JP2000073895A - Intake pipe - Google Patents
Intake pipeInfo
- Publication number
- JP2000073895A JP2000073895A JP11086858A JP8685899A JP2000073895A JP 2000073895 A JP2000073895 A JP 2000073895A JP 11086858 A JP11086858 A JP 11086858A JP 8685899 A JP8685899 A JP 8685899A JP 2000073895 A JP2000073895 A JP 2000073895A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- melting point
- nonwoven fabric
- fiber
- intake pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 claims abstract description 66
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 64
- 238000002844 melting Methods 0.000 claims abstract description 56
- 230000008018 melting Effects 0.000 claims description 43
- 239000011162 core material Substances 0.000 claims description 20
- 239000010410 layer Substances 0.000 claims description 18
- 239000011247 coating layer Substances 0.000 claims description 15
- 239000005871 repellent Substances 0.000 claims description 15
- 229920005992 thermoplastic resin Polymers 0.000 claims description 15
- 239000002346 layers by function Substances 0.000 claims description 8
- 229920003002 synthetic resin Polymers 0.000 claims description 2
- 239000000057 synthetic resin Substances 0.000 claims description 2
- 238000000465 moulding Methods 0.000 abstract description 14
- 239000011230 binding agent Substances 0.000 abstract description 4
- 230000035699 permeability Effects 0.000 description 16
- 229920000139 polyethylene terephthalate Polymers 0.000 description 16
- 239000005020 polyethylene terephthalate Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229920001169 thermoplastic Polymers 0.000 description 7
- 239000004416 thermosoftening plastic Substances 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000009423 ventilation Methods 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 238000009958 sewing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Duct Arrangements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、エンジンへ空気を
供給する通路としての吸気管に関し、詳しくは吸気時の
騒音が低減された吸気管に関する。The present invention relates to an intake pipe as a passage for supplying air to an engine, and more particularly to an intake pipe in which noise during intake is reduced.
【0002】[0002]
【従来の技術】自動車エンジンの吸気系では、吸気時に
エアクリーナホースあるいは吸気ダクトなどの吸気管に
おいて騒音が発生するという問題がある。この吸気騒音
は、特にエンジンの低速回転時に耳障りである。そこで
従来より、図18に示すように、吸気ダクト 100にサイド
ブランチ 101及び/又はレゾネータ 102を設け、ヘルム
ホルツの共鳴理論などに基づいて計算される特定周波数
の騒音を低減することが行われている。2. Description of the Related Art In an intake system of an automobile engine, there is a problem that noise is generated in an intake pipe such as an air cleaner hose or an intake duct during intake. This intake noise is particularly harsh when the engine is running at a low speed. Therefore, conventionally, as shown in FIG. 18, a side branch 101 and / or a resonator 102 are provided in the intake duct 100 to reduce noise of a specific frequency calculated based on Helmholtz's resonance theory or the like. .
【0003】ところがサイドブランチ 101は、長いもの
では約30cmの長さにもなり、レゾネータ 102の容積は大
きいものでは14リットルもの大きさとなる。そのためこ
れらの吸音装置のエンジンルーム内に占めるスペースが
大きくなり、他の部品の搭載の自由度が低くなるという
不具合が生じる。そこで実開昭64-22866号公報には、吸
気ダクト内にオリフィスを配置し、オリフィスの位置で
吸気を絞ることで吸気騒音を低減することが開示されて
いる。このように吸気通路を絞ることにより、音響質量
が大きくなり、低音域の吸気音を低減することができ
る。However, the side branch 101 has a length of about 30 cm when it is long, and has a volume of 14 liters when the volume of the resonator 102 is large. As a result, the space occupied by the sound absorbing devices in the engine room becomes large, and the degree of freedom in mounting other components is reduced. Thus, Japanese Utility Model Laid-Open Publication No. 64-22866 discloses that an orifice is arranged in an intake duct, and intake air is reduced at the position of the orifice to reduce intake noise. By narrowing the intake passage in this way, the acoustic mass increases, and the intake sound in a low-frequency range can be reduced.
【0004】また実開平3-43576号公報には、エアクリ
ーナケースに並列に接続された2本の吸気管と、2本の
吸気管からそれぞれ分岐した分岐管と、各分岐管が共に
連結された共通のレゾネータを有し、一方の吸気管にお
ける分岐管の接続部の上流側に運転状態に応じて選択的
に開く開閉弁を備えた吸気音低減装置が開示されてい
る。In Japanese Utility Model Laid-Open Publication No. 3-43576, two intake pipes connected in parallel to an air cleaner case, branch pipes branched from the two intake pipes, and branch pipes are connected together. An intake noise reduction device is disclosed that has a common resonator and an open / close valve that is selectively opened in accordance with an operation state on the upstream side of a connection portion of a branch pipe in one intake pipe.
【0005】この実開平3-43576号公報に開示の装置に
よれば、エンジン回転数に応じて開閉弁を制御して吸気
管を1本又は2本に切り替えることにより、エンジン回
転数に応じて吸入空気量を制御し、かつ吸気騒音を低減
することができる。According to the apparatus disclosed in Japanese Utility Model Laid-Open Publication No. 3-43576, the on-off valve is controlled in accordance with the engine speed to switch the intake pipe to one or two pipes, whereby the engine is controlled in accordance with the engine speed. The intake air amount can be controlled, and the intake noise can be reduced.
【0006】[0006]
【発明が解決しようとする課題】ところが上記した吸気
通路を絞る方法では、エンジンの高速回転時に吸入空気
量が不足して出力が低下するという不具合がある。また
実開平3-43576号公報に開示の装置では、開閉弁を駆動
するために電子制御回路、電磁開閉弁、あるいはダイヤ
フラムアクチュエータなどを用いているので、コスト面
から好ましいものではない。また電子制御回路や電磁開
閉弁などが必要であるため、複雑な装置となり高価とな
るばかりかメンテナンス工数も多大である。However, the above-described method of narrowing the intake passage has a disadvantage that the amount of intake air is insufficient at the time of high-speed rotation of the engine and the output is reduced. The apparatus disclosed in Japanese Utility Model Laid-Open Publication No. 3-43576 is not preferable in terms of cost because an electronic control circuit, an electromagnetic on-off valve, a diaphragm actuator, and the like are used to drive the on-off valve. Further, since an electronic control circuit and an electromagnetic on-off valve are required, the apparatus becomes complicated and expensive, and also requires a large number of maintenance steps.
【0007】本発明はこのような事情に鑑みてなされた
ものであり、吸気通路を絞ることなく、電子制御回路や
電磁開閉弁などを用いずに、単純で安価な構成でエンジ
ンの低速回転時の吸気騒音を低減し、かつ高速回転時に
は十分な空気量を供給できるようにすることを目的とす
る。The present invention has been made in view of the above circumstances, and has a simple and inexpensive configuration at the time of low-speed rotation of an engine without restricting the intake passage, without using an electronic control circuit, an electromagnetic switching valve, or the like. It is an object of the present invention to reduce intake noise and supply a sufficient amount of air during high-speed rotation.
【0008】[0008]
【課題を解決するための手段】上記課題を解決する請求
項1に記載の吸気管の特徴は、自動車の外気取り入れ口
とエンジンのインテークマニホールドとの間に配置され
る吸気管において、不織布よりなる成形体から管壁の少
なくとも一部が形成されたことにある。また請求項2に
記載の吸気管の特徴は、請求項1に記載の吸気管におい
て、成形体の1m2 当たりの通気量は、圧力差98Paの空
気の場合に6000m3/h以下であることにある。According to a first aspect of the present invention, there is provided an intake pipe comprising a non-woven fabric in an intake pipe disposed between an outside air intake of an automobile and an intake manifold of an engine. That is, at least a part of the tube wall is formed from the molded body. According to a second aspect of the present invention, in the intake pipe according to the first aspect, the air flow rate per m 2 of the molded body is 6000 m 3 / h or less when the pressure difference is 98 Pa. It is in.
【0009】請求項3に記載の吸気管の特徴は、請求項
1に記載の吸気管において、管壁全体が成形体から形成
され、不織布は高融点熱可塑性樹脂製の高融点繊維と高
融点繊維より融点の低い低融点熱可塑性樹脂製の低融点
繊維とを含み、不織布中の低融点繊維の割合が高融点繊
維より多いことにある。請求項4に記載の吸気管の特徴
は、請求項1に記載の吸気管において、管壁全体が成形
体から形成され、不織布は高融点熱可塑性樹脂製の芯材
と芯材表面に被覆され芯材より融点の低い低融点熱可塑
性樹脂製の被覆層とよりなる熱可塑性繊維を含み、被覆
層の体積が芯材の体積より大きいことにある。According to a third aspect of the present invention, in the intake pipe according to the first aspect, the entire pipe wall is formed of a molded body, and the non-woven fabric is made of a high melting point fiber made of a high melting point thermoplastic resin and a high melting point. And a low-melting fiber made of a low-melting thermoplastic resin having a melting point lower than that of the fiber, and the ratio of the low-melting fiber in the nonwoven fabric is larger than that of the high-melting fiber. A feature of the intake pipe according to claim 4 is that, in the intake pipe according to claim 1, the entire pipe wall is formed of a molded body, and the nonwoven fabric is coated on a core material made of a high melting point thermoplastic resin and the surface of the core material. It comprises thermoplastic fibers comprising a coating layer made of a low melting point thermoplastic resin having a lower melting point than the core material, and the volume of the coating layer is larger than the volume of the core material.
