JP2000072720A - Monomerization of polyethylene terephthalate - Google Patents
Monomerization of polyethylene terephthalateInfo
- Publication number
- JP2000072720A JP2000072720A JP24269798A JP24269798A JP2000072720A JP 2000072720 A JP2000072720 A JP 2000072720A JP 24269798 A JP24269798 A JP 24269798A JP 24269798 A JP24269798 A JP 24269798A JP 2000072720 A JP2000072720 A JP 2000072720A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- methanol
- pet
- dmt
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000139 polyethylene terephthalate Polymers 0.000 title claims abstract description 60
- 239000005020 polyethylene terephthalate Substances 0.000 title claims abstract description 60
- -1 polyethylene terephthalate Polymers 0.000 title claims abstract description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 192
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical group COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000012071 phase Substances 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000007791 liquid phase Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 20
- 238000010587 phase diagram Methods 0.000 claims description 13
- 230000002794 monomerizing effect Effects 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 71
- 238000007796 conventional method Methods 0.000 abstract description 4
- 238000004064 recycling Methods 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 238000012691 depolymerization reaction Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000000543 intermediate Substances 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- WJJGAKCAAJOICV-UHFFFAOYSA-N N-dimethyltyrosine Natural products CN(C)C(C(O)=O)CC1=CC=C(O)C=C1 WJJGAKCAAJOICV-UHFFFAOYSA-N 0.000 description 4
- ZVOOGERIHVAODX-UHFFFAOYSA-N O-demycinosyltylosin Natural products O=CCC1CC(C)C(=O)C=CC(C)=CC(CO)C(CC)OC(=O)CC(O)C(C)C1OC1C(O)C(N(C)C)C(OC2OC(C)C(O)C(C)(O)C2)C(C)O1 ZVOOGERIHVAODX-UHFFFAOYSA-N 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000007806 chemical reaction intermediate Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000006140 methanolysis reaction Methods 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 102100024522 Bladder cancer-associated protein Human genes 0.000 description 1
- 101150110835 Blcap gene Proteins 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 101100493740 Oryza sativa subsp. japonica BC10 gene Proteins 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- QRTXZGIQTYDABO-UHFFFAOYSA-N carbanolate Chemical compound CNC(=O)OC1=CC(C)=C(C)C=C1Cl QRTXZGIQTYDABO-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013306 transparent fiber Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ポリエチレンテレ
フタレート(以下、「PET」と略す。)を解重合し、
原料および原料誘導体へとモノマー化する際の反応を促
進するための方法に関する。The present invention relates to a method for depolymerizing polyethylene terephthalate (hereinafter abbreviated as "PET"),
The present invention relates to a method for accelerating a reaction when a monomer is converted into a raw material and a raw material derivative.
【0002】[0002]
【従来の技術】ポリエステルを同種のポリエステル材料
として再利用する際、マテリアルリサイクルとケミカル
リサイクルとがある。マテリアルリサイクルでは、ポリ
エステルを熱等で軟化し、再成形する。プロセスが単純
であるため、一回限りで見るとリサイクルコストは低
い。しかし、再成形を行う毎に成形性などの物性が元の
材料に対して劣っていくため、リサイクル回数が限られ
たり、より低位の物性で対応できる用途への変換を余儀
なくされる。一方、ケミカルリサイクルでは、ポリエス
テルを化学変換し、原料まで戻し、精製した後に再合成
する。そのため、システムが複雑で1回限りで見るとリ
サイクルは高くなる。しかし、リサイクル回数が飛躍的
に伸び、また、リサイクル先の用途が限定されないた
め、付加価値が高い。2. Description of the Related Art When polyester is reused as the same kind of polyester material, there are material recycling and chemical recycling. In material recycling, polyester is softened by heat or the like, and then remolded. Due to the simplicity of the process, recycling costs are low on a one-time basis. However, the physical properties such as moldability are inferior to the original material each time remolding is performed, so that the number of times of recycling is limited, or conversion to a use that can be performed with lower physical properties is inevitable. On the other hand, in chemical recycling, polyester is chemically converted, returned to raw materials, purified, and then resynthesized. For this reason, the system is complicated and recycling is high when viewed only once. However, since the number of times of recycling is dramatically increased and the use of the recycling destination is not limited, the added value is high.
