[go: up one dir, main page]

JP2000073156A - Production of nitrided stainless steel - Google Patents

Production of nitrided stainless steel

Info

Publication number
JP2000073156A
JP2000073156A JP34613998A JP34613998A JP2000073156A JP 2000073156 A JP2000073156 A JP 2000073156A JP 34613998 A JP34613998 A JP 34613998A JP 34613998 A JP34613998 A JP 34613998A JP 2000073156 A JP2000073156 A JP 2000073156A
Authority
JP
Japan
Prior art keywords
steel material
stainless steel
nitriding
average roughness
point average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34613998A
Other languages
Japanese (ja)
Inventor
Katsuhisa Miyakusu
克久 宮楠
Hiroki Tomimura
宏紀 冨村
Kenichi Morimoto
憲一 森本
Naoto Hiramatsu
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP34613998A priority Critical patent/JP2000073156A/en
Publication of JP2000073156A publication Critical patent/JP2000073156A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a nitriding layer high in uniformity at a low cost by heating stainless steel whose ten-point average roughness Rz on the surface of the steel is controlled to a specified range in the nitriding atmosphere of a specified temp. range basically consisting of gaseous ammonia for a specified time. SOLUTION: The stainless steel whose ten-point average roughness Rz is controlled to 0.5 to 5.0 μm is heated in the nitriding atmosphere of 300 to 650 deg.C for >=30 min. Preferably, the stainless steel whose ten-point average roughness Rz is controlled to 0.5 to 5.0 μm and the total content of martensitic phases and ferritic phases in the surface layer part to a depth of 10 μm from the surface is controlled to >=80 vol.% is heated in the nitriding atmosphere of 300 to 650 deg.C basically consisting of gaseous ammonia for >=30 min. Moreover, the stainless steel contains, by mass, <=0.15% C, <=5.0% Si, <=0.5% Mn, 2.0 to 20.0% Ni, 12.0 to 50.0% Cr, 0 to 3.5% Cu, 0 to 6.0% Mo, <=0.15% N, and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化ステンレス鋼
材の製造方法に関するものであり、特に、ばね材,スチ
ールベルト,自動車エンジン用無段変速機ベルト等の機
械部品等に使用される高強度ステンレス鋼材の疲労特性
を向上させるのに適した製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a nitrided stainless steel material, and particularly to a high-strength stainless steel used for mechanical parts such as a spring material, a steel belt, and a continuously variable transmission belt for an automobile engine. The present invention relates to a manufacturing method suitable for improving fatigue characteristics of a steel material.

【0002】[0002]

【従来の技術】ばね材,スチールベルト,自動車エンジ
ン用無段変速機ベルト等の機械部品に要求される材料特
性としては、強度の他、表面硬さや疲労特性が重要とな
る。窒化処理は、固溶窒素の過飽和状態や窒化物の形成
により、材料の表面硬化や表面圧縮残留応力を生じさ
せ、上記のような材料特性を向上させる有効な手段であ
る。また、同じ表面硬化処理法である高周波焼入れや浸
炭焼入れに比べ、熱処理歪が小さいことも窒化処理の利
点である。
2. Description of the Related Art As material properties required for mechanical parts such as spring materials, steel belts, and continuously variable transmission belts for automobile engines, in addition to strength, surface hardness and fatigue properties are important. The nitriding treatment is an effective means for producing a surface hardening of the material and a surface compressive residual stress due to a supersaturated state of solid solution nitrogen and formation of a nitride, thereby improving the above-mentioned material properties. Another advantage of the nitriding treatment is that the heat treatment strain is smaller than that of induction hardening or carburizing quenching, which is the same surface hardening method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、窒化処
理をステンレス鋼に適用しようとする場合には、ステン
レス鋼の表面には不動態皮膜が存在するために、窒素の
侵入が阻止され、窒化が起こりにくいという問題があ
る。ステンレス鋼の難窒化性を打開する手段として、特
開昭59-28566号公報には露点温度を被処理物の温度より
常に低くする方法が開示されている。また、特公昭58-2
2541号公報にはイオン窒化を用いる方法が開示されてい
る。しかし、前者は温度制御の面からスピード面での生
産性向上に難があり、後者はイオン窒化を適用しても不
動態皮膜の不均一性に起因して材料表面に均一な窒化層
を形成することが難しいという問題を残している。
However, when a nitriding treatment is applied to stainless steel, a passivation film is present on the surface of the stainless steel. There is a problem that it is difficult. As a means for overcoming the nitridation resistance of stainless steel, JP-A-59-28566 discloses a method in which the dew point temperature is always lower than the temperature of the workpiece. Also, Japanese Patent Publication No. 58-2
No. 2541 discloses a method using ion nitriding. However, the former has difficulty in improving productivity in terms of speed in terms of temperature control, and the latter forms a uniform nitrided layer on the material surface due to the non-uniformity of the passive film even when ion nitriding is applied. The problem remains that it is difficult to do.

【0004】本発明は、これらの問題が回避できる方法
によって、均一性の高い窒化層を形成させた窒化ステン
レス鋼材を低コストで製造することを目的とする。
An object of the present invention is to produce a nitrided stainless steel material having a highly uniform nitrided layer at low cost by a method capable of avoiding these problems.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、窒化が起こりにくい(窒化性に劣る)
というステンレス鋼特有の性質を予め改善して窒化しや
すい状態の鋼材にしておき、これに窒化処理を施すとい
う手法を採る。その窒化性改善手段として、ステンレス
鋼材表面を粗面化し、さらに必要に応じて鋼材表層部を
マルテンサイト相またはフェライト相リッチの金属組織
にするという手段を用いる。
In order to achieve the above object, in the present invention, nitridation hardly occurs (poor in nitridation).
A method is adopted in which the properties inherent to stainless steel are improved in advance to prepare a steel material in a state that is easy to be nitrided, and this is subjected to a nitriding treatment. As means for improving the nitriding property, a means is used in which the surface of the stainless steel material is roughened and, if necessary, the surface layer of the steel material has a metal structure rich in martensite or ferrite phase.

【0006】請求項1の発明は、鋼材表面の十点平均粗
さRzが0.5〜5.0μmに調整されたステンレス鋼材を、ア
ンモニアガスを基本成分とする300〜650℃の窒化雰囲気
中で30分以上加熱する、窒化ステンレス鋼材の製造方法
である。ここで、十点平均粗さRzは、JIS B 0601に規定
されている十点平均粗さRzである。
The invention according to claim 1 is to provide a stainless steel material having a ten-point average roughness Rz of 0.5 to 5.0 μm on a steel material surface in a nitriding atmosphere of 300 to 650 ° C. containing ammonia gas as a basic component for 30 minutes. The above is a method for producing a nitrided stainless steel material by heating. Here, the ten-point average roughness Rz is the ten-point average roughness Rz defined in JIS B0601.

【0007】請求項2の発明は、鋼材表面の十点平均粗
さRzが0.5〜5.0μmに調整され、かつ表面から深さ10μm
までの表層部におけるマルテンサイト相とフェライト相
の合計量が80体積%以上に調整されたステンレス鋼材
を、アンモニアガスを基本成分とする300〜650℃の窒化
雰囲気中で30分以上加熱する、窒化ステンレス鋼材の製
造方法である。ここで、「表面から深さ10μmまでの表
層部」とは、JIS B 0601の「用語の意味」の項で定義さ
れている「断面曲線又は粗さ曲線の平均線」を基準にし
た場合の深さ10μmまでの表層部をいう。
According to a second aspect of the present invention, the ten-point average roughness Rz of the steel material surface is adjusted to 0.5 to 5.0 μm, and the steel surface has a depth of 10 μm from the surface.
The stainless steel material in which the total amount of the martensite phase and the ferrite phase in the surface layer is adjusted to 80% by volume or more is heated in a nitriding atmosphere of 300 to 650 ° C containing ammonia gas as a basic component for 30 minutes or more. This is a method for manufacturing stainless steel. Here, `` the surface layer from the surface to a depth of 10 μm '' is defined as the `` meaning of the terms '' in JIS B 0601. Refers to the surface layer up to a depth of 10 μm.