【0010】そして請求項5に記載の吸気管の特徴は、
請求項1記載の吸気管において、成形体は所定機能が付
与された機能層をもつ不織布から形成されていることに
あり、請求項6に記載の吸気管の特徴は、請求項5に記
載の吸気管において、機能層は撥水層であることにあ
る。さらに請求項7に記載の吸気管の特徴は、自動車の
外気取り入れ口とエンジンのインテークマニホールドと
の間に配置される吸気管において、合成樹脂製成形体か
らなる第1分割体と、不織布製成形体からなる第2分割
体とからなり、第1分割体と第2分割体とが一体的に結
合されて筒状となっていることにある。[0010] The features of the intake pipe according to claim 5 are as follows.
In the intake pipe according to the first aspect, the molded body is formed of a nonwoven fabric having a functional layer provided with a predetermined function, and the characteristic of the intake pipe according to the sixth aspect is that of the intake pipe according to the fifth aspect. In the intake pipe, the functional layer is a water-repellent layer. Further, the intake pipe according to claim 7 is characterized in that, in the intake pipe arranged between the outside air intake of the automobile and the intake manifold of the engine, a first divided body made of a synthetic resin molded body and a nonwoven fabric made of a non-woven fabric are formed. The first divided body and the second divided body are formed into a cylindrical shape by being integrally combined with each other.
【0011】[0011]
【発明の実施の形態】本発明者らは、吸気管の材質と発
生する騒音との関係を鋭意研究した結果、所定の通気性
をもつ通気性材料から管壁を形成することにより、定在
波が生じにくく、吸気騒音が著しく低減されることを見
出した。本発明はこのような発見に基づいてなされたも
のである。BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have conducted intensive studies on the relationship between the material of an intake pipe and the noise generated, and as a result, have formed a pipe wall from a breathable material having a predetermined permeability. It has been found that waves are unlikely to occur and intake noise is significantly reduced. The present invention has been made based on such a finding.
【0012】吸気時に生じる騒音は、主として吸気管の
内部で発生する音波の定在波に起因し、定在波の周波数
は吸気管長、吸気管径及び吸気管の材質などによって決
まる。そこで本発明では、不織布よりなる成形体から吸
気管の管壁の少なくとも一部を形成している。管壁を不
織布成形体から構成することで吸気音が低減される理由
の詳細は不明であるが、以下の三つの理由が考えられ
る。 (1)不織布は弾性体であるので制振作用を有し、管壁
の振動による音波の発生が抑制される。 (2)不織布の繊維間の多数の隙間に入り込んだ音波
は、隙間の粘性と熱伝導の作用によりそのエネルギーが
弱まり、また音圧の変動に伴い繊維自身が共振して音エ
ネルギーが減衰する。 (3)管壁の少なくとも一部がある程度の通気性を有す
ることにより、音波の一部がその管壁を通過することで
定在波の発生が抑制される。The noise generated during intake is mainly caused by a standing wave of a sound wave generated inside the intake pipe, and the frequency of the standing wave is determined by the intake pipe length, the intake pipe diameter, the material of the intake pipe, and the like. Therefore, in the present invention, at least a part of the pipe wall of the intake pipe is formed from a molded body made of a nonwoven fabric. The details of the reason why the suction noise is reduced by forming the tube wall from the nonwoven fabric molding are unknown, but the following three reasons are considered. (1) Since the nonwoven fabric is an elastic body, it has a vibration damping action, and generation of sound waves due to vibration of the tube wall is suppressed. (2) The energy of the sound wave that has entered the many gaps between the fibers of the nonwoven fabric is weakened by the action of the viscosity and heat conduction of the gaps, and the fibers themselves resonate due to the fluctuation of the sound pressure, and the sound energy is attenuated. (3) Since at least a part of the tube wall has a certain degree of air permeability, a part of a sound wave passes through the tube wall, thereby suppressing generation of a standing wave.
【0013】これらの相乗効果によって吸気騒音が低減
されると考えられる。しかし、不織布成形体の通気性が
高すぎると、吸気管内の音波が管壁を透過して外部に漏
れるため、騒音が増大するという不具合がある。そこで
通気性の程度は、圧力差98Paのときの空気の通気量が1
m2 当たり6000m3/h以下とすることが望ましい。なお本
発明にいう通気量とは、試験体により区画された2室間
の圧力差を98Paに設定した時に、試験体の単位面積あた
りを通過する単位時間あたりの空気量をいう。単位面積
当たり6000m3/h以下という限定は、もちろん圧力差が98
Paの空気の場合の限定であり、吸気の圧力が異なれば通
気量の限定数値も異なることはいうまでもない。It is considered that the intake noise is reduced by these synergistic effects. However, if the air permeability of the nonwoven fabric molding is too high, the sound waves in the suction pipe penetrate through the pipe wall and leak to the outside, so that there is a problem that noise increases. Therefore, the degree of air permeability is as follows.
It is desirable to be 6000 m 3 / h or less per m 2 . In addition, the ventilation amount referred to in the present invention refers to an amount of air per unit time passing through a unit area of a test body when a pressure difference between two chambers defined by the test body is set to 98 Pa. The limitation of 6000 m 3 / h or less per unit area is, of course, a pressure difference of 98
This is a limitation in the case of air of Pa. Needless to say, if the pressure of the intake air differs, the limited numerical value of the ventilation amount also differs.
【0014】圧力差98Paのときの空気の1m2 当たりの
通気量が6000m3/hを超えると、吸気管の管壁を通過する
音波が多くなって透過音が大きくなる。また通気量がゼ
ロであると、 200Hz以下の低周波数域の騒音の抑制作用
が小さくなるが、従来の吸気管に比べれば騒音は小さ
い。通気量がゼロの不織布成形体とするには、不織布成
形体の外側表面に膜状の表皮層を形成すればよい。内側
表面に表皮層を形成しても通気量をゼロとすることはで
きるが、上記した(2)の理由による騒音の低減が困難
となるので好ましくない。なお不織布成形体における圧
力差98Paのときの空気の通気量は、ゼロ以上で4200m3/h
未満であることが好ましく、0<通気量<3000m3/hの範
囲が特に好ましい。When the air flow rate per m 2 of air at a pressure difference of 98 Pa exceeds 6000 m 3 / h, sound waves passing through the pipe wall of the intake pipe increase, and transmitted sound increases. If the ventilation rate is zero, the effect of suppressing noise in the low frequency range of 200 Hz or less is reduced, but the noise is smaller than that of the conventional intake pipe. In order to obtain a nonwoven fabric having a zero air permeability, a film-like skin layer may be formed on the outer surface of the nonwoven fabric. Even if a skin layer is formed on the inner surface, the air permeability can be reduced to zero, but it is not preferable because it is difficult to reduce noise due to the reason (2) described above. The air flow rate at a pressure difference of 98 Pa in the nonwoven fabric molded article is 4200 m 3 / h at zero or more.
Is preferably less than 0, and particularly preferably in the range of 0 <airflow <3000 m 3 / h.
【0015】本発明の吸気管は、その少なくとも一部に
不織布よりなる成形体をもつ。この不織布は、熱可塑性
繊維から形成されたものが望ましい。熱可塑性樹脂繊維
製の不織布を用いれば、複雑な形状の吸気管でも熱プレ
ス成形などで容易に賦形して成形することができる。こ
の場合、熱可塑性樹脂繊維は不織布の一部を構成してい
てもよいし、不織布全体が熱可塑性樹脂繊維から構成さ
れていてもよい。また熱可塑性ではない繊維に熱可塑性
樹脂製のバインダを含浸させた不織布でも、熱可塑性樹
脂繊維から形成された不織布と同様に熱プレス成形など
による賦形が可能であり、同様に吸気騒音を低減するこ
とができる。The intake pipe of the present invention has at least a part thereof formed of a nonwoven fabric. This nonwoven fabric is preferably formed from thermoplastic fibers. If a nonwoven fabric made of a thermoplastic resin fiber is used, even an intake pipe having a complicated shape can be easily shaped and molded by hot press molding or the like. In this case, the thermoplastic resin fiber may constitute a part of the nonwoven fabric, or the entire nonwoven fabric may be composed of the thermoplastic resin fiber. Non-thermoplastic fibers impregnated with a binder made of thermoplastic resin can be shaped by hot press molding, etc., like nonwoven fabrics made of thermoplastic resin fibers, reducing intake noise as well. can do.
【0016】また不織布よりなる成形体は、吸気管の管
壁の少なくとも一部に存在すれば吸気騒音の低減にそれ
なりの効果があるが、不織布以外の非通気性材料から形
成された部分が多くなるほど定在波が発生しやすくなる
ので、吸気管全体を不織布よりなる成形体から形成する
ことが好ましい。しかし吸気管全体を不織布よりなる成
形体から形成する場合、深絞り部や曲率半径の小さい曲
がり部をもつような形状に熱プレス成形しようとする
と、壁面に亀裂などの不具合が発生して吸気騒音が漏れ
る場合がある。このような不具合を防止するには、成形
体を複数に分割して形成し、それを接合して所定形状と
する方法が考えられるが、工数が増大して生産性が低下
するとともにコストも上昇するという不具合がある。A molded article made of a nonwoven fabric has a certain effect in reducing intake noise if it is present on at least a part of the pipe wall of the intake pipe. However, a molded article made of a non-permeable material other than the nonwoven fabric is often used. Since a standing wave is more likely to be generated, it is preferable to form the entire intake pipe from a molded body made of a nonwoven fabric. However, when the entire intake pipe is formed from a molded article made of non-woven fabric, if hot press molding is performed into a shape that has a deep drawn part or a bent part with a small radius of curvature, problems such as cracks on the wall surface will occur and the intake noise will be reduced. May leak. To prevent such inconvenience, a method of dividing the formed body into a plurality of parts and joining them to form a predetermined shape can be considered, but the number of man-hours increases and the productivity decreases and the cost also increases. There is a problem of doing.