【0003】ポリエステルをモノマー化する方法は多数
存在する。代表的な方法としては、デュポン社の高温メ
タノール蒸気を利用したメタノリシス法が挙げられる
(欧州特許第0 484 963 A2号、米国特許第3,907,868
号)。この方法は、溶融PETの下部から高温メタノー
ル蒸気を吹き込み、PETを解重合し、モノマーである
エチレングリコール(以下、「EG」と略す。)とテレ
フタル酸ジメチル(以下、「DMT」と略す。)、反応
試薬かつ溶媒として添加したメタノールを反応器上部か
ら回収することができる。この方法の特長は、反応が一
段で完了し、かつ、特殊な制御を必要としないため、一
定の条件では高い効率を得ることができる。また、モノ
マーを気相で取り出すため、FRPが混入したPETな
ど、不純物が多い場合でも連続処理ができるといった特
長がある。しかし、気液二相間の反応であるため、反応
器内部の混合が問題となり、特に、スケールアップ時の
混合性確保が重要である。[0003] There are many ways to monomerize polyesters. A typical method is a methanolysis method using high-temperature methanol vapor of DuPont (European Patent No. 0 484 963 A2, US Pat. No. 3,907,868).
issue). In this method, high-temperature methanol vapor is blown from below the molten PET to depolymerize the PET, and ethylene glycol (hereinafter abbreviated as “EG”) and dimethyl terephthalate (hereinafter abbreviated as “DMT”) are monomers. The methanol added as a reaction reagent and a solvent can be recovered from the upper part of the reactor. The feature of this method is that the reaction is completed in one step and no special control is required, so that high efficiency can be obtained under certain conditions. In addition, since the monomer is taken out in the gas phase, there is a feature that continuous processing can be performed even when there are many impurities such as PET mixed with FRP. However, since the reaction is a gas-liquid two-phase reaction, mixing inside the reactor becomes a problem. In particular, it is important to ensure the mixing property during scale-up.
【0004】その他の方法としては、超臨界メタノール
を利用したメタノリシス法が挙げられる(米国特許第3,
148,208 号、特開平9-249597号)。この方法は、溶融P
ETと239℃、79気圧以上の超臨界状態のメタノー
ルを接触させることにより、解重合を行うものである。
この方法の特長は、高温で液体並みの密度のメタノール
を反応させるため、反応時間が非常に短いことである。
数十mg程度のPETを、300℃、100気圧のメタ
ノールで処理した場合には、反応は10分以内で完了す
る。しかし、超臨界メタノール、溶融PETの二相間の
反応であるため、反応器内部の混合が問題となる。その
ため、反応容器を単純に大きくし、PET100gを処
理した場合の反応時間は数時間以上となってしまう。そ
こで、PETをあらかじめ溶融し、メタノール中に噴霧
してPET微粒子を作製し、それを反応器に導入する
か、反応器内部での攪拌を上げるために、多孔板を多数
配置するなどの工夫が必要で、装置が複雑になるといっ
た欠点がある。Another method is a methanolysis method using supercritical methanol (US Pat.
148,208, JP-A-9-249597). This method uses molten P
Depolymerization is carried out by contacting ET with methanol in a supercritical state at 239 ° C. and 79 atm or more.
The feature of this method is that the reaction time is very short because methanol is reacted at a high temperature at a density comparable to that of a liquid.
When about tens of mg of PET is treated with methanol at 300 ° C. and 100 atm, the reaction is completed within 10 minutes. However, since it is a reaction between two phases of supercritical methanol and molten PET, mixing inside the reactor becomes a problem. Therefore, when the reaction vessel is simply enlarged and 100 g of PET is treated, the reaction time is several hours or more. Therefore, various methods have been devised, such as melting PET in advance and spraying it into methanol to produce PET fine particles, and introducing the fine particles into the reactor, or arranging a large number of perforated plates to increase the stirring inside the reactor. There is a disadvantage that it is necessary and the device becomes complicated.
【0005】その他には、EGを用いてPETを解重合
して、一度、ビス−2−ヒドロキシエチルテレフタレー
ト(BHET)に変換し、さらに、これをメタノールで
エステル変換してEGとDMTを得る方法がある(米国
特許第3,257,333 号)。この方法の特長は、最初の反応
はほとんど常圧で行えること、および、二段目の反応を
他の方法に比べて穏やかな条件で行えることにある。し
かし、反応が2段必要なこと、一段目の反応が固液反応
のために連続プロセスに適さないことがある。さらに、
二段目の反応では、BHET中のEGユニットがPET
に比べて多いため、反応平衡上、多くのメタノールを投
入しなければならないなどの欠点がある。Another method is to depolymerize PET using EG, convert it once to bis-2-hydroxyethyl terephthalate (BHET), and then convert it to ester with methanol to obtain EG and DMT. (U.S. Pat. No. 3,257,333). The features of this method are that the first reaction can be performed at almost normal pressure, and that the second reaction can be performed under milder conditions than other methods. However, the two-stage reaction is required, and the first-stage reaction may not be suitable for a continuous process due to a solid-liquid reaction. further,
In the second reaction, the EG unit in BHET is PET
Therefore, there are drawbacks in that a large amount of methanol must be introduced in terms of reaction equilibrium.