【0008】請求項3の発明は、ダルロール圧延,機械
的研削または機械的研磨の何れかの手段により、鋼材表
面の十点平均粗さRzが0.5〜5.0μmに調整されたステン
レス鋼材を、アンモニアガスを基本成分とする300〜650
℃の窒化雰囲気中で30分以上加熱する、窒化ステンレス
鋼材の製造方法である。
A third aspect of the present invention is to provide a stainless steel material in which the ten-point average roughness Rz of the steel material surface is adjusted to 0.5 to 5.0 μm by any one of dull roll rolling, mechanical grinding, and mechanical polishing. 300 to 650 with gas as the basic component
This is a method for producing a nitrided stainless steel material, wherein the material is heated in a nitriding atmosphere at 30 ° C. for 30 minutes or more.

【0009】請求項4の発明は、ダルロール圧延,機械
的研削または機械的研磨の何れかの手段を施した後、さ
らにバレル研磨,ショットピーニング処理またはショッ
トブラスト処理の何れかの手段を施すことによって、鋼
材表面の十点平均粗さRzが0.5〜5.0μmに調整され、か
つ表面から深さ10μmまでの表層部におけるマルテンサ
イト相とフェライト相の合計量が80体積%以上に調整さ
れたステンレス鋼材を、アンモニアガスを基本成分とす
る300〜650℃の窒化雰囲気中で30分以上加熱する、窒化
ステンレス鋼材の製造方法である。
According to a fourth aspect of the present invention, after any of dull roll rolling, mechanical grinding or mechanical polishing is performed, any one of barrel polishing, shot peening or shot blasting is performed. A stainless steel material in which the ten-point average roughness Rz of the steel material surface is adjusted to 0.5 to 5.0 μm, and the total amount of martensite phase and ferrite phase in the surface layer from the surface to a depth of 10 μm is adjusted to 80% by volume or more. Is heated in a nitriding atmosphere of 300 to 650 ° C. containing ammonia gas as a basic component for 30 minutes or more, to produce a nitrided stainless steel material.

【0010】請求項5の発明は、鋼材表面の十点平均粗
さRzが0.3〜5.0μmに調整されたステンレス鋼材に窒化
処理を施す、窒化ステンレス鋼材の製造方法である。請
求項6の発明は、ダルロール圧延,機械的研削または機
械的研磨の何れかの手段により、鋼材表面の十点平均粗
さRzが0.3〜5.0μmに調整されたステンレス鋼材に窒化
処理を施す、窒化ステンレス鋼材の製造方法である。請
求項7の発明は、鋼材表面の十点平均粗さRzが0.3〜5.0
μmに調整され、かつ表面から深さ10μmまでの表層部に
おけるマルテンサイト相とフェライト相の合計量が60体
積%以上に調整されたステンレス鋼材に窒化処理を施
す、窒化ステンレス鋼材の製造方法である。請求項8の
発明は、ダルロール圧延,機械的研削または機械的研磨
の何れかの手段を施した後、さらにバレル研磨,ショッ
トピーニング処理またはショットブラスト処理の何れか
の手段を施すことによって、鋼材表面の十点平均粗さRz
が0.3〜5.0μmに調整され、かつ表面から深さ10μmまで
の表層部におけるマルテンサイト相とフェライト相の合
計量が60体積%以上に調整されたステンレス鋼材に窒化
処理を施す、窒化ステンレス鋼材の製造方法である。
[0010] The invention of claim 5 is a method for producing a nitrided stainless steel material, wherein the stainless steel material whose ten-point average roughness Rz of the steel material surface is adjusted to 0.3 to 5.0 µm is subjected to nitriding treatment. The invention according to claim 6 is characterized in that a nitriding treatment is performed on a stainless steel material whose ten-point average roughness Rz is adjusted to 0.3 to 5.0 μm by any of dull roll rolling, mechanical grinding or mechanical polishing, This is a method for producing a nitrided stainless steel material. The ten-point average roughness Rz of the steel material surface is 0.3 to 5.0.
A method for producing a nitrided stainless steel material in which a stainless steel material that has been adjusted to μm and the total amount of a martensite phase and a ferrite phase in the surface layer from the surface to a depth of 10 μm is adjusted to 60% by volume or more is nitrided. . The invention according to claim 8 is characterized in that after applying any means of dull roll rolling, mechanical grinding or mechanical polishing, further applying any means of barrel polishing, shot peening or shot blasting, the steel material surface 10-point average roughness Rz
Nitriding of stainless steel material is adjusted to 0.3-5.0 μm, and the total amount of martensite and ferrite phases in the surface layer from the surface to the depth of 10 μm is adjusted to 60% by volume or more. It is a manufacturing method.

【0011】請求項9の発明は、請求項5〜8の発明に
おいて、窒化処理が、アンモニアガスを基本成分とする
ガスにH2Sを混合したガス中で鋼材を300〜650℃に加熱
するガス浸硫窒化法である点を規定したものである。請
求項10の発明は、請求項5〜8の発明において、窒化
処理が、窒素ガスを基本成分とする減圧ガス中で鋼材と
炉壁間に生成させたプラズマで鋼材を300〜650℃に加熱
するプラズマ窒化法である点を規定したものである。請
求項11の発明は、請求項5〜8の発明において、窒化
処理が、NaCN,KCN,NaCNOおよびKCNOの1種または2種
以上を基本成分とする300〜650℃の塩浴中に鋼材を浸漬
する塩浴窒化法である点を規定したものである。
According to a ninth aspect of the present invention, in the invention of the fifth to eighth aspects, the nitriding treatment heats the steel material to 300 to 650 ° C. in a gas obtained by mixing H 2 S with a gas containing ammonia gas as a basic component. It specifies that it is a gas sulphonitriding method. The invention according to claim 10 is the invention according to claims 5 to 8, wherein the nitriding treatment heats the steel material to 300 to 650 ° C by plasma generated between the steel material and the furnace wall in a reduced pressure gas containing nitrogen gas as a basic component. That is, it is a plasma nitriding method. The invention according to claim 11 is the invention according to claims 5 to 8, wherein the nitriding treatment is performed by placing the steel material in a salt bath at 300 to 650 ° C containing one or more of NaCN, KCN, NaCNO and KCNO as a basic component. It is defined that the immersion is a salt bath nitriding method.

【0012】請求項12の発明は、請求項1〜11の発
明において、ステンレス鋼が、質量%で、C:0.15%以
下,Si:5.0%以下,Mn:5.0%以下,Ni:2.0〜20.0
%,Cr:12.0〜50.0%,Cu:0〜3.5%(無添加を含
む),Mo:0〜6.0%以下(無添加を含む),N:0.15%
以下を含み、残部がFeおよび不可避的不純物からなるも
のである点を規定したものである。
In a twelfth aspect of the present invention, in the first to eleventh aspects of the present invention, the stainless steel is, by mass%, C: 0.15% or less, Si: 5.0% or less, Mn: 5.0% or less, Ni: 2.0 to 20.0%.
%, Cr: 12.0 to 50.0%, Cu: 0 to 3.5% (including no addition), Mo: 0 to 6.0% or less (including no addition), N: 0.15%
It is specified that the balance includes Fe and inevitable impurities, including the following.