【0017】そこで請求項3に記載したように、管壁全
体を成形体から形成し、不織布は高融点繊維と高融点繊
維より融点の低い低融点繊維とを含み、不織布中の低融
点繊維の割合が高融点繊維より多くなるように構成する
ことが望ましい。このように構成された不織布を用いて
熱プレス成形すれば、低融点繊維が優先的に軟化溶融
し、高融点繊維が塑性変形又は弾性変形して、最後に軟
化した低融点繊維が冷却固化することで所定形状に賦形
される。したがって成形時の繊維の動きの自由度が大き
いため、深絞り部や曲率半径の小さい曲がり部をもつよ
うな形状にも容易に賦形することができる。そして万一
壁面に亀裂が生じたとしても、十分に存在する溶融した
低融点繊維により亀裂が充填されて溶着接合されるた
め、上記不具合が防止される。Therefore, as described in claim 3, the entire tube wall is formed from a molded body, and the nonwoven fabric includes a high melting point fiber and a low melting point fiber having a lower melting point than the high melting point fiber. Desirably, the ratio is higher than that of the high melting point fiber. If hot press molding is performed using the nonwoven fabric configured as described above, the low melting point fiber is softened and melted preferentially, the high melting point fiber is plastically or elastically deformed, and the softened low melting point fiber is finally solidified by cooling. By doing so, it is shaped into a predetermined shape. Therefore, since the degree of freedom of movement of the fiber during molding is large, it is possible to easily form a shape having a deep drawn portion or a bent portion having a small radius of curvature. Even if a crack is generated on the wall surface, the crack is filled with a sufficiently existing low-melting-point fiber and welded, so that the above-mentioned problem is prevented.
【0018】低融点繊維は高融点繊維より多ければよい
が、不織布中の低融点繊維の割合が20〜50%であること
が好ましい。20%未満では上記作用が発現されにくく、
50%を超えると成形体の耐熱性が不足するようになる。
なお低融点繊維は融点が 150〜 170℃の範囲のものが好
ましく、高融点繊維は融点が 220〜 260℃の範囲のもの
が好ましい。It is sufficient that the low melting point fiber is higher than the high melting point fiber, but it is preferable that the ratio of the low melting point fiber in the nonwoven fabric is 20 to 50%. If it is less than 20%, the above-mentioned effects are hardly exhibited,
If it exceeds 50%, the heat resistance of the molded product becomes insufficient.
The low melting point fiber preferably has a melting point in the range of 150 to 170 ° C, and the high melting point fiber preferably has a melting point in the range of 220 to 260 ° C.
【0019】不織布には、高融点繊維及び低融点繊維以
外の他の繊維を含むこともできる。他の繊維としては特
に制限がないが、撥水繊維など特殊な機能をもつ繊維を
用いることも好ましいことである。また請求項4に記載
したように、不織布は高融点熱可塑性樹脂製の芯材と芯
材表面に被覆され芯材より融点の低い低融点熱可塑性樹
脂製の被覆層とよりなる熱可塑性繊維を含み、被覆層の
体積が芯材の体積より大きくなるように構成することも
望ましい。The nonwoven fabric may contain fibers other than the high-melting fiber and the low-melting fiber. Other fibers are not particularly limited, but it is also preferable to use fibers having a special function such as water-repellent fibers. Further, as described in claim 4, the nonwoven fabric comprises a thermoplastic material comprising a core material made of a high-melting-point thermoplastic resin and a coating layer made of a low-melting-point thermoplastic resin having a lower melting point than the core material and coated on the surface of the core material. It is also desirable to include the coating layer so that the volume of the coating layer is larger than the volume of the core material.
【0020】このように構成することにより、熱プレス
成形時には被覆層が優先的に軟化溶融し、芯材が塑性変
形又は弾性変形して、最後に軟化した被覆層が冷却固化
することで所定形状に賦形される。したがって成形時の
繊維の動きの自由度が大きいため、深絞り部や曲率半径
の小さい曲がり部をもつような形状にも容易に賦形する
ことができる。そして万一壁面に亀裂が生じたとして
も、十分に存在する溶融した被覆層により亀裂が充填さ
れて溶着接合されるため、上記不具合が防止される。With such a configuration, the coating layer is preferentially softened and melted during hot press molding, the core material is plastically or elastically deformed, and finally the softened coating layer is cooled and solidified to a predetermined shape. It is shaped into Therefore, since the degree of freedom of movement of the fiber during molding is large, it is possible to easily form a shape having a deep drawn portion or a bent portion having a small radius of curvature. Even if a crack occurs on the wall surface, the crack is filled with a sufficiently existing molten coating layer and welded, so that the above-mentioned problem is prevented.
【0021】被覆層の体積は芯材の体積より大きければ
よいが、不織布中の熱可塑性繊維の割合が20〜50%であ
ることが好ましい。20%未満では上記作用が発現されに
くく、50%を超えると成形体の耐熱性が不足するように
なる。なお被覆層は融点が 150〜 170℃の範囲のものが
好ましく、芯材は融点が 220〜 260℃の範囲のものが好
ましい。The volume of the coating layer may be larger than the volume of the core material, but the ratio of the thermoplastic fibers in the nonwoven fabric is preferably 20 to 50%. If it is less than 20%, the above-mentioned effects are hardly exhibited, and if it exceeds 50%, the heat resistance of the molded article becomes insufficient. The coating layer preferably has a melting point in the range of 150 to 170 ° C, and the core material preferably has a melting point in the range of 220 to 260 ° C.
【0022】上記した二層構造の熱可塑性繊維を一部に
含む不織布を用いる場合は、この熱可塑性繊維を少なく
とも20〜50体積%含むものを用いることが望ましい。こ
の熱可塑性繊維の含有量が20体積%より少ないと、上記
作用がうまく奏されず成形体に亀裂が残る場合がある。
また本発明の吸気管では、経年変化、水分の浸入などに
より成形体の厚さや特性が変化し、成形体を透過する透
過音及び吸気ダクト先端の吸気口から放射される出口音
のバランスが崩れて吸気騒音を抑制する性能が変化する
場合がある。When a nonwoven fabric partially containing the above-described two-layered thermoplastic fiber is used, it is desirable to use a nonwoven fabric containing at least 20 to 50% by volume of the thermoplastic fiber. If the content of the thermoplastic fiber is less than 20% by volume, the above-mentioned effect is not exerted well, and cracks may remain in the molded article.
In addition, in the intake pipe of the present invention, the thickness and characteristics of the molded body change due to aging, infiltration of moisture, and the like, and the balance between the transmitted sound transmitted through the molded body and the exit sound radiated from the intake port at the tip of the intake duct is lost. Therefore, the performance of suppressing intake noise may change.
【0023】そこで請求項5に記載したように、成形体
は所定機能が付与された機能層をもつ不織布から形成さ
れていることが望ましい。この機能層としては、撥水
層、目詰まり防止層などが例示され、それぞれの機能を
有する繊維をその部分に混在させた不織布を用いること
で容易に形成することができる。またそれぞれの機能を
もつフィルムを不織布に積層して用いてもよい。Therefore, as described in claim 5, the molded article is desirably formed of a nonwoven fabric having a functional layer provided with a predetermined function. Examples of the functional layer include a water-repellent layer, a clogging prevention layer, and the like. The functional layer can be easily formed by using a nonwoven fabric in which fibers having the respective functions are mixed in the portion. Further, films having respective functions may be laminated on a nonwoven fabric and used.
【0024】この機能層の位置は、成形体の厚さ方向で
適宜設定できる。例えば撥水層を用いる場合には、成形
体の表面層あるいは中間層に設けることが望ましい。こ
れにより水分の浸入が防止され、成形体の特性の変化が
防止されるため吸気騒音低減効果を長期間維持すること
ができる。またエアクリーナへの水の浸入も抑制される
ので、エアクリーナエレメントの通気性が損なわれるこ
とによるエンジン不調も抑制できる。The position of the functional layer can be appropriately set in the thickness direction of the molded body. For example, when a water-repellent layer is used, it is desirable to provide it on the surface layer or intermediate layer of the molded article. As a result, infiltration of moisture is prevented, and a change in the characteristics of the molded body is prevented, so that the intake noise reduction effect can be maintained for a long time. In addition, since infiltration of water into the air cleaner is also suppressed, engine malfunction due to impaired air permeability of the air cleaner element can also be suppressed.
【0025】さらに請求項7に記載したように、第1分
割体及び第2分割体とから構成し、一方を樹脂製成形体
から構成し、他方を不織布成形体から構成することも好
ましい。樹脂製成形体よりなる第1分割体は剛性が大き
いので、エアクリーナへ固定するためのブラケット部や
嵌合部を一体的に形成することができ、部品点数の低減
により生産性が向上する。また組付性や信頼性も向上す
る。Further, as described in claim 7, it is preferable that the first and second divided bodies are formed, one of which is formed of a resin molded body, and the other is formed of a nonwoven fabric molded body. Since the first divided body made of the resin molded body has high rigidity, a bracket portion and a fitting portion for fixing to the air cleaner can be integrally formed, and productivity is improved by reducing the number of parts. Also, the assemblability and reliability are improved.