【0006】[0006]
【発明が解決しようとする課題】従来の方法では、反応
の一部もしくは全般で二相以上となるため、それらの接
触を確保する必要があり、反応器の大型化が問題とな
る。本発明は、反応を均一相で進行させることにより、
反応器の大型化を容易にすることを目的とする。In the conventional method, two or more phases are involved in a part or the whole of the reaction. Therefore, it is necessary to secure the contact between them, and there is a problem in increasing the size of the reactor. The present invention, by allowing the reaction to proceed in a homogeneous phase,
It is intended to facilitate upsizing of the reactor.
【0007】[0007]
【課題を解決するための手段】ポリエチレンテレフタレ
ートとテレフタル酸ジメチルとメタノールとからなる均
一相中のポリエチレンテレフタレートを、メタノールが
液相で存在できる加圧下で加熱解重合する方法であり、
該解重合の進行中にさらにメタノールを添加するポリエ
チレンテレフタレートのモノマー化法を提供する。The present invention is a method for thermally depolymerizing polyethylene terephthalate in a homogeneous phase comprising polyethylene terephthalate, dimethyl terephthalate, and methanol under a pressure in which methanol can exist in a liquid phase,
Provided is a method for monomerizing polyethylene terephthalate in which methanol is further added during the progress of the depolymerization.
【0008】[0008]
【発明の実施の形態】本発明の対象となるPETは、特
に限定されないが、リサイクル用のPETボトル、写真
用フィルムに代表されるPETフィルム、磁気テープに
代表されるPETテープ、ポリエステル繊維として使用
されるPET繊維、カップ、トレー、透明包装などに利
用されるPETシートが挙げられる。PETは、本発明
のモノマー化に先立ち、通常の方法により、他の材料と
の分離、洗浄等の前処理をして、フレーク状にしておく
ことが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION PET which is the object of the present invention is not particularly limited, but is used as a PET bottle for recycling, a PET film such as a photographic film, a PET tape such as a magnetic tape, and a polyester fiber. And PET sheets used for transparent fibers, cups, trays and transparent packaging. Prior to the monomerization of the present invention, it is preferable that PET is subjected to a pretreatment such as separation from other materials and washing by a usual method to form flakes.
【0009】本発明のPETのモノマー化法は、反応終
了時まで均一相で反応させるために、反応に必要なメタ
ノールを段階的に添加することを特徴とする。すなわ
ち、従来の方法では、反応の一部もしくは全般で二相以
上となるが、本発明の方法では、反応は終始、均一相で
進行させることができる。反応開始の際のメタノール、
PET、DMTの投入組成の範囲は、これらの混合物が
均一相となる範囲であることを要する。均一相を形成す
る混合比率(混合三相図)は、後述の実験によって得ら
れる。The method for monomerizing PET of the present invention is characterized in that methanol required for the reaction is added stepwise in order to cause the reaction to proceed in a homogeneous phase until the end of the reaction. That is, in the conventional method, two or more phases are formed in part or the whole of the reaction, but in the method of the present invention, the reaction can be allowed to proceed in a uniform phase throughout. Methanol at the start of the reaction,
The composition range of PET and DMT needs to be such that these mixtures are in a homogeneous phase. The mixing ratio for forming a homogeneous phase (mixing three-phase diagram) is obtained by the experiment described later.
【0010】230℃における混合三相図を図2に示
す。図2より、均一相を構成するためには、PETが5
0〜100重量%、DMTが20〜100重量%、メタ
ノールが0をこえて50重量%以下となる組成を要する
ことがわかる。例えば、メタノール20重量%、PET
50重量%のときは、DMTは30重量%であるから、
図中の斜線の領域となり、完全混合して均一相となる
が、メタノールを40重量%、PETを50重量%とす
ると、DMTは10重量%となり、斜線の領域から外
れ、相分離する。温度を上げると、均一相になる領域は
拡大し、温度を下げると縮小する。反応平衡の観点か
ら、DMTの添加量は少ないほど好ましく、また、反応
のためには、ある程度のメタノールが必要なことから、
相図の下、かつ左側程、反応平衡上好ましい。FIG. 2 shows a mixed three-phase diagram at 230 ° C. As shown in FIG. 2, in order to form a homogeneous phase, PET is 5
It is understood that a composition requiring 0 to 100% by weight, 20 to 100% by weight of DMT, and 50% by weight or less of methanol exceeding 0 is required. For example, methanol 20% by weight, PET
When 50% by weight, DMT is 30% by weight.