【0013】[0013]

【発明の実施の形態】本発明者らの研究の結果、鋼材の
表面粗さを特定の状態に調整することによって、ステン
レス鋼の窒化性が大幅に改善されることが明らかになっ
た。また、表層部の金属組織をマルテンサイト相やフェ
ライト相が主体の組織にすることによって、窒化性がさ
らに向上することも確かめられた。以下、本発明を特定
する事項について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of the study of the present inventors, it has been found that the nitriding property of stainless steel is greatly improved by adjusting the surface roughness of a steel material to a specific state. It was also confirmed that the nitriding property was further improved by changing the metal structure of the surface layer to a structure mainly composed of a martensite phase or a ferrite phase. Hereinafter, matters specifying the present invention will be described.

【0014】鋼材の表面粗さが粗くなると、表面凹凸が
大きくなり、窒化する際のガスや溶融塩と金属との界面
の表面積が増大して窒化が促進される。また、表面凹凸
の凹部では不動態皮膜不完全領域が発生し、これによる
窒化促進効果も現れる。表面粗さの指標としては種々の
ものが考えられ、例えばJIS B 0601には、中心線平均粗
さRa,最大高さRmax,十点平均粗さRzが規定されてい
る。発明者らの詳細な検討の結果、ステンレス鋼材の窒
化性は、十点平均粗さRzに依存することがわかった。
When the surface roughness of the steel material becomes rough, the surface irregularities become large, and the surface area of the interface between the gas and the molten salt and the metal at the time of nitriding increases, thereby promoting the nitriding. In addition, a passivation film imperfect region is generated in the concave portion of the surface unevenness, and the effect of accelerating nitridation also appears. Various indicators can be considered as an index of the surface roughness. For example, JIS B 0601 defines a center line average roughness Ra, a maximum height Rmax, and a ten-point average roughness Rz. As a result of detailed studies by the inventors, it was found that the nitriding property of the stainless steel material depends on the ten-point average roughness Rz.

【0015】粗面化した鋼材表面においては、表面凹凸
の凹部に窒素が停留して窒化反応が促進すると考えられ
る。そうであれば、均一な窒化層が形成する粗面化形態
を考慮したとき、凹部と凸部の「平均的な」高低差の情
報が重要になる。十点平均粗さRzはそのような平均的な
高低差をよく反映した指標であると考えられる。
On the roughened steel surface, it is considered that nitrogen stays in the concave portions of the surface irregularities and the nitriding reaction is accelerated. If so, the information of the “average” height difference between the concave portions and the convex portions becomes important when considering the roughened form in which a uniform nitride layer is formed. The ten-point average roughness Rz is considered to be an index that well reflects such an average height difference.

【0016】十点平均粗さRzが0.3μm以上になると凹凸
による窒化性の改善効果が現れ、その結果として窒化処
理後における鋼材の表面硬さおよび疲労特性が向上す
る。Rzが0.5μm以上になるとその効果は一層顕著にな
る。しかし、Rzが5.0μmを超えて大きくなると疲労特性
が低下する現象が認められた。この疲労特性の低下は、
凹凸部での切欠効果が顕在化し、破壊が起こりやすくな
ったことに起因すると考えられる。したがって本発明で
は、窒化処理に供するステンレス鋼材の表面粗さを十点
平均粗さRzが0.3〜5.0μmの範囲に規定する。アンモニ
アガスを基本成分とする窒化雰囲気中で加熱する、いわ
ゆる一般的なガス窒化法を適用する場合にはRzが0.5〜
5.0μmの範囲の凹凸にすることが好ましい。
When the ten-point average roughness Rz is 0.3 μm or more, the effect of improving the nitriding property due to the unevenness appears, and as a result, the surface hardness and the fatigue properties of the steel material after the nitriding treatment are improved. When Rz is 0.5 μm or more, the effect becomes more remarkable. However, when Rz was larger than 5.0 μm, a phenomenon in which the fatigue characteristics deteriorated was observed. This reduction in fatigue properties
This is considered to be due to the notch effect at the concave and convex portions becoming apparent and the breakage being likely to occur. Therefore, in the present invention, the surface roughness of the stainless steel material to be subjected to the nitriding treatment is specified so that the ten-point average roughness Rz is in the range of 0.3 to 5.0 μm. Heating in a nitriding atmosphere containing ammonia gas as a basic component, when applying a so-called general gas nitriding method, Rz is 0.5 to
It is preferable to make the unevenness in the range of 5.0 μm.

【0017】このような表面凹凸は、ダルロール圧延,
機械的研削または機械的研磨の何れかの手段によって形
成させることが望ましい。これらの機械的な手段による
と、比較的簡単に最適な粗面化形態が得られるととも
に、表面の不動態皮膜にミクロ的なクラックが生じるこ
とによる窒化性向上効果も期待できる。
Such surface irregularities are caused by dull roll rolling,
Preferably, it is formed by either mechanical grinding or mechanical polishing. According to these mechanical means, an optimum roughened form can be obtained relatively easily, and an effect of improving the nitridation property due to the generation of microscopic cracks in the passive film on the surface can be expected.

【0018】表層部の金属組織は、マルテンサイト相ま
たはフェライト相が主体であることが望ましい。これら
の相は窒素の拡散速度が大きい結晶構造だからである。
ただし、上記のように表面粗さを調整するだけでも窒化
性の改善効果は得られるので、表層部にオーステナイト
相が存在していてもかまわない。調査の結果、表面から
深さ10μmまでの表層部におけるマルテンサイト相とフ
ェライト相の合計量が60体積%以上であるとき、高い窒
化性改善効果が認められた。その合計量が80体積%以上
になれば、一層顕著な窒化性改善効果が発揮される。な
お、マルテンサイト相とフェライト相は必ずしも混在し
ている必要はなく、いずれか一方の相が60体積%以上存
在すればこの窒化性改善効果が発現する。また、種々の
窒化処理法を利用するにおいて、深さ10μmまでの表層
部における金属組織を問題にすれば足りる。むしろ、あ
まり鋼材内部深くまでマルテンサイト相が主体の金属組
織にしてしまうと、延性低下を招く恐れがある。深さ10
μmまでの表層部におけるマルテンサイト相とフェライ
ト相の合計量は、例えば薄膜X線回折法により定量する
ことができる。
The metal structure of the surface layer is preferably mainly composed of a martensite phase or a ferrite phase. This is because these phases have a crystal structure in which the diffusion rate of nitrogen is high.
However, since the effect of improving the nitriding property can be obtained only by adjusting the surface roughness as described above, the austenite phase may be present in the surface layer. As a result of the investigation, when the total amount of the martensite phase and the ferrite phase in the surface layer from the surface to a depth of 10 μm was 60% by volume or more, a high nitriding property improving effect was recognized. When the total amount is 80% by volume or more, a more remarkable nitriding property improving effect is exhibited. Note that the martensite phase and the ferrite phase do not necessarily have to be mixed, and the nitriding property improving effect is exhibited if any one phase is present at 60% by volume or more. In using various nitriding methods, it is sufficient to consider the metallographic structure in the surface layer up to a depth of 10 μm. Rather, if the martensitic phase is formed into a metal structure that is too deep inside the steel material, ductility may be reduced. Depth 10
The total amount of the martensite phase and the ferrite phase in the surface layer up to μm can be quantified by, for example, a thin film X-ray diffraction method.