【0026】第1分割体と第2分割体とを一体的に結合
するには、別体のクリップなどで結合してもよいが、部
品点数が多くなるという不具合がある。そこで第1分割
体と第2分割体のみで結合することが望ましく、例えば
第1分割体に形成された係合爪などの結合手段によって
機械的に結合する方法、あるいは溶着で結合する方法な
どが挙げられる。第1分割体は樹脂製であるので十分な
強度を有し、係合爪などの結合手段を一体的に形成する
ことができる。In order to integrally connect the first divided body and the second divided body, they may be connected by a separate clip or the like, but there is a problem that the number of parts is increased. Therefore, it is desirable to couple only the first divided body and the second divided body. For example, a method of mechanically coupling by a coupling means such as an engagement claw formed in the first divided body, or a method of coupling by welding, or the like. No. Since the first divided body is made of resin, the first divided body has a sufficient strength, and the connecting means such as the engagement claws can be integrally formed.
【0027】[0027]
【実施例】以下、試験例及び実施例により本発明を具体
的に説明する。 (試験例)図1に示す試験装置を用い、各種材質の管の
吸音特性を調査した。材質としては、以下の3種類を用
い、それぞれ内径60mm、長さ 400mmの直管に形成したも
のを試料とした。The present invention will be specifically described below with reference to Test Examples and Examples. (Test Example) Using the test apparatus shown in FIG. 1, the sound absorption characteristics of tubes made of various materials were investigated. The following three types of materials were used, each of which was formed into a straight pipe having an inner diameter of 60 mm and a length of 400 mm.
【0028】試料A:アクリル樹脂 試料B:PET(ポリエチレンテレフタレート)繊維製
不織布(目付量 700g/m2、厚さ 1.5mm、通気量3500m3/h
・m2) 試料C:試料BのPET繊維製不織布を2枚重ねたもの
(通気量1750m3/h・m2) この試験装置では、試料1の一端が遮音壁3を貫通する
アクリル樹脂製のパイプ2(内径66mm)の一端に接続さ
れ、試料1は全体が防音室内に配置されている。そして
パイプ2の他端にはスピーカ4が配置され、試料1の他
端開口から10mm離れた位置、及び試料1の管壁から 100
mm離れた位置にはそれぞれマイク5が配置されている。Sample A: Acrylic resin Sample B: Nonwoven fabric made of PET (polyethylene terephthalate) fiber (weight per unit area: 700 g / m 2 , thickness: 1.5 mm, air permeability: 3,500 m 3 / h
・ M2) Sample C: Two nonwoven fabrics made of PET fiber of Sample B (airflow: 1750 m 3 / h ・ m 2 ) In this test apparatus, one end of Sample 1 is made of an acrylic resin pipe penetrating through sound insulation wall 3. 2 (inner diameter 66 mm) is connected to one end of the sample 1. The sample 1 is entirely placed in the soundproof room. A speaker 4 is disposed at the other end of the pipe 2, at a position 10 mm away from the opening of the other end of the sample 1 and at a distance of 100 mm from the tube wall of the sample 1.
Microphones 5 are arranged at positions separated by mm.
【0029】そしてスピーカ4からホワイトノイズを発
し、マイク5により試料1の開口から出る出口音と試料
1の管壁を透過した透過音の周波数特性(周波数−音
圧)をそれぞれ測定して、結果を図2及び図3に示す。
図2及び図3より、不織布から形成された試料B,Cで
は、アクリル樹脂より形成された試料Aに比べて定在波
の音圧が低く、定在波の発生が抑制されていることがわ
かる。また試料Cでは、試料Bに比べて出口音の定在波
の音圧が大きいものの、透過音では定在波の音圧が試料
Bより低くなっていることもわかる。このようになる理
由は、試料Cは試料Bより1m2 当たりの通気量が少な
いために音波の透過が一層抑制されるからである。した
がって、1m2 当たりの通気量を調整することで、出口
音と透過音のバランスを調整することができることがわ
かる。Then, the speaker 4 emits white noise, and the microphone 5 measures the frequency characteristics (frequency-sound pressure) of the exit sound exiting from the opening of the sample 1 and the transmitted sound transmitted through the tube wall of the sample 1, respectively. Are shown in FIG. 2 and FIG.
2 and 3 that the sound pressure of the standing wave is lower in the samples B and C formed of the nonwoven fabric than in the sample A formed of the acrylic resin, and the generation of the standing wave is suppressed. Understand. Further, it can be seen that the sound pressure of the standing wave of the exit sound of sample C is higher than that of sample B, but the sound pressure of the standing wave of the transmitted sound is lower than that of sample B. The reason for this is that the sample C has a smaller amount of air per 1 m 2 than the sample B, so that the transmission of sound waves is further suppressed. Therefore, it can be understood that the balance between the exit sound and the transmitted sound can be adjusted by adjusting the ventilation amount per 1 m 2 .
【0030】なお試料Aは通気量がゼロであるのに、図
3に示すように透過音が試料B,Cに比べて高い。これ
は、横のマイク5が回り込んでくる出口音を拾うためで
ある。 (実施例1)図4に本実施例の吸気ダクト6の斜視図
を、図5にそのA−A断面図を示す。この吸気ダクト6
は、曲率半径の小さな部位で分割された二つの分割体が
接合されて一体化されている。そして分割体はそれぞれ
半割形状の上部材60及び下部材61が溶着されて構成され
ている。以下、この吸気ダクト6の製法を説明して、構
成の詳細な説明に代える。Although the sample A has no air permeability, the transmitted sound is higher than the samples B and C as shown in FIG. This is for picking up the exit sound coming from the horizontal microphone 5. (Embodiment 1) FIG. 4 is a perspective view of the intake duct 6 of the present embodiment, and FIG. This intake duct 6
In the above, two divided bodies divided at a portion having a small radius of curvature are joined and integrated. Each of the divided bodies is formed by welding a half-shaped upper member 60 and a lower member 61. Hereinafter, a method of manufacturing the intake duct 6 will be described, and the detailed description of the configuration will be substituted.
【0031】先ずPET繊維から形成され、厚さ約35mm
の不織布を用意した。この不織布には、低融点PET繊
維よりなるバインダ繊維が30体積%含まれ、目付量は 7
00g/m2である。次に、この不織布をプレス成形型に配置
し、バインダ繊維の融点に加熱しながら3mmの厚さとな
るように熱プレス成形して、上部材60及び下部材61を形
成した。First, it is formed from PET fiber and has a thickness of about 35 mm.
Was prepared. This nonwoven fabric contains 30% by volume of binder fiber made of low melting point PET fiber, and has a basis weight of 7%.
00 g / m 2 . Next, the nonwoven fabric was placed in a press mold, and hot press-molded to a thickness of 3 mm while heating to the melting point of the binder fiber, thereby forming an upper member 60 and a lower member 61.
【0032】次に上部材60及び下部材61を管状となるよ
うに合わせ、両者を超音波溶着により一体的に接合して
本実施例の吸気ダクト6(管長: 700mm、内径:66mm)
を得た。この吸気ダクト6の管壁の1m2 当たりの厚さ
方向の空気透過率は、圧力差98Paのときに3900m3/hであ
る。 (実施例2)上記実施例1の吸気ダクト6の外周表面全
体にポリエチレン製のキッチンラップを厚さ10μmとな
るように巻き、実施例2の吸気ダクトとした。この吸気
ダクトの管壁の1m2 当たりの空気透過率は、圧力差98
Paのときにゼロである。Next, the upper member 60 and the lower member 61 are joined so as to form a tube, and they are integrally joined by ultrasonic welding to form an intake duct 6 (pipe length: 700 mm, inner diameter: 66 mm).
I got The air permeability in the thickness direction per 1 m 2 of the pipe wall of the intake duct 6 is 3900 m 3 / h when the pressure difference is 98 Pa. (Example 2) A kitchen wrap made of polyethylene was wound around the entire outer peripheral surface of the intake duct 6 of Example 1 to a thickness of 10 µm to obtain an intake duct of Example 2. Air permeability of the tube wall 1 m 2 per intake duct, the pressure difference 98
It is zero when Pa.
【0033】(比較例1)図8に示す従来の吸気ダクト
100を比較例1とした。この吸気ダクト 100は高密度ポ
リエチレンからブロー成形により管長: 700mm、内径:
66mmに形成され、管壁の厚さ方向の空気透過率は、圧力
差98Paのときにゼロである。 (試験・評価)上記したそれぞれの吸気ダクトについ
て、試験例と同様の試験装置に配置し、同様にして吸気
騒音の周波数特性を測定した。吸気騒音は、吸気ダクト
の入口から発する出口音と、管壁から発する透過音の2
種類を測定し、出口音の結果を図6に、透過音の結果を
図7に示す。(Comparative Example 1) A conventional intake duct shown in FIG.
100 was set as Comparative Example 1. This intake duct 100 is blow molded from high-density polyethylene and has a pipe length of 700 mm and an inner diameter of
The air permeability in the thickness direction of the tube wall is zero when the pressure difference is 98 Pa. (Test / Evaluation) Each of the above intake ducts was placed in the same test apparatus as in the test example, and the frequency characteristics of intake noise were measured in the same manner. The intake noise is composed of two sounds: an exit sound from the inlet of the intake duct and a transmitted sound from the pipe wall.
The types were measured, and the result of the exit sound is shown in FIG. 6, and the result of the transmitted sound is shown in FIG.