As shown in the hatched area in the figure, the mixture is completely mixed to form a homogeneous phase. However, when methanol is 40% by weight and PET is 50% by weight, DMT is 10% by weight, which is out of the hatched area and undergoes phase separation. As the temperature is increased, the region of the uniform phase is enlarged, and as the temperature is decreased, the region is reduced. From the viewpoint of reaction equilibrium, the smaller the amount of DMT added, the better, and since a certain amount of methanol is required for the reaction,
The lower the left side of the phase diagram, the more preferable the reaction equilibrium.
【0011】本発明では、メタノールを解重合反応開始
時と反応中とに分けて、少なくとも二回に分けて添加す
る。解重合を完了させるには反応平衡上多量のメタノー
ルを必要とするが、均一相を維持するためには、図2か
ら明らかなように反応開始時にメタノールを多量に加え
ることができないからである。反応開始時に加えるメタ
ノール量は、230℃で反応させる場合には図2に基づ
き決定される。また、反応開始後に一回または二回以上
にわたって添加されるメタノール量は、開始時のメタノ
ールと合わせて、PETの重量に対して、3〜20倍の
重量、好ましくは、4〜6倍の重量になるようにする。
また、その添加の時期については、反応の温度、PET
中に残留する重合触媒種類、量によって異なるが、反応
開始後5〜20分以上経過した時点である。なお、解重
合反応の完了に要する時間は、メタノール添加量や反応
温度やPET中に残留する重合触媒種類、量等によって
異なるが、通常は、30分〜4時間である。また、公知
の触媒である酢酸亜鉛をPETに対して500ppm添
加した場合は、15分〜1時間である。In the present invention, methanol is added at least twice at the start of the depolymerization reaction and during the reaction. This is because, in order to complete the depolymerization, a large amount of methanol is required in terms of reaction equilibrium, but in order to maintain a homogeneous phase, a large amount of methanol cannot be added at the start of the reaction, as is apparent from FIG. The amount of methanol added at the start of the reaction is determined based on FIG. Further, the amount of methanol added once or twice or more after the start of the reaction, together with the methanol at the start, is 3 to 20 times the weight of PET, preferably 4 to 6 times the weight of PET. So that
Also, regarding the timing of the addition, the reaction temperature, PET
Although it varies depending on the type and amount of the polymerization catalyst remaining therein, it is the time when 5 to 20 minutes or more have elapsed after the start of the reaction. The time required for completing the depolymerization reaction varies depending on the amount of methanol added, the reaction temperature, the type and amount of the polymerization catalyst remaining in PET, and the like, but is usually 30 minutes to 4 hours. Further, when 500 ppm of zinc acetate, which is a known catalyst, is added to PET, the time is 15 minutes to 1 hour.
【0012】PETとDMTとメタノールとからなる均
一相を加熱しPETを解重合すると、DMT、EG、メ
タノールの三成分が得られる。即ち、反応器出口の成分
は、DMT、EG、メタノールの三成分であるが、図3
に示すように、これらは任意の比率で混合する。図2の
相図と図3の相図の間は、反応時間、メタノール追加投
入によって連続的に組成比、および、PET−PET解
重合中間体の物性が変化する。例えば、図2の相図の完
全混合領域は、時間と共に拡大し、ある時間を経過する
と、任意の比率で完全に混合するようになる。したがっ
て、反応全般を均一相で行うことができる。When a homogeneous phase composed of PET, DMT and methanol is heated to depolymerize PET, three components of DMT, EG and methanol are obtained. That is, the components at the reactor outlet are three components of DMT, EG, and methanol.
These are mixed in any ratio as shown in FIG. Between the phase diagram of FIG. 2 and the phase diagram of FIG. 3, the composition ratio and the physical properties of the PET-PET depolymerized intermediate are continuously changed by the addition of the reaction time and methanol. For example, the complete mixing region of the phase diagram of FIG. 2 expands with time, and after a certain time, complete mixing at an arbitrary ratio. Therefore, the entire reaction can be performed in a homogeneous phase.