【0019】準安定オーステナイト鋼をはじめとする高
強度鋼において表層部をマルテンサイト相とフェライト
相の合計量が60体積%以上である金属組織とするには、
バレル研磨,ショットピーニング処理またはショットブ
ラスト処理の何れかの手段を用いることが望ましい。
In order to make the surface layer of a high-strength steel such as a metastable austenitic steel have a metal structure in which the total amount of the martensite phase and the ferrite phase is 60% by volume or more,
It is desirable to use any means of barrel polishing, shot peening or shot blasting.

【0020】「表面粗さ」あるいはさらに「表層部の金
属組織」が上記のように調整されたステンレス鋼材に対
しては、一般的な鋼材の窒化処理である「ガス窒化
法」,「ガス軟窒化法」の他、「ガス浸硫窒化法」,
「プラズマ窒化法」,「塩浴窒化法」を適用して効果的
な窒化が可能である。また「イオン窒化法」,「塩浴浸
炭窒化法」,「塩浴浸硫窒化法」を適用しても効果があ
る。
For a stainless steel material whose “surface roughness” or “metal structure of the surface layer” is adjusted as described above, a “nitriding method” or a “gas softening method” which is a general nitriding treatment of a steel material is applied. Nitriding method ”,“ Gas sulfur nitriding method ”,
Effective nitriding is possible by applying the "plasma nitriding method" and the "salt bath nitriding method". In addition, the application of the "ion nitriding method", the "salt bath nitrocarburizing method", and the "salt bath oxynitriding method" is also effective.

【0021】ガス窒化法では、アンモニアガスを主体と
した成分のガスが使用できる。例えば、アンモニアガス
単体や、アンモニアガスにRXガス(吸熱型変成ガス;
一酸化炭素+水素+窒素),NXガス(ブタン等を完全
燃焼させた変成ガス;窒素が主成分),プロパン,ブタ
ン,(CO2+CO)混合ガス等を加えたものなどが挙げられ
る。ガス浸硫窒化法では、アンモニアガスにCO2+N2+H
2Sを混合したガスが使用できる。プラズマ窒化法では、
N2+H2混合ガスが使用できる。塩浴窒化法では、NaCN,
KCN,NaCNOおよびKCNOの1種または2種以上を基本成分
とし、これにNa2CO3およびK2CO3の1種または2種を添
加した溶融塩が使用できる。
In the gas nitriding method, a gas having a component mainly composed of ammonia gas can be used. For example, an ammonia gas alone or an ammonia gas and an RX gas (endothermic modified gas;
Carbon monoxide + hydrogen + nitrogen, NX gas (a modified gas obtained by completely burning butane or the like; nitrogen as a main component), propane, butane, (CO 2 + CO) mixed gas, and the like may be used. In the gas sulphonitriding method, ammonia gas is CO 2 + N 2 + H
Gas mixed with 2 S can be used. In the plasma nitriding method,
N 2 + H 2 mixed gas can be used. In the salt bath nitriding method, NaCN,
A molten salt obtained by using one or more of KCN, NaCNO and KCNO as a basic component and adding one or two of Na 2 CO 3 and K 2 CO 3 thereto can be used.

【0022】準安定オーステナイト系ステンレス鋼等の
高強度鋼に適用することを考慮すると、時効処理を兼ね
た窒化処理を行うことが効率的であるため、窒化処理温
度は300〜650℃の範囲とすることが望ましい。300℃未
満では窒化が十分進行せず、時効による強度上昇も望め
ない。650℃を超えると、鋼材表面にマルテンサイト相
が形成している場合、そのマルテンサイト相の一部がオ
ーステナイト相に逆変態して強度低下や窒化反応停滞を
もたらす。また、窒化処理の加熱時間が20分未満だと十
分な窒化が達成できない可能性が高い。望ましい窒化処
理の加熱時間は、20分〜5時間、さらに好ましくは30分
〜5時間である。
Considering application to high-strength steel such as metastable austenitic stainless steel, it is efficient to perform nitriding treatment also serving as aging treatment, so that the nitriding treatment temperature is in the range of 300 to 650 ° C. It is desirable to do. If the temperature is lower than 300 ° C., nitriding does not proceed sufficiently, and an increase in strength due to aging cannot be expected. If the temperature exceeds 650 ° C., when a martensite phase is formed on the surface of the steel material, part of the martensite phase is reversely transformed into an austenite phase, resulting in a decrease in strength and a stagnation of the nitriding reaction. If the heating time of the nitriding treatment is less than 20 minutes, there is a high possibility that sufficient nitriding cannot be achieved. Desirable heating time for the nitriding treatment is 20 minutes to 5 hours, more preferably 30 minutes to 5 hours.

【0023】本発明の窒化方法は、特に準安定オーステ
ナイト系ステンレス鋼からなる高強度鋼や、鋼材表層部
にマルテンサイト相とフェライト相を積極的に形成させ
ることのできる成分組成のステンレス鋼に適用するのが
効果的である。そのようなステンレス鋼を得るには、質
量%で、C:0.15%以下,Si:5.0%以下,Mn:5.0%以
下,Ni:2.0〜20.0%,Cr:12.0〜50.0%,Cu:0〜3.5
%(無添加を含む),Mo:0〜6.0%(無添加を含む),
N:0.15%以下を含み、残部がFeおよび不可避的不純物
からなる化学組成にすることが望ましい。
The nitriding method of the present invention is particularly applied to a high-strength steel made of a metastable austenitic stainless steel or a stainless steel having a component composition capable of positively forming a martensite phase and a ferrite phase on the surface layer of a steel material. It is effective to do. In order to obtain such stainless steel, C: 0.15% or less, Si: 5.0% or less, Mn: 5.0% or less, Ni: 2.0 to 20.0%, Cr: 12.0 to 50.0%, Cu: 0 to 3.5
% (Including no additive), Mo: 0 to 6.0% (including no additive),
N: It is desirable to have a chemical composition containing 0.15% or less, with the balance being Fe and unavoidable impurities.

【0024】[0024]

【実施例】〔実施例1〕供試材として、表1に示す化学
組成のステンレス鋼を用いた。
EXAMPLES Example 1 As a test material, stainless steel having a chemical composition shown in Table 1 was used.

【0025】[0025]

【表1】 [Table 1]

【0026】この鋼を真空溶解炉にて溶製し、鍛造→熱
間圧延→中間焼鈍→冷間圧延の後、「1050℃×1分間保
持→水冷」の溶体化熱処理を行い、その後、種々の圧延
率で板厚0.15mmまで冷間圧延を行った。この冷間圧延材
に試料表面粗さの調整を目的として種々の番手のエメリ
ー研磨を往復50回の条件で施し、さらに、ショットピー
ニング処理(圧力1kgf/mm2,ビーズ径0.25〜0.60mmφ)
を種々の処理時間で施した。
This steel was melted in a vacuum melting furnace and subjected to forging → hot rolling → intermediate annealing → cold rolling, followed by a solution heat treatment of “holding at 1050 ° C. × 1 minute → water cooling”, and thereafter, Cold rolling was performed at a rolling rate of 0.15 mm to a sheet thickness of 0.15 mm. This cold-rolled material is subjected to emery polishing of various counts 50 times in order to adjust the surface roughness of the sample, and is further subjected to shot peening (pressure 1 kgf / mm 2 , bead diameter 0.25 to 0.60 mmφ)
At different treatment times.