【0034】図6より、実施例1〜2の吸気ダクトは比
較例1の従来の吸気ダクトに比べて出口音が格段に低減
されていることがわかり、これは所定の通気性をもつ不
織布成形体を用いて吸気ダクトを構成した効果であるこ
とが明らかである。また図7より、実施例1及び実施例
2の吸気ダクトは比較例1に比べると透過音が大きくな
っていることもわかる。FIG. 6 shows that the air intake ducts of Examples 1 and 2 have a significantly reduced exit sound as compared with the conventional air intake duct of Comparative Example 1. It is clear that this is the effect of using the body to form the intake duct. FIG. 7 also shows that the intake ducts of the first and second embodiments have a higher transmitted sound than the first comparative example.
【0035】そして吸気騒音は出口音と透過音の両方か
ら構成されるのであるから、図6及び図7を合わせて評
価すると、出口音のきわめて大きな比較例1が吸気騒音
について最も劣っていることがわかる。また図6より、
実施例1の吸気ダクトは、通気量の全くない実施例2に
比べて低周波域での音圧レベルが低い。したがって出口
音に関しては、通気量はゼロより大きい方が好ましいこ
とがわかる。Since the intake noise is composed of both the exit sound and the transmitted sound, the evaluation of FIG. 6 and FIG. 7 shows that the comparative example 1 having the extremely large exit sound is the worst in intake noise. I understand. Also, from FIG.
The intake duct of the first embodiment has a lower sound pressure level in a low frequency range than the second embodiment having no ventilation. Therefore, regarding the exit sound, it is understood that the air flow rate is preferably larger than zero.
【0036】(実施例3)融点 220〜 260℃の高融点P
ET繊維を70体積%と、融点 160℃の低融点PET繊維
を30体積%含んでなる不織布(目付量1400g/m2、厚さ3
mm)を用意した。この不織布をプレス成形型に配置し、
低融点PET繊維の融点に加熱しながら3mmの厚さとな
るように熱プレス成形して、非分割構造であること以外
は図4と同一形状の吸気ダクトの半割形状の上部材と下
部材をそれぞれ実施例1と同様に形成した。Example 3 High melting point P having a melting point of 220 to 260 ° C.
Non-woven fabric containing 70% by volume of ET fiber and 30% by volume of low-melting point PET fiber having a melting point of 160 ° C. (weight per unit area: 1400 g / m 2 , thickness: 3
mm) was prepared. This non-woven fabric is placed in a press mold,
Heat-press forming to a thickness of 3 mm while heating to the melting point of the low-melting PET fiber, and halving the upper and lower members of the intake duct half the same shape as in FIG. Each was formed in the same manner as in Example 1.
【0037】そして上部材及び下部材を管状となるよう
に合わせ、超音波溶着により両側のフランジ部を一体的
に接合して、本実施例の吸気ダクト(管長: 700mm、内
径:66mm)を得た。この吸気ダクトの管壁の1m2 当た
りの厚さ方向の空気透過率は、圧力差98Paのときに1000
m3/hである。得られた吸気ダクトは、曲率半径が小さい
部分があるにも関わらず、形状精度に優れ、亀裂の発生
なども認められなかった。また吸気騒音(出口音、透過
音)は、実施例1と実施例2の中間特性が得られた。Then, the upper member and the lower member are formed into a tubular shape, and the flange portions on both sides are integrally joined by ultrasonic welding to obtain an intake duct (tube length: 700 mm, inner diameter: 66 mm) of this embodiment. Was. The air permeability in the thickness direction per 1 m 2 of the pipe wall of this intake duct is 1000 when the pressure difference is 98 Pa.
m 3 / h. The obtained intake duct was excellent in shape accuracy and no cracks were observed, although there was a portion having a small radius of curvature. As for the intake noise (exit sound and transmitted sound), an intermediate characteristic between Example 1 and Example 2 was obtained.
【0038】(実施例4)図8に示すように、融点 220
〜 260℃の高融点PETよりなる直径約7μmの芯材10
と、融点 160℃の低融点PETよりなり芯材10の周囲に
被覆された厚さ約12μmの被覆層11とからなり、全体が
10デニールのPET繊維から形成された不織布を用い、
実施例3と同様にして吸気ダクトを製造した。この吸気
ダクトの管壁の1m2 当たりの厚さ方向の空気透過率
は、圧力差98Paのときに 900m3/hである。また被覆層11
の体積は芯材10の体積に対して約18倍倍多くなってい
る。Example 4 As shown in FIG.
Core material of high-melting point PET with a diameter of approx.
And a coating layer 11 of low-melting point PET having a melting point of 160 ° C. and having a thickness of about 12 μm coated around the core material 10.
Using a non-woven fabric formed from 10 denier PET fiber,
An intake duct was manufactured in the same manner as in Example 3. The air permeability in the thickness direction per 1 m 2 of the pipe wall of the intake duct is 900 m 3 / h when the pressure difference is 98 Pa. The coating layer 11
Is about 18 times as large as the volume of the core material 10.
【0039】得られた吸気ダクトは、曲率半径が小さい
部分があるにも関わらず、形状精度に優れ、亀裂の発生
なども認められなかった。吸気騒音は、実施例3とほと
んど同じ特性を示した。 (参考例)図9に示すように、実施例4と同一の芯材10
と、融点 160℃の低融点PETよりなり芯材10の周囲に
被覆された厚さ約4μmの被覆層11とからなり、全体が
2デニールのPET繊維から形成された不織布を用い、
実施例3と同様にして吸気ダクトを製造した。この吸気
ダクトの管壁の1m2 当たりの厚さ方向の空気透過率
は、圧力差98Paのときに3000m3/hである。また被覆層11
の体積は芯材10の体積に対して約3倍となっている。The obtained intake duct was excellent in shape accuracy and no cracks were observed, although there was a portion having a small radius of curvature. The intake noise showed almost the same characteristics as in Example 3. (Reference Example) As shown in FIG.
And a coating layer 11 made of low melting point PET having a melting point of 160 ° C. and having a thickness of about 4 μm coated around the core material 10, using a nonwoven fabric formed entirely of 2 denier PET fibers,
An intake duct was manufactured in the same manner as in Example 3. The air permeability in the thickness direction per 1 m 2 of the pipe wall of the intake duct is 3000 m 3 / h when the pressure difference is 98 Pa. The coating layer 11
Is about three times the volume of the core material 10.
【0040】この参考例の吸気ダクトでは、熱プレス成
形の際に曲率半径が小さい部分の管壁に亀裂が生じたた
め、吸気騒音の漏れがあった。 (実施例5)図10に本実施例の吸気ダクトの要部斜視図
を示す。この吸気ダクトは、半割形状の上部材12及び下
部材13のフランジ部14,15が縫製によって接合されてい
ること以外は実施例3と同様である。なお、縫製の代わ
りにホッチキスにて接合してもよい。In the intake duct of this reference example, cracks occurred on the pipe wall in the portion having a small radius of curvature during hot press molding, so that there was leakage of intake noise. (Embodiment 5) FIG. 10 is a perspective view of a main part of an intake duct of this embodiment. This intake duct is the same as that of the third embodiment except that the flange portions 14 and 15 of the half-shaped upper member 12 and the lower member 13 are joined by sewing. In addition, you may join with a stapler instead of sewing.
【0041】このように縫製又はホッチキスにて接合す
れば、溶着のような大がかりの装置が不要となり、他品
種少量生産に最適である。 (実施例6)図11に本実施例の吸気ダクトの断面図を示
す。この吸気ダクトは、半割形状の上部材12及び下部材
13の表面にそれぞれ撥水層16が形成されていること以外
は実施例3と同様である。By joining by sewing or stapling in this way, a large-scale apparatus such as welding is not required, and is most suitable for small-scale production of other products. (Embodiment 6) FIG. 11 is a sectional view of an intake duct of this embodiment. This intake duct is divided into an upper member 12 and a lower member
The third embodiment is the same as the third embodiment except that a water-repellent layer 16 is formed on the surface of each of the substrates 13.
【0042】この吸気ダクトは、PET繊維17の表面に
シリコン樹脂層18を被覆してなる撥水繊維20を表層に配
置した不織布21を用いて、実施例3と同様に製造され
た。この吸気ダクトによれば、表面に撥水層16が形成さ
れているため、管壁への水分の浸入が抑制される。した
がって水分の浸入による厚さの変化が抑制され、成形体
を透過する透過音及び吸気ダクト先端の吸気口から放出
される出口音のバランスを安定して維持することができ
る。またエアークリーナ装置への水の浸入も抑制され
る。This air intake duct was manufactured in the same manner as in Example 3 by using a nonwoven fabric 21 in which a water-repellent fiber 20 formed by coating a surface of a PET fiber 17 with a silicon resin layer 18 was disposed on the surface layer. According to this intake duct, since the water-repellent layer 16 is formed on the surface, permeation of moisture into the pipe wall is suppressed. Therefore, a change in thickness due to intrusion of moisture is suppressed, and the balance between the transmitted sound passing through the molded body and the outlet sound emitted from the intake port at the tip of the intake duct can be stably maintained. In addition, intrusion of water into the air cleaner device is suppressed.