【0013】本発明の解重合反応は、加熱下、すなわち
温度200〜250℃、好ましくは、220〜250
℃、メタノールが液相で存在できる加圧下で行われる。
純粋なメタノールでは239℃で臨界点となり、これ以
上の温度では液化しないが、PETおよびDMTと混在
することにより、メタノール臨界点より高い温度でも液
体で存在することができる。圧力は、容器を密閉するこ
とで加圧される飽和蒸気圧で行うことが好ましい。この
圧力は温度に依存し、230℃のときで66気圧であ
る。飽和蒸気圧以下では、平衡上、メタノールは液相と
して存在できない。飽和蒸気圧以上にすると、反応容器
内に気相部が全く存在せず、反応容器内の流体が非圧縮
性となるため、圧力制御が複雑になる。なお、230℃
の混合三相図は図2に示すが、温度を上げた場合には均
一相形成組成域がやや広がり、温度を下げた場合には均
一相形成組成域がやや狭まる他は、同様な混合三相図を
得て、これにより反応を均一相で行う組成とすることが
できる。[0013] The depolymerization reaction of the present invention is carried out under heating, that is, at a temperature of 200 to 250 ° C, preferably 220 to 250 ° C.
C., under pressure where methanol can be present in the liquid phase.
Pure methanol has a critical point at 239 ° C. and does not liquefy at a temperature higher than that, but when mixed with PET and DMT, it can exist as a liquid even at a temperature higher than the critical point of methanol. The pressure is preferably set at a saturated vapor pressure that is increased by sealing the container. This pressure depends on the temperature and is 66 atm at 230 ° C. Below the saturated vapor pressure, methanol cannot exist as a liquid phase due to equilibrium. If the pressure is equal to or higher than the saturated vapor pressure, no gas phase portion exists in the reaction vessel, and the fluid in the reaction vessel becomes incompressible, so that the pressure control becomes complicated. 230 ° C
The mixed three-phase diagram of FIG. 2 is shown in FIG. 2. A similar mixed three-phase diagram is obtained except that when the temperature is increased, the homogeneous phase forming composition region is slightly widened, and when the temperature is decreased, the homogeneous phase forming composition region is slightly narrowed. A phase diagram is obtained, whereby a composition in which the reaction is performed in a homogeneous phase can be obtained.
【0014】解重合反応は、バッチ式で一つの反応容器
で行うこともでき、あるいは、メタノール、PET、D
MTの均一相を流動させ連続的に行うこともできる。大
量のPETの解重合反応を処理するには、連続的に行う
ことが好ましい。解重合反応の終了時には、メタノー
ル、DMT、EGの混合物が得られる。これらの混合物
は、通常の方法、例えば、蒸留によって、メタノール、
EG、DMTの順番に分離される。また、PET解重合
中間体が存在する場合には、DMT蒸留時の蒸留塔底部
よりこれを回収できる。また、メタノールを除去した
後、直接PETを合成することもできる。なお、反応終
了時にPET解重合中間体も存在する場合には、これを
さらに同様の方法により解重合させることができる。The depolymerization reaction can be carried out batchwise in one reaction vessel, or alternatively, methanol, PET, D
It can be carried out continuously by flowing a homogeneous phase of MT. In order to treat a large amount of PET depolymerization reaction, it is preferable to carry out the reaction continuously. At the end of the depolymerization reaction, a mixture of methanol, DMT and EG is obtained. These mixtures are prepared in the usual manner, for example by distillation, with methanol,
EG and DMT are separated in this order. If a PET depolymerized intermediate is present, it can be recovered from the bottom of the distillation column during DMT distillation. After removing methanol, PET can also be directly synthesized. If a PET depolymerization intermediate is also present at the end of the reaction, it can be further depolymerized by the same method.
【0015】本発明のポリエチレンテレフタレートの連
続的モノマー化法の一例を図1に基づき説明するが、本
発明はこれに限定されるものではない。PET2は、D
MTに予め溶解して加圧された反応部Aに投入する。ま
た、同時にメタノール1も特定量を投入し、DMTまた
はDMTとPET解重合中間体との混合物3も特定量を
投入し、反応部Aでは、DMTにPETとメタノールを
溶解させて均一相とする。DMTとPET解重合中間体
との混合物を投入する場合は、解重合反応が未完了なも
のをさらに解重合させるためである。反応部Aと反応部
Bとメタノール添加部からなる反応容器内部を加圧下、
メタノールが液相で存在できるようにする。ここで、P
ETを解重合し、より低分子の化合物へと変換する。解
重合反応を生じている反応混合物は、反応部Aから反応
部Bの方向へと、図1では下から上へと移動する。反応
部Aの出口では、分解によるDMTとEGはほとんど検
出されない。反応部Aの出口と反応部Bの入口の間は多
孔板aと多孔板bで仕切られ、反応完了に必要なメタノ
ールを添加する。反応部Bでは、メタノールにPET解
重合体(反応部Aで反応した反応中間体および反応部B
で反応した反応中間体)と反応部Bの解重合で生じたD
MT、EGが溶解し、均一相となる。ここで、解重合が
さらに進み、反応部Bの出口で、モノマーのDMT4と
EG5とメタノール1との混合物が得られる。その後、
通常の方法により、各成分を分離する。なお、多孔板a
とbを設けたのは、解重合反応物の組成は、反応の進行
の程度にともない、反応部Aの入口から出口に向かって
変化しており、その一連の組成変化を乱すことなくメタ
ノールの添加を可能にするためである。An example of the method for continuously monomerizing polyethylene terephthalate of the present invention will be described with reference to FIG. 1, but the present invention is not limited thereto. PET2 is D
