(東ソー(株)) 荷重たわみ温度(ASTMD648で試験) 18.56kg/cm2:260℃以上 熱膨張率(ASTMD696で試験) 2.2×10−5cm/cm・℃(F) Liquid crystal polymer resin (trade name: Vectra (Polyplastics Co., Ltd.)) Load deflection temperature (tested by ASTM D648) 18.56 kg / cm 2 : 200 ° C. (g) Polyphenylene sulfide resin (trade name: SUSTYL ( Deflection temperature under load (tested with ASTM D648) 18.56 kg / cm 2 : 260 ° C or higher Thermal expansion coefficient (tested with ASTM D696) 2.2 × 10 −5 cm / cm · ° C.
【0046】(1)上記シンジオタクテックポリスチレ
ン樹脂(商品名ザレック(出光石油化学(株))を例に
IP処理までの概略工程を以下に説明すると、大略次の
5つの工程からなる。 第1工程:前記樹脂材料により射出成形などによって、
製品として樹脂成形品を形成する。 第2工程:得られた樹脂成形品の脱ガス処理、アニーリ
ング処理または脱水処理を行い、次工程以降の金属メッ
キ処理、IP処理時の被覆膜の基材からの剥離を防ぐ。(1) An outline of the steps up to IP processing will be described below by taking the above-mentioned syndiotactic polystyrene resin (trade name Zarek (Idemitsu Petrochemical Co., Ltd.)) as an example. Process: Injection molding or the like using the resin material
Form a resin molded product as a product. Second step: A degassing treatment, an annealing treatment or a dehydration treatment of the obtained resin molded product is performed to prevent the coating film from peeling off from the base material during the metal plating treatment and the IP treatment in the next and subsequent steps.
【0047】本実施例では脱ガス処理、アニーリング処
理または脱水処理として200℃で1〜2時間熱処理を
行った。例えば、乾燥炉を200℃に昇温しその中に樹
脂成形品を1〜2時間放置し、終了後乾燥炉より取り出
し常温にて冷却する方法を用いた。In this embodiment, heat treatment was performed at 200 ° C. for 1 to 2 hours as a degassing treatment, an annealing treatment or a dehydration treatment. For example, a method was used in which the temperature of the drying furnace was raised to 200 ° C., and the resin molded product was left therein for 1 to 2 hours.
【0048】第3工程:樹脂成形品の表面にエッチング
によって多数の微細孔を形成し、微細孔に、後工程の金
属メッキにより生成される下地金属被膜の一部が入り込
んで剥離しないようにしておく。Third step: A large number of fine holes are formed on the surface of the resin molded product by etching, and a part of the base metal film generated by metal plating in a later step enters the fine holes so as not to peel off. deep.
【0049】第4工程:エッチングの後に、後工程のI
P処理を行うための導電付与処理としてCu,Ni,P
d−Ni等による金属メッキを行う。第5工程:金属メ
ッキ後の樹脂成形品をIP用真空チャンバーに入れて、
イオンプレーティングを行う。このイオンプレーティン
グは公知の方法によるものである。Fourth step: After the etching, I
Cu, Ni, P as a conductivity imparting process for performing the P process
Metal plating with d-Ni or the like is performed. Fifth step: The resin molded product after metal plating is put in a vacuum chamber for IP,
Perform ion plating. This ion plating is performed by a known method.
【0050】(a)前記第3工程のエッチングされた樹
脂成形品の表面に金属メッキは次のように行った。な
お、以下の処理で使用する薬品の容量または重量は水の
1L(リットル)に対して行ったものである。まず、樹
脂表面の脱脂をホウ酸ソーダ20g/Lとリン酸ソーダ
20g/Lと高級脂肪酸系の界面活性剤2g/Lからな
る溶液で50℃、3〜5分間行い、水洗後、エッチング
を97wt%の濃硫酸400g/LとCrO3400g
/Lで65℃、15〜20分間行い、樹脂表面に微細な
凹凸を形成させて、メッキの密着性を高めると共に親水
性にする。(A) Metal plating was performed on the surface of the resin molded article etched in the third step as follows. In addition, the capacity | capacitance or weight of the chemical | medical agent used in the following processing is performed to 1 L (liter) of water. First, the resin surface is degreased with a solution containing 20 g / L of sodium borate, 20 g / L of sodium phosphate, and 2 g / L of a higher fatty acid surfactant at 50 ° C. for 3 to 5 minutes. % Sulfuric acid 400g / L and CrO 3 400g
/ L at 65 ° C. for 15 to 20 minutes to form fine irregularities on the resin surface to enhance the adhesion of plating and make it hydrophilic.
【0051】次いで、水洗後に10ml/Lの36wt
%の濃塩酸と10ml/Lの30wt%の過酸化水素で
25℃、0.5〜2分間、エッチング溶剤の除去と中和
処理を行う。Then, after washing with water, 10 ml / L of 36 wt.