【0043】なお撥水層16の位置は、吸気ダクトの外周
表面が最も望ましいが、それに限られるものではなく、
外周表面、内周表面及び中間層のどの位置でもよいし複
数の位置に設けることもできる。さらに、撥水繊維20が
均一に分散された不織布を用い、全体を撥水層としても
よい。なお、本実施例では撥水繊維20を含む不織布を用
いることで撥水層16を形成したが、シリコン樹脂フィル
ム、フッ素樹脂フィルムなどを不織布に積層することで
撥水層を形成することもできる。この場合も撥水層の位
置は、外周表面、内周表面及び中間層のどの位置でもよ
いし複数の位置に設けることもできる。The position of the water-repellent layer 16 is most preferably on the outer peripheral surface of the intake duct, but is not limited thereto.
It may be provided at any position of the outer peripheral surface, the inner peripheral surface, and the intermediate layer, or may be provided at a plurality of positions. Furthermore, a nonwoven fabric in which the water-repellent fibers 20 are uniformly dispersed may be used, and the whole may be used as a water-repellent layer. In the present embodiment, the water-repellent layer 16 is formed by using a nonwoven fabric including the water-repellent fiber 20, but the water-repellent layer can be formed by laminating a silicon resin film, a fluororesin film, or the like on the nonwoven fabric. . Also in this case, the position of the water-repellent layer may be any of the outer surface, the inner surface, and the intermediate layer, or may be provided at a plurality of positions.
【0044】(実施例7)図12に本実施例の吸気ダクト
の断面図を示す。この吸気ダクトは、第1分割体30と第
2分割体40とから構成されている。第1分割体30はポリ
プロピレンから射出成形によって形成され、左右両側に
フランジ部31が形成されている。このフランジ部31に
は、複数の係合突起32が互いに間隔を隔てて一体的に列
設されている。またフランジ部31の一部には、ブラケッ
ト33が一体的に形成されている。(Embodiment 7) FIG. 12 is a sectional view of an intake duct of this embodiment. The intake duct includes a first divided body 30 and a second divided body 40. The first divided body 30 is formed by injection molding from polypropylene, and has flange portions 31 on both left and right sides. A plurality of engaging projections 32 are integrally arranged on the flange portion 31 at intervals. A bracket 33 is formed integrally with a part of the flange portion 31.
【0045】第2分割体40は実施例1と同様にPET繊
維製の不織布から熱プレス成形により形成され、左右両
側にフランジ部41が形成されている。またフランジ部41
には、複数の貫通孔42が互いに間隔を隔てて列設されて
いる。この貫通孔42は、第2分割体40の成形後に行われ
たフランジ部41周囲の不要部の打ち抜き工程において同
時に穿設されたものである。The second divided body 40 is formed from a nonwoven fabric made of PET fiber by hot press molding in the same manner as in the first embodiment, and has flange portions 41 on both left and right sides. Flange 41
, A plurality of through-holes 42 are arranged in a row at intervals. The through-hole 42 is formed at the same time in a step of punching unnecessary portions around the flange portion 41 performed after the formation of the second divided body 40.
【0046】そして本実施例の吸気ダクトは、係合突起
32が貫通孔42と係合することで第1分割体30と第2分割
体40とが一体的に結合されている。したがってこの吸気
ダクトでは、第1分割体30の剛性が大きいので、ブラケ
ット33を介して相手部材に結合することができ、取付ブ
ラケットなどの別部品が不要となる。また係合突起32の
剛性が大きいので、十分な結合強度が確保できる。また
第2分割体40は不織布製で僅かな通気性を有し、本実施
例の吸気ダクトの吸気騒音(出口音、透過音)は、実施
例1と実施例2の中間特性が得られた。The intake duct of this embodiment is provided with an engagement projection.
The first divided body 30 and the second divided body 40 are integrally connected by the engagement of the 32 with the through hole 42. Therefore, in this intake duct, since the rigidity of the first divided body 30 is large, the first divided body 30 can be connected to the mating member via the bracket 33, and another component such as a mounting bracket is not required. In addition, since the rigidity of the engagement protrusion 32 is large, sufficient bonding strength can be secured. The second divided body 40 is made of non-woven fabric and has a slight air permeability, and the intake noise (exit sound and transmitted sound) of the intake duct of the present embodiment has intermediate characteristics between those of the first and second embodiments. .
【0047】なお本実施例では第1分割体30と第2分割
体40の結合に、係合突起32と貫通孔42による機械的な結
合手段を用いたが、図13に示すように第1分割体30のフ
ランジ部31から突出する突起34を貫通孔42に挿入後、先
端を溶融させて係合させる熱加締めを用いてもよい。ま
た図14に示すように、第2分割体40を型内に配置し、射
出成形により貫通孔42を貫通して第2分割体40と一体的
に結合した係合部35を形成する。その後第1分割体30を
重ねて係合部35と振動溶着することで、係合部35を介し
て第1分割体30と第2分割体40を一体化することもでき
る。In this embodiment, the first divided body 30 and the second divided body 40 are connected by a mechanical connecting means using the engaging projections 32 and the through holes 42. However, as shown in FIG. After inserting the protrusion 34 protruding from the flange portion 31 of the divided body 30 into the through hole 42, a heat caulking may be used in which the tip is melted and engaged. Further, as shown in FIG. 14, the second divided body 40 is disposed in a mold, and an engagement portion 35 which is integrally formed with the second divided body 40 through the through hole 42 by injection molding is formed. Thereafter, the first divided body 30 and the second divided body 40 can be integrated via the engaging part 35 by overlapping the first divided body 30 and vibration-welding the engaging part 35.
【0048】また、図示はしないが、両フランジ部31,
41に一体としたときに互いに連通する貫通孔を形成すれ
ば、貫通孔にクリップなどを挿通することで一体化する
ことも可能である。さらに、図16に示すような結合構造
とすることも好ましい。この結合構造では、図15に示す
ように第1分割体30のフランジ部31から突出し半割形状
で可撓性を有するピンボス36を複数個間隔を隔てて形成
し、またフランジ部31の先端部には突条37と係合孔38が
形成されている。またピンボス36と係合孔38の間にはヒ
ンジ部39が形成されている。そしてピンボス36を貫通孔
42に挿通した後、ヒンジ部39でフランジ部31先端を外方
へ 180度折り曲げ、ピンボス36に係合孔38を係合させ
る。これにより第2分割体40のフランジ部41は第1分割
体30のフランジ部31で挟持され、第1分割体30と第2分
割体40とが一体化されている。Although not shown, both flange portions 31,
By forming through holes that communicate with each other when integrated with 41, it is also possible to integrate the through holes by inserting a clip or the like. Further, it is also preferable to adopt a coupling structure as shown in FIG. In this coupling structure, as shown in FIG. 15, a plurality of half-shaped flexible pin bosses 36 protruding from the flange portion 31 of the first divided body 30 are formed at intervals, and the front end portion of the flange portion 31 is formed. Is formed with a ridge 37 and an engagement hole 38. A hinge 39 is formed between the pin boss 36 and the engagement hole 38. And pin boss 36 through hole
After being inserted through 42, the distal end of the flange portion 31 is bent 180 degrees outward by the hinge portion 39, and the engaging hole 38 is engaged with the pin boss 36. Thereby, the flange portion 41 of the second divided body 40 is sandwiched between the flange portions 31 of the first divided body 30, and the first divided body 30 and the second divided body 40 are integrated.
【0049】この結合構造によれば、突条37がフランジ
部41をフランジ部31に押圧する作用が奏されるので密着
性が向上し、さらにフランジ部31が第2分割体40のフラ
ンジ部41の端面を全周で覆うことが可能となるので、第
1分割体30と第2分割体40との境界からの水の浸入を確
実に防止することができる。本実施例のように、ダクト
の一部を不織布製成形体で構成する場合には、その不織
布製成形体のダクト全体に占める領域としては、ダクト
長の1/4以上で、ダクト周長の1/4以上となるよう
にすることが望ましい。またその領域としては、複数の
箇所に設けてもよく、その場合には、ダクトは第1分割
体と複数の第2分割体で構成され、該複数の第2分割体
の占める各領域のダクト長手方向と周方向のそれぞれの
合計が前記条件を満たすようにすればよい。According to this coupling structure, the action of the projection 37 pressing the flange portion 41 against the flange portion 31 is exerted, so that the adhesion is improved, and the flange portion 31 is further joined to the flange portion 41 of the second divided body 40. Can be covered over the entire circumference, so that intrusion of water from the boundary between the first divided body 30 and the second divided body 40 can be reliably prevented. In the case where a part of the duct is formed of a non-woven fabric molded body as in this embodiment, the area occupied by the non-woven fabric molded body in the entire duct is at least 1/4 of the duct length, and It is desirable to make it 1/4 or more. In addition, the area may be provided at a plurality of locations, in which case the duct is composed of a first divided body and a plurality of second divided bodies, and the duct of each area occupied by the plurality of second divided bodies. What is necessary is just to make each total of a longitudinal direction and a circumferential direction satisfy | fill the said conditions.
【0050】(実施例8)本発明の吸気管は気柱共鳴を
効果的に抑制するものであるが、エンジン回転数など気
柱共鳴以外の要因によって生じる80Hz〜 100Hzの低周波
域の騒音を抑制しにくい。このような騒音を抑制するに
は、吸気管の空気入口側の開口径を小さくし、空気出口
側開口へ向かって径が徐々に大きくなるような形状とす
るのが有効である。しかし、空気入口側の開口径を極端
に小さくする必要がある場合があり、そのような場合に
は大量の空気量が必要となる高回転域にてエンジンの出
力が低下するという不具合がある。(Embodiment 8) Although the intake pipe of the present invention effectively suppresses air column resonance, it suppresses noise in a low frequency range of 80 to 100 Hz caused by factors other than air column resonance such as the engine speed. Hard to control. In order to suppress such noise, it is effective to reduce the diameter of the opening of the intake pipe on the air inlet side and make the diameter gradually increase toward the air outlet side opening. However, there is a case where it is necessary to make the opening diameter on the air inlet side extremely small. In such a case, there is a problem that the output of the engine is reduced in a high rotation range where a large amount of air is required.