It is dissolved in MT beforehand and charged into the pressurized reaction section A. At the same time, a specific amount of methanol 1 is also charged, and a specific amount of DMT or a mixture 3 of DMT and a PET depolymerized intermediate is also charged. In the reaction section A, PET and methanol are dissolved in DMT to form a homogeneous phase. . When a mixture of DMT and a PET depolymerization intermediate is charged, it is for further depolymerizing an incompletely depolymerized reaction. The pressure inside the reaction vessel consisting of the reaction part A, the reaction part B and the methanol addition part is increased,
Allow methanol to be present in the liquid phase. Where P
ET is depolymerized and converted to lower molecular compounds. The reaction mixture causing the depolymerization reaction moves from the reaction part A to the reaction part B, and from FIG. At the outlet of the reaction section A, DMT and EG due to decomposition are hardly detected. Between the outlet of the reaction part A and the inlet of the reaction part B is partitioned by a perforated plate a and a perforated plate b, and methanol necessary for completing the reaction is added. In the reaction section B, the PET depolymerized methanol (the reaction intermediate reacted in the reaction section A and the reaction section B)
Reaction intermediate B) and D produced in the depolymerization of reaction part B
MT and EG dissolve to form a homogeneous phase. Here, the depolymerization proceeds further, and a mixture of the monomers DMT4, EG5 and methanol 1 is obtained at the outlet of the reaction section B. afterwards,
Each component is separated by a usual method. The perforated plate a
The composition of the depolymerized reaction product is changed from the inlet to the outlet of the reaction section A in accordance with the degree of the progress of the reaction, and methanol is added without disturbing a series of the composition change. This is for enabling the addition.
【0016】[0016]
【実施例】(実験例)均一相とするためのメタノール、
PET、DMTの混合比率(混合三相図)を得るために
以下の実験を行った。初期の投入比を決めるため、透過
型の石英窓付き高圧セルを用い、PETとDMTとメタ
ノールの混合性を確認した。セルにはあらかじめPET
とDMTを投入しておき、タールを用いて薄く着色し
た。これに、メタノールを追添加して、全体が均一とな
るかを確認した。タールは、より極性の低いDMT側に
多く溶解するため、相が分離するときは、下層側が濃く
着色する。また、石英窓の背面に物差しのような目盛り
を配し、内部の液をやや斜めから除くことにより、内部
の液体の屈折率が均一であるかも同時に確認した。内部
が不均一である場合には、屈折率の差により、背面の目
盛りが歪んで見えた。EXAMPLES (Experimental example) Methanol for forming a homogeneous phase,
The following experiment was performed to obtain a mixing ratio of PET and DMT (mixing three-phase diagram). In order to determine the initial charging ratio, a mixture of PET, DMT and methanol was confirmed using a transmission type high pressure cell with a quartz window. The cell has PET in advance
And DMT were charged and colored lightly with tar. Methanol was additionally added to this, and it was confirmed whether the whole became uniform. The tar dissolves more in the less polar DMT side, so when the phases separate, the lower layer is strongly colored. In addition, a scale like a ruler was arranged on the back of the quartz window, and it was checked at the same time whether or not the refractive index of the liquid inside was uniform by removing the liquid inside slightly obliquely. When the inside was non-uniform, the scale on the back surface appeared distorted due to the difference in refractive index.
【0017】(実施例)反応容器は、図1に示すものと
同様なものを用いた。PETとDMTを重量比2:1で
混合し、230℃に加熱して液化した。これをポンプで
反応容器に150g/hの流量で連続的に送り込んだ。
同時にメタノールも230℃に加熱して、PETの1/
2の重量比、50g/hの流量で連続的に反応容器に送
り込んだ。反応容器は66気圧に保持し、メタノールが
液相として存在できるように制御する。反応容器には多
孔板を配し、内部の流れが一方向になるようにする。滞
留時間が2時間の部分で230℃に加熱したメタノール
をPETの5重量倍となるように450g/hの流量で
投入し、さらに2時間滞留させて連続的に容器から取り
出した。排出された液は、素早く冷却し、タンクに貯蔵
した。このサンプルを分析したところ、DMTは理論量
の93%の収率で、EGは理論量の88%の収率で得ら
れた。また、反応部の入口条件を想定した小型の石英付
き高圧セルを用い、全体が均一相であることを確認し
た。さらに、温度保持して、2時間後にメタノールを投
入し、反応終了時まで均一相であることを確認した。(Example) The same reaction vessel as that shown in FIG. 1 was used. PET and DMT were mixed at a weight ratio of 2: 1 and heated to 230 ° C. to liquefy. This was continuously pumped into the reactor at a flow rate of 150 g / h.
At the same time, methanol was also heated to 230 ° C.
It was continuously fed into the reaction vessel at a weight ratio of 2 and a flow rate of 50 g / h. The reaction vessel is maintained at 66 atm and controlled so that methanol can exist as a liquid phase. The reaction vessel is provided with a perforated plate so that the internal flow is in one direction. Methanol heated to 230 ° C. at a residence time of 2 hours was introduced at a flow rate of 450 g / h so as to be 5 times the weight of PET, and was further retained for 2 hours and continuously taken out of the vessel. The discharged liquid was cooled quickly and stored in a tank. Analysis of this sample showed that DMT was obtained in a yield of 93% of theory and EG was obtained in a yield of 88% of theory. In addition, using a small high-pressure cell with quartz assuming the conditions of the inlet of the reaction section, it was confirmed that the whole was a uniform phase. Further, after maintaining the temperature, methanol was added after 2 hours, and it was confirmed that the mixture was in a homogeneous phase until the end of the reaction.
【0018】[0018]
【発明の効果】従来の方法では、反応の一部もしくは全
般で二相以上となるため、それらの接触を確保する必要
があり、反応器の大型化の際に問題となったが、本方法
では、反応は終始、均一相で進行するため、反応器の大
型化が容易になる。According to the conventional method, two or more phases are required for a part or the whole of the reaction. Therefore, it is necessary to secure the contact between the two phases, which is a problem when the reactor is enlarged. In this case, the reaction proceeds in a uniform phase throughout, so that the size of the reactor can be easily increased.
【図1】本発明によるPETの連続的モノマー化法の一
例を示す。FIG. 1 shows an example of a method for continuous monomerization of PET according to the present invention.
【図2】230℃におけるPET、DMT、メタノール
の混合三相図を示す。FIG. 2 shows a mixed three-phase diagram of PET, DMT, and methanol at 230 ° C.
【図3】230℃におけるDMT、EG、メタノールの
混合三相図を示す。FIG. 3 shows a mixed three-phase diagram of DMT, EG, and methanol at 230 ° C.
1 メタノール 2 PET 3 DMT、またはDMTとPET解重合中間体との混
合物 4 DMT 5 EG1 Methanol 2 PET 3 DMT or a mixture of DMT and PET depolymerized intermediate 4 DMT 5 EG
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 崇史 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 三井 武志 兵庫県神戸市兵庫区和田崎町1丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 西田 清則 兵庫県高砂市荒井町新浜2丁目8番19号 高菱エンジニアリング株式会社内 Fターム(参考) 4F301 AA25 AD01 AD02 BA21 BE01 BE36 BE50 BF31 CA09 CA43 CA72 CA73 4H006 AA02 AC91 BC10 BC11 BC14 BC37 BD21 BJ50 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Takashi Miyake 2-1-1, Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Takeshi Mitsui 1 Wadazakicho, Hyogo-ku, Kobe-shi, Hyogo Prefecture No. 1-1, Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Kiyonori Nishida 2-8-19, Araimachi Shinhama, Takasago-shi, Hyogo F-term (reference) 4F301 AA25 AD01 AD02 BA21 BE01 BE36 BE50 BF31 CA09 CA43 CA72 CA73 4H006 AA02 AC91 BC10 BC11 BC14 BC37 BD21 BJ50
Claims (2)
ル酸ジメチルとメタノールとからなる均一相中のポリエ
チレンテレフタレートを、メタノールが液相で存在でき
る加圧下で加熱解重合する方法であり、該解重合の進行
中にさらにメタノールを添加するポリエチレンテレフタ
レートのモノマー化法。1. A method for thermally depolymerizing polyethylene terephthalate in a homogeneous phase comprising polyethylene terephthalate, dimethyl terephthalate, and methanol under a pressure in which methanol can exist in a liquid phase. A method for monomerizing polyethylene terephthalate by adding methanol.
が、ポリエチレンテレフタレートとテレフタル酸ジメチ
ルとメタノールとの混合三相図に基づき決定される請求
項1に記載のポリエチレンテレフタレートのモノマー化
法。2. The method according to claim 1, wherein the composition of the homogeneous phase at the start of the depolymerization is determined based on a three-phase diagram of a mixture of polyethylene terephthalate, dimethyl terephthalate and methanol. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24269798A JP3652895B2 (en) | 1998-08-28 | 1998-08-28 | Monomerization of polyethylene terephthalate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24269798A JP3652895B2 (en) | 1998-08-28 | 1998-08-28 | Monomerization of polyethylene terephthalate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000072720A true JP2000072720A (en) | 2000-03-07 |
JP3652895B2 JP3652895B2 (en) | 2005-05-25 |
Family
ID=17092908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24269798A Expired - Fee Related JP3652895B2 (en) | 1998-08-28 | 1998-08-28 | Monomerization of polyethylene terephthalate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3652895B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011079807A (en) * | 2009-10-09 | 2011-04-21 | Industry & Academic Cooperation In Chugnam National Univ (Iac) | Regeneration method of polyester waste, and regenerating apparatus therefor |
JP2022550228A (en) * | 2019-03-20 | 2022-12-01 | 9449710 カナダ インク. | Process for depolymerization of polyethylene terephthalate (PET) |
US12071519B2 (en) | 2017-09-15 | 2024-08-27 | 9449710 Canada Inc. | Terephthalic acid esters formation |
US12071520B2 (en) | 2018-06-25 | 2024-08-27 | 9449710 Canada Inc. | Terephthalic acid esters formation |
-
1998
- 1998-08-28 JP JP24269798A patent/JP3652895B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011079807A (en) * | 2009-10-09 | 2011-04-21 | Industry & Academic Cooperation In Chugnam National Univ (Iac) | Regeneration method of polyester waste, and regenerating apparatus therefor |
US12071519B2 (en) | 2017-09-15 | 2024-08-27 | 9449710 Canada Inc. | Terephthalic acid esters formation |
US12071520B2 (en) | 2018-06-25 | 2024-08-27 | 9449710 Canada Inc. | Terephthalic acid esters formation |
JP2022550228A (en) * | 2019-03-20 | 2022-12-01 | 9449710 カナダ インク. | Process for depolymerization of polyethylene terephthalate (PET) |
JP7583733B2 (en) | 2019-03-20 | 2024-11-14 | 9449710 カナダ インク. | Process for the depolymerization of polyethylene terephthalate (PET) |
TWI874371B (en) * | 2019-03-20 | 2025-03-01 | 加拿大商9449710加拿大公司 | Process for the depolymerization of polyethylene terephthalate (pet) |
Also Published As
Publication number | Publication date |
---|---|
JP3652895B2 (en) | 2005-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5128618B2 (en) | Method and apparatus for recycling polyester waste | |
US5298530A (en) | Process of recovering components from scrap polyester | |
JP3712739B2 (en) | Synthesis method of polyester prepolymer | |
EP0526572B1 (en) | Recovery of ethylene glycol and dimethyl terephthalate from polyethylene terephthalate | |
CA2298551C (en) | Depolymerization process for recycling polyesters | |
KR101347906B1 (en) | Feedstock recycling process from polyester wastes and apparatus for using thereof | |
US20050004390A1 (en) | Method for recycling pet bottle | |
US5576456A (en) | Recovery of components from polyester resins | |
JP2022523911A (en) | A method for producing a terephthalic acid-based polyester that integrates a depolymerization method. | |
KR101130925B1 (en) | Polyester process using a pipe reactor | |
Rathod et al. | Intensification of esterification reaction of lactic acid with iso-propanol using pervaporation reactor | |
JPH04316541A (en) | Recovery of methyl ester of aromatic acid and glycol from thermoplastic polyester scrap | |
JP2000072720A (en) | Monomerization of polyethylene terephthalate | |
AU2020213861B2 (en) | Method for producing a terephthalate polyester from a monomeric mixture comprising a diester | |
JPH11302443A (en) | Recycling of pet bottle | |
AU728038B2 (en) | Process for removing contaminants from polyesters and controlling polymer molecular weight | |
KR101584059B1 (en) | Feedstock recycling apparatus from polyester wastes | |
EP4324873A1 (en) | Separation system and separation method | |
JP2003300916A (en) | Method for producing monomer from pet | |
JP2002338507A (en) | Method for depolymerizing polyethylene terephthalate into monomers | |
JP2002114722A (en) | Reactional vessel and method for monomerizing polyester | |
JP2002060369A (en) | Method for recycling polyester waste | |
US5747547A (en) | Recovery of components from polyester resins | |
Sato et al. | Chemical recycling process of poly (ethylene terephthalate) in high-temperature liquid water | |
EP0758640B1 (en) | Recovery of components from polyester resins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050224 |
|
LAPS | Cancellation because of no payment of annual fees |