% Of hydrochloric acid and 10 ml / L of 30 wt% hydrogen peroxide at 25 ° C. for 0.5 to 2 minutes to remove and neutralize the etching solvent.
【0052】水洗の後、後述の触媒の吸着性を良くする
ために樹脂表面に極性を付与するが、このために10m
l/Lのポリエチレンイミン水溶液で50℃、5分間処
理を行い、水洗後、無電解メッキの最初の析出に必要な
触媒核を形成させるために、Pd、Sn錯化合物を吸着
させる。Pd化合物として塩化パラジウム0.2g/
L、Sn錯化合物として塩化第1錫5〜20g/Lを濃
塩酸100〜200ml/Lと混合して25℃、4分間
触媒付与処理を行った。After washing with water, a polarity is applied to the resin surface in order to improve the adsorbability of the catalyst described later.
The mixture is treated with a 1 / L aqueous solution of polyethyleneimine at 50 ° C. for 5 minutes. After washing with water, Pd and Sn complex compounds are adsorbed to form catalyst nuclei necessary for the first deposition of electroless plating. 0.2 g of palladium chloride as Pd compound
5 to 20 g / L of stannous chloride as an L and Sn complex compound was mixed with 100 to 200 ml / L of concentrated hydrochloric acid, and subjected to a catalyst application treatment at 25 ° C for 4 minutes.
【0053】次に、水洗後、100mlの濃硫酸で30
〜50℃、3〜4分間処理して錫成分を除去し、パラジ
ウム成分を金属化し、水洗を行う。Next, after washing with water, 30 ml with 100 ml of concentrated sulfuric acid.
処理 50 ° C. for 3-4 minutes to remove the tin component, metallize the palladium component, and wash with water.
【0054】以上の操作の後、以下の金属メッキ層を順
次形成させる。 (b−1)無電解ニッケルメッキ 硫酸ニッケル240g/L、次亜リン酸ソーダ20g/
L、クエン酸アンモン50g/Lを加え、NH3(アン
モニア)にてpH8〜9.5に調整して、30〜40
℃、5〜10分間、無電解ニッケルメッキを行い、ニッ
ケルの電導層を0.2〜0.8μm形成する。 (b−2)ストライクメッキ 次いで、水洗した後、濃硫酸100ml/Lで25℃、
0.5〜1分間処理してニッケル層の酸化物除去を行
い、ニッケル層を活性化させる。水洗後、硫酸ニッケル
240g/Lと塩化ニッケル45g/Lとホウ酸 30
g/Lからなる水溶液で30〜45℃、3〜6分間、
0.5〜1A/dm2で処理して、ニッケル層の補強の
ためにニッケル2〜3μを電着させるストライクメッキ
を行う。After the above operations, the following metal plating layers are sequentially formed. (B-1) Electroless nickel plating 240 g / L of nickel sulfate, 20 g / sodium hypophosphite
L, ammonium citrate 50 g / L was added, and the pH was adjusted to 8 to 9.5 with NH 3 (ammonia).
Electroless nickel plating is performed at a temperature of 5 ° C. for 5 to 10 minutes to form a nickel conductive layer of 0.2 to 0.8 μm. (B-2) Strike plating Next, after washing with water, concentrated sulfuric acid 100 ml / L at 25 ° C.
The oxide is removed from the nickel layer by treating for 0.5 to 1 minute to activate the nickel layer. After washing with water, nickel sulfate 240 g / L, nickel chloride 45 g / L and boric acid 30
g / L at 30-45 ° C. for 3-6 minutes,
A treatment is performed at 0.5 to 1 A / dm 2 , and strike plating for electrodepositing 2 to 3 μ of nickel to reinforce the nickel layer is performed.
【0055】(b−3)電気銅メッキ 水洗後に、硫酸銅200g/L、硫酸50g/L及び光
沢剤適量からなる溶液で20〜30℃、20〜60分
間、2〜4A/dm2の電流値で電気銅メッキを20μ
m電着させる。 (b−4)電気半光沢ニッケルメッキ 水洗後、硫酸ニッケル300g/L、塩化ニッケル50
g/L、ホウ酸45g/L及び添加剤適量を50℃、1
0〜30分間、2〜4A/dm2の電流値で半光沢ニッ
ケルメッキを5μ電着させる。(B-3) Electro-copper plating After washing with water, a current consisting of 200 g / L of copper sulfate, 50 g / L of sulfuric acid and an appropriate amount of brightener is applied at 20-30 ° C. for 20-60 minutes at a current of 2-4 A / dm 2 . 20μ electrolytic copper plating by value
m electrodeposited. (B-4) Electric semi-bright nickel plating After washing with water, nickel sulfate 300 g / L, nickel chloride 50
g / L, boric acid 45 g / L and an appropriate amount of an additive at 50 ° C.,
Electrodeposit 5 μ of semi-bright nickel plating at a current value of 2 to 4 A / dm 2 for 0 to 30 minutes.