【0027】これらの試料に、ガス窒化,ガス浸硫窒
化,プラズマ窒化,または塩浴窒化の各窒化法で窒化処
理を施した。ガス窒化は、アンモニア50体積%+RX50
体積%の混合ガス中で500℃×3時間加熱する方法で行っ
た。ガス浸硫窒化は、アンモニア80体積%,H2S 0.1体
積%で残部がCO2の混合ガス中で560℃×3時間加熱する
方法で行った。プラズマ窒化は、N280体積%+H220体積
%の混合ガスを5Torr注入した密閉炉に試料を入れ、炉
壁に約1000Vの直流電圧をかけてプラズマを発生させ、
そのプラズマに試料を接触させて540℃×3時間加熱する
方法で行った。塩浴窒化は、NaCN 40質量%+Na2CO340
質量%を主成分とし残部が(NaK)4Fe(CN)6である520℃の
塩浴中に試料を1時間浸漬する方法で行った。
These samples were subjected to a nitriding treatment by a gas nitriding method, a gas nitriding method, a gas nitriding method, or a plasma nitriding method. Gas nitriding is performed using 50% by volume of ammonia + RX50
The heating was performed by heating at 500 ° C. for 3 hours in a mixed gas of volume%. The gas sulphonitriding was carried out by heating at 560 ° C. for 3 hours in a mixed gas of 80% by volume of ammonia and 0.1% by volume of H 2 S and the balance being CO 2 . In plasma nitriding, a sample is placed in a closed furnace into which a mixed gas of N 2 80% by volume + H 2 20% by volume is injected at 5 Torr, and a DC voltage of about 1000 V is applied to the furnace wall to generate plasma.
The sample was brought into contact with the plasma and heated at 540 ° C. for 3 hours. Salt bath nitriding is performed using NaCN 40% by mass + Na 2 CO 3 40
The sample was immersed for 1 hour in a salt bath at 520 ° C. of which the main component was mass% and the balance was (NaK) 4 Fe (CN) 6 .

【0028】各試料について、窒化処理前の表層部にお
けるマルテンサイト相とフェライト相の合計量(体積
%)および十点平均粗さRzを調べた。さらに、窒化処理
後の表面硬さ(Hv0.5)および疲労限(N/mm2)を調べ
た。表層部におけるマルテンサイト相とフェライト相の
合計量(体積%)は、薄膜X線回折法により定量した。
なお、本発明実施例における供試材では、表層部にフェ
ライト相は存在せず、マルテンサイト相と残留オーステ
ナイト相の複相組織を呈していた。十点平均粗さは、JI
S B 1061に規定の方法に基づき、接触型ダイヤモンドの
表面粗さ計により測定した。表面硬さは、荷重500gのビ
ッカース硬さ計により測定した。疲労限は、曲げ−引張
疲労試験を行って求めた。すなわち、平行部の長さが10
0mm,幅が3mmの試験片をプーリーに掛け、表面曲げ引張
応力を負荷した状態と除去した状態を1サイクルとする
疲労試験を、種々の引張応力レベルで実施し、破断に至
ったサイクル数が1×107サイクルを超える応力を疲労限
とした。これらの結果を表2および表3に示す。
For each sample, the total amount (volume%) of the martensite phase and the ferrite phase in the surface layer before nitriding and the ten-point average roughness Rz were examined. Further, the surface hardness (Hv0.5) and the fatigue limit (N / mm 2 ) after the nitriding treatment were examined. The total amount (volume%) of the martensite phase and the ferrite phase in the surface layer portion was determined by a thin film X-ray diffraction method.
In addition, in the test material of the present invention, the ferrite phase was not present in the surface layer portion, and a double phase structure of a martensite phase and a retained austenite phase was exhibited. The ten-point average roughness is JI
It was measured by a contact-type diamond surface roughness meter based on the method specified in SB 1061. The surface hardness was measured by a Vickers hardness tester with a load of 500 g. The fatigue limit was determined by performing a bending-tensile fatigue test. That is, the length of the parallel part is 10
Fatigue tests were conducted at various tensile stress levels, with a test specimen having a width of 0 mm and a width of 3 mm placed on a pulley, with a surface bending tensile stress applied and removed as one cycle, at various tensile stress levels. Stress exceeding 1 × 10 7 cycles was defined as the fatigue limit. The results are shown in Tables 2 and 3.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】窒化処理後の表面硬さに着目すると、表2
のガス窒化法によるものでは、窒化処理前の十点平均粗
さRzが0.5μm以上のものにおいてHv650以上の高い値が
得られている。これらの試料はいずれも窒化処理後の試
料中心部の硬さがHv600程度であったので、十点平均粗
さRzが0.5μm以上に調整されたものでは、窒化が起こっ
ていることが明らかである。これに対し、十点平均粗さ
Rzが0.5μm未満であったNo.11および16の表面硬さはHv6
00前後であり、ほとんど窒化が起こっていないことがわ
かる。十点平均粗さRzの値が大きくなるにつれて表面硬
さも上昇する。しかし、No.12〜15に見られるように、R
zが5.0μmを超えると、その上昇はほとんど認められな
くなる。なお、No.1のものは、表面粗さが同等である他
の例(No.2,3等)と比べると表面硬さのレベルが低い。
これは、表層部のマルテンサイト量が80体積%未満の低
い値であったことによる。
Focusing on the surface hardness after nitriding, Table 2
According to the gas nitriding method, a high value of Hv 650 or more is obtained when the ten-point average roughness Rz before the nitriding treatment is 0.5 μm or more. Since the hardness of the center of each of these samples after nitriding was about Hv600, it was clear that nitriding had occurred when the ten-point average roughness Rz was adjusted to 0.5 μm or more. is there. On the other hand, ten point average roughness
The surface hardness of Nos. 11 and 16 in which Rz was less than 0.5 μm was Hv6.
It is about 00, which indicates that almost no nitriding has occurred. As the value of the ten-point average roughness Rz increases, the surface hardness also increases. However, as seen in Nos. 12-15, R
When z exceeds 5.0 μm, the rise is hardly observed. It should be noted that No. 1 has a lower level of surface hardness as compared with other examples having the same surface roughness (Nos. 2, 3 etc.).
This is because the amount of martensite in the surface layer was a low value of less than 80% by volume.

【0032】表3のガス浸硫窒化法,プラズマ窒化法,
塩浴窒化法によるものでは、窒化処理前の十点平均粗さ
Rzが0.3μm以上のものにおいてHv650以上の高い値が得
られている。これらの試料はいずれも窒化処理後の試料
中心部の硬さがHv580程度であったので、十点平均粗さR
zが0.3μm以上に調整されたものでは、窒化が起こって
いることが明らかである。これに対し、十点平均粗さRz
が0.3μm未満であったNo.33,38および40の表面硬さはH
v630以下であり、窒化が十分に起こっていないことがわ
かる。十点平均粗さRzの値が大きくなるにつれて表面硬
さも上昇する。しかし、No.34〜37および39に見られる
ように、Rzが5.0μmを超えると、その上昇はほとんど認
められなくなる。なお、No.21のものは、表面粗さが同
等である他の例(No.22,23等)と比べると表面硬さのレ
ベルが低い。これは、表層部のマルテンサイト量が60体
積%未満の低い値であったことによる。
In Table 3, the gas sulphidizing method, the plasma nitriding method,
In the case of salt bath nitriding method, ten point average roughness before nitriding treatment
When Rz is 0.3 μm or more, a high value of Hv650 or more is obtained. Since the hardness of the center of each sample after nitriding was about Hv580, the ten-point average roughness R
When z is adjusted to 0.3 μm or more, it is clear that nitriding has occurred. On the other hand, the ten-point average roughness Rz
The surface hardness of No. 33, 38 and 40, which was less than 0.3 μm, was H
It is v630 or less, indicating that nitriding is not sufficiently occurring. As the value of the ten-point average roughness Rz increases, the surface hardness also increases. However, as seen in Nos. 34 to 37 and 39, when Rz exceeds 5.0 μm, the increase is hardly observed. In addition, No. 21 has a lower level of surface hardness as compared with other examples having the same surface roughness (No. 22, 23, etc.). This is because the amount of martensite in the surface layer was a low value of less than 60% by volume.

【0033】次に、窒化処理後の疲労限に着目すると、
表2のガス窒化法によるものでは、窒化処理前の十点平
均粗さRzが0.5〜5.0μmである本発明例のものにおいて
のみ、1500N/mm2以上の高い値が得られている。Rzが0.5
μmに満たない場合(No.11,16)だけでなく、Rzが5.0μ
mを超える場合(No.12〜15)も疲労特性に関しては高い
値が得られないことがわかる。
Next, focusing on the fatigue limit after the nitriding treatment,
According to the gas nitriding method in Table 2, a high value of 1500 N / mm 2 or more was obtained only in the present invention example in which the ten-point average roughness Rz before the nitriding treatment was 0.5 to 5.0 μm. Rz is 0.5
Rz is not less than 5.0μm (No.11,16)
It can be seen that even when the value exceeds m (Nos. 12 to 15), high values cannot be obtained for the fatigue characteristics.

【0034】表3のガス浸硫窒化法,プラズマ窒化法,
塩浴窒化法によるものでは、窒化処理前の十点平均粗さ
Rzが0.3〜5.0μmである本発明例のものにおいてのみ、1
500N/mm2以上の高い値が得られている。Rzが0.3μmに満
たない場合(No.33,38,40)だけでなく、Rzが5.0μmを
超える場合(No.34〜37,39)も疲労特性に関しては高い
値が得られないことがわかる。
The gas sulphonitriding method, the plasma nitriding method,
In the case of salt bath nitriding method, ten point average roughness before nitriding treatment
Only in the present invention example in which Rz is 0.3 to 5.0 μm, 1
A high value of 500 N / mm 2 or more has been obtained. Not only when Rz is less than 0.3 μm (No. 33, 38, 40), but when Rz exceeds 5.0 μm (No. 34 to 37, 39), high values cannot be obtained for fatigue properties. Understand.

【0035】図1および図2には、それぞれ表2のNo.3
(本発明例)およびNo.11(比較例)の窒化処理後の試
料断面の光学顕微鏡写真(蓚酸電解エッチング組織)を
示す。図1の本発明例のものでは、表層部に深さ5〜10
μm程度の窒化層(黒く見える部分)が形成されてい
る。一方、図2の比較例のものでは、窒化層の形成はほ
とんど認められない。
FIGS. 1 and 2 show No. 3 of Table 2, respectively.
Optical microscope photographs (oxalic acid electrolytically etched structure) of sample cross sections after nitriding (Example of the present invention) and No. 11 (Comparative example) are shown. In the example of the present invention shown in FIG.
A nitride layer (portion that looks black) of about μm is formed. On the other hand, in the case of the comparative example shown in FIG. 2, formation of a nitride layer is hardly recognized.

【0036】図3および図4には、それぞれ表3のNo.2
4(本発明例)およびNo.33(比較例)の窒化処理後の試
料断面の光学顕微鏡写真(蓚酸電解エッチング組織)を
示す。図3の本発明例のものでは、表層部に深さ30μm
程度の窒化層(黒く見える部分)が形成されている。一
方、図4の比較例のものでは、窒化層の形成はほとんど
認められない。
FIGS. 3 and 4 show No. 2 of Table 3, respectively.
4 shows optical microscope photographs (oxalic acid electrolytically etched structure) of sample cross sections after nitriding treatment of No. 4 (Example of the present invention) and No. 33 (Comparative example). In the example of the present invention shown in FIG. 3, the surface layer has a depth of 30 μm.
A degree of nitride layer (a portion that looks black) is formed. On the other hand, in the case of the comparative example shown in FIG. 4, the formation of a nitride layer is hardly recognized.

【0037】〔実施例2〕表1の鋼の「1050℃×1分間
保持→水冷」の溶体化熱処理材に、60%の冷間圧延を施
した後、#400エメリー研磨と、ショットピーニング処
理(圧力1kgf/mm2,ビーズ径0.25〜0.60mmφ,処理時間
2分)を施した材料について、種々の温度・時間でガス
窒化法による窒化処理(ガス組成:実施例1と同じ)、
または塩浴窒化法による窒化処理(塩浴組成:実施例1
と同じ)を施し、窒化処理後の表面硬さを測定した。そ
の結果を表4,表5に示す。
Example 2 A 60% cold rolling was performed on a solution heat-treated material of “holding at 1050 ° C. × 1 minute → water cooling” of the steel in Table 1, and then subjected to # 400 emery polishing and shot peening. (pressure 1 kgf / mm 2, the bead diameter 0.25~0.60Mmfai, processing time
2 minutes), nitriding by gas nitriding at various temperatures and times (gas composition: the same as in Example 1),
Alternatively, nitriding treatment by a salt bath nitriding method (salt bath composition: Example 1)
And the surface hardness after the nitriding treatment was measured. Tables 4 and 5 show the results.

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 表4のガス窒化法によるものでは、本発明例のものはい
ずれもHv740以上の高い表面硬さが得られており、窒化
が十分に起こっているのに対し、比較例のものはHv640
以下に止まっている。表5の塩浴窒化法によるもので
は、本発明例のものはいずれもHv750以上の高い表面硬
さが得られており、窒化が十分に起こっているのに対
し、比較例のものはHv640以下に止まっている。これら
いずれの窒化法においても、300℃未満の温度や30分未
満の短時間では十分に窒化が進行せず、また、650℃を
超える高温では表層部のマルテンサイト相の一部がオー
ステナイト相に逆変態して、窒化停滞を招く。
[Table 5] According to the gas nitriding method shown in Table 4, the samples of the present invention all had high surface hardness of Hv 740 or higher, and the nitriding occurred sufficiently, whereas the sample of the comparative example had Hv 640.
Stopped below. In the case of the salt bath nitriding method in Table 5, all of the examples of the present invention have a high surface hardness of Hv750 or more, and the nitriding has sufficiently occurred. It is stopped at. In any of these nitriding methods, nitriding does not proceed sufficiently at a temperature of less than 300 ° C or for a short time of less than 30 minutes, and at a temperature of more than 650 ° C, part of the martensitic phase in the surface layer becomes an austenite phase. Reverse transformation leads to stagnation of nitriding.

【0040】[0040]

【発明の効果】以上のように、本発明によれば、不動態
皮膜が存在するために本来窒化性に劣るステンレス鋼材
において、その窒化性を改善することができた。本発明
の窒化ステンレス鋼材の製造方法は低コストであり工業
的な実施化も比較的容易であるため、ステンレス鋼材を
用いた窒化処理製品の普及に寄与するものである。
As described above, according to the present invention, the nitriding property of a stainless steel material originally having poor nitriding property due to the presence of the passivation film could be improved. The method for producing a nitrided stainless steel material of the present invention is inexpensive and relatively easy to implement industrially, and thus contributes to the spread of nitriding products using stainless steel materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガス窒化法を用いた本発明方法による窒化処理
後のステンレス鋼材断面の光学顕微鏡写真。
FIG. 1 is an optical microscope photograph of a cross section of a stainless steel material after nitriding by the method of the present invention using a gas nitriding method.

【図2】ガス窒化法を用いた比較方法による窒化処理後
のステンレス鋼材断面の光学顕微鏡写真。
FIG. 2 is an optical microscope photograph of a cross section of a stainless steel material after nitriding by a comparative method using a gas nitriding method.

【図3】ガス浸硫窒化法を用いた本発明方法による窒化
処理後のステンレス鋼材断面の光学顕微鏡写真。
FIG. 3 is an optical microscope photograph of a cross section of a stainless steel material after nitriding by the method of the present invention using a gas sulphonitriding method.

【図4】ガス浸硫窒化法を用いた比較方法による窒化処
理後のステンレス鋼材断面の光学顕微鏡写真。
FIG. 4 is an optical microscope photograph of a cross section of a stainless steel material after nitriding by a comparative method using a gas sulphonitriding method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 憲一 山口県新南陽市野村南町4976番地 日新製 鋼株式会社技術研究所内 (72)発明者 平松 直人 山口県新南陽市野村南町4976番地 日新製 鋼株式会社技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenichi Morimoto 4976 Nomura Minami-cho, Shinnanyo-shi, Yamaguchi Prefecture Inside Nisshin Steel Research Institute (72) Inventor Naoto Hiramatsu 4976 Nomura-minami-cho, Shinnanyo-shi, Yamaguchi Nisshin Steel Technology Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 鋼材表面の十点平均粗さRzが0.5〜5.0μ
mに調整されたステンレス鋼材を、アンモニアガスを基
本成分とする300〜650℃の窒化雰囲気中で30分以上加熱
する、窒化ステンレス鋼材の製造方法。
The ten-point average roughness Rz of a steel material surface is 0.5 to 5.0 μm.
A method for producing a nitrided stainless steel material, comprising heating a stainless steel material adjusted to m in a nitriding atmosphere of 300 to 650 ° C. containing ammonia gas as a basic component for 30 minutes or more.
【請求項2】 鋼材表面の十点平均粗さRzが0.5〜5.0μ
mに調整され、かつ表面から深さ10μmまでの表層部にお
けるマルテンサイト相とフェライト相の合計量が80体積
%以上に調整されたステンレス鋼材を、アンモニアガス
を基本成分とする300〜650℃の窒化雰囲気中で30分以上
加熱する、窒化ステンレス鋼材の製造方法。
2. The ten-point average roughness Rz of a steel material surface is 0.5 to 5.0 μm.
m, and a stainless steel material in which the total amount of martensite phase and ferrite phase in the surface layer from the surface to a depth of 10 μm has been adjusted to 80% by volume or more, at a temperature of 300 to 650 ° C with ammonia gas as a basic component. A method for producing a nitrided stainless steel material that is heated in a nitriding atmosphere for at least 30 minutes.
【請求項3】 ダルロール圧延,機械的研削または機械
的研磨の何れかの手段により、鋼材表面の十点平均粗さ
Rzが0.5〜5.0μmに調整されたステンレス鋼材を、アン
モニアガスを基本成分とする300〜650℃の窒化雰囲気中
で30分以上加熱する、窒化ステンレス鋼材の製造方法。
3. The ten-point average roughness of a steel material surface by any of dull roll rolling, mechanical grinding or mechanical polishing.
A method for producing a nitrided stainless steel material, comprising heating a stainless steel material having a Rz adjusted to 0.5 to 5.0 μm in a nitriding atmosphere of 300 to 650 ° C. containing ammonia gas as a basic component for 30 minutes or more.
【請求項4】 ダルロール圧延,機械的研削または機械
的研磨の何れかの手段を施した後、さらにバレル研磨,
ショットピーニング処理またはショットブラスト処理の
何れかの手段を施すことによって、鋼材表面の十点平均
粗さRzが0.5〜5.0μmに調整され、かつ表面から深さ10
μmまでの表層部におけるマルテンサイト相とフェライ
ト相の合計量が80体積%以上に調整されたステンレス鋼
材を、アンモニアガスを基本成分とする300〜650℃の窒
化雰囲気中で30分以上加熱する、窒化ステンレス鋼材の
製造方法。
4. After performing any of dull roll rolling, mechanical grinding or mechanical polishing, barrel polishing,
By applying any means of shot peening or shot blasting, the ten-point average roughness Rz of the steel material surface is adjusted to 0.5 to 5.0 μm, and the depth from the surface is 10 μm.
Heat the stainless steel material in which the total amount of the martensite phase and the ferrite phase in the surface layer up to μm is adjusted to 80% by volume or more in a nitriding atmosphere of 300 to 650 ° C. containing ammonia gas as a basic component for 30 minutes or more, Manufacturing method of nitrided stainless steel.
【請求項5】 鋼材表面の十点平均粗さRzが0.3〜5.0μ
mに調整されたステンレス鋼材に窒化処理を施す、窒化
ステンレス鋼材の製造方法。
5. The ten-point average roughness Rz of a steel material surface is 0.3 to 5.0 μm.
A method for producing a nitrided stainless steel material, wherein the stainless steel material adjusted to m is subjected to nitriding treatment.
【請求項6】 ダルロール圧延,機械的研削または機械
的研磨の何れかの手段により、鋼材表面の十点平均粗さ
Rzが0.3〜5.0μmに調整されたステンレス鋼材に窒化処
理を施す、窒化ステンレス鋼材の製造方法。
6. The ten-point average roughness of a steel material surface by any of dull roll rolling, mechanical grinding or mechanical polishing.
A method for producing a nitrided stainless steel material, wherein a nitriding treatment is performed on a stainless steel material whose Rz is adjusted to 0.3 to 5.0 μm.
【請求項7】 鋼材表面の十点平均粗さRzが0.3〜5.0μ
mに調整され、かつ表面から深さ10μmまでの表層部にお
けるマルテンサイト相とフェライト相の合計量が60体積
%以上に調整されたステンレス鋼材に窒化処理を施す、
窒化ステンレス鋼材の製造方法。
7. Ten-point average roughness Rz of a steel material surface is 0.3 to 5.0 μm.
m, and a nitriding treatment is performed on the stainless steel material in which the total amount of the martensite phase and the ferrite phase in the surface layer from the surface to a depth of 10 μm is adjusted to 60% by volume or more,
Manufacturing method of nitrided stainless steel.
【請求項8】 ダルロール圧延,機械的研削または機械
的研磨の何れかの手段を施した後、さらにバレル研磨,
ショットピーニング処理またはショットブラスト処理の
何れかの手段を施すことによって、鋼材表面の十点平均
粗さRzが0.3〜5.0μmに調整され、かつ表面から深さ10
μmまでの表層部におけるマルテンサイト相とフェライ
ト相の合計量が60体積%以上に調整されたステンレス鋼
材に窒化処理を施す、窒化ステンレス鋼材の製造方法。
8. After any of dull roll rolling, mechanical grinding or mechanical polishing is performed, barrel polishing,
By applying either means of shot peening or shot blasting, the ten-point average roughness Rz of the steel material surface is adjusted to 0.3 to 5.0 μm, and the depth from the surface is 10 μm.
A method for producing a nitrided stainless steel material in which a stainless steel material in which the total amount of a martensite phase and a ferrite phase in a surface layer up to μm is adjusted to 60% by volume or more is nitrided.
【請求項9】 窒化処理が、アンモニアガスを基本成分
とするガスにH2Sを混合したガス中で鋼材を300〜650℃
に加熱するガス浸硫窒化法である、請求項5〜8に記載
の製造方法。
9. A nitriding treatment is performed by heating a steel material at a temperature of 300 to 650 ° C. in a gas obtained by mixing H 2 S with a gas containing ammonia gas as a basic component.
The production method according to any one of claims 5 to 8, wherein the method is a gas sulphonitriding method in which heating is performed at a low temperature.
【請求項10】 窒化処理が、窒素ガスを基本成分とす
る減圧ガス中で鋼材と炉壁間に生成させたプラズマで鋼
材を300〜650℃に加熱するプラズマ窒化法である、請求
項5〜8に記載の製造方法。
10. The method according to claim 5, wherein the nitriding treatment is a plasma nitriding method in which the steel is heated to 300 to 650 ° C. by plasma generated between the steel and the furnace wall in a reduced pressure gas containing nitrogen gas as a basic component. 9. The production method according to 8.
【請求項11】 窒化処理が、NaCN,KCN,NaCNOおよび
KCNOの1種または2種以上を基本成分とする300〜650℃
の塩浴中に鋼材を浸漬する塩浴窒化法である、請求項5
〜8に記載の製造方法。
11. The nitriding treatment is performed by using NaCN, KCN, NaCNO and
300-650 ℃ with one or more KCNO as basic components
6. A salt bath nitriding method in which a steel material is immersed in a salt bath.
9. The production method according to any one of items 1 to 8.
【請求項12】 ステンレス鋼が、質量%で、C:0.15
%以下,Si:5.0%以下,Mn:5.0%以下,Ni:2.0〜20.
0%,Cr:12.0〜50.0%,Cu:0〜3.5%(無添加を含
む),Mo:0〜6.0%以下(無添加を含む),N:0.15%
以下を含み、残部がFeおよび不可避的不純物からなる、
請求項1〜11に記載の製造方法。
12. The stainless steel contains 0.15% by mass of C: 0.15% by mass.
% Or less, Si: 5.0% or less, Mn: 5.0% or less, Ni: 2.0 to 20.
0%, Cr: 12.0 to 50.0%, Cu: 0 to 3.5% (including no addition), Mo: 0 to 6.0% or less (including no addition), N: 0.15%
Including the following, the balance consists of Fe and inevitable impurities,
The manufacturing method according to claim 1.
JP34613998A 1998-06-17 1998-12-04 Production of nitrided stainless steel Withdrawn JP2000073156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34613998A JP2000073156A (en) 1998-06-17 1998-12-04 Production of nitrided stainless steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16977798 1998-06-17
JP10-169777 1998-06-17
JP34613998A JP2000073156A (en) 1998-06-17 1998-12-04 Production of nitrided stainless steel

Publications (1)

Publication Number Publication Date
JP2000073156A true JP2000073156A (en) 2000-03-07

Family

ID=26493020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34613998A Withdrawn JP2000073156A (en) 1998-06-17 1998-12-04 Production of nitrided stainless steel

Country Status (1)

Country Link
JP (1) JP2000073156A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330565A (en) * 2004-05-21 2005-12-02 Nippon Parkerizing Co Ltd Method for surface hardening of maraging steel
JP2007224366A (en) * 2006-02-23 2007-09-06 Sumitomo Electric Ind Ltd High strength stainless steel spring and manufacturing method thereof
WO2010032769A1 (en) * 2008-09-17 2010-03-25 エア・ウォーター株式会社 Heat-treatment furnace, method of heat treatment, and method of using heat-treatment furnace
JP2010525160A (en) * 2007-04-18 2010-07-22 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrode with mechanically roughened surface for electrochemical applications
JP2013220245A (en) * 2012-04-18 2013-10-28 Nagata Seiki Co Ltd Blade, method of manufacturing the same, and plasma apparatus for manufacturing the same
JP2015227491A (en) * 2014-06-02 2015-12-17 キヤノン株式会社 Stainless friction material, production method thereof, and vibration type actuator
CN114761594A (en) * 2019-11-19 2022-07-15 日铁不锈钢株式会社 Ferritic stainless steel sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330565A (en) * 2004-05-21 2005-12-02 Nippon Parkerizing Co Ltd Method for surface hardening of maraging steel
JP2007224366A (en) * 2006-02-23 2007-09-06 Sumitomo Electric Ind Ltd High strength stainless steel spring and manufacturing method thereof
WO2007105410A1 (en) * 2006-02-23 2007-09-20 Sumitomo Electric Industries, Ltd. High-strength stainless steel spring and process for manufacturing the same
US7717411B2 (en) 2006-02-23 2010-05-18 Sumitomo Electric Industries, Ltd. High-strength stainless steel spring and method of manufacturing the same
JP2010525160A (en) * 2007-04-18 2010-07-22 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrode with mechanically roughened surface for electrochemical applications
WO2010032769A1 (en) * 2008-09-17 2010-03-25 エア・ウォーター株式会社 Heat-treatment furnace, method of heat treatment, and method of using heat-treatment furnace
JP2013220245A (en) * 2012-04-18 2013-10-28 Nagata Seiki Co Ltd Blade, method of manufacturing the same, and plasma apparatus for manufacturing the same
US9902013B2 (en) 2012-04-18 2018-02-27 Shinmaywa Industries, Ltd. Edged tool, method of manufacturing the same, and plasma device for manufacturing the same
JP2015227491A (en) * 2014-06-02 2015-12-17 キヤノン株式会社 Stainless friction material, production method thereof, and vibration type actuator
CN114761594A (en) * 2019-11-19 2022-07-15 日铁不锈钢株式会社 Ferritic stainless steel sheet
CN114761594B (en) * 2019-11-19 2023-04-18 日铁不锈钢株式会社 Ferritic stainless steel sheet

Similar Documents

Publication Publication Date Title
CN102770567B (en) Carburized steel member and method for producing same
JP4386152B2 (en) Shot peening projection material, finish line, manufacturing method, and shot peening projection material
EP3118346B1 (en) Nitriding method and nitrided part production method
WO2009054530A1 (en) Carbonitrided induction-hardened steel part with excellent rolling contact fatigue strength at high temperature and process for producing the same
CN105026602A (en) Semi-finished product of high-frequency quenching component and its manufacturing method
MX2014012432A (en) Nitrided steel member and process for producing same.
JP6636829B2 (en) Nitrided steel member and method of manufacturing nitrided steel
JP3421265B2 (en) Metastable austenitic stainless steel sheet for continuously variable transmission belt and method of manufacturing the same
JP7125923B2 (en) High-carbon hot-rolled steel sheet for vacuum carburizing, its manufacturing method, and carburized steel parts
WO2013077298A1 (en) Hot-rolled steel sheet for nitriding and cold-rolled steel sheet for nitriding with excellent fatigue strength and manufacturing method therefor, as well as automobile parts of excellent fatigue strength using same
JP2003113449A (en) High-strength/high-toughness stainless steel sheet superior in delayed fracture resistance and manufacturing method therefor
JP3792341B2 (en) Soft nitriding steel with excellent cold forgeability and pitting resistance
CN105102659A (en) Steel sheet for nitriding treatment and manufacturing method thereof
EP3081661A1 (en) Ring member for cvt and method for producing same
JP2000073156A (en) Production of nitrided stainless steel
JP2010222696A (en) Quenched and tempered steel strip, and method for producing the same
JP2005097682A (en) Steel, steel sheet and stock belt for continuously variable transmission belt, continuously variable transmission belt, and production method therefor
JP2004043962A (en) Surface hardening treatment method for maraging steel and belt for belt type continuously variable transmission produced by the method
JP2002053936A (en) Austenitic stainless steel plate for continuously variable transmission belt metallic ring and its production method
EP1291445A1 (en) Steel material production method
JP2000337453A (en) Endless metal belt manufacturing method
JP2005330565A (en) Method for surface hardening of maraging steel
JP7178832B2 (en) Method for manufacturing surface hardening material
JP3950527B2 (en) Carburizing surface hardening method of maraging steel
JP4308368B2 (en) Method for producing endless metal belt

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207