【0051】そこで本実施例では、図17に示すように、
空気入口側開口の径が小さく、空気入口側開口から空気
出口側開口へ向かって径が徐々に拡大する吸気ダクト7
を実施例1と同様にして形成し、その出口側開口70をエ
アクリーナ8の第1空気入口80に結合している。一方、
エアクリーナ8には、第1空気入口80より径が大きい第
2空気入口81が形成されている。また第2空気入口81に
は、図示しない駆動手段によって駆動されるバルブ82が
揺動可能に設けられている。Therefore, in this embodiment, as shown in FIG.
Inlet duct 7 in which the diameter of the air inlet side opening is small and the diameter gradually increases from the air inlet side opening to the air outlet side opening
Is formed in the same manner as in the first embodiment, and the outlet side opening 70 is connected to the first air inlet 80 of the air cleaner 8. on the other hand,
The air cleaner 8 has a second air inlet 81 having a larger diameter than the first air inlet 80. Further, a valve 82 driven by driving means (not shown) is swingably provided at the second air inlet 81.
【0052】このような吸気装置によれば、エンジンの
低回転時にはバルブ82が閉じられ、吸気は吸気ダクト7
からエアクリーナ8内へ吸入される。そして中・高周波
域の吸気騒音は、不織布製の吸気ダクト7の特性によっ
て低減される。また低周波域の吸気騒音は、吸気ダクト
7の形状(空気入口側開口が縮径されている)によって
低減される。According to such an intake device, when the engine is running at a low speed, the valve 82 is closed and the intake air is supplied to the intake duct 7.
From the air cleaner 8. The intake noise in the middle and high frequency ranges is reduced by the characteristics of the intake duct 7 made of nonwoven fabric. The intake noise in the low frequency range is reduced by the shape of the intake duct 7 (the opening on the air inlet side is reduced in diameter).
【0053】そしてエンジン回転数が上昇して所定値と
なると、図示しない駆動手段によりバルブ82が駆動され
第2空気入口81が開かれる。したがってエアクリーナ8
には第1空気入口80と第2空気入口81の両方から吸気が
流入するので、高回転時の必要な空気量を確保すること
ができる。When the engine speed rises to a predetermined value, the valve 82 is driven by a driving means (not shown), and the second air inlet 81 is opened. Therefore, the air cleaner 8
Since the intake air flows from both the first air inlet 80 and the second air inlet 81, the required amount of air at the time of high rotation can be secured.
【0054】[0054]
【発明の効果】すなわち本発明の吸気管によれば、単純
で安価な構成でエンジンの低速回転時の吸気騒音を低減
することができる。また絞りなどを用いていないので、
高速回転時には十分な空気量を供給することができる。
さらに吸気管全体を不織布から熱プレス成形により形成
すれば、複雑な三次元形状でも一度の成形工程で製造す
ることができ、外径寸法精度の高い安価で軽量の吸気管
となる。そして内周面も金型により賦形できるので、内
周面の面粗度を細かくすることができ通気抵抗が上昇す
るような不具合もない。According to the intake pipe of the present invention, it is possible to reduce intake noise when the engine is rotating at a low speed with a simple and inexpensive configuration. Also, since no aperture is used,
At the time of high-speed rotation, a sufficient amount of air can be supplied.
Furthermore, if the entire intake pipe is formed from a nonwoven fabric by hot press molding, a complicated three-dimensional shape can be manufactured in a single molding step, and an inexpensive and lightweight intake pipe with high outer diameter dimensional accuracy can be obtained. Further, since the inner peripheral surface can be formed by the mold, the surface roughness of the inner peripheral surface can be reduced, and there is no problem that the ventilation resistance increases.
【図1】本発明の試験例において周波数特性を測定する
のに用いた装置の構成説明図である。FIG. 1 is an explanatory diagram of a configuration of an apparatus used for measuring a frequency characteristic in a test example of the present invention.
【図2】試験例における出口音の周波数と音圧との関係
を示すグラフである。FIG. 2 is a graph showing the relationship between the exit sound frequency and the sound pressure in a test example.
【図3】試験例における透過音の周波数と音圧との関係
を示すグラフである。FIG. 3 is a graph showing the relationship between the frequency of transmitted sound and sound pressure in a test example.
【図4】本発明の一実施例の吸気ダクトの斜視図であ
る。FIG. 4 is a perspective view of an intake duct according to one embodiment of the present invention.
【図5】本発明の一実施例の吸気ダクトの断面図であ
る。FIG. 5 is a sectional view of an intake duct according to an embodiment of the present invention.
【図6】実施例1,2と比較例1の吸気ダクトで発生す
る吸気音の周波数と音圧との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the frequency and the sound pressure of the intake sound generated in the intake ducts of Examples 1 and 2 and Comparative Example 1.
【図7】実施例1,2と比較例1の吸気ダクトで発生す
る透過音の周波数と音圧との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the frequency and the sound pressure of the transmitted sound generated in the intake ducts of Examples 1 and 2 and Comparative Example 1.
【図8】実施例4の吸気ダクトに用いたPET繊維の断
面図である。FIG. 8 is a cross-sectional view of PET fibers used in an intake duct of Example 4.
【図9】比較例2の吸気ダクトに用いたPET繊維の断
面図である。FIG. 9 is a cross-sectional view of a PET fiber used for an intake duct of Comparative Example 2.
【図10】実施例5の吸気ダクトの一部断面で示す要部斜
視図である。FIG. 10 is a perspective view of a main part of an intake duct according to a fifth embodiment, which is shown in a partial cross section.
【図11】実施例6の吸気ダクトの断面図とその要部拡大
図である。FIG. 11 is a cross-sectional view of an intake duct according to a sixth embodiment and an enlarged view of a main part thereof.
【図12】実施例7の吸気ダクトの断面図である。FIG. 12 is a sectional view of an intake duct according to a seventh embodiment.
【図13】実施例7の吸気ダクトの他の態様を示す要部断
面図である。FIG. 13 is a cross-sectional view of a principal part showing another aspect of the intake duct of the seventh embodiment.
【図14】実施例7の吸気ダクトの他の態様を示す要部断
面図である。FIG. 14 is a cross-sectional view illustrating a main part of another embodiment of the intake duct of the seventh embodiment.
【図15】実施例7の吸気ダクトの他の態様を示し、第一
分割体と第2分割体の結合前の状態の要部断面図であ
る。FIG. 15 is a cross-sectional view of a main part of another state of the intake duct according to the seventh embodiment in a state before the first divided body and the second divided body are combined.
【図16】実施例7の吸気ダクトの他の態様を示す要部断
面図である。FIG. 16 is a cross-sectional view of a principal part showing another aspect of the intake duct of the seventh embodiment.
【図17】実施例8の吸気ダクトをエアクリーナとともに
示す断面図である。FIG. 17 is a cross-sectional view illustrating an intake duct of Embodiment 8 together with an air cleaner.
【図18】従来の吸気ダクトの斜視図である。FIG. 18 is a perspective view of a conventional intake duct.
1:試料 2:パイプ 3:
遮音壁 4:スピーカ 5:マイク1: Sample 2: Pipe 3:
Sound insulation wall 4: Speaker 5: Microphone
───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 善一 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 伊藤 邦保 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 藤原 和夫 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 ▲榊▼原 康雄 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 広瀬 吉一 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 服部 勝 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 石原 秀俊 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Zenichi Yasuda 1 Ochiai Ogata, Kasuga-cho, Nishi-Kasugai-gun, Aichi Prefecture Inside Toyoda Gosei Co., Ltd. Address Toyoda Gosei Co., Ltd. (72) Inventor Kazuo Fujiwara Kaichi, Nishi-Kasugai-gun, Aichi Prefecture Ochiai, Nagahata 1 Address Toyoda Gosei Co., Ltd. 1 No. 1 Toyoda Gosei Co., Ltd. (72) Inventor Yoshikazu Hirose 1 Aichi Ochiai, Nagasaki, Nishikasugai-gun, Aichi Prefecture No. 1 Toyoda Gosei Co., Ltd. Address: Toyoda Gosei Co., Ltd. (72) Inventor: Hidetoshi Ishihara Hata 1 Toyoda Gosei Co., Ltd.
Claims (7)
ンテークマニホールドとの間に配置される吸気管におい
て、 不織布よりなる成形体から管壁の少なくとも一部が形成
されたことを特徴とする吸気管。1. An intake pipe disposed between an outside air intake of an automobile and an intake manifold of an engine, wherein at least a part of a pipe wall is formed from a molded body made of a nonwoven fabric.
圧力差98Paの空気の場合に6000m3 /h以下で
あることを特徴とする請求項1に記載の吸気管。 2. The air flow rate per 1 m 2 of the molded body is as follows:
2. The intake pipe according to claim 1, wherein the pressure is 6000 m 3 / h or less in the case of air having a pressure difference of 98 Pa.