【0056】(b−5)電気光沢ニッケルメッキ 次いで、硫酸ニッケル300g/L、塩化ニッケル50
g/L、ホウ酸45g/L及び光沢剤適量を50℃、1
0〜30分間、2〜4A/dm2の電流値で光沢ニッケ
ルメッキを5μ電着させる。 (b−6−1)電気Pd−Niメッキ 水洗後、パラジウム塩(Pd(NH3)4Cl2・H2
O)25g/L及びニッケル塩(Ni(CH3COO)
2Cl2・4H2O)10g/Lを30℃、1分間、1
A/dm2、NaOHでpH8に調整してPd−Niを
1μm電着させる。この後、水洗して乾燥を行い、治具
から取り外す。(B-5) Electro-bright nickel plating Next, nickel sulfate 300 g / L, nickel chloride 50
g / L, boric acid 45 g / L and appropriate amount of brightener at 50 ° C.,
5 μm of bright nickel plating is electrodeposited at a current value of 2 to 4 A / dm 2 for 0 to 30 minutes. (B-6-1) after electrical Pd-Ni plating was washed with water, a palladium salt (Pd (NH 3) 4Cl 2 · H 2
O) 25 g / L and nickel salt (Ni (CH 3 COO)
2 Cl 2 .4H 2 O) 10 g / L at 30 ° C. for 1 minute
A / dm 2 is adjusted to pH 8 with NaOH, and Pd-Ni is electrodeposited at 1 μm. After that, it is washed with water, dried, and removed from the jig.
【0057】以上の操作で、最外層にPd−Niメッキ
層を備えた樹脂のメッキ製品が得られる。なお、ABS
樹脂では、前記極性付与は不要である。By the above operation, a resin-plated product having a Pd-Ni plating layer as the outermost layer can be obtained. In addition, ABS
The resin does not need to have the polarity.
【0058】また、前記最外層メッキ部分を以下のよう
なメッキ層に置き換えることができる。形成するメッキ
層により、そのメッキ層の作製手順をそれぞれ説明す
る。 (b−6−2)金(Au)メッキ シアン化第一金カリウム1.23g/L、遊離シアン化
カリウム7.5g/L、リン酸カリウム15g/Lを7
0℃。1〜2分間、電流密度1.0A/dm2でAuメ
ッキをフラッシュ〜0.5μm電着させる。 (b−6−3)Au−Cuメッキ シアン化第一金カリウム12g/L、シアン化銅カリウ
ム7g/L、ロダンカリウム10g/L、2−ピリジン
カルボン酸8g/LをKOHでpH8に調整し、70
℃、1〜2分間、電流密度0.4A/dm2でAu−C
uメッキをフラッシュ〜0.5μm電着させる。Further, the outermost plating layer can be replaced with the following plating layer. The procedure for forming the plating layer will be described with reference to the plating layer to be formed. (B-6-2) Gold (Au) plating 1.23 g / L potassium gold cyanide, 7.5 g / L free potassium cyanide, and 15 g / L potassium phosphate
0 ° C. The Au plating is flash-0.5 μm electrodeposited at a current density of 1.0 A / dm 2 for 1-2 minutes. (B-6-3) Au-Cu plating 12 g / L of potassium gold (I) cyanide, 7 g / L of potassium potassium cyanide, 10 g / L of potassium rhodan, and 8 g / L of 2-pyridinecarboxylic acid were adjusted to pH 8 with KOH. , 70
Au-C at a current density of 0.4 A / dm 2 for 1 to 2 minutes.
Electrodeposit u-flash ~ 0.5 [mu] m.
【0059】(b−6−4)Au−銀(Ag)メッキ シアン化第一金カリウム15g/L、シアン化銀カリウ
ム3g/L、シアン化ニッケルカリウム20g/L、シ
アン化コバルトカリウム10g/L、シアン化カリウム
80g/L、アンモニア20g/Lを15℃、1〜2分
間、電流密度0.6A/dm2でAu−Agメッキをフ
ラッシュ〜0.5μm電着させる。 (b−6−5)Au−Snメッキ、シアン化第一金カリ
ウム30g/L、硫酸第1スズ7g/L、ピロリン酸カ
リウム100g/Lを常温で1〜2分間、電流密度1A
/dm2でAu−Snメッキをフラッシュ〜0.5μm
電着させる。(B-6-4) Au-silver (Ag) plating: 15 g / L potassium potassium cyanide, 3 g / L potassium potassium cyanide, 20 g / L nickel potassium cyanide, 10 g / L potassium potassium cyanide Then, 80 g / L of potassium cyanide and 20 g / L of ammonia are flash-deposited with 0.5 μm of Au-Ag plating at a current density of 0.6 A / dm 2 at 15 ° C. for 1 to 2 minutes. (B-6-5) Au-Sn plating, 30 g / L of potassium gold (I) cyanide, 7 g / L of stannous sulfate, and 100 g / L of potassium pyrophosphate at room temperature for 1 to 2 minutes at a current density of 1 A
/ Dm 2 to flash Au-Sn plating to 0.5 μm
Electrodeposit.
【0060】(b−6−6)Au−Cu−Cdメッキ、
シアン化第一金カリウム15g/L、シアン化カドミウ
ムカリウム5g/L、シアン化銅カリウム200g/
L、L−グルタミン酸50g/Lを70℃、1〜2分
間、電流密度1A/dm2でAu−Cu−Cdメッキを
フラッシュ〜0.5μm電着させる。 (b−6−7)Au−Coメッキ、シアン化第一金カリ
ウム8g/L、クエン酸ナトリウム80g/L、コバル
ト硫酸塩3g/Lを21℃、1〜2分間、電流密度1A
/dm2でAu−Coメッキをフラッシュ〜0.5μm
電着させる。(B-6-6) Au-Cu-Cd plating
15 g / L potassium potassium cyanide, 5 g / L potassium cadmium cyanide, 200 g / potassium potassium cyanide
L-L-glutamic acid 50 g / L is subjected to flash-0.5 μm electrodeposition of Au—Cu—Cd plating at 70 ° C. for 1-2 minutes at a current density of 1 A / dm 2 . (B-6-7) Au-Co plating, potassium gold (I) cyanide 8g / L, sodium citrate 80g / L, cobalt sulfate 3g / L at 21 ° C for 1-2 minutes, current density 1A
/ Dm 2 flashes Au-Co plating to 0.5 μm
Electrodeposit.
【0061】(b−6−8)Au−Ni−Coメッキ、
シアン化第一金カリウム8g/L、クエン酸150g/
L、クエン酸カリウム100g/L、クエン酸ニッケル
25g/L、硫酸コバルト1g/L、シアン化カリウム
1g/Lを40℃で1〜2分間、電流密度1A/dm2
でAu−Ni−Coメッキをフラッシュ〜0.5μm電
着させる。 (b−6−9)Au−Ni−Inメッキ、シアン化第一
金カリウム12g/L、クエン酸85g/L、クエン酸
カリウム140g/L、クエン酸ニッケル5g/L、硫
酸インジウム5g/Lを40℃、1〜2分間、電流密度
1A/dm2でAu−Ni−Inメッキをフラッシュ〜
0.5μm電着させる。(B-6-8) Au-Ni-Co plating,
Potassium gold cyanide 8 g / L, citric acid 150 g /
L, potassium citrate 100 g / L, nickel citrate 25 g / L, cobalt sulfate 1 g / L, potassium cyanide 1 g / L at 40 ° C. for 1-2 minutes, current density 1 A / dm 2
To deposit Au-Ni-Co plating by flashing to 0.5 [mu] m. (B-6-9) Au-Ni-In plating, 12 g / L potassium gold cyanide, 85 g / L citric acid, 140 g / L potassium citrate, 5 g / L nickel citrate, 5 g / L indium sulfate Flash Au-Ni-In plating at a current density of 1 A / dm 2 at 40 ° C. for 1-2 minutes.
Electrodeposit 0.5 μm.
【0062】(b−6−10)プラチナ(Pt)メッ
キ、ジニトロジアミン白金10g/L、硝酸アンモニウ
ム100g/L、亜硝酸ナトリウム10g/L、水酸化
アンモニウム55ml/Lを90℃、1〜2分間、電流
密度1A/dm2でPtメッキをフラッシュ〜0.5μ
m電着させる。 (b−6−11)Pdメッキ、ジアミンパラジウム亜硝
酸塩100g/L、硝酸アンモニウム90g/L、亜硝
酸ナトリウム10g/Lを70℃、1〜2分間、電流密
度1.0A/dm2でPdメッキをフラッシュ〜0.5
μm電着させる。(B-6-10) Platinum (Pt) plating, dinitrodiamine platinum 10 g / L, ammonium nitrate 100 g / L, sodium nitrite 10 g / L, ammonium hydroxide 55 ml / L at 90 ° C. for 1-2 minutes. Flash Pt plating at current density of 1 A / dm 2 to 0.5 μm
m electrodeposited. (B-6-11) Pd plating, diamine palladium nitrite 100 g / L, ammonium nitrate 90 g / L, sodium nitrite 10 g / L at 70 ° C. for 1 to 2 minutes, Pd plating at a current density of 1.0 A / dm 2. Flash ~ 0.5
μm electrodeposited.
【0063】(b−6−12)ロジウム(Rh)メッ
キ、硫酸ロジウム2g/L、硫酸30ml/L、50
℃、1〜2分間、電流密度2A/dm2でRhメッキを
フラッシュ〜0.5μm電着させる。 (b−6−13)ルテニウム(Ru)メッキ 硫酸ルテニウム5g/L、スルファミン酸15g/Lを
50℃、1〜2分間、電流密度1A/dm2でRuメッ
キをフラッシュ〜0.5μm電着させる。(B-6-12) Rhodium (Rh) plating, rhodium sulfate 2 g / L, sulfuric acid 30 ml / L, 50
The Rh plating is flash-0.5 μm electrodeposited at a current density of 2 A / dm 2 at 1 ° C. for 1-2 minutes. (B-6-13) Ruthenium (Ru) plating Ruthenium sulfate 5 g / L and sulfamic acid 15 g / L are flash-deposited with 0.5 μm of Ru plating at a current density of 1 A / dm 2 at 50 ° C. for 1 to 2 minutes. .
【0064】(b−6−14)Ni−Pメッキ、硫酸ニ
ッケル150g/L、正リン酸50g/L、塩化ナトリ
ウム20g/L、ホウ酸20g/L、次亜リン酸ナトリ
ウム20g/Lを70℃、5〜10分間、電流密度5A
/dm2でNi−Pメッキを1μm電着させる。 (b−6−15)Sn−Niメッキ 塩化スズ28g/L、塩化ニッケル30g/L、ピロリ
ン酸カリウム200g/L、グリシン20g/L、アン
モニア水5ml/Lを50℃、5〜10分間、電流密度
1A/dm2でNi−Pメッキを1μm電着させる。(B-6-14) Ni-P plating, nickel sulfate 150 g / L, orthophosphoric acid 50 g / L, sodium chloride 20 g / L, boric acid 20 g / L, sodium hypophosphite 20 g / L 5 ° C, current density 5A
/ Dm 2 of Ni-P plating is 1μm electrodeposition in. (B-6-15) Sn-Ni plating 28 g / L of tin chloride, 30 g / L of nickel chloride, 200 g / L of potassium pyrophosphate, 20 g / L of glycine, and 5 ml / L of aqueous ammonia at 50 ° C. for 5 to 10 minutes. Electrodeposit Ni-P plating at a density of 1 A / dm 2 at 1 μm.
【0065】(2)次に、IP処理工程について説明す
る。上記金属メッキ処理が表面に施された樹脂に対して
炭化チタンと窒化チタンの合成膜のIP被膜を形成した
手順を説明する。(2) Next, the IP processing step will be described. A procedure for forming an IP coating of a composite film of titanium carbide and titanium nitride on a resin whose surface has been subjected to the metal plating treatment will be described.
【0066】まず、被処理基材をIP治具へ取り付け
て、次のように前処理とIP処理を行う。 (2−1)前処理工程 例えば、非イオン性化学洗浄剤(商品名sonic-cean20
5、超音波工業(株)製)を用いて被処理基材に付着し
ている指紋、油、ゴミ等を除去する脱脂処理を超音波槽
内で40℃、3分間行う。First, the substrate to be processed is attached to the IP jig, and the pre-processing and the IP processing are performed as follows. (2-1) Pretreatment step For example, a nonionic chemical detergent (trade name: sonic-cean20)
5. Degreasing treatment for removing fingerprints, oils, dusts and the like adhering to the substrate to be treated is performed in an ultrasonic bath at 40 ° C. for 3 minutes using Ultrasonic Industry Co., Ltd.
【0067】次いで、アルカリ成分が被加工物に残留し
ないように硝酸0.2wt%液で、常温で3分間中和処
理を行う。次いで、常温で3分間×3回にわたり、超音
波3連槽内で水道水により水洗して洗浄液を洗い流し、
さらに、洗浄シミを発生させないために純水洗浄を行
う。次いで、70℃で、3分間×3回、温風乾燥するこ
とで水分を除く。Next, neutralization treatment is performed at room temperature for 3 minutes with a 0.2 wt% nitric acid solution so that no alkali component remains on the workpiece. Next, at room temperature for 3 minutes x 3 times, the washing liquid was washed away with tap water in an ultrasonic triple tank, and the washing liquid was washed away.
Further, pure water cleaning is performed to prevent generation of cleaning stains. Next, moisture is removed by drying with hot air at 70 ° C. for 3 minutes × 3 times.
【0068】(2−2)IP処理工程 被処理基材の基板を取り付けた治具をIP装置の真空チ
ャンバー1(図1)内にセットし、蒸着材としてIP装
置の蒸発源2にチタンのブロックをセットする。次い
で、チャンバー1を閉じて数十分間、真空引きを行う。
このときIP膜の種類により最終圧力値は異なるが、約
1〜9×10−5torr程度にする。(2-2) IP Processing Step A jig to which a substrate of a substrate to be processed is attached is set in a vacuum chamber 1 (FIG. 1) of an IP device, and titanium is used as an evaporation material in an evaporation source 2 of the IP device. Set the block. Next, the chamber 1 is closed and a vacuum is drawn for several tens minutes.
At this time, the final pressure value varies depending on the type of the IP film, but is set to about 1 to 9 × 10 −5 torr.
【0069】ついで、被処理基材6の加工面にチタン付
けを行うが、被処理基材6の基板にはマイナス10〜1
20V、イオン化電極5にはプラス20〜40V、20
〜60A、電子銃4にはマイナス6〜9kV、400〜
800mAの電圧、電流値をそれぞれ被膜により設定し
3〜4分チタン付けを行う。ここでチタン付けを行う理
由は、最初からガスを導入しても常温では充分な反応が
得られないので、チタン付けをしながらある程度温度を
上げて反応性を良くする為である。Next, titanium is applied to the processed surface of the substrate 6 to be processed.
20 V, plus 20-40 V, 20 for the ionization electrode 5
~ 60A, electron gun 4 has minus 6 ~ 9kV, 400 ~
A voltage and a current value of 800 mA are set for each coating, and titanium is applied for 3 to 4 minutes. The reason why titanium is applied here is that even if a gas is introduced from the beginning, a sufficient reaction cannot be obtained at room temperature, so that the temperature is raised to some extent while titanium is applied to improve the reactivity.
【0070】ついで、IP被膜の色だしを行うために、
チャンバー1内に窒素ガス、アセチレンガス、酸素など
を適量注入、圧力を1×10−4〜5×10−3tor
rに調整し、被処理基材6の基板にはマイナス120
V、イオン化電極5にはプラス20〜60V、40〜8
0A、電子銃4にはマイナス6〜9kV、500〜10
00mAの電圧、電流値をそれぞれ設定して約15〜2
0分間程度行う。Next, in order to color the IP coating,
An appropriate amount of nitrogen gas, acetylene gas, oxygen or the like is injected into the chamber 1, and the pressure is set to 1 × 10 −4 to 5 × 10 −3 torr.
r, and the substrate of the substrate 6 to be processed is minus 120
V, plus 20 to 60 V, 40 to 8 for the ionization electrode 5
0A, minus 6-9 kV, 500-10 for electron gun 4
About 15 to 2 by setting the voltage and current of 00 mA, respectively.
Perform for about 0 minutes.
【0071】以後は一定時間冷却後、大気をチャンバー
1内に注入して大気圧にして、治具をチャンバーから出
し、治具に取り付け被処理基材6を治具より外す。Thereafter, after cooling for a certain period of time, the atmosphere is injected into the chamber 1 to make it atmospheric pressure, the jig is taken out of the chamber, the jig is attached to the jig, and the substrate 6 to be processed is removed from the jig.
【0072】以下に示す表1には前記各種樹脂をCuメ
ツキ(20μm)とNiメツキ(C5μm+5μm)と
Pd−Niメツキ(1μm)処理を施し、さらに炭化チ
タンと窒化チタンの混合膜からなるIP膜のコーティン
グ処理を行った場合のIP膜の外観を目視による仕上が
りの程度を示す。The following Table 1 shows that the various resins were treated with Cu plating (20 μm), Ni plating (C5 μm + 5 μm) and Pd-Ni plating (1 μm), and further, an IP film made of a mixed film of titanium carbide and titanium nitride. Shows the degree of finish by visual observation of the appearance of the IP film when the coating process of Example 1 was performed.
【0073】[0073]
【表1】 [Table 1]
【発明の効果】本発明により合成樹脂製品に対してイオ
ンプレーティング処理を行うことによって、合成樹脂材
料の特性である意匠の多様性と軽量化を生かした、耐摩
耗性、装飾性の高い製品を安価に提供することができ
る。According to the present invention, a synthetic resin product is subjected to an ion plating process, thereby making use of a variety of designs and light weight which are characteristics of the synthetic resin material, and having high wear resistance and decorativeness. Can be provided at a low cost.
【図面の簡単な説明】[Brief description of the drawings]
【図1】 本発明のIP処理装置の概略図である。FIG. 1 is a schematic diagram of an IP processing device of the present invention.
1 真空チャンバー 2 蒸発源 3 ガス供給機構 4 電子銃 5 イオン化電極 6 被処理基材 DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Evaporation source 3 Gas supply mechanism 4 Electron gun 5 Ionization electrode 6 Substrate to be processed
Claims (5)
を行った後、金属メッキを施し、その後イオンプレーテ
ィングを行って合成樹脂の成形面に、イオンプレーティ
ング被膜を形成することを特徴とする合成樹脂のイオン
プレーティング方法。The present invention is characterized in that after performing a degassing process and an annealing process of a synthetic resin, a metal plating is performed, and thereafter, an ion plating is performed to form an ion plating film on a molding surface of the synthetic resin. Ion plating method for synthetic resin.
前又は後に脱水処理を行うことを特徴とする請求項1記
載の合成樹脂のイオンプレーティング方法。2. The ion plating method for a synthetic resin according to claim 1, wherein a dehydration treatment is performed before or after the degassing treatment and the annealing treatment of the synthetic resin.
は180℃で1.5〜3時間、又は150℃で2〜4時
間の熱処理することを特徴とする請求項1記載の合成樹
脂のイオンプレーティング方法。3. The synthesis according to claim 1, wherein the synthetic resin is heat-treated at 200 ° C. for 1-2 hours, at 180 ° C. for 1.5-3 hours, or at 150 ° C. for 2-4 hours. Ion plating method for resin.
成樹脂の成形表面に金属メッキ膜とイオンプレーティン
グ被膜を順次形成したイオンプレーティング被膜を有す
る合成樹脂成型品。4. A synthetic resin molded article having an ion plating film in which a metal plating film and an ion plating film are sequentially formed on a molding surface of a synthetic resin subjected to a degassing treatment and an annealing treatment.
の膜厚とすることを特徴とする請求項4記載のイオンプ
レーティング被膜を有する合成樹脂成型品。5. The metal plating of the synthetic resin is 50 to 20 μm.
The synthetic resin molded article having the ion plating film according to claim 4, wherein
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11057697A JP2000080482A (en) | 1998-07-10 | 1999-03-04 | Ion plating method of synthetic resin and synthetic resin molding having ion plating film |
PCT/JP1999/003607 WO2000003054A1 (en) | 1998-07-10 | 1999-07-02 | Method for ion plating of synthetic resin and molded synthetic resin article having ion-plated coating |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22991698 | 1998-07-10 | ||
JP10-229916 | 1998-07-10 | ||
JP11057697A JP2000080482A (en) | 1998-07-10 | 1999-03-04 | Ion plating method of synthetic resin and synthetic resin molding having ion plating film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000080482A true JP2000080482A (en) | 2000-03-21 |
Family
ID=26398763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11057697A Pending JP2000080482A (en) | 1998-07-10 | 1999-03-04 | Ion plating method of synthetic resin and synthetic resin molding having ion plating film |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2000080482A (en) |
WO (1) | WO2000003054A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270276A (en) * | 2006-03-31 | 2007-10-18 | Shimano Inc | Parts for outdoor use |
CN105568216A (en) * | 2016-01-27 | 2016-05-11 | 太仓捷公精密金属材料有限公司 | Surface treatment process of metal product |
KR102502033B1 (en) * | 2022-03-11 | 2023-02-21 | 주식회사 앨피스 | Plating Method on Injection Molding of Polyphenylene Sulfide Composites |
WO2023181964A1 (en) * | 2022-03-25 | 2023-09-28 | 東洋紡株式会社 | Styrene resin molded body |
WO2023181963A1 (en) * | 2022-03-25 | 2023-09-28 | 東洋紡株式会社 | Molded styrene-based resin |
WO2024190085A1 (en) * | 2023-03-14 | 2024-09-19 | Agc株式会社 | Electromagnetic wave reflecting panel, electromagnetic wave reflecting device, electromagnetic wave reflecting fence, and method for manufacturing electromagnetic wave reflecting panel |
WO2025041555A1 (en) * | 2023-08-21 | 2025-02-27 | Agc株式会社 | Electromagnetic wave reflection panel, electromagnetic wave reflection device using same, electromagnetic wave reflection fence, method for manufacturing electromagnetic wave reflection panel, and method for evaluating electromagnetic wave reflection panel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3458252A4 (en) * | 2016-05-17 | 2020-04-01 | Shamir Optical Industry Ltd. | Back side anti-reflective coatings, coating formulations, and methods of coating ophthalmic lenses |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55151864U (en) * | 1979-04-16 | 1980-11-01 | ||
JPS60131712A (en) * | 1983-12-20 | 1985-07-13 | 住友ベークライト株式会社 | Method of producing transparent conductive film |
JPS60177177A (en) * | 1984-02-24 | 1985-09-11 | Hitachi Condenser Co Ltd | Dehydrator for sheet-like material |
JPS61167903A (en) * | 1985-01-19 | 1986-07-29 | Olympus Optical Co Ltd | Coating method of synthetic resin optical parts |
JPS62262248A (en) * | 1986-05-08 | 1987-11-14 | Nec Corp | Production of magneto-optical recording medium |
JPH0196364A (en) * | 1987-10-07 | 1989-04-14 | Teijin Ltd | Method for removing moisture from high polymer resin substrate |
JPH04329864A (en) * | 1991-05-07 | 1992-11-18 | Seiko Epson Corp | Exterior parts for watches |
FR2682688B1 (en) * | 1991-10-22 | 1994-01-14 | Thomson Csf | PROCESS FOR THE METALLIZATION OF THE SURFACE OF PARTS OF PLASTIC MATERIAL AND PARTS FOR ELECTRONIC USE THUS OBTAINED. |
WO1997005192A1 (en) * | 1995-07-28 | 1997-02-13 | Idemitsu Petrochemical Co., Ltd. | Plated molding and process for preparing plated moldings |
-
1999
- 1999-03-04 JP JP11057697A patent/JP2000080482A/en active Pending
- 1999-07-02 WO PCT/JP1999/003607 patent/WO2000003054A1/en active Application Filing
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270276A (en) * | 2006-03-31 | 2007-10-18 | Shimano Inc | Parts for outdoor use |
CN105568216A (en) * | 2016-01-27 | 2016-05-11 | 太仓捷公精密金属材料有限公司 | Surface treatment process of metal product |
KR102502033B1 (en) * | 2022-03-11 | 2023-02-21 | 주식회사 앨피스 | Plating Method on Injection Molding of Polyphenylene Sulfide Composites |
WO2023171992A1 (en) * | 2022-03-11 | 2023-09-14 | 주식회사 앨피스 | Plating method for polyphenylene sulfide composite injection-molded product |
WO2023181964A1 (en) * | 2022-03-25 | 2023-09-28 | 東洋紡株式会社 | Styrene resin molded body |
WO2023181963A1 (en) * | 2022-03-25 | 2023-09-28 | 東洋紡株式会社 | Molded styrene-based resin |
WO2024190085A1 (en) * | 2023-03-14 | 2024-09-19 | Agc株式会社 | Electromagnetic wave reflecting panel, electromagnetic wave reflecting device, electromagnetic wave reflecting fence, and method for manufacturing electromagnetic wave reflecting panel |
WO2025041555A1 (en) * | 2023-08-21 | 2025-02-27 | Agc株式会社 | Electromagnetic wave reflection panel, electromagnetic wave reflection device using same, electromagnetic wave reflection fence, method for manufacturing electromagnetic wave reflection panel, and method for evaluating electromagnetic wave reflection panel |
Also Published As
Publication number | Publication date |
---|---|
WO2000003054A1 (en) | 2000-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4429020A (en) | Metal-polymer composite and method of making said composite | |
US4191617A (en) | Process for electroplating directly plateable plastic with cobalt alloy strike and article thereof | |
US4195117A (en) | Process for electroplating directly plateable plastic with nickel-iron alloy strike and article thereof | |
EP2481838B1 (en) | Method for applying semi-dry electroplating method on surface of plastic substrate | |
CA2763983C (en) | Metal-clad polymer article | |
US20080156638A1 (en) | Process for sputtering aluminum or copper onto aluminum or magnalium alloy substrates | |
US20070059449A1 (en) | Plating method of metal film on the surface of polymer | |
JP2008031555A5 (en) | ||
JP2008031555A (en) | Manufacturing method of decorative plating product using resin conductivity by sputtering and hanging jig for fixing resin molded product | |
GB2266318A (en) | Electroless plating solution containing thiodiglycolic acid and arylsulphonic acid condensate with formalin | |
JPS5932553B2 (en) | How to form a strippable copper coating on aluminum | |
TW201307611A (en) | Hard film-coated member and method of producing the same | |
WO2006110633A1 (en) | Aqueous coating compositions and process for treating metal plated substrates | |
WO2002000958A1 (en) | Decorative article having white film and production method therefor | |
CN108220959B (en) | A chromium-free roughening treatment method for plastics and a water-saving electroplating method thereof | |
CN1132964C (en) | Anticorrosive wear-resistant gradient film | |
JP2000080482A (en) | Ion plating method of synthetic resin and synthetic resin molding having ion plating film | |
JPH0154436B2 (en) | ||
US4770751A (en) | Method for forming on a nonconductor a shielding layer against electromagnetic radiation | |
JP2001355094A (en) | Base material having ornamental coating film and its manufacturing method | |
US20200224325A1 (en) | Surface treatment method | |
JP6671583B2 (en) | Metal plating method | |
JP2006523772A (en) | Use of articles as decorative structural parts | |
US6827834B2 (en) | Non-cyanide copper plating process for zinc and zinc alloys | |
EP3969636B1 (en) | Light permeable metallic coatings and method for the manufacture thereof |