れ、前記不織布は高融点熱可塑性樹脂製の高融点繊維と
該高融点繊維より融点の低い低融点熱可塑性樹脂製の低
融点繊維とを含み、前記不織布中の該低融点繊維の割合
が該高融点繊維より多いことを特徴とする請求項1に記
載の吸気管。3. The non-woven fabric is made of a high melting point fiber made of a high melting point thermoplastic resin and a low melting point fiber made of a low melting point thermoplastic resin having a lower melting point than the high melting point fiber. The intake pipe according to claim 1, wherein the ratio of the low-melting fiber in the nonwoven fabric is larger than that of the high-melting fiber.
れ、前記不織布は高融点熱可塑性樹脂製の芯材と該芯材
表面に被覆され該芯材より融点の低い低融点熱可塑性樹
脂製の被覆層とよりなる熱可塑性繊維を含み、該被覆層
の体積が該芯材の体積より大きいことを特徴とする請求
項1に記載の吸気管。4. The whole tube wall is formed of the molded body, and the nonwoven fabric is made of a high melting point thermoplastic resin core material and a low melting point thermoplastic resin having a lower melting point than the core material and coated on the surface of the core material. 2. The intake pipe according to claim 1, wherein a volume of the coating layer is larger than a volume of the core material.
層をもつ不織布から形成されていることを特徴とする請
求項1に記載の吸気管。5. The intake pipe according to claim 1, wherein the molded body is formed of a nonwoven fabric having a functional layer provided with a predetermined function.
する請求項5に記載の吸気管。6. The intake pipe according to claim 5, wherein the functional layer is a water-repellent layer.
ンテークマニホールドとの間に配置される吸気管におい
て、 合成樹脂製成形体からなる第1分割体と、不織布製成形
体からなる第2分割体とからなり、該第1分割体と該第
2分割体とが一体的に結合されて筒状となっていること
を特徴とする吸気管。7. An intake pipe arranged between an outside air intake of an automobile and an intake manifold of an engine, wherein a first divided body made of a synthetic resin molded body and a second divided body made of a nonwoven fabric molded body are provided. Wherein the first divided body and the second divided body are integrally joined to form a cylindrical shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08685899A JP3802267B2 (en) | 1998-04-09 | 1999-03-29 | Intake pipe |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9758598 | 1998-04-09 | ||
JP10-168893 | 1998-06-16 | ||
JP10-97585 | 1998-06-16 | ||
JP16889398 | 1998-06-16 | ||
JP08685899A JP3802267B2 (en) | 1998-04-09 | 1999-03-29 | Intake pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000073895A true JP2000073895A (en) | 2000-03-07 |
JP3802267B2 JP3802267B2 (en) | 2006-07-26 |
Family
ID=27305280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08685899A Expired - Fee Related JP3802267B2 (en) | 1998-04-09 | 1999-03-29 | Intake pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3802267B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001193587A (en) * | 2000-01-17 | 2001-07-17 | Toyoda Gosei Co Ltd | Intake duct and method of manufacturing the same |
JP2007085315A (en) * | 2005-09-26 | 2007-04-05 | Toyoda Gosei Co Ltd | Intake duct |
JP2007176316A (en) * | 2005-12-28 | 2007-07-12 | Inoac Corp | Vehicle duct and its manufacturing method |
JP2008038725A (en) * | 2006-08-04 | 2008-02-21 | Toyota Boshoku Corp | Air-intake duct of internal combustion engine |
JP2008296664A (en) * | 2007-05-30 | 2008-12-11 | Inoac Corp | Method of manufacturing of duct for automobile |
US7621372B2 (en) | 2006-05-30 | 2009-11-24 | Toyota Boshoku Kabushiki Kaisha | Duct and process for producing the same |
JP2009293442A (en) * | 2008-06-03 | 2009-12-17 | Roki Co Ltd | Intake duct |
JP2012158186A (en) * | 2012-05-16 | 2012-08-23 | Inoac Corp | Method for manufacturing automobile duct |
JP2012193691A (en) * | 2011-03-17 | 2012-10-11 | Sekiso:Kk | Intake duct |
JP2012207557A (en) * | 2011-03-29 | 2012-10-25 | Toyoda Gosei Co Ltd | Duct |
JP2013155683A (en) * | 2012-01-31 | 2013-08-15 | Fuji Heavy Ind Ltd | Resin intake manifold |
JP2014137017A (en) * | 2013-01-17 | 2014-07-28 | Toyota Motor Corp | Intake duct |
KR101612526B1 (en) * | 2015-01-19 | 2016-04-14 | 주식회사 동경케미칼 | manufacturing method of air duct for vehicle and air duct for vehicle using the same |
JP2018035698A (en) * | 2016-08-29 | 2018-03-08 | トヨタ紡織株式会社 | Intake system component for internal combustion engine and method for manufacturing intake system component for internal combustion engine |
JP2019044751A (en) * | 2017-09-07 | 2019-03-22 | トヨタ紡織株式会社 | Intake system component for internal combustion engine |
JP2020026775A (en) * | 2018-08-13 | 2020-02-20 | トヨタ紡織株式会社 | Intake duct for internal combustion engine |
US20220314522A1 (en) * | 2019-05-17 | 2022-10-06 | Odenwald-Chemie Gmbh | Method for producing a hollow profile component, mold tool and hollow profile component |
-
1999
- 1999-03-29 JP JP08685899A patent/JP3802267B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001193587A (en) * | 2000-01-17 | 2001-07-17 | Toyoda Gosei Co Ltd | Intake duct and method of manufacturing the same |
JP2007085315A (en) * | 2005-09-26 | 2007-04-05 | Toyoda Gosei Co Ltd | Intake duct |
JP2007176316A (en) * | 2005-12-28 | 2007-07-12 | Inoac Corp | Vehicle duct and its manufacturing method |
US7621372B2 (en) | 2006-05-30 | 2009-11-24 | Toyota Boshoku Kabushiki Kaisha | Duct and process for producing the same |
JP2008038725A (en) * | 2006-08-04 | 2008-02-21 | Toyota Boshoku Corp | Air-intake duct of internal combustion engine |
JP2008296664A (en) * | 2007-05-30 | 2008-12-11 | Inoac Corp | Method of manufacturing of duct for automobile |
JP2009293442A (en) * | 2008-06-03 | 2009-12-17 | Roki Co Ltd | Intake duct |
JP2012193691A (en) * | 2011-03-17 | 2012-10-11 | Sekiso:Kk | Intake duct |
JP2012207557A (en) * | 2011-03-29 | 2012-10-25 | Toyoda Gosei Co Ltd | Duct |
JP2013155683A (en) * | 2012-01-31 | 2013-08-15 | Fuji Heavy Ind Ltd | Resin intake manifold |
JP2012158186A (en) * | 2012-05-16 | 2012-08-23 | Inoac Corp | Method for manufacturing automobile duct |
JP2014137017A (en) * | 2013-01-17 | 2014-07-28 | Toyota Motor Corp | Intake duct |
KR101612526B1 (en) * | 2015-01-19 | 2016-04-14 | 주식회사 동경케미칼 | manufacturing method of air duct for vehicle and air duct for vehicle using the same |
JP2018035698A (en) * | 2016-08-29 | 2018-03-08 | トヨタ紡織株式会社 | Intake system component for internal combustion engine and method for manufacturing intake system component for internal combustion engine |
JP2019044751A (en) * | 2017-09-07 | 2019-03-22 | トヨタ紡織株式会社 | Intake system component for internal combustion engine |
JP2020026775A (en) * | 2018-08-13 | 2020-02-20 | トヨタ紡織株式会社 | Intake duct for internal combustion engine |
JP7107086B2 (en) | 2018-08-13 | 2022-07-27 | トヨタ紡織株式会社 | Intake duct for internal combustion engine |
US20220314522A1 (en) * | 2019-05-17 | 2022-10-06 | Odenwald-Chemie Gmbh | Method for producing a hollow profile component, mold tool and hollow profile component |
US12257762B2 (en) * | 2019-05-17 | 2025-03-25 | Odenwald-Chemie Gmbh | Method for producing a hollow profile component, mold tool and hollow profile component |
Also Published As
Publication number | Publication date |
---|---|
JP3802267B2 (en) | 2006-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999053188A1 (en) | Suction duct | |
JP2000073895A (en) | Intake pipe | |
US8485153B2 (en) | Air intake apparatus | |
JP5934709B2 (en) | Air intake duct | |
JP4075658B2 (en) | Intake device and method of manufacturing the same | |
JP3508592B2 (en) | Sound absorbing duct structure | |
JP2001193587A (en) | Intake duct and method of manufacturing the same | |
JP4257552B2 (en) | Air intake duct | |
JP5994713B2 (en) | Vehicle parts | |
US6622680B2 (en) | Air intake duct and manufacturing method therefor | |
JP6452540B2 (en) | Air cleaner | |
JP3835117B2 (en) | Intake duct and manufacturing method thereof | |
JP3802312B2 (en) | Air intake duct | |
JP2004285895A (en) | Intake device | |
JP2009293531A (en) | Sound absorbing material and sound absorbing duct system | |
US5962820A (en) | Sound suppressing device for clean air tube | |
JP2009234400A (en) | Sound attenuation duct | |
JPH11343938A (en) | Manufacture for intake duct | |
JP2010002147A (en) | Ventilating duct | |
JP2006276778A (en) | Air intake duct | |
JP2010053763A (en) | Duct | |
JPH07217511A (en) | Blow molded duct made of synthetic resin for automobile engine intake | |
JPH09256834A (en) | Noise absorption duct structural body | |
KR200387474Y1 (en) | Suction Duct | |
JP2010275916A (en) | Intake air duct |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050506 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060414 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060427 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140512 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |