JP2000064813A - Cold storage type load leveling power generating system and power generating method using this system - Google Patents
Cold storage type load leveling power generating system and power generating method using this systemInfo
- Publication number
- JP2000064813A JP2000064813A JP23880898A JP23880898A JP2000064813A JP 2000064813 A JP2000064813 A JP 2000064813A JP 23880898 A JP23880898 A JP 23880898A JP 23880898 A JP23880898 A JP 23880898A JP 2000064813 A JP2000064813 A JP 2000064813A
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- cooling
- cold heat
- ice
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 182
- 238000000034 method Methods 0.000 title claims description 19
- 239000007788 liquid Substances 0.000 claims abstract description 224
- 239000000498 cooling water Substances 0.000 claims abstract description 86
- 238000004519 manufacturing process Methods 0.000 claims abstract description 32
- 238000010248 power generation Methods 0.000 claims description 227
- 238000001816 cooling Methods 0.000 claims description 188
- 239000013535 sea water Substances 0.000 claims description 154
- 238000005338 heat storage Methods 0.000 claims description 137
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 120
- 239000003507 refrigerant Substances 0.000 claims description 119
- 238000010521 absorption reaction Methods 0.000 claims description 70
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 64
- 238000005057 refrigeration Methods 0.000 claims description 60
- 229910021529 ammonia Inorganic materials 0.000 claims description 59
- 239000013505 freshwater Substances 0.000 claims description 54
- 238000012546 transfer Methods 0.000 claims description 43
- 238000006243 chemical reaction Methods 0.000 claims description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 229910052757 nitrogen Inorganic materials 0.000 claims description 32
- 239000002245 particle Substances 0.000 claims description 30
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 26
- 230000008014 freezing Effects 0.000 claims description 25
- 238000007710 freezing Methods 0.000 claims description 25
- 230000001629 suppression Effects 0.000 claims description 25
- 238000010612 desalination reaction Methods 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 20
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 230000007423 decrease Effects 0.000 claims description 14
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 238000010257 thawing Methods 0.000 claims description 8
- 239000001294 propane Substances 0.000 claims description 7
- 230000000717 retained effect Effects 0.000 claims description 7
- 230000005611 electricity Effects 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 239000002803 fossil fuel Substances 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 230000003068 static effect Effects 0.000 claims description 4
- 238000003306 harvesting Methods 0.000 claims description 3
- 238000004056 waste incineration Methods 0.000 claims description 2
- 239000005457 ice water Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 30
- 239000012071 phase Substances 0.000 description 14
- 238000004781 supercooling Methods 0.000 description 14
- 230000008016 vaporization Effects 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 239000006096 absorbing agent Substances 0.000 description 7
- 238000010276 construction Methods 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000009834 vaporization Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 102220023198 rs387907448 Human genes 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012789 harvest method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04387—Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04024—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04157—Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/0443—A main column system not otherwise provided, e.g. a modified double column flowsheet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04472—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
- F25J3/04496—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
- F25J3/04503—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
- F25J3/04509—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04527—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
- F25J3/04533—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04563—Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04612—Heat exchange integration with process streams, e.g. from the air gas consuming unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04612—Heat exchange integration with process streams, e.g. from the air gas consuming unit
- F25J3/04618—Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04836—Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/10—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/12—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/20—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/22—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/70—Steam turbine, e.g. used in a Rankine cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/42—One fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/52—One fluid being oxygen enriched compared to air, e.g. "crude oxygen"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/42—Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery
- F25J2260/44—Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery using nitrogen for cooling purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/906—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、原子力発電設備等
における夜間電力と昼間電力との平準化を図るため、夜
間や休日などの余剰な電気力や熱エネルギを用いて低温
媒体に冷熱を貯蔵しておき、昼間等のピーク電力発生時
等に冷熱を利用して発電効率を向上させるようにした冷
熱貯蔵型の負荷平準化発電システムおよびそのシステム
を用いた発電方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention stores cold heat in a low temperature medium by using surplus electric power or heat energy at night or on holidays in order to equalize nighttime power and daytime power in nuclear power generation facilities and the like. In addition, the present invention relates to a cold heat storage type load leveling power generation system that uses cold heat to improve power generation efficiency during peak power generation during the daytime, and a power generation method using the system.
【0002】[0002]
【従来の技術】近年、家電機器の大型化や冷暖房の普及
などにより、電力需要は産業用、民生用とも増加を続け
ている。最大電力は年々増加しているが、年負荷率につ
いては低下の傾向がある。最大電力の伸びが著しく電力
量の伸びを上回っているため、電力需要はピーク化し、
季節間や昼夜間の需要差が拡大している。例えば昼夜間
の電力需要格差の最大値は57%に達しているとの統計
もある。ところで、負荷率の向上のため供給サイドにお
いては揚水式発電技術、あるいは超電導、フライホイー
ル、空気圧縮などの電力貯蔵技術が開発されている。但
し、揚水発電の立地は遠隔地となること、立地点に制約
があること、工期が長い等の問題がある。また、超電導
やフライホイール利用の電力貯蔵法は現在開発中である
が、大容量設備への適用は困難である。さらに空気圧縮
利用の電力貯蔵法の場合は、海底や地下空間への貯蔵方
式が検討されているが、規模が非常に大きいものにな
る。2. Description of the Related Art In recent years, the demand for electric power has continued to increase for both industrial and consumer use due to the increase in the size of home appliances and the spread of air conditioning. The maximum power is increasing year by year, but the annual load factor tends to decrease. Since the maximum power growth is significantly higher than the power amount growth, the power demand peaks,
The demand gap between seasons and day and night is expanding. For example, there is a statistic that the maximum value of the power demand difference between day and night has reached 57%. Meanwhile, in order to improve the load factor, pumped-storage power generation technology or power storage technology such as superconductivity, flywheel, and air compression has been developed on the supply side. However, there are problems that the location of pumped storage power generation is remote, there are restrictions on the location, and the construction period is long. In addition, electric power storage methods using superconductivity and flywheels are currently under development, but it is difficult to apply them to large capacity equipment. Further, in the case of the electric power storage method using air compression, storage methods on the seabed or underground space are being studied, but the scale will be extremely large.
【0003】そこで、深夜の余剰電力や熱エネルギを利
用して液体空気等を製造し、低温媒体の形で冷熱を貯蔵
しておき、昼間のピーク需要時に液体空気等を加圧して
ガスタービン発電機の燃焼器に供給して対応する提案が
なされている(特開平9−250360号等)。この方
式では、揚水発電と同程度の約70%のエネルギ貯蔵効
率が得られると言われている。また、深夜電力で液体空
気を製造して冷熱の形で貯蔵し、昼間のピーク需要時に
低温領域での熱のカスケード利用をして、最終的にガス
タービン発電機の燃焼器に供給して対応する提案もなさ
れている(特開平9−13918号等)。さらに、冷熱
貯蔵として、深夜電力を用いて海水を凍らせて氷の状態
で貯蔵し、解氷冷熱の地域熱供給を行い、負荷平準化と
増水とを同時に行う提案もなされている(特開平9−8
5232号等)。なお、別の冷熱貯蔵法として、深夜電
力を用いて低温のアンモニアあるいは炭酸ガスに冷熱を
貯蔵し、昼間のピーク需要時に蒸気タービンの排気を冷
却して対応する提案もなされている(特開平6−272
517号等)。さらにまた、圧力下で作動する低圧精留
塔、および中圧力下で作動する中圧精留塔を有する複式
精留塔を用いて液体酸素、液体窒素、液体空気等の製造
のエネルギ効率を改良する提案もなされている(特開平
6−249574号等)。Therefore, liquid air or the like is manufactured by using surplus electric power or heat energy at midnight, cold heat is stored in the form of a low temperature medium, and the liquid air or the like is pressurized during peak demand in the daytime to generate gas turbine power. It has been proposed to supply it to a combustor of a machine and deal with it (Japanese Patent Laid-Open No. 9-250360). It is said that this method can obtain an energy storage efficiency of about 70%, which is similar to that of pumped storage power generation. In addition, liquid air is manufactured with midnight power and stored in the form of cold heat, and when the peak demand during the daytime is used, the heat is cascaded in the low temperature range, and finally supplied to the combustor of the gas turbine generator to respond. The proposal has been made (Japanese Patent Laid-Open No. 9-13918, etc.). Furthermore, as cold heat storage, it has been proposed to freeze seawater using midnight power and store it in an ice state to supply regional heat for defrosting cold heat, and perform load leveling and water increase at the same time. 9-8
5232). As another cold heat storage method, it has been proposed to store cold heat in low-temperature ammonia or carbon dioxide using late-night power and cool the exhaust gas of a steam turbine during peak demand during the daytime (Japanese Patent Laid-Open No. 6-29138). -272
No. 517). Furthermore, the energy efficiency of the production of liquid oxygen, liquid nitrogen, liquid air, etc. is improved by using a double-column rectification column having a low pressure rectification column operating under pressure and an intermediate pressure rectification column operating under medium pressure. A proposal has been made (Japanese Patent Laid-Open No. 6-249574, etc.).
【0004】また、タービン駆動用の媒体として、水蒸
気を使用する水蒸気系と、混合媒体を使用する混合媒体
系とを備えた発電プラント(特開平9−209716号
等)、あるいは複数種類の熱源から有効なエネルギを発
生させる方法(特公平4−27367号等)も提案され
ている。In addition, as a medium for driving a turbine, a power plant equipped with a steam system using steam and a mixed medium system using a mixed medium (Japanese Patent Laid-Open No. 9-209716, etc.), or from a plurality of heat sources A method of generating effective energy (Japanese Patent Publication No. 4-27367, etc.) has also been proposed.
【0005】[0005]
【発明が解決しようとする課題】ところで原子力発電プ
ラントは、化石燃料火力発電プラントに比較して建設コ
ストは高いが燃料費が低廉であるという特徴があり、ト
ータルでは発電コストが低い発電プラントである。そし
て、このプラントは定格出力で連続運転を行うのが運用
上有利であり、現在では、昼間の電力のピーク需要に対
しては化石燃料火力発電プラントを起動させて対応して
いる。しかしながら、地球温暖化防止の点から炭酸ガス
の排出量を減少する必要があり、昼間の電力需要のピー
ク対応としての化石燃料火力発電プラントの使用量を低
減することが望ましい。By the way, the nuclear power plant is characterized in that the construction cost is higher but the fuel cost is lower than that of the fossil fuel-fired power plant, and the power generation cost is low in total. . Further, it is operationally advantageous to continuously operate this plant at a rated output, and at present, a fossil fuel-fired power generation plant is activated to cope with the peak demand of electric power in the daytime. However, in order to prevent global warming, it is necessary to reduce carbon dioxide emissions, and it is desirable to reduce the amount of fossil fuel-fired power plants used to meet peak daytime power demand.
【0006】また、上述したように、化石燃料火力発電
プラントでは夜間電力で液体空気を製造して貯蔵し、昼
間のピーク需要時にその空気を加圧して燃焼器に供給す
ることにより、コンプレッサで消費する電力を無くし、
これにより供給電力量を増大する方策も採られている。
しかしながら、原子力発電プラントではコンプレッサ動
力に相当するものがなく、冷熱貯蔵を利用した発電シス
テムはない。但し、液体空気を気化するときの冷熱を利
用して、原子力発電プラントの復水器の冷却、膨張ター
ビンを駆動しての発電を行うことは可能である。この場
合、燃焼の必要がないため、液体空気を液体窒素と液体
酸素とに分離し、液体窒素を冷却用として原子力発電プ
ラントの出力向上を図る一方、液体酸素は別途に化石燃
料火力発電プラントで完全燃焼させることで、窒素酸化
物の排出抑制、ひいては環境保護に貢献することが可能
となる。Further, as described above, in a fossil-fuel-fired power plant, liquid air is produced and stored by night-time power, and the air is pressurized and supplied to the combustor during peak demand in the daytime. The power to
As a result, measures have been taken to increase the amount of power supply.
However, in a nuclear power plant, there is no equivalent to compressor power, and there is no power generation system using cold heat storage. However, it is possible to use the cold heat when vaporizing the liquid air to cool the condenser of the nuclear power plant and drive the expansion turbine to generate electricity. In this case, since combustion is not necessary, liquid air is separated into liquid nitrogen and liquid oxygen, and liquid nitrogen is used for cooling to improve the output of the nuclear power plant, while liquid oxygen is separately used in a fossil fuel-fired power plant. By completely burning it, it becomes possible to suppress the emission of nitrogen oxides and eventually contribute to environmental protection.
【0007】また、原子力発電プラント等に水・アンモ
ニア混合媒体発電サイクルを復号化させて熱変換効率を
向上させた発電プラントとし、これに水・アンモニア冷
凍サイクルを併設して夜間の電力需要が少ない間に電力
と熱とを用いて冷媒を製造し、液体窒素の製造や氷の製
造を行ってこれらを貯蔵し、昼間のピーク電力需要時に
は液体窒素の気化あるいは氷の解凍で得られる冷熱でタ
ービンの復水器、復液器の冷却や、膨張タービンの駆動
によって発電を行い、原子力プラント等の出力向上を図
ることが可能である。また、海水を凍結させて海水の淡
水化を行い、淡水の供給による冷却等も可能である。[0007] Further, a nuclear power plant or the like has a water / ammonia mixed medium power generation cycle which is decoded to improve the heat conversion efficiency, and a water / ammonia refrigeration cycle is attached to this power plant to reduce power demand at night. In the meantime, a refrigerant is produced using electricity and heat, liquid nitrogen is produced and ice is produced and stored, and during daytime peak power demand, the cold heat obtained by vaporizing liquid nitrogen or thawing ice cools the turbine. It is possible to improve the output of a nuclear power plant or the like by generating electric power by cooling the condenser and the condenser and driving the expansion turbine. Further, it is also possible to freeze the seawater to desalinate the seawater, and to cool the seawater by supplying it.
【0008】さらに、原子力発電プラントの場合、水・
アンモニア吸収式冷凍機を併設して氷を製造し、この氷
を原子炉格納容器のサプレッションプールに貯蔵するこ
とにより、サプレッションプールの容量を削減すること
も可能である。Further, in the case of a nuclear power plant, water
It is also possible to reduce the capacity of the suppression pool by producing ice with an ammonia absorption refrigerator and storing the ice in the suppression pool of the reactor containment vessel.
【0009】本発明は、以上の知見に基づいてなされた
もので、夜間や休日などの余剰な電気力や熱エネルギを
用いて低温媒体の形で冷熱を貯蔵しておき、昼間等のピ
ーク電力発生時等に冷熱を利用して復水器等に供給する
冷却水の低温化等を可能とし、それにより発電効率を向
上させることができ、電力需要の変化に対する負荷平準
化が図れる冷熱貯蔵型の負荷平準化発電システムおよび
そのシステムを用いた発電方法を提供することを目的と
する。The present invention has been made on the basis of the above findings. Cold heat is stored in the form of a low temperature medium by using excess electric power and heat energy at night or on holidays, and peak power during daytime is stored. A cold heat storage type that enables to lower the temperature of the cooling water supplied to the condenser etc. by using cold heat when it is generated, thereby improving power generation efficiency and leveling the load against changes in power demand It is an object of the present invention to provide a load-leveling power generation system and a power generation method using the system.
【0010】[0010]
【課題を解決するための手段】請求項1の発明では、原
子力発電設備と、この原子力発電設備のタービンの中段
より抽気した中圧蒸気ガスを熱源とする吸収式冷凍手段
と、この吸収式冷凍手段の冷媒との熱交換によって空気
冷却を行う液体空気製造手段と、この液体空気製造手段
によって製造した液体空気を貯える液体空気貯蔵槽と、
この液体空気貯蔵槽に貯えた液体空気を気化する時に得
られる冷熱と前記液体空気製造手段で空気を凝固する時
に得られる発熱とをそれぞれ保持してそれらの各作用時
にその保持熱を使用して熱交換を行う貯蔵冷熱変換手段
と、前記原子力発電設備の復水器および前記吸収式冷凍
手段の復液器で使用する冷却水を前記液体空気貯蔵槽か
ら排出される空気の冷熱との熱交換によって冷却する冷
却水冷却熱交換手段とを備え、電力需要が低下した時に
前記原子力発電設備の余剰電力と熱エネルギとを用いて
前記吸収式冷凍手段および前記液体空気製造手段を稼動
することにより液体空気を製造して前記液体空気貯蔵槽
に貯蔵する一方、電力需要が増大した時に前記液体空気
貯蔵槽から排出されて気化した空気を用いて前記原子力
発電設備の復水器および前記吸収式冷凍手段の復液器へ
の冷却水を冷却することを特徴とする冷熱貯蔵型負荷平
準化発電システムを提供する。According to a first aspect of the present invention, there is provided nuclear power generation equipment, an absorption type refrigeration means using a medium pressure steam gas extracted from a middle stage of a turbine of the nuclear power generation equipment as a heat source, and the absorption type refrigeration. Liquid air producing means for performing air cooling by heat exchange with the refrigerant of the means, and a liquid air storage tank for storing the liquid air produced by the liquid air producing means,
The cold heat obtained when the liquid air stored in the liquid air storage tank is vaporized and the heat generated when the liquid air is solidified by the liquid air producing means are respectively retained, and the retained heat is used at each of the respective actions. Heat exchange between storage cold heat conversion means for performing heat exchange and cooling water used in the condenser of the nuclear power generation facility and the condenser of the absorption refrigeration means with cold heat of air discharged from the liquid air storage tank A cooling water cooling heat exchange means for cooling the liquid by operating the absorption refrigeration means and the liquid air production means by using the surplus electric power and thermal energy of the nuclear power generation facility when the power demand decreases. The condenser of the nuclear power generation facility is manufactured by using the air that is produced and stored in the liquid air storage tank and is vaporized by being discharged from the liquid air storage tank when the power demand increases. Providing cold accumulating type load leveling power generation system characterized by cooling the cooling water to the medium condenser spare the absorption refrigerating unit.
【0011】また、請求項2の発明では、請求項1記載
の冷熱貯蔵型負荷平準化発電システムにおいて、液体空
気を気化する時に得られる冷熱と、液体空気を製造する
時に得られる発熱との熱交換を行う場合に前記貯蔵冷熱
変換手段で用いる冷媒は、プロパンまたはアンモニアで
あることを特徴とする冷熱貯蔵型負荷平準化発電システ
ムを提供する。According to the second aspect of the invention, in the cold heat storage type load leveling power generation system according to the first aspect, the heat of the cold heat obtained when the liquid air is vaporized and the heat generated when the liquid air is manufactured. Provided is a cold heat storage type load leveling power generation system, wherein the refrigerant used in the storage cold heat conversion means in the case of replacement is propane or ammonia.
【0012】請求項3の発明では、請求項1記載の冷熱
貯蔵型負荷平準化発電システムにおいて、前記吸収式冷
凍手段と前記液体空気製造手段との熱交換は、それらの
熱交換部間を循環する冷媒によって行うものとし、前記
冷媒は、潜熱蓄熱粒子を含むものであることを特徴とす
る冷熱貯蔵型負荷平準化発電システムを提供する。According to a third aspect of the present invention, in the cold heat storage type load leveling power generation system according to the first aspect, the heat exchange between the absorption refrigerating means and the liquid air producing means is circulated between the heat exchange parts thereof. The present invention provides a cold heat storage type load leveling power generation system, characterized in that the refrigerant contains latent heat storage particles.
【0013】請求項4の発明では、請求項1記載の冷熱
貯蔵型負荷平準化発電システムにおいて、前記貯蔵冷熱
変換手段と、前記冷却水冷却熱交換手段との間に、気化
した空気を作動流体とする膨張タービン発電設備を設け
たことを特徴とする冷熱貯蔵型負荷平準化発電システム
を提供する。According to a fourth aspect of the present invention, in the cold heat storage type load leveling power generation system according to the first aspect, the vaporized air is used as a working fluid between the stored cold heat conversion means and the cooling water cooling heat exchange means. Provided is a cold heat storage type load leveling power generation system, which is provided with an expansion turbine power generation facility having the above.
【0014】請求項5の発明では、請求項1から4まで
のいずれかに記載の冷熱貯蔵型負荷平準化発電システム
において、前記冷却水冷却熱交換手段の冷却水上流側
に、液体空気を気化する時に得られる冷熱を前記貯蔵冷
熱変換手段から供給して氷を製造するとともに製造した
氷を用いて前記冷却水との熱交換を行わせる氷貯蔵冷却
水冷却手段を設けたことを特徴とする冷熱貯蔵型負荷平
準化発電システムを提供する。According to a fifth aspect of the present invention, in the cold heat storage type load leveling power generation system according to any one of the first to fourth aspects, liquid air is vaporized upstream of the cooling water of the cooling water cooling heat exchange means. It is characterized in that an ice storage cooling water cooling means is provided for supplying cold heat obtained at the time of cooling from the stored cold heat conversion means to manufacture ice and for exchanging heat with the cooling water using the manufactured ice. A cold heat storage type load leveling power generation system is provided.
【0015】請求項6の発明では、請求項5記載の冷熱
貯蔵型負荷平準化発電システムにおいて、前記氷貯蔵冷
却水冷却手段と前記貯蔵冷熱変換手段との熱交換は、そ
れらの熱交換部間を循環する冷媒によって行うものと
し、前記冷媒は、潜熱蓄熱粒子を含むものであることを
特徴とする冷熱貯蔵型負荷平準化発電システムを提供す
る。According to a sixth aspect of the present invention, in the cold heat storage type load leveling power generation system according to the fifth aspect, the heat exchange between the ice storage cooling water cooling means and the stored cold heat conversion means is performed between the heat exchange parts thereof. The present invention provides a cold-heat storage type load leveling power generation system, characterized in that the refrigerant circulates through the refrigerant, and the refrigerant contains latent heat storage particles.
【0016】請求項7の発明では、請求項1から6まで
のいずれかに記載の冷熱貯蔵型負荷平準化発電システム
において、前記吸収式冷凍手段の冷媒との熱交換によっ
て氷を製造するとともに製造した氷を前記原子力発電設
備のサプレッションプールに供給する氷貯蔵非常用炉心
冷却手段を設けたことを特徴とする冷熱貯蔵型負荷平準
化発電システムを提供する。According to a seventh aspect of the invention, in the cold heat storage type load leveling power generation system according to any one of the first to sixth aspects, ice is manufactured by heat exchange with the refrigerant of the absorption refrigeration means. Provided is a cold heat storage type load leveling power generation system, which is provided with an ice storage emergency core cooling means for supplying the ice to the suppression pool of the nuclear power generation facility.
【0017】請求項8の発明では、請求項7記載の冷熱
貯蔵型負荷平準化発電システムにおいて、前記吸収式冷
凍手段と前記氷貯蔵非常用炉心冷却手段との熱交換は、
それらの熱交換部間を循環する冷媒によって行うものと
し、前記冷媒は、潜熱蓄熱粒子を含むものであることを
特徴とする冷熱貯蔵型負荷平準化発電システムを提供す
る。According to an eighth aspect of the present invention, in the cold heat storage type load leveling power generation system according to the seventh aspect, the heat exchange between the absorption refrigeration means and the ice storage emergency core cooling means is performed.
A cold heat storage type load leveling power generation system is provided, characterized in that the refrigerant circulates between the heat exchange sections, and the refrigerant contains latent heat storage particles.
【0018】請求項9の発明では、請求項1から6まで
のいずれかに記載の冷熱貯蔵型負荷平準化発電システム
において、前記貯蔵冷熱変換手段の冷熱との熱交換によ
って氷を製造するとともに製造した氷を前記原子力発電
設備のサプレッションプールに供給する氷貯蔵非常用炉
心冷却手段を設けたことを特徴とする冷熱貯蔵型負荷平
準化発電システムを提供する。According to a ninth aspect of the present invention, in the cold heat storage type load leveling power generation system according to any one of the first to sixth aspects, ice is manufactured by heat exchange with the cold heat of the stored cold heat conversion means. Provided is a cold heat storage type load leveling power generation system, which is provided with an ice storage emergency core cooling means for supplying the ice to the suppression pool of the nuclear power generation facility.
【0019】請求項10の発明では、請求項9記載の冷
熱貯蔵型負荷平準化発電システムにおいて、前記貯蔵冷
熱変換手段と前記氷貯蔵非常用炉心冷却手段との熱交換
は、それらの間を循環する冷媒によって行うものとし、
前記冷媒は、潜熱蓄熱粒子を含むものであることを特徴
とする冷熱貯蔵型負荷平準化発電システムを提供する。According to a tenth aspect of the present invention, in the cold heat storage type load leveling power generation system according to the ninth aspect, the heat exchange between the stored cold heat conversion means and the ice storage emergency core cooling means circulates between them. Shall be carried out by the refrigerant
There is provided a cold heat storage type load leveling power generation system, wherein the refrigerant contains latent heat storage particles.
【0020】請求項11の発明では、請求項5から10
までのいずれかに記載の冷熱貯蔵型負荷平準化発電シス
テムにおいて、前記原子力発電設備の復水器および前記
吸収式冷凍手段の復液器への冷却水を海水とし、かつ前
記冷却水冷却熱交換手段または氷貯蔵非常用炉心冷却手
段に代え、または加えて、海水を凍結後に解凍して淡水
を得る海水凍結淡水化手段と、この海水凍結淡水化手段
で得られた低温の淡水の移送によって前記冷却水の冷却
を行う冷淡水移送冷却手段を設けたことを特徴とする冷
熱貯蔵型負荷平準化発電システムを提供する。According to the invention of claim 11, claims 5 to 10
In the cold heat storage type load leveling power generation system according to any one of items 1 to 5, the condenser water of the nuclear power generation facility and the condenser of the absorption refrigeration means are seawater, and the cooling water cooling heat exchange is performed. Instead of or in addition to the means or ice storage emergency core cooling means, the seawater frozen desalination means for obtaining freshwater by thawing seawater after freezing, and the low temperature freshwater obtained by this seawater freezing desalination means Provided is a cold heat storage type load leveling power generation system, which is provided with a cold / fresh water transfer cooling means for cooling cooling water.
【0021】請求項12の発明では、請求項11記載の
冷熱貯蔵型負荷平準化発電システムにおいて、前記海水
凍結淡水化手段は、スタティック方式、ハーベスト方式
その他の間接方式の製氷手段を適用したものであること
を特徴とする冷熱貯蔵型負荷平準化発電システムを提供
する。According to a twelfth aspect of the present invention, in the cold heat storage type load leveling power generation system according to the eleventh aspect, the seawater freezing desalination means is a static type, a harvesting type or any other indirect type ice making means. A cold heat storage type load leveling power generation system characterized by the above.
【0022】請求項13の発明では、請求項1から12
までのいずれかに記載の冷熱貯蔵型負荷平準化発電シス
テムにおいて、前記液体空気製造手段は、液体空気とと
もに液体酸素および液体窒素を製造する深冷空気分離装
置を有するものとする一方、前記液体空気貯蔵槽に加え
て液体酸素貯蔵槽および液体窒素貯蔵槽を備え、電力需
要が低下した時に余剰電力と熱エネルギとを用いて液体
空気とともに液体酸素および液体窒素を製造して前記各
貯蔵槽にそれぞれ貯蔵し、電力需要が増大した時に前記
液体空気および前記液体窒素を気化して前記原子力発電
設備の復水器および前記吸収式冷凍手段の復液器の冷却
水を冷却するとともに、前記液体酸素は化石燃料火力発
電プラントでの燃焼用その他の用途に用いることを特徴
とする冷熱貯蔵型負荷平準化発電システムを提供する。According to the invention of claim 13, claims 1 to 12
In the cold heat storage type load leveling power generation system according to any one of the above, the liquid air producing means has a cryogenic air separation device for producing liquid oxygen and liquid nitrogen together with the liquid air, while the liquid air is provided. In addition to the storage tank, a liquid oxygen storage tank and a liquid nitrogen storage tank are provided, and when the power demand is reduced, excess oxygen and heat energy are used to produce liquid oxygen and liquid nitrogen together with liquid air, and each storage tank is manufactured. While storing and cooling the cooling water of the condenser of the nuclear power generation facility and the condenser of the absorption refrigeration means by vaporizing the liquid air and the liquid nitrogen when the power demand increases, the liquid oxygen Provided is a cold heat storage type load leveling power generation system, which is used for combustion in a fossil fuel thermal power plant and other applications.
【0023】請求項14の発明では、原子力発電設備
と、この原子力発電設備のタービンの中段より抽気した
中圧蒸気を熱源とする吸収式冷凍手段と、この吸収式冷
凍手段の冷媒との熱交換によって氷を製造するとともに
貯蔵し、その氷と前記原子力発電設備の復水器および前
記吸収式冷凍手段の復液器で使用する冷却水との熱交換
を行わせる氷貯蔵冷却水冷却手段とを備え、電力需要が
低下した時に前記原子力発電設備の余剰電力と熱エネル
ギとを用いて前記吸収式冷凍手段および前記氷貯蔵冷却
水冷却手段を稼動することにより氷の製造および貯蔵を
行う一方、電力需要が増大した時に前記氷貯蔵冷却水冷
却手段に貯蔵した氷を用いて前記原子力発電設備の復水
器および前記吸収式冷凍手段の復液器の冷却水を冷却す
ることを特徴とする冷熱貯蔵型負荷平準化発電システム
を提供する。In the fourteenth aspect of the present invention, heat exchange between the nuclear power generation equipment, the absorption type refrigeration means using the medium pressure steam extracted from the middle stage of the turbine of the nuclear power generation equipment as a heat source, and the refrigerant of the absorption type refrigeration means. Ice storage cooling water cooling means for producing and storing ice by means of ice and performing heat exchange between the ice and the cooling water used in the condenser of the nuclear power generation facility and the condenser of the absorption refrigeration means. Provided, when the power demand is reduced, by operating the absorption refrigeration means and the ice storage cooling water cooling means by using the surplus power and thermal energy of the nuclear power generation facility, while producing and storing ice, while When the demand increases, the cooling water of the condenser of the nuclear power plant and the condenser of the absorption refrigeration means is cooled by using the ice stored in the ice storage cooling water cooling means. Providing heat storage type load leveling power generation system.
【0024】請求項15の発明では、請求項14記載の
冷熱貯蔵型負荷平準化発電システムにおいて、前記吸収
式冷凍手段と前記氷貯蔵冷却水冷却手段との間で潜熱媒
体を循環して冷熱を貯蔵する潜熱貯蔵手段を備え、電力
需要が低下した時に余剰電力と熱エネルギとを用いて潜
熱貯蔵手段の潜熱媒体を冷却して冷熱を貯蔵するととも
に、前記潜熱貯蔵手段から冷媒を前記氷貯蔵冷却水冷却
手段に循環させて前記氷貯蔵冷却水冷却手段で氷を製造
および貯蔵し、電力需要が増大した時に前記原子力発電
設備の復水器および前記吸収式冷凍手段の復液器の冷却
水を前記氷貯蔵冷却水冷却手段で冷却することを特徴と
する冷熱貯蔵型負荷平準化発電システムを提供する。According to a fifteenth aspect of the present invention, in the cold heat storage type load leveling power generation system according to the fourteenth aspect, a latent heat medium is circulated between the absorption refrigeration means and the ice storage cooling water cooling means to generate cold heat. A latent heat storage means for storing is provided, and when the power demand decreases, the latent heat medium of the latent heat storage means is cooled by using the surplus power and thermal energy to store cold heat, and the refrigerant is stored in the latent heat storage means as the ice storage cooling. Ice is produced and stored in the ice storage cooling water cooling means by circulating it to the water cooling means, and when the power demand increases, the cooling water of the condenser of the nuclear power generation facility and the condenser of the absorption refrigeration means is cooled. There is provided a cold heat storage type load leveling power generation system characterized by being cooled by the ice storage cooling water cooling means.
【0025】請求項16の発明では、請求項15記載の
冷熱貯蔵型負荷平準化発電システムにおいて、非常時に
前記潜熱貯蔵手段から前記原子力発電設備のサプレッシ
ョンプールに冷媒を循環させて除熱することを特徴とす
る冷熱貯蔵型負荷平準化発電システムを提供する。According to a sixteenth aspect of the present invention, in the cold heat storage type load leveling power generation system according to the fifteenth aspect, a refrigerant is circulated from the latent heat storage means to a suppression pool of the nuclear power generation facility to remove heat in an emergency. A feature is to provide a cold heat storage type load leveling power generation system.
【0026】請求項17の発明では、原子力発電設備
と、この原子力発電設備の低圧タービンの中段より抽気
した蒸気または高圧タービンの排蒸気を熱源とする水・
アンモニア混合媒体サイクル利用の混合媒体発電設備お
よび高濃度アンモニア蒸気利用の冷媒製造手段と、この
冷媒製造手段で製造した冷媒を用いて冷却することによ
り液体空気を製造する液体空気製造手段と、この液体空
気製造手段によって製造した液体空気を貯える液体空気
貯蔵槽と、この液体空気貯蔵槽に貯えた液体空気を気化
する時に得られる冷熱と前記液体空気製造手段で空気を
凝固する時に得られる発熱とをそれぞれ保持してそれら
の各作用時にその保持熱を使用して熱交換を行う貯蔵冷
熱変換手段と、前記原子力発電設備、混合媒体発電設備
および冷媒製造手段で使用する冷却水を前記液体空気貯
蔵槽から排出される空気の冷熱との熱交換によって冷却
する冷却水冷却熱交換手段とを備え、電力需要が低下し
た時に前記原子力発電設備の余剰電力と熱エネルギとを
用いて前記液体空気製造手段を稼動することにより液体
空気を製造して前記液体空気貯蔵槽に貯蔵するととも
に、前記混合媒体発電設備および冷媒製造手段を稼動し
て冷媒を製造し、電力需要が増大した時に前記液体空気
貯蔵槽から排出されて気化した空気を用いて前記原子力
発電設備の復水器および前記混合媒体発電設備の凝縮器
への冷却水を冷却することを特徴とする冷熱貯蔵型負荷
平準化発電システムを提供する。In the seventeenth aspect of the present invention, the nuclear power generation facility and water using the steam extracted from the middle stage of the low pressure turbine of the nuclear power generation facility or the exhaust steam of the high pressure turbine as a heat source.
A mixed-medium power generation facility using an ammonia mixed-medium cycle and a refrigerant producing means using high-concentration ammonia vapor, a liquid air producing means for producing liquid air by cooling using the refrigerant produced by the refrigerant producing means, and this liquid A liquid air storage tank for storing the liquid air produced by the air producing means; a cold heat obtained when the liquid air stored in the liquid air storage tank is vaporized and a heat generation obtained when the air is solidified by the liquid air producing means. The storage cold-heat conversion means for respectively holding and performing heat exchange by using the retained heat at the time of each of their actions, and the cooling water used in the nuclear power generation equipment, the mixed medium power generation equipment and the refrigerant production means, the liquid air storage tank Cooling water cooling heat exchange means for cooling by exchanging heat with the cold heat of the air discharged from the nuclear power plant when the power demand decreases. The liquid air is produced by operating the liquid air producing means by using the surplus electric power and the heat energy of the electric equipment and stored in the liquid air storage tank, and the mixed medium power generation equipment and the refrigerant producing means are operated. To cool the cooling water to the condenser of the nuclear power generation facility and the condenser of the mixed-medium power generation facility by using the vaporized air discharged from the liquid air storage tank when the power demand increases. The present invention provides a cold heat storage type load leveling power generation system.
【0027】請求項18の発明では、原子力発電設備
と、この原子力発電設備の低圧タービンの中段より抽気
した蒸気または高圧タービンの排蒸気を熱源とする水・
アンモニア混合媒体サイクル利用の混合媒体発電設備お
よび高濃度アンモニア蒸気利用の冷媒製造手段と、この
冷媒製造手段で製造した冷熱を貯蔵する潜熱貯蔵手段
と、この潜熱貯蔵手段に熱移送回路を介して接続され、
前記混合媒体発電設備の凝縮器への冷却水を氷の状態で
貯蔵して冷却する氷貯蔵冷却水冷却手段とを備え、電力
需要が低下した時に余剰電力および熱エネルギを用いて
前記潜熱貯蔵手段の潜熱蓄熱粒子を冷却するとともに貯
蔵し、かつ前記潜熱貯蔵手段から潜熱蓄熱粒子を前記氷
貯蔵海水冷却手段との間で循環させて氷の製造および貯
蔵を行い、電力需要が増大した時に前記原子力発電設備
の復水器および前記混合媒体発電設備の凝縮器の冷却水
を前記氷貯蔵海水冷却手段によって冷却することを特徴
とする冷熱貯蔵型負荷平準化発電システムを提供する。According to the eighteenth aspect of the present invention, there is provided a nuclear power generation facility and water using the steam extracted from the middle stage of the low pressure turbine of the nuclear power generation facility or the exhaust steam of the high pressure turbine as a heat source.
A mixed-medium power generation facility using an ammonia mixed-medium cycle and a refrigerant production means using high-concentration ammonia vapor, a latent heat storage means for storing cold heat produced by the refrigerant production means, and a connection to the latent heat storage means via a heat transfer circuit Is
An ice storage cooling water cooling means for storing and cooling cooling water to a condenser of the mixed medium power generation facility in an ice state, the latent heat storage means using surplus power and thermal energy when the power demand decreases. To cool and store the latent heat storage particles, and to circulate the latent heat storage particles from the latent heat storage means between the ice storage seawater cooling means to produce and store ice, and to increase the power demand, the nuclear power Provided is a cold heat storage type load leveling power generation system, wherein cooling water of a condenser of a power generation facility and a condenser of the mixed medium power generation facility is cooled by the ice storage seawater cooling means.
【0028】請求項19の発明では、請求項1から18
までに記載の原子力発電設備に代えて、ガス冷却高温炉
発電設備、化石燃料燃焼発電設備または廃棄物焼却発電
プラントを備え、これらの発電設備に適用される蒸気タ
ービンの復水器への冷却水を電力需要増大時に冷却する
ことを特徴とする冷熱貯蔵型負荷平準化発電システムを
提供する。According to the invention of claim 19, claims 1 to 18
In place of the nuclear power generation facility described above, a gas-cooled high temperature reactor power generation facility, a fossil fuel combustion power generation facility or a waste incineration power generation plant is provided, and cooling water to a steam turbine condenser applied to these power generation facilities. Provided is a cold heat storage type load leveling power generation system, which is characterized in that the engine is cooled when power demand increases.
【0029】請求項20の発明では、請求項1から19
までに記載の冷熱貯蔵型負荷平準化発電システムを使用
して、昼夜連続的に発電を行い、夜間の電力需要が低下
した時に発電設備の余剰電力と熱エネルギとを用いて冷
熱の貯蔵を行い、昼間の電力需要が増大した時に前記貯
蔵した冷熱を前記発電設備の復水器およびその発電設備
の付帯設備または手段の復液器または凝縮器の冷却水を
冷却することを特徴とする発電方法を提供する。According to the invention of claim 20, from claims 1 to 19
The cold heat storage type load leveling power generation system described above is used to continuously generate power during the day and night, and when the power demand at night decreases, cold power is stored using the surplus power and heat energy of the power generation facility. A power generation method for cooling the stored cold heat in a condenser of the power generation facility and a condenser or a condenser of an auxiliary facility or means of the power generation facility when the daytime power demand increases I will provide a.
【0030】請求項21の発明では、請求項20記載の
発電方法において、復水器、復液器または凝縮器の冷却
水として海水を適用することを特徴とする発電方法を提
供する。According to a twenty-first aspect of the invention, there is provided the power generation method according to the twentieth aspect, wherein seawater is applied as cooling water for the condenser, the condenser or the condenser.
【0031】[0031]
【発明の実施の形態】以下、本発明の実施形態につい
て、図面を参照して説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0032】第1実施形態(図1)
図1は、本発明の第1実施形態を示すシステム構成図で
ある。 First Embodiment (FIG. 1) FIG. 1 is a system configuration diagram showing a first embodiment of the present invention.
【0033】本実施形態は、液体空気を貯蔵して負荷平
準化を図る原子力発電システムについてのものである。
このシステムは、図1に示すように、大別して原子力発
電設備と、吸収式冷凍手段2と液体空気製造手段3と、
液体空気貯蔵槽4と、貯蔵冷熱変換手段5と、冷却水冷
却熱交換手段としての海水冷却熱交換手段6とを備えて
いる。The present embodiment relates to a nuclear power generation system for storing liquid air to level the load.
As shown in FIG. 1, this system is roughly divided into a nuclear power generation facility, an absorption refrigeration means 2, a liquid air production means 3, and
The liquid air storage tank 4, the storage cold heat conversion means 5, and the seawater cooling heat exchange means 6 as a cooling water cooling heat exchange means are provided.
【0034】原子力発電設備1は、例えば軽水型の原子
炉7と、蒸気タービン8と、復水器9と、主循環ポンプ
10等とを備え、蒸気タービン8には発電機11が同軸
に結合されている。そして、軽水よりなる冷却材が、原
子炉7において加熱されて飽和状態の蒸気となり、この
蒸気が主蒸気管12を経由して蒸気タービン8に送られ
る。蒸気タービン8に送られた蒸気は蒸気タービン8を
駆動し、この蒸気タービン8の回転エネルギが発電機1
1において電気エネルギに変換されて発電が行われる。
蒸気タービン8からの排気は、排気管13を経由して復
水器9内の熱交換部内を流れる冷却水と熱交換を行って
復水となる。この冷却水には例えば復水冷却系配管14
を介して循環する海水15が適用される。復水器9にお
いて生成された復水は、主循環ポンプ10により、給水
系配管16を介して原子炉7に還流される。The nuclear power generation facility 1 includes, for example, a light water reactor 7, a steam turbine 8, a condenser 9, a main circulation pump 10 and the like, and a generator 11 is coaxially coupled to the steam turbine 8. Has been done. Then, the coolant made of light water is heated in the reactor 7 to become saturated steam, and this steam is sent to the steam turbine 8 via the main steam pipe 12. The steam sent to the steam turbine 8 drives the steam turbine 8, and the rotational energy of the steam turbine 8 causes the generator 1 to rotate.
At 1, the electric energy is converted into electric energy to generate electricity.
The exhaust gas from the steam turbine 8 exchanges heat with the cooling water flowing in the heat exchange section in the condenser 9 via the exhaust pipe 13 to be condensed water. This cooling water includes, for example, the condensate cooling system piping 14
Seawater 15 circulating through is applied. Condensed water generated in the condenser 9 is returned to the nuclear reactor 7 by the main circulation pump 10 via the water supply system pipe 16.
【0035】吸収式冷凍手段2は、冷媒として水・アン
モニアの混合媒体を使用するもので、原子力発電設備1
の蒸気タービン8の中段より抽気配管17を介して抽気
した中圧蒸気を熱源として混合媒体を加熱する構成とな
っている。即ち、閉ループ状の配管18に順次に加熱器
19、分離器20、凝縮器21、膨張弁22、冷熱器2
3、復液器24、ポンプ25、熱交換器26、および絞
り弁27等を設けた構成とされている。詳述すると、加
熱器19の熱交換部が、蒸気タービン8の中段および主
循環ポンプ10の入口側に結合されている。そして、ポ
ンプ25を出た混合媒体が熱交換器26で熱交換を行っ
て加熱器19に流入して加熱された後、分離器20に入
り、ここでアンモニア濃度の高い溶液と低い溶液とに分
離される。アンモニア濃度の高い溶液は蒸気状態となっ
て凝縮器21に入り、ここで蒸気が海水等で冷却され
る。この冷却された溶液は膨張弁22を介して冷熱器2
3に入り、ここで液体空気製造手段3で圧縮された加熱
空気との熱交換により加熱されて蒸気となる。The absorption type refrigerating means 2 uses a mixed medium of water and ammonia as a refrigerant, and the nuclear power generation equipment 1
The medium pressure steam extracted from the middle stage of the steam turbine 8 via the extraction pipe 17 is used as a heat source to heat the mixed medium. That is, the heater 19, the separator 20, the condenser 21, the expansion valve 22, and the cooler 2 are sequentially provided in the closed loop pipe 18.
3, a condenser 24, a pump 25, a heat exchanger 26, a throttle valve 27, etc. are provided. More specifically, the heat exchange section of the heater 19 is coupled to the middle stage of the steam turbine 8 and the inlet side of the main circulation pump 10. Then, the mixed medium discharged from the pump 25 exchanges heat in the heat exchanger 26 and flows into the heater 19 to be heated, and then enters the separator 20, where a solution having a high ammonia concentration and a solution having a low ammonia concentration are formed. To be separated. The solution having a high ammonia concentration enters the condenser 21 in a vapor state, where the vapor is cooled by seawater or the like. This cooled solution passes through the expansion valve 22 and the cooler 2
3 and is heated here by heat exchange with the heated air compressed by the liquid air producing means 3 to become vapor.
【0036】一方、分離器20で分離されたアンモニア
濃度の低い混合媒体の溶液は、熱交換器26で熱交換に
より冷却された後絞り弁27を経由し、冷熱器23で蒸
発した蒸気に混合吸収されて復液器24に入り、ここで
海水等との熱交換により冷却されて復液となる。On the other hand, the solution of the mixed medium having a low concentration of ammonia separated in the separator 20 is cooled by heat exchange in the heat exchanger 26, passes through the throttle valve 27, and then is mixed with the vapor evaporated in the cooler 23. It is absorbed and enters the condenser 24, where it is cooled by heat exchange with seawater or the like to become a condensed solution.
【0037】また、液体空気製造手段3は、大気中の空
気aを圧縮する圧縮器28,圧縮空気を冷却するための
第1、第2の熱交換装置29,30および液体空気製造
器31等を空気配管32に順次に配置して構成されてい
る。第1の熱交換装置29は、吸収式冷凍手段2の冷熱
器23に冷媒循環配管32を介して連結されており、前
述した混合媒体との熱交換によって空気を冷却する構成
とされている。第2の熱交換手段30は、貯蔵冷熱変換
手段5との間で液体プロパンまたはアンモニアを循環配
管33によって循環させて、後述する液体空気の気化時
の冷熱の貯蔵分との熱変換を行い、圧縮した空気の冷却
を行うようになっている。液体空気製造器31は、図示
しない精製装置、膨張タービン等によって構成され、こ
こで製造された液体空気が液体空気貯蔵槽4に移送され
るようになっている。Further, the liquid air producing means 3 includes a compressor 28 for compressing air a in the atmosphere, first and second heat exchanging devices 29, 30 for cooling the compressed air, a liquid air producing device 31 and the like. Are sequentially arranged in the air pipe 32. The first heat exchange device 29 is connected to the cooler 23 of the absorption refrigeration means 2 via the refrigerant circulation pipe 32, and is configured to cool the air by heat exchange with the mixed medium described above. The second heat exchange means 30 circulates liquid propane or ammonia with the storage cold heat conversion means 5 through the circulation pipe 33 to perform heat conversion with the stored cold heat when vaporizing liquid air, which will be described later, It is designed to cool compressed air. The liquid air producing device 31 is composed of a refining device, an expansion turbine, and the like (not shown), and the liquid air produced here is transferred to the liquid air storage tank 4.
【0038】また、貯蔵冷熱変換手段5は、図示しない
蒸発器、熱交換器等によって構成されており、液体空気
貯蔵槽4から液体空気を蒸発器に導き、その蒸発器内で
第2の熱交換装置31から循環する液体空気プロパンま
たはアンモニア等の冷媒と熱交換を行って、液体空気を
加熱するようになっている。The storage cold heat converting means 5 is composed of an evaporator, a heat exchanger, etc., which are not shown, and guides the liquid air from the liquid air storage tank 4 to the evaporator, and the second heat is stored in the evaporator. The liquid air is heated by exchanging heat with a refrigerant such as liquid air propane or ammonia circulating from the exchange device 31.
【0039】さらに、海水冷却熱交換手段6は、貯蔵冷
熱変換手段5で気化された空気を海水15に注入して、
その海水を直接冷却する構成となっている。Further, the seawater cooling heat exchange means 6 injects the air vaporized by the storage cold heat conversion means 5 into the seawater 15,
The seawater is directly cooled.
【0040】次に作用を説明する。Next, the operation will be described.
【0041】電力需要の少ない夜間等においては、原子
力発電設備1の蒸気タービン8の中段より抽気が行わ
れ、吸収式冷凍手段2の加熱器19の熱交換部で水・ア
ンモニアの混合媒体と熱交換が行われ、熱交換によって
冷却された蒸気は水となって主循環ポンプ10の入口側
に還流する。一方、加熱器19で加熱された水・アンモ
ニアの混合媒体は、分離器20でアンモニア濃度の高い
蒸気と低い溶液とに分離される。アンモニア濃度の高い
蒸気は、凝縮器21で海水冷却熱交換手段15との熱交
換により凝縮し、その凝縮液は膨張弁22を通って冷熱
器23に流入する。なお、凝縮液は膨張弁22を通過す
るときに、断熱膨張によって低温の冷媒となる。そし
て、この冷媒は冷熱器23において、液体空気製造手段
3の第1の熱交換装置29との間で循環する液体アンモ
ニアあるいは潜熱蓄熱粒子添加媒体を介して圧縮空気と
の熱交換によりその圧縮空気を冷却し、この熱交換によ
って加熱された冷熱器23内の冷媒は蒸気となって復液
器24に流れる。一方、分離器20において分離された
アンモニア濃度の低い溶液は、熱交換器26での冷却後
に絞り弁27を経由してアンモニア濃度の高い冷媒蒸気
と混合し、これにより吸収混合が行われる。この吸収混
合媒体が、復液器24に流入して、海水冷却熱交換手段
15との熱交換により凝縮して復液となる。この低温の
復液が、ポンプ25で加圧され、熱交換器26でアンモ
ニア濃度の低い溶液との熱交換により加熱された後、加
熱器26に還流して、前述した蒸気タービン8からの抽
気蒸気によってさらに加熱される。At night when the power demand is low, air is extracted from the middle stage of the steam turbine 8 of the nuclear power generation facility 1, and the heat exchange part of the heater 19 of the absorption refrigeration means 2 heats the mixed medium of water and ammonia and heat. Exchange is performed, and the steam cooled by heat exchange turns into water and returns to the inlet side of the main circulation pump 10. On the other hand, the water / ammonia mixed medium heated by the heater 19 is separated by the separator 20 into a vapor having a high ammonia concentration and a solution having a low ammonia concentration. The vapor having a high ammonia concentration is condensed in the condenser 21 by heat exchange with the seawater cooling heat exchange means 15, and the condensate flows into the cooler 23 through the expansion valve 22. When the condensate passes through the expansion valve 22, it becomes a low-temperature refrigerant due to adiabatic expansion. Then, this refrigerant is subjected to heat exchange with the compressed air through the liquid ammonia circulating in the cooler 23 and the first heat exchange device 29 of the liquid air producing means 3 or the latent heat storage particle addition medium to thereby obtain the compressed air. The refrigerant in the cooler 23 heated by this heat exchange becomes vapor and flows into the condenser 24. On the other hand, the solution having a low ammonia concentration separated in the separator 20 is mixed with the refrigerant vapor having a high ammonia concentration via the throttle valve 27 after being cooled in the heat exchanger 26, whereby absorption and mixing are performed. The absorbing mixed medium flows into the condenser 24 and is condensed by heat exchange with the seawater cooling heat exchange means 15 to be condensed. This low-temperature condensate is pressurized by the pump 25 and heated by the heat exchanger 26 by heat exchange with a solution having a low ammonia concentration, and then refluxed to the heater 26 to extract the steam from the steam turbine 8 described above. It is further heated by steam.
【0042】また、液体空気製造手段3においては、圧
縮器28で大気中の空気aが取り込まれて圧縮され、こ
の圧縮された空気は第1の熱交換装置29において吸収
式冷凍手段2の冷熱器23との間を循環する液体アンモ
ニアあるいは潜熱蓄熱粒子添加媒体によって冷却され、
その後、図示しない精製装置で水および二酸化炭素を除
去されて精製され、さらに図示しない圧縮器で再度高圧
に過圧縮され、その後再び冷却される。その後、さらに
熱交換装置30において、−150℃近くまで冷却さ
れ、液体空気製造器31の膨張弁で膨張冷却されて液体
空気となる。なお、この場合、第2の熱交換装置30に
おける冷却には、後述する製造後の液体空気の気化によ
り発生する冷熱を使用する。製造された液体空気は、液
体空気貯蔵槽4に貯蔵される。In the liquid air producing means 3, the air a in the atmosphere is taken in and compressed by the compressor 28, and the compressed air is cooled by the first refrigeration means 2 in the first heat exchange device 29. Cooled by liquid ammonia or a latent heat storage particle addition medium that circulates with the vessel 23,
Then, water and carbon dioxide are removed by a refining device (not shown) for refining, and the product is overcompressed to a high pressure again by a compressor (not shown) and then cooled again. After that, in the heat exchange device 30, it is further cooled to near −150 ° C. and expanded and cooled by the expansion valve of the liquid air producing device 31 to become liquid air. In this case, cold heat generated by vaporization of liquid air after manufacturing, which will be described later, is used for cooling in the second heat exchange device 30. The produced liquid air is stored in the liquid air storage tank 4.
【0043】一方、電力需要が増大する昼間等において
は、原子力発電設備1の蒸気タービン8の中段よりの抽
気を行わず、吸収式冷凍手段2の稼動も停止する。液体
空気貯蔵槽4より液体空気を取り出し、貯蔵冷熱変換手
段5の蒸発器に導く。この蒸発器においては、液体空気
製造手段3の第2の熱交換装置30に貯蔵されている液
体空気を製造した時に発生した熱貯蔵液体としてのプロ
パンまたはアンモニアを取り出し、これとの熱交換によ
って液体空気を気化させる。冷却された熱貯蔵液体プロ
パンまたはアンモニアは再び貯蔵される。そして、0℃
以上に温度上昇した空気を海水冷却熱交換手段6に導
き、海水15の中に注入して海水15の冷却を行う。こ
れにより海水温度近くまで昇温された空気は、排気管3
4を介して大気中に放出する一方、海水冷却熱交換手段
6で冷却された海水15は、復水冷却系配管14を介し
て原子力発電設備1の復水器9に供給して、復水器9の
冷却を行う。これにより、蒸気タービン9の出口部の温
度が低下し、蒸気圧が小さくなるため、タービン効率が
向上し、変換電力量が増大してピークの電力需要一部に
対応することができる。なお、冷却された海水15は、
吸収式冷凍手段2の凝縮器21および復液器24にも供
給されるので、吸収式冷凍作用の効率向上も図れるよう
になる。On the other hand, during the daytime when the power demand increases, the extraction from the middle stage of the steam turbine 8 of the nuclear power generation facility 1 is not performed, and the operation of the absorption refrigeration means 2 is stopped. Liquid air is taken out from the liquid air storage tank 4 and led to the evaporator of the storage cold heat conversion means 5. In this evaporator, propane or ammonia as a heat storage liquid generated when the liquid air stored in the second heat exchanging device 30 of the liquid air producing means 3 is produced is taken out, and the liquid is exchanged by heat with the propane or ammonia. Evaporate the air. The cooled heat storage liquid propane or ammonia is stored again. And 0 ℃
The air whose temperature has risen above is guided to the seawater cooling heat exchange means 6 and injected into the seawater 15 to cool the seawater 15. Due to this, the air heated to near the seawater temperature is exhausted from the exhaust pipe 3
While being discharged to the atmosphere through the seawater 4, the seawater 15 cooled by the seawater cooling heat exchange means 6 is supplied to the condenser 9 of the nuclear power generation facility 1 through the condensate cooling system pipe 14 and condensed. The vessel 9 is cooled. As a result, the temperature of the outlet of the steam turbine 9 is lowered and the steam pressure is reduced, so that the turbine efficiency is improved and the amount of converted electric power is increased to meet a part of the peak power demand. In addition, the cooled seawater 15 is
Since it is also supplied to the condenser 21 and the condenser 24 of the absorption refrigeration means 2, the efficiency of the absorption refrigeration can be improved.
【0044】以上の第1実施形態によれば、深夜等の電
力と熱エネルギとを利用して液体空気の製造および貯蔵
を行い、昼間等のピーク電力需要時には、液体空気を気
化して原子力発電設備1の復水器8の冷却用海水温度を
下げることによりタービン効率を向上させて発電量を増
大することができ、原子力発電プラントの負荷平準化に
寄与することができる。According to the above-described first embodiment, the liquid air is manufactured and stored by using the electric power and the heat energy in the middle of the night, etc., and the liquid air is vaporized during the peak power demand in the daytime or the like to generate the nuclear power. By lowering the cooling seawater temperature of the condenser 8 of the facility 1, the turbine efficiency can be improved and the amount of power generation can be increased, which can contribute to load leveling of the nuclear power plant.
【0045】なお、本実施形態においては、液体空気製
造手段3の熱交換装置29と吸収式冷凍手段2の冷熱器
23との間に、潜熱蓄熱粒子添加媒体を用いた熱移送回
路を形成することにより、液体空気製造手段3と吸収式
冷凍手段2との設置間隔を大きくすることが可能とな
り、これにより両手段2、3の配置設計が容易に行える
ようになる。In the present embodiment, a heat transfer circuit using a latent heat storage particle addition medium is formed between the heat exchange device 29 of the liquid air producing means 3 and the cooler 23 of the absorption refrigerating means 2. This makes it possible to increase the installation interval between the liquid-air producing means 3 and the absorption refrigerating means 2, thereby facilitating the layout design of both means 2, 3.
【0046】第2実施形態(図2)
図2は、本発明の第2実施形態を示すシステム構成図で
ある。 Second Embodiment (FIG. 2) FIG. 2 is a system configuration diagram showing a second embodiment of the present invention.
【0047】この図2に示すように、本実施形態のシス
テムは、第1実施形態の構成に加えて、貯蔵冷熱変換手
段5と海水冷却熱交換手段6との間に、気化した空気を
作動流体とする膨張タービン発電設備35を設けたもの
である。他の構成については第1実施形態と同様である
から、図2の対応部分に図1と同一の符号を付して説明
を省略する。なお、図も一部簡略化して示してある。特
に言及なしい場合には、下記の他の実施形態においても
同様である。As shown in FIG. 2, in addition to the configuration of the first embodiment, the system of this embodiment operates vaporized air between the storage cold heat conversion means 5 and the seawater cooling heat exchange means 6. An expansion turbine power generation facility 35 that uses a fluid is provided. Since other configurations are the same as those in the first embodiment, the corresponding parts in FIG. 2 will be assigned the same reference numerals as those in FIG. 1 and will not be described. It should be noted that the figure is partially simplified. The same applies to the other embodiments described below unless otherwise specified.
【0048】膨張タービン発電設備35は、貯蔵冷熱変
換手段5から海水冷却熱交換手段14に液体空気を供給
する液体空気供給配管36の途中に設けられた膨張ター
ビン37と、この膨張タービン37に同軸的に結合され
た発電機38とによって構成されている。The expansion turbine power generation equipment 35 has an expansion turbine 37 provided in the middle of a liquid air supply pipe 36 for supplying liquid air from the storage cold heat conversion means 5 to the seawater cooling heat exchange means 14, and an expansion turbine 37 coaxial with the expansion turbine 37. And a generator 38 that is mechanically coupled.
【0049】そして、貯蔵冷熱変換手段5で気化され図
示しないポンプで高圧になった空気により膨張タービン
37を駆動し、これに同軸的に結合された発電機38に
よって発電を行うようになっている。この膨張タービン
37で膨張された低温の空気は、海水冷却熱交換手段6
に導かれ、海水15を冷却した後、大気に放出される。Then, the expansion turbine 37 is driven by the air that has been vaporized by the storage cold heat conversion means 5 and has a high pressure by a pump (not shown), and power is generated by a generator 38 coaxially connected to the expansion turbine 37. . The low temperature air expanded by the expansion turbine 37 is used for the seawater cooling heat exchange means 6
The seawater 15 is cooled down and released into the atmosphere.
【0050】このような構成によると、昼間等の電力需
要が多い時に、液体空気貯蔵槽4より導いた液体空気の
気化により冷却された空気を使用して、海水冷却熱交換
手段6で海水15の冷却を行うことができると同時に、
その液体空気を加圧して加熱および気化することで得ら
れた高圧の空気で膨張タービン37を駆動して発電を行
うことにより、液体空気の状態で貯蔵していた冷熱エネ
ルギを昼間等のピーク電力需要に対して直接利用するこ
とができる。According to this structure, when the electric power demand is high during the daytime, the air cooled by the vaporization of the liquid air introduced from the liquid air storage tank 4 is used, and the seawater cooling heat exchange means 6 uses the seawater 15 At the same time can be cooled
The expansion turbine 37 is driven by high-pressure air obtained by pressurizing the liquid air to heat and vaporize the liquid air to generate electric power, so that the cold energy stored in the liquid air state is used for peak power in the daytime or the like. It can be used directly for demand.
【0051】第3実施形態(図3)
図3は、本発明の第3実施形態を示すシステム構成図で
ある。 Third Embodiment (FIG. 3) FIG. 3 is a system configuration diagram showing a third embodiment of the present invention.
【0052】この図3に示すように、本実施形態のシス
テムは、第2実施形態の構成に加えて、海水冷却熱交換
手段6の海水15の流れの上流側に、液体空気を気化す
る時に得られる冷熱を貯蔵冷熱変換手段5より循環させ
て氷を製造するとともに製造した氷を用いて海水15と
の熱交換を行わせる氷貯蔵冷却水冷却手段としての氷貯
蔵海水冷却手段39を設けたものである。この氷貯蔵海
水冷却手段39は海水凍結のための過冷却装置を有する
もので、この過冷却装置と貯蔵冷熱変換手段5との間に
冷熱を循環させる熱回路40が設置されている。この熱
回路40は、例えば貯蔵冷熱変換手段5で気化された空
気を冷媒として、氷貯蔵海水冷却手段39内の過冷却装
置に循環させるようになっている。そして、この装置で
加熱された高圧空気が次に膨張タービン37に導かれ、
これにより膨張タービン発電設備35が稼動するように
なっている。氷貯蔵海水冷却手段39では、過冷却装置
で海水15の一部が空気との熱交換により過冷却状態と
され、過冷却を解除されて凍結し、氷として貯蔵される
ようにしてある。As shown in FIG. 3, in addition to the configuration of the second embodiment, the system of the present embodiment is arranged such that when liquid air is vaporized upstream of the flow of seawater 15 in the seawater cooling heat exchange means 6. An ice storage seawater cooling means 39 is provided as an ice storage cooling water cooling means for circulating the obtained cold heat from the storage cold heat conversion means 5 to produce ice and exchanging heat with the seawater 15 using the produced ice. It is a thing. The ice storage seawater cooling means 39 has a supercooling device for freezing seawater, and a heat circuit 40 for circulating cold heat is installed between the supercooling device and the stored cold heat conversion means 5. The heat circuit 40 circulates, for example, the air vaporized by the storage cold heat conversion means 5 as a refrigerant to the supercooling device in the ice storage seawater cooling means 39. Then, the high-pressure air heated by this device is then guided to the expansion turbine 37,
As a result, the expansion turbine power generation equipment 35 is operated. In the ice storage seawater cooling means 39, a part of the seawater 15 is brought into a supercooled state by heat exchange with air in the supercooling device, the supercooling is released, and the seawater 15 is frozen and stored as ice.
【0053】このような構成によると、昼間等の電力需
要が多い時には、貯蔵冷熱変換手段5で気化された空気
を、熱回路40を介して氷貯蔵海水冷却手段39内の過
冷却装置に流動させ、その過冷却装置で加熱された高圧
空気を膨張タービン37に導き、これを駆動して同軸に
結合された発電機38で発電を行う。この場合、氷貯蔵
海水冷却手段39内の過冷却装置で海水15の一部が過
冷却状態にされ、過冷却を解除されて凍結貯蔵され、こ
の貯蔵された氷が海水15に溶けて一体となり、海水冷
却熱交換手段6を経て、復水器19等に導かれる。According to this structure, when the power demand is high during the daytime, the air vaporized by the storage / cooling heat converting means 5 flows through the heat circuit 40 to the supercooling device in the ice storage seawater cooling means 39. Then, the high-pressure air heated by the supercooling device is guided to the expansion turbine 37, and the expansion turbine 37 is driven to generate electric power by the generator 38 coaxially connected. In this case, a part of the seawater 15 is supercooled by the supercooling device in the ice storage seawater cooling means 39, the supercooling is released, and the seawater 15 is frozen and stored, and the stored ice is melted in the seawater 15 to be integrated. Then, it is guided to the condenser 19 and the like via the seawater cooling heat exchange means 6.
【0054】本実施形態によれば、夜間等の余剰電力と
熱エネルギとを利用して製造および貯蔵した液体空気を
昼間等のピーク電力需要が発生する時に気化させて、氷
貯蔵海水冷却手段39で氷の製造および貯蔵を行い、そ
の氷で海水15を冷却することで、発電効率を向上する
ことができる。According to the present embodiment, the liquid air manufactured and stored by utilizing the surplus power and the heat energy at night or the like is vaporized when the peak power demand occurs during the daytime or the like, and the ice storage seawater cooling means 39 is provided. It is possible to improve the power generation efficiency by manufacturing and storing ice and cooling the seawater 15 with the ice.
【0055】なお、氷貯蔵海水冷却手段39と貯蔵冷熱
変換手段5との熱交換は、それらの熱交換部間を循環す
る空気以外の冷媒によって行うものとしてもよい。その
場合に熱回路40内で循環する冷媒は、潜熱蓄熱粒子を
含むものとすることが望ましい。この場合には、貯蔵冷
熱変換手段5で潜熱蓄熱粒子が気化した空気で冷却さ
れ、氷貯蔵海水冷却手段39の過冷却装置で潜熱蓄熱粒
子が加熱される熱循環回路が形成される。このような潜
熱蓄熱粒子添加媒体を用いた熱移送回路を形成すること
により、貯蔵冷熱変換手段5と氷貯蔵海水冷却手段39
との設置間隔を大きくすることが可能となり、これらの
システムの配置設計を容易にすることができる。The heat exchange between the ice storage seawater cooling means 39 and the storage cold heat conversion means 5 may be performed by a refrigerant other than air circulating between the heat exchange portions. In that case, it is desirable that the refrigerant circulating in the heat circuit 40 contains latent heat storage particles. In this case, a latent heat storage particle is cooled by the storage cold heat conversion means 5 by the vaporized air, and a heat circulation circuit is formed in which the latent heat storage particle is heated by the supercooling device of the ice storage seawater cooling means 39. By forming a heat transfer circuit using such a latent heat storage particle addition medium, the storage cold heat conversion means 5 and the ice storage seawater cooling means 39
It is possible to increase the installation interval between and, and it is possible to facilitate the layout design of these systems.
【0056】第4実施形態(図4)
図4は、本発明の第4実施形態を示すシステム構成図で
ある。 Fourth Embodiment (FIG. 4) FIG. 4 is a system configuration diagram showing a fourth embodiment of the present invention.
【0057】この図4に示すように、本実施形態のシス
テムは、第1実施形態の構成に加えて、吸収式冷凍手段
2の冷媒との熱交換によって氷を製造するとともに製造
した氷を原子力発電設備のサプレッションプール41に
供給する氷貯蔵非常用炉心冷却手段42を設けたもので
ある。As shown in FIG. 4, in addition to the configuration of the first embodiment, the system of this embodiment produces ice by heat exchange with the refrigerant of the absorption refrigeration means 2 and produces ice by nuclear power. An ice storage emergency core cooling means 42 for supplying to a suppression pool 41 of a power generation facility is provided.
【0058】即ち、吸収式冷凍手段2の冷熱器23と液
体空気製造手段3の第1の熱交換装置29とは、冷媒循
環配管32を介して連結されており、この冷媒循環配管
32にはアンモニアあるいは潜熱蓄熱粒子混相媒体から
なる冷媒が循環するようになっている。この冷媒は、吸
収式冷凍手段2の冷熱器23で熱交換によって冷却さ
れ、液体空気製造手段3の第1の熱交換装置29に還流
する。That is, the cooler 23 of the absorption type refrigerating means 2 and the first heat exchanging device 29 of the liquid air producing means 3 are connected to each other through the refrigerant circulating pipe 32, and the refrigerant circulating pipe 32 is connected to the refrigerant circulating pipe 32. A refrigerant composed of a mixed phase medium of ammonia or latent heat storage particles is circulated. This refrigerant is cooled by heat exchange in the cooler 23 of the absorption refrigeration means 2, and is returned to the first heat exchange device 29 of the liquid air production means 3.
【0059】そこで、本実施形態では、冷媒循環配管3
2から分岐する配管によって冷熱を取出す熱移送回路4
3を設け、この熱移送回路43の先端に氷貯蔵非常用炉
心冷却手段42を接続し、冷熱器23で冷却された冷媒
を循環させるようにしてある。氷貯蔵非常用炉心冷却手
段42は、過冷却装置およびポンプ等を有する構成とさ
れており、サプレッションプール41にプール水循環用
の過冷却炉心冷却水移送回路44を介して接続され、熱
移送回路43の冷媒との熱交換によってプール水を冷却
するようになっている。他の構成は第1実施形態と同様
である。Therefore, in the present embodiment, the refrigerant circulation pipe 3
Heat transfer circuit 4 for extracting cold heat by piping branched from 2
3 is provided, the ice storage emergency core cooling means 42 is connected to the tip of the heat transfer circuit 43, and the refrigerant cooled by the cooler 23 is circulated. The ice storage emergency core cooling means 42 is configured to have a subcooling device, a pump, etc., and is connected to the suppression pool 41 via a subcooling core cooling water transfer circuit 44 for circulating pool water, and a heat transfer circuit 43. The pool water is cooled by heat exchange with the refrigerant. Other configurations are similar to those of the first embodiment.
【0060】このような構成において、夜間等の余剰電
力と熱エネルギとを利用して海水冷却を行えることは前
記の通りであるが、本実施形態ではこれに加え、吸収式
冷凍手段2の冷熱器23で冷却されたアンモニアあるい
は潜熱蓄熱粒子混相媒体等の冷媒を氷貯蔵非常用炉心冷
却手段42に送って過冷却発生装置でプール水との熱交
換を行い、これによりプール水を過冷却状態としてサプ
レッションプール41に還流させ、そこで過冷却状態の
解除により氷を生成することができる。そして、常時一
定量の氷をサプレッションプール41に貯蔵することが
できる。As described above, in such a configuration, the seawater can be cooled by utilizing the surplus electric power and the heat energy at night, etc., but in the present embodiment, in addition to this, the cold heat of the absorption refrigeration means 2 is used. Refrigerant such as ammonia or latent heat storage particles mixed phase medium cooled in the reactor 23 is sent to the ice storage emergency core cooling means 42 to perform heat exchange with pool water by the supercooling generator, whereby the pool water is in a supercooled state. As a result, the ice can be generated by returning to the suppression pool 41 and releasing the supercooled state there. Then, a fixed amount of ice can be constantly stored in the suppression pool 41.
【0061】本実施形態によれば、原子力発電設備1の
サプレッションプール41のプール水を一部、氷の状態
で貯蔵することにより、必要なサプレッションプール4
1の容量を減少することができ、原子炉建屋の大きさを
縮小することができ、これにより原子力発電設備の建設
費削減が図れるようになる。According to the present embodiment, the suppression pool 4 required for the nuclear power plant 1 is stored by storing a part of the pool water in the suppression pool 41 in an ice state.
1 can be reduced, and the size of the reactor building can be reduced, thereby reducing the construction cost of the nuclear power generation facility.
【0062】また、潜熱貯蔵粒子混相媒体を熱移送回路
43で循環する冷媒として適用し、吸収式冷凍手段2か
ら氷貯蔵非常用炉心冷却手段42への熱移送を行うよう
にすれば、吸収式冷凍手段2から氷貯蔵非常用炉心冷却
手段42までの移送距離を大きくすることが可能とな
り、これらのシステムの配置設計の容易化が図れる。Further, if the latent heat storage particle mixed phase medium is applied as a refrigerant circulating in the heat transfer circuit 43 and the heat is transferred from the absorption type refrigeration means 2 to the ice storage emergency core cooling means 42, the absorption type The transfer distance from the refrigeration means 2 to the ice storage emergency core cooling means 42 can be increased, and the layout design of these systems can be facilitated.
【0063】第5実施形態(図5)
図5は、本発明の第5実施形態を示すシステム構成図で
ある。 Fifth Embodiment (FIG. 5) FIG. 5 is a system configuration diagram showing a fifth embodiment of the present invention.
【0064】この図5に示すように、本実施形態のシス
テムも、氷を製造してサプレッションプール41に供給
する氷貯蔵非常用炉心冷却手段42を備えたものである
が、氷貯蔵非常用炉心冷却手段42は、第3実施形態で
適用した海水冷却用の貯蔵冷熱変換手段5の熱回路40
から冷熱を導入し、この冷熱との熱交換によって氷を製
造する構成としてある。As shown in FIG. 5, the system of this embodiment also includes an ice storage emergency core cooling means 42 for producing ice and supplying it to the suppression pool 41. The cooling means 42 is the thermal circuit 40 of the storage cold heat conversion means 5 for cooling seawater applied in the third embodiment.
Cold heat is introduced from here, and ice is produced by heat exchange with this cold heat.
【0065】即ち、本実施形態では熱回路40に循環す
る冷媒をアンモニアまたは潜熱貯蔵粒子混相媒体とし、
この熱回路40の分岐配管として熱移送回路45を設
け、この熱移送回路45を介して低温の冷媒を氷貯蔵非
常用炉心冷却手段42に循環させるようになっている。
そして、この氷貯蔵非常用炉心冷却手段42に、第4実
施形態と同様の過冷却炉心冷却移送回路44を介してサ
プレッションプール41が接続され、前記同様に氷が生
成され、常時一定量の氷がサプレッションプール41に
貯蔵されるようになっている。That is, in the present embodiment, the refrigerant circulating in the heat circuit 40 is ammonia or a latent heat storage particle mixed phase medium,
A heat transfer circuit 45 is provided as a branch pipe of the heat circuit 40, and a low temperature refrigerant is circulated to the ice storage emergency core cooling means 42 via the heat transfer circuit 45.
Then, the suppression pool 41 is connected to the ice storage emergency core cooling means 42 via the supercooling core cooling transfer circuit 44 similar to that of the fourth embodiment, and ice is generated in the same manner as described above, and a constant amount of ice is constantly maintained. Are stored in the suppression pool 41.
【0066】本実施形態によれば、第4実施形態と同様
に、プール水の一部を氷の状態で貯蔵することにより、
必要なサプレッションプール41の容量を減少すること
ができ、原子炉建屋の大きさを縮小できるのは勿論であ
るが、貯蔵冷熱変換手段5から氷貯蔵非常用炉心冷却手
段42に冷媒を循環させる熱移送回路45を設置するこ
とにより、液体空気貯蔵槽4に貯蔵された液体空気の冷
熱を非常用電源としても利用できるため、原子力発電設
備1の安全系の信頼性を向上することができるととも
に、原子力発電設備1に固有の安全系設備を削減するこ
とが可能となり、原子力発電設備1の建設費の削減を図
れるようになる。According to this embodiment, as in the fourth embodiment, by storing a part of pool water in an ice state,
Needless to say, the required capacity of the suppression pool 41 can be reduced, and the size of the reactor building can be reduced. However, the heat for circulating the refrigerant from the storage cold heat conversion means 5 to the ice storage emergency core cooling means 42 is required. By installing the transfer circuit 45, the cold heat of the liquid air stored in the liquid air storage tank 4 can also be used as an emergency power source, so that the reliability of the safety system of the nuclear power generation facility 1 can be improved, and It is possible to reduce the safety system equipment peculiar to the nuclear power generation equipment 1, and the construction cost of the nuclear power generation equipment 1 can be reduced.
【0067】なお、本実施形態において、貯蔵冷熱変換
手段5から氷貯蔵非常用炉心冷却手段42に熱移送をす
る熱移送回路45の冷媒として、潜熱貯蔵粒子混相媒体
を適用した場合には、貯蔵冷熱変換手段5から氷貯蔵非
常用炉心冷却手段42までの移送距離を大きくすること
が可能となり、これら各手段5,42の配置設計が容易
化できる。In the present embodiment, when a latent heat storage particle mixed phase medium is applied as the refrigerant of the heat transfer circuit 45 for transferring heat from the storage cold heat conversion means 5 to the ice storage emergency core cooling means 42, the storage is carried out. The transfer distance from the cold heat converting means 5 to the ice storage emergency core cooling means 42 can be increased, and the layout design of these means 5, 42 can be facilitated.
【0068】第6実施形態(図6〜図8)
図6は、本発明の第6実施形態を示すシステム構成図で
あり、図7および図8は、図6に示したシステムの一つ
の要部についての異なる例をそれぞれ示す説明図であ
る。 Sixth Embodiment (FIGS. 6 to 8) FIG. 6 is a system configuration diagram showing a sixth embodiment of the present invention, and FIGS. 7 and 8 are schematic views of one of the systems shown in FIG. It is explanatory drawing which shows each different example about a part.
【0069】図6に示すように、本実施形態のシステム
は、原子力発電設備1の復水器9および吸収式冷凍手段
2の復液器24への冷却水としての海水15を冷却する
ために設置した前記各実施形態の氷蓄熱海水冷却手段6
に加えて、海水を凍結後に解凍して淡水を得る海水凍結
淡水化手段46と、この海水凍結淡水化手段46で得ら
れた低温の淡水の移送によって海水15の冷却を行う冷
淡水移送冷却手段47とを設けたものである。As shown in FIG. 6, the system of this embodiment is for cooling the seawater 15 as the cooling water to the condenser 9 of the nuclear power generation facility 1 and the condenser 24 of the absorption refrigeration means 2. The installed ice heat storage seawater cooling means 6 of each of the above-described embodiments
In addition, seawater freezing desalination means 46 for obtaining fresh water by thawing seawater after freezing, and cold freshwater transfer cooling means for cooling the seawater 15 by transferring low temperature freshwater obtained by the seawater freezing desalination means 46. 47 and 47 are provided.
【0070】海水凍結淡水化手段46は、前述した貯蔵
冷熱変換手段5から気化した液体空気(あるいは気化し
た液体空気と熱交換したアンモニアあるいは潜熱貯蔵粒
子混相媒体)を導入するとともに、海水導入管48を介
して海水を導入し、後述するスタティック方式(図7)
またはハーベスト方式(図8)等の間接方式の製氷手段
を適用して製氷を行うとともに、この製造された氷を解
氷して得られる冷淡水を熱交換用媒体として使用できる
ようにするものである。冷淡水移送冷却手段47は、海
水凍結淡水化手段46から冷淡水循環配管49を介して
冷淡水の供給を受け、復水器9等の冷却用海水15との
熱交換を行って、その海水15を冷却する構成となって
いる。The seawater freezing desalination means 46 introduces the vaporized liquid air (or the ammonia or the latent heat storage particle mixed phase medium that exchanges heat with the vaporized liquid air) from the storage cold heat conversion means 5 and also the seawater introduction pipe 48. Introduces seawater via the static method, which will be described later (Fig. 7)
Alternatively, an indirect method of making ice such as a harvesting method (FIG. 8) is applied to make ice, and the cold fresh water obtained by defrosting the produced ice can be used as a medium for heat exchange. is there. The cold / fresh water transfer cooling means 47 receives the supply of cold / fresh water from the seawater freezing / desalination means 46 via the cold / freshwater circulation piping 49, performs heat exchange with the cooling seawater 15 such as the condenser 9, and the seawater 15 Is configured to cool.
【0071】図7は、スタティック方式による間接方式
の海水凍結淡水化手段46の構成、およびそれと冷淡水
移送冷却手段47との接続構成を詳細に示している。FIG. 7 shows in detail the construction of the indirect seawater freezing desalination means 46 by the static method and the connection construction between it and the cooling and freshwater transfer cooling means 47.
【0072】この海水凍結淡水化手段46は、貯蔵冷熱
変換手段5からの冷媒配管である熱回路40から冷熱を
受け、製氷用熱回路50内の冷媒を冷却する受熱用熱交
換器51と、製氷用熱回路50の先端側に設けられた複
数の製氷コイル52およびそれらを囲む製氷槽53とを
有する。なお、製氷用熱回路50は閉ループ状で、冷媒
循環ポンプ50aを有するとともに、複数の製氷コイル
52毎に並列に接続されて各コイル入出部毎に開閉用の
バルブ50bを有している。The seawater freezing desalination means 46 receives cold heat from the heat circuit 40 which is a refrigerant pipe from the storage cold heat conversion means 5 and cools the refrigerant in the ice making heat circuit 50, and a heat receiving heat exchanger 51. It has a plurality of ice making coils 52 provided on the tip side of the ice making thermal circuit 50 and an ice making tank 53 surrounding them. The heat circuit 50 for ice making has a closed loop shape, has a refrigerant circulation pump 50a, and is connected in parallel to each of the plurality of ice making coils 52, and has an opening / closing valve 50b for each coil inlet / outlet portion.
【0073】そして、各製氷槽53に前述した海水導入
管48が接続されており、この海水導入管48のポンプ
48aによって導かれた海水が連続的に製氷槽53に供
給されるとともに、受熱用熱交換器51で冷却された冷
媒が各製氷コイル52に循環して、その表面に海水を凍
結させるようになっている。また、各製氷槽53には排
水管54が接続され、非凍結分の供給海水を廃液として
排出するとともに、排出途中に設けられた給排水熱交換
器55で給水側海水との熱交換を行って給水を予冷する
ようになっている。The seawater introducing pipe 48 described above is connected to each ice making tank 53, and the seawater introduced by the pump 48a of the seawater introducing pipe 48 is continuously supplied to the ice making tank 53 and receives heat. The refrigerant cooled by the heat exchanger 51 circulates in each ice making coil 52 to freeze seawater on the surface thereof. A drainage pipe 54 is connected to each ice making tank 53 to discharge unfrozen supply seawater as waste liquid, and heat exchange with the water supply side seawater is performed by a water supply / drainage heat exchanger 55 provided during discharge. The water supply is pre-cooled.
【0074】さらに、製氷槽53には、製氷コイル52
の表面で凍結した氷の後の融解時に生じる淡水を排出す
るための淡水排出管56が接続されており、この淡水排
出管56を介して淡水貯蔵槽57側に淡水を排出できる
ようになっている。なお、淡水排出管56は海水導入管
48に凍結管部58を介して連結され、これらに設けた
バルブ59a,59b,59cによって流路を切り換え
ることにより、淡水貯蔵槽57に貯蔵している淡水を海
水導入管48を介して製氷槽53に戻すことができるよ
うになっている。この戻される淡水は後述するように、
製氷槽53内の氷の融解前に、氷の表面に流動接触させ
て塩分を除去するために使用される。Furthermore, the ice making coil 53 is provided in the ice making tank 53.
A fresh water discharge pipe 56 for discharging the fresh water generated at the time of thawing after the ice frozen on the surface is connected, and the fresh water can be discharged to the fresh water storage tank 57 side through the fresh water discharge pipe 56. There is. The fresh water discharge pipe 56 is connected to the sea water introduction pipe 48 via a freezing pipe portion 58, and the flow paths are switched by valves 59a, 59b, 59c provided on these pipes, whereby the fresh water stored in the fresh water storage tank 57 is stored. Can be returned to the ice making tank 53 through the seawater introducing pipe 48. The fresh water returned is as described below.
Before melting the ice in the ice-making tank 53, it is used for bringing into fluid contact with the surface of the ice to remove salt.
【0075】さらにまた、製氷槽53には、氷の融解に
より生じる冷淡水を循環させて冷熱を取出す閉ループ状
配管からなる熱回路60が接続されている。この熱回路
60は、冷淡水循環用ポンプ61と、各製氷槽53への
冷淡水出入口毎に設けられた開閉用のバルブ62とを有
し、各製氷槽53から冷淡水を選択的に取出して循環さ
せることができるようになっている。そして、この熱回
路60に、前記の復水冷却系配管14に設けられた冷淡
水移送冷却手段47が接続され、この冷淡水移送冷却手
段47内で復水器等の冷却用の海水15が冷淡水との熱
交換によって冷却できるようになっている。なお、熱回
路60には別の熱交換器63が接続され、この熱交換器
63では、淡水排出管56内を流れる淡水との熱交換が
行われるようになっている。Furthermore, the ice making tank 53 is connected with a heat circuit 60 consisting of a closed loop pipe for circulating cold fresh water generated by melting of ice to take out cold heat. The heat circuit 60 has a cold / fresh water circulation pump 61 and an opening / closing valve 62 provided at each cold / fresh water inlet / outlet to / from each ice making tank 53, and selectively takes out the cold fresh water from each ice making tank 53. It can be circulated. Then, to this heat circuit 60, the cold fresh water transfer cooling means 47 provided in the condensate cooling system pipe 14 is connected, and the sea water 15 for cooling the condenser or the like is supplied in the cold fresh water transfer cooling means 47. It can be cooled by heat exchange with cold fresh water. In addition, another heat exchanger 63 is connected to the heat circuit 60, and the heat exchanger 63 exchanges heat with the fresh water flowing in the fresh water discharge pipe 56.
【0076】このような構成において、例えば夜間等の
電力需要が少い時に、製氷槽53で製氷を行う。この場
合には、製氷用として導入される海水は、熱交換器55
で予冷されて製氷槽53に供給され、製氷コイル52の
内部を流れる冷媒と熱交換を行い、製氷コイル52の表
面に凍結する。製氷コイル52の表面に一定厚さの氷層
が形成されると、熱回路50の冷媒循環を停止し、製氷
層53内の海水を熱交換器55を経由して排出する。こ
の製氷作用を各製氷槽53について順次に行う。In such a structure, ice making is performed in the ice making tank 53 when the power demand is low, for example, at night. In this case, the seawater introduced for ice making is the heat exchanger 55.
It is pre-cooled by and is supplied to the ice making tank 53 to exchange heat with the refrigerant flowing inside the ice making coil 52 and freeze on the surface of the ice making coil 52. When an ice layer having a certain thickness is formed on the surface of the ice making coil 52, the circulation of the refrigerant in the heat circuit 50 is stopped, and the seawater in the ice making layer 53 is discharged via the heat exchanger 55. This ice making operation is sequentially performed for each ice making tank 53.
【0077】そして、例えば昼間の電力需要の多い時
に、製氷コイル52の表面に氷が付着した状態で淡水を
淡水貯蔵槽57から製氷槽53に注入して、まず氷の表
面等に付着した塩分を洗い流し、熱交換器55を経由し
て廃液として排出する。塩分の洗い流しが終了すると、
各製氷槽53から氷の融解による冷淡水を熱回路60に
より冷淡水移送手段47に循環させて、復水器冷却用の
海水15の冷却を行わせて発電設備の効率向上を図る。
海水冷却後の淡水は、熱交換器62で熱交換を行った
後、淡水貯蔵槽57に導かれる。Then, for example, when there is a large demand for electric power in the daytime, fresh water is poured from the fresh water storage tank 57 into the ice making tank 53 in a state where the ice is attached to the surface of the ice making coil 52, and first, the salt content attached to the surface of the ice or the like is first added. Is washed out and discharged as a waste liquid via the heat exchanger 55. Once the salt has been washed out,
Cold fresh water due to melting of ice from each ice making tank 53 is circulated to the cold fresh water transfer means 47 by the heat circuit 60 to cool the seawater 15 for cooling the condenser, thereby improving efficiency of the power generation equipment.
The fresh water after seawater cooling is heat-exchanged by the heat exchanger 62 and then guided to the fresh water storage tank 57.
【0078】図8は、異なる間接方式の例として、ハー
ベスト方式による海水凍結淡水化手段46(46a)を
詳細に示している。FIG. 8 shows the seawater freezing desalination means 46 (46a) by the harvest method in detail as an example of the different indirect method.
【0079】この海水凍結淡水化手段46aでは、製氷
槽53内に製氷パネル64を備え、この製氷パネル64
で製氷を行う構成とされている。即ち、海水が熱交換器
55で予冷されて製氷槽53の製氷パネル64の上部に
供給され、製氷パネル64の外部を流下しながら製氷パ
ネル64内を流れる冷媒と熱交換を行い、凍結する。廃
液は、熱交換器55で熱交換を行って排出される。製氷
パネル64の表面に一定厚さの氷層が形成されると熱回
路50の冷媒循環と海水供給を停止し、順次別の製氷槽
53で製氷作業を行う。解氷による冷熱の取出し利用
は、図7の場合と略同様である。In this seawater freezing and desalination means 46a, an ice making panel 64 is provided in the ice making tank 53, and this ice making panel 64 is provided.
It is configured to make ice. That is, the seawater is pre-cooled by the heat exchanger 55 and supplied to the upper portion of the ice making panel 64 of the ice making tank 53. While flowing down the outside of the ice making panel 64, the sea water exchanges heat with the refrigerant flowing inside the ice making panel 64 to be frozen. The waste liquid undergoes heat exchange in the heat exchanger 55 and is discharged. When an ice layer having a certain thickness is formed on the surface of the ice making panel 64, the circulation of the refrigerant in the heat circuit 50 and the supply of seawater are stopped, and the ice making work is sequentially performed in another ice making tank 53. The utilization of the cold heat taken out by the melting of ice is almost the same as in the case of FIG.
【0080】本実施形態では以上のように、貯蔵冷熱変
換手段5で液体空気を気化する時に発生する冷熱と熱交
換したアンモニアあるいは潜熱貯蔵粒子混相媒体を冷却
し、その冷熱を海水凍結淡水化手段46に移送して海水
から淡水氷を製造して貯蔵しておき、昼間等のピーク電
力需要の発生する時に海水凍結淡水化手段46に貯蔵し
ておいた氷に淡水を吹き付けて冷淡水を製造し、この淡
水を冷淡水移送冷却手段47に循環させて原子力発電設
備1の復水器9および吸収式冷凍手段2の復液器24冷
却用の海水15を冷却するものである。In the present embodiment, as described above, the ammonia or latent heat storage particle mixed phase medium that has exchanged heat with the cold heat generated when the liquid cold air is vaporized by the storage cold heat converting means 5 is cooled, and the cold heat is frozen by the seawater freezing desalination means. It is transferred to 46 to produce and store freshwater ice from seawater, and when the peak power demand occurs during the daytime, freshwater is sprayed onto the ice stored in the seawater freezing desalination means 46 to produce cold freshwater. Then, this fresh water is circulated through the cold / fresh water transfer cooling means 47 to cool the condenser 9 of the nuclear power generation facility 1 and the seawater 15 for cooling the condenser 24 of the absorption refrigeration means 2.
【0081】したがって、本実施形態によれば、前述し
た第3実施形態の効果に加えて、昼間等のピーク電力需
要が発生する時に、貯蔵した氷で原子力発電設備1の復
水器9の冷却用海水15を冷却して、タービン出口圧力
を下げことにより、タービンの出力効率を向上すると同
時に、淡水を製造できる等の効果が奏される。Therefore, according to this embodiment, in addition to the effects of the third embodiment described above, when the peak power demand occurs during the daytime, the condenser 9 of the nuclear power generation facility 1 is cooled by the stored ice. By cooling the seawater 15 for use and reducing the turbine outlet pressure, the output efficiency of the turbine is improved, and at the same time, fresh water can be produced.
【0082】第7実施形態(図9)
図9は、本発明の第7実施形態を示すシステム構成図で
ある。 Seventh Embodiment (FIG. 9) FIG. 9 is a system configuration diagram showing a seventh embodiment of the present invention.
【0083】この図9に示すように、本実施形態のシス
テムは、第6実施形態の構成に加えて、海水凍結淡水化
手段46から原子力発電設備1のサプレッションプール
46に冷却用の冷媒を循環させる冷淡水移送冷却手段と
しての熱移送回路65を設けたものである。As shown in FIG. 9, in addition to the configuration of the sixth embodiment, the system of the present embodiment circulates a cooling refrigerant from the seawater freezing desalination means 46 to the suppression pool 46 of the nuclear power plant 1. A heat transfer circuit 65 as a cooling / fresh water transfer cooling means is provided.
【0084】即ち、海水凍結淡水化手段46に貯蔵され
た淡水の氷を解凍した冷淡水を冷媒として熱移送回路6
5によって原子力発電設備1のサプレッションプール4
1に循環させ、その冷熱によって非常用炉心冷却水であ
るプール水を冷却するようにしてある。That is, the heat transfer circuit 6 uses the cold freshwater obtained by thawing the freshwater ice stored in the seawater freezing desalination means 46 as the refrigerant.
Suppression pool 4 of nuclear power plant 1 by 5
1 and the pool water which is the emergency core cooling water is cooled by the cold heat.
【0085】このような構成によれば、非常用炉心冷却
が必要なった時に、海水凍結淡水化手段46に貯蔵され
ている氷を淡水接触等により解凍させて冷淡水を製造
し、この冷淡水を原子力発電設備1のサプレッションプ
ール41に循環させることで、サプレッションプール4
1の非常用炉心冷却水温度を低下させることができる。According to this structure, when the emergency core cooling is required, the ice stored in the seawater freezing desalination means 46 is thawed by contact with fresh water to produce cold fresh water. By circulating the water in the suppression pool 41 of the nuclear power plant 1.
The temperature of the emergency core cooling water of No. 1 can be lowered.
【0086】したがって、本実施形態によれば、第6実
施形態の効果に加えて、原子力発電設備1のサプレッシ
ョンプール41の非常用炉心冷却水温度を低下させるこ
とにより、原子力発電設備1の安全性向上が図れるよう
になる。また、貯蔵された液体空気を気化させることで
海水凍結淡水化手段46で氷の製造が行え、同時に、膨
張タービン37での発電が行えるため、電源喪失対応の
安全系を提供することも可能となる。Therefore, according to the present embodiment, in addition to the effects of the sixth embodiment, the safety of the nuclear power generation facility 1 is reduced by lowering the emergency core cooling water temperature of the suppression pool 41 of the nuclear power generation facility 1. You will be able to improve. Further, since the seawater freezing and desalination means 46 can produce ice by vaporizing the stored liquid air, and at the same time, the expansion turbine 37 can generate electricity, it is possible to provide a safety system against power loss. Become.
【0087】第8実施形態(図10および図11)
図10は、本発明の第8実施形態を示すシステム構成図
であり、図11は、図10の要部を詳細に示す説明図で
ある。 Eighth Embodiment (FIGS. 10 and 11) FIG. 10 is a system configuration diagram showing an eighth embodiment of the present invention, and FIG. 11 is an explanatory diagram showing in detail the essential parts of FIG. .
【0088】図10に示すように、本実施形態のシステ
ムにおいては、液体空気製造手段3が第1実施形態の液
体空気製造器31に代えて、液体空気とともに液体酸素
および液体窒素を製造する深冷空気分離装置66を有す
るものとする一方、液体空気貯蔵槽4に加えて液体酸素
貯蔵槽67および液体窒素貯蔵槽68を備えた構成とな
っている。As shown in FIG. 10, in the system of this embodiment, the liquid air producing means 3 replaces the liquid air producing device 31 of the first embodiment, and the depth for producing liquid oxygen and liquid nitrogen together with liquid air is increased. While having a cold air separation device 66, it has a configuration including a liquid oxygen storage tank 67 and a liquid nitrogen storage tank 68 in addition to the liquid air storage tank 4.
【0089】そして、電力需要が低下した時に余剰電力
と熱エネルギとを用いて液体空気とともに液体酸素およ
び液体窒素を製造して各貯蔵槽67,68にそれぞれ貯
蔵し、電力需要が増大した時に液体空気および液体窒素
を気化して原子力発電設備1の復水器9および吸収式冷
凍手段2の復液器24の冷却水を冷却するとともに、液
体酸素は図示しない化石燃料火力発電プラントでの燃焼
用その他の用途に用いるようにしている。なお、液体空
気製造手段3は、第1実施形態と同様に、吸収式冷凍手
段2との熱交換を行うための第1の熱交換装置29、貯
蔵冷熱変換用の第2の熱交換装置30等を備えている。When the electric power demand decreases, liquid oxygen and liquid nitrogen are produced together with the liquid air by using the surplus electric power and the thermal energy, and stored in the storage tanks 67 and 68, respectively, and when the electric power demand increases, the liquid oxygen and the liquid nitrogen are stored. The cooling water of the condenser 9 of the nuclear power generation facility 1 and the condenser 24 of the absorption type refrigeration means 2 is cooled by vaporizing air and liquid nitrogen, and liquid oxygen is used for combustion in a fossil-fuel-fired power generation plant (not shown). I am trying to use it for other purposes. As in the first embodiment, the liquid air producing means 3 has a first heat exchanging device 29 for exchanging heat with the absorption refrigerating means 2 and a second heat exchanging device 30 for storage cold heat conversion. And so on.
【0090】図11は、液体空気製造手段3を構成する
第1,第2の熱交換装置29,30および深冷空気分離
装置66とともに、貯蔵冷熱変換手段5、液体空気貯蔵
槽4、液体酸素貯蔵槽67および液体窒素貯蔵槽68等
の構成を詳細に示している。FIG. 11 shows the storage / cooling heat converting means 5, the liquid air storage tank 4, the liquid oxygen, together with the first and second heat exchanging devices 29 and 30 and the deep air separating device 66 which constitute the liquid air producing means 3. The configurations of the storage tank 67, the liquid nitrogen storage tank 68 and the like are shown in detail.
【0091】まず、第1の熱交換装置29は前段冷却器
69、精製装置70および後段冷却器71等を有する構
成とされている。前段冷却器69では、圧縮機28で圧
縮された大気中の空気aが、吸収式冷凍手段2の冷媒に
より冷却される。この冷却された空気は、精製装置70
で二酸化炭素を除去されて精製された後、モータ72で
駆動される圧縮機73で高圧に圧縮されて後段冷却器7
1に導かれる。後段冷却器71では、導かれた空気が、
吸収式冷凍手段2の冷熱器23との間で循環する第1実
施形態で述べた冷媒を介して熱交換されてさらに冷却さ
れた後、第2の熱交換装置30に送られる。First, the first heat exchange device 29 is configured to have a pre-stage cooler 69, a refining device 70, a post-stage cooler 71 and the like. In the pre-stage cooler 69, the air a in the atmosphere compressed by the compressor 28 is cooled by the refrigerant of the absorption refrigeration means 2. This cooled air is used in the refining device 70.
After the carbon dioxide is removed and purified by the compressor 72, the compressor 73 driven by the motor 72 compresses the carbon dioxide to a high pressure and the latter stage cooler 7
Guided to 1. In the latter-stage cooler 71, the introduced air is
The heat is exchanged and further cooled through the refrigerant described in the first embodiment that circulates between the heat exchanger 23 of the absorption refrigeration unit 2 and then sent to the second heat exchange device 30.
【0092】第2の熱交換装置30は、第1の熱交換装
置30から送られた空気を冷却するための直列配置の一
対の熱交換器74,75と、このうち上流側の熱交換器
74から排出された空気の一部を抽気して導入する膨張
タービン76と、各熱交換器74,75での交換熱量を
貯蔵する熱貯蔵槽77,78とを有する構成となってい
る。そして、各熱交換器74,75では、貯蔵冷熱変換
手段5からの冷熱により空気が酸素気化温度以下まで冷
却される。両熱交換器74,75を経た冷却空気は、後
述する深冷空気分離装置66の低圧清留塔に導かれ、ま
た膨張タービン76を経た空気は同様に中圧精留塔に導
かれる。熱貯蔵槽76,77では、熱交換によって空気
から放出された熱量が貯蔵され、この熱量は後の液体空
気の気化用熱源とされる。The second heat exchanging device 30 includes a pair of heat exchangers 74 and 75 arranged in series for cooling the air sent from the first heat exchanging device 30, and an upstream heat exchanger among them. An expansion turbine 76 that extracts and introduces a part of the air discharged from 74 and heat storage tanks 77 and 78 that store the amount of heat exchanged in the heat exchangers 74 and 75 are provided. Then, in each heat exchanger 74, 75, the air is cooled to the oxygen vaporization temperature or lower by the cold heat from the storage cold heat conversion means 5. The cooling air that has passed through both heat exchangers 74 and 75 is guided to the low pressure rectification column of the deep-cooled air separation device 66, which will be described later, and the air that has passed through the expansion turbine 76 is similarly guided to the medium pressure rectification column. In the heat storage tanks 76 and 77, the amount of heat released from the air by heat exchange is stored, and this amount of heat serves as a heat source for vaporizing liquid air later.
【0093】次に深冷空気分離装置66は、第2の熱交
換装置30から導かれた冷却空気を酸素および窒素に分
離するための低圧精留塔79および中圧精留塔80を有
する複式精留塔81と、この複式精留塔81の上下流側
に接続された過冷却器82、複数の膨張弁83,84,
85,86,87と、気液分離器88,89とを備えた
構成とされている。そして、第2の熱交換装置30の両
熱交換器74,75を経た冷却空気の一部は膨張弁83
を介して中圧精留塔80に導入されるとともに、その冷
却空気の他の一部および膨張タービン76を経た冷却空
気は過冷却器80と別の膨張弁84とを経て低圧精留塔
79に導入される。Next, the chilled-air separation device 66 is a double type having a low pressure rectification column 79 and an intermediate pressure rectification column 80 for separating the cooling air introduced from the second heat exchange device 30 into oxygen and nitrogen. The rectification tower 81, the supercooler 82 connected to the upstream and downstream sides of the double rectification tower 81, the plurality of expansion valves 83, 84,
85, 86, 87 and gas-liquid separators 88, 89. Then, a part of the cooling air that has passed through both heat exchangers 74 and 75 of the second heat exchange device 30 has an expansion valve 83.
While being introduced into the medium-pressure rectification column 80 via the, the cooling air that has passed through the expansion turbine 76 and another part of the cooling air passes through the subcooler 80 and another expansion valve 84, and the low-pressure rectification column 79. Will be introduced to.
【0094】低圧精留塔79内では、冷却空気から酸素
が分離されて塔底部に液体酸素90として貯留され、残
留空気(不純窒素)は塔頂部側に分離される。塔底部の
液体酸素は過冷却器82に送られて過冷却された後、膨
張弁85で膨張し、その後液体酸素貯蔵槽67に貯蔵さ
れる。In the low pressure rectification column 79, oxygen is separated from the cooling air and stored as liquid oxygen 90 at the bottom of the column, and residual air (impure nitrogen) is separated at the top of the column. The liquid oxygen at the bottom of the tower is sent to the subcooler 82 to be supercooled, then expanded by the expansion valve 85, and then stored in the liquid oxygen storage tank 67.
【0095】中圧精留塔80内では窒素と酸素とが分離
され、塔底部に貯留した液体酸素90は過冷却器82お
よび膨張弁84を経て低圧精留塔79に導入され、その
塔底部の液体酸素90と合流して、前記同様に取出され
て液体酸素貯蔵槽67に導かれる。一方、中圧精留塔8
0内で分離された窒素は気体の手段で塔頂部側から取出
され、過冷却器82で過冷却され、さらに膨張弁86で
大気圧に膨張された後、気液分離器88に導かれ、ここ
で分離された液相部が液体窒素貯蔵相68に液体窒素9
1として貯蔵される。In the medium-pressure rectification column 80, nitrogen and oxygen are separated, and the liquid oxygen 90 stored at the bottom of the column is introduced into the low-pressure rectification column 79 through the subcooler 82 and the expansion valve 84, and the bottom of the column. It joins the liquid oxygen 90 of FIG. Meanwhile, the medium pressure rectification tower 8
The nitrogen separated in 0 is taken out from the tower top side by means of gas, supercooled by the supercooler 82, further expanded to atmospheric pressure by the expansion valve 86, and then introduced into the gas-liquid separator 88, The liquid phase portion separated here becomes liquid nitrogen 9 in the liquid nitrogen storage phase 68.
Stored as 1.
【0096】また、低圧精留塔79で分離された気体状
態の空気(不純窒素)は膨張弁87で膨張された後、別
の気液分離器89に導かれて気液分離される。そして、
液相部は液体空気貯蔵槽4に液体空気92として貯蔵さ
れる一方、気相部は前記の気液分離器88で分離された
気相部と合流して、気体空気・窒素93として放出され
る。Further, the gas-state air (impure nitrogen) separated in the low-pressure rectification column 79 is expanded by the expansion valve 87 and then introduced into another gas-liquid separator 89 for gas-liquid separation. And
The liquid phase part is stored as liquid air 92 in the liquid air storage tank 4, while the gas phase part merges with the gas phase part separated by the gas-liquid separator 88 and is discharged as gas air / nitrogen 93. It
【0097】ここで液体空気貯蔵槽4に貯蔵された液体
空気92が、電力需要増大時に貯蔵冷熱変換手段5に供
給され、前述した第2熱交換手段30の気化作用を受け
るものである。即ち、貯蔵冷熱変換手段5は、液体空気
93を圧送するための加圧ポンプ94および蒸発器95
等を有し、この蒸発器95に送られた液体空気92に熱
貯蔵槽77,78からの貯蔵熱量が熱交換器74,75
を介して与えられ、これにより液体空気92が気化され
て、復水ポンプ等の冷却用海水を冷却するための海水冷
却熱交換手段6へ供給される。なお、この液体空気92
の気化により発生する冷熱は、熱貯蔵槽77,78に冷
熱として貯えられ、夜間等の電力需要が減少した時の液
体空気製造の際には、この貯えられた冷熱が逆に空気冷
却用として利用されるものである。Here, the liquid air 92 stored in the liquid air storage tank 4 is supplied to the storage cold heat conversion means 5 when the power demand increases and is subjected to the vaporizing action of the second heat exchange means 30 described above. That is, the storage cold heat conversion means 5 includes the pressurizing pump 94 and the evaporator 95 for pumping the liquid air 93.
Etc., and the stored heat quantity from the heat storage tanks 77, 78 is added to the liquid air 92 sent to the evaporator 95.
Liquid air 92 is vaporized by this, and is supplied to the seawater cooling heat exchange means 6 for cooling the cooling seawater such as a condensate pump. The liquid air 92
The cold heat generated by the vaporization of is stored in the heat storage tanks 77 and 78 as cold heat, and when the liquid air is manufactured when the power demand decreases at night, the stored cold heat is used for cooling the air. It is used.
【0098】以上の第8実施形態によれば、前述した第
1実施形態と同様の作用効果、即ち、深冷空気分離装置
66を用いて液体空気92を製造することで、原子力発
電設備1の復水器9および吸収式冷凍手段2の復液器2
4の冷却水を冷却してタービン効率等を向上できること
に加え、液体空気92と同時に、液体酸素90および液
体窒素91が製造でき、この液体酸素90を他の化石燃
料燃焼式発電設備に利用したり、また液体窒素91を商
品化する等、種々の利点が得られる。According to the eighth embodiment described above, the same operational effect as that of the first embodiment described above, that is, by producing the liquid air 92 using the deep-air separation device 66, the nuclear power generation facility 1 can be manufactured. Condenser 9 and condenser 2 of absorption type refrigeration means 2
In addition to being able to cool the cooling water of No. 4 to improve turbine efficiency and the like, liquid oxygen 90 and liquid nitrogen 91 can be produced simultaneously with liquid air 92, and this liquid oxygen 90 can be used for other fossil fuel combustion power generation equipment. In addition, various advantages such as commercializing liquid nitrogen 91 can be obtained.
【0099】第9実施形態(図12)
図12は本発明の第9実施形態を示すシステム構成図で
ある。 Ninth Embodiment (FIG. 12) FIG. 12 is a system configuration diagram showing a ninth embodiment of the present invention.
【0100】この図12に示すように、本実施形態のシ
ステムは、原子力発電設備1と、この原子力発電設備1
の蒸気タービン8の中段より抽気した中圧蒸気を熱源と
する吸収式冷凍手段2と、この吸収式冷凍手段2の冷媒
との熱交換によって氷を製造するとともに貯蔵し、その
氷と原子力発電設備1の復水器9および吸収式冷凍手段
2の復液器24で使用する海水15との熱交換を行わせ
る氷貯蔵海水冷却手段39とを備えた構成となってい
る。As shown in FIG. 12, the system of the present embodiment includes a nuclear power generation facility 1 and the nuclear power generation facility 1.
Of the absorption refrigeration means 2 using the medium pressure steam extracted from the middle stage of the steam turbine 8 as a heat source, and the ice is manufactured and stored by heat exchange with the refrigerant of the absorption refrigeration means 2, and the ice and the nuclear power generation facility are stored. 1 and the ice storage seawater cooling means 39 for exchanging heat with the seawater 15 used in the condenser 24 of the absorption type refrigeration means 2.
【0101】即ち、本実施形態では液体空気製造手段3
がなく、吸収式冷凍手段2の冷熱器23で発生した冷熱
を熱移送回路96により氷貯蔵海水冷却手段39に直接
供給し、海水15の一部を冷凍して氷を製造し、これに
より海水を冷却するようにしてある。なお、図12にお
いては吸収式冷凍手段2を簡略的に示してあるが図1で
示した第1実施形態のものと同様である。また、氷貯蔵
海水冷却手段39および熱移送回路96内で循環する冷
凍等については、図3に示した第3実施形態のものと同
様である。That is, in this embodiment, the liquid air producing means 3 is used.
, The cold heat generated in the cooler 23 of the absorption freezing means 2 is directly supplied to the ice storage seawater cooling means 39 by the heat transfer circuit 96, and a part of the seawater 15 is frozen to produce ice. Is designed to be cooled. Although the absorption type refrigerating means 2 is simply shown in FIG. 12, it is the same as that of the first embodiment shown in FIG. The ice storage seawater cooling means 39 and the refrigeration circulating in the heat transfer circuit 96 are the same as those in the third embodiment shown in FIG.
【0102】そして、本実施形態では、電力需要が低下
した時に前記原子力発電設備1の余剰電力と熱エネルギ
とを用いて吸収式冷凍手段2および氷貯蔵海水冷却手段
39を稼動することにより氷の製造および貯蔵を行う一
方、電力需要が増大した時に氷貯蔵海水冷却手段39に
貯蔵した氷を用いて原子力発電設備1の復水器9および
吸収式冷凍手段2の復液器24の冷却用海水15を冷却
する。In this embodiment, when the electric power demand decreases, the absorption refrigeration means 2 and the ice storage seawater cooling means 39 are operated by using the surplus electric power and the thermal energy of the nuclear power generation equipment 1 to generate ice. While producing and storing, the seawater for cooling the condenser 9 of the nuclear power generation facility 1 and the condenser 24 of the absorption refrigeration means 2 is used by using the ice stored in the ice storage seawater cooling means 39 when the power demand increases. Cool 15.
【0103】本実施形態によれば、前記各実施形態と同
様に、夜間等の余剰電力と熱エネルギとを用いて吸収式
冷凍手段2で冷熱を製造し、この冷熱によって氷を製造
および貯蔵し、昼間の電力需要が多い時に氷を溶かして
海水15を冷却し、冷却された海水15で復水器9等の
冷却を行うことにより、蒸気タービン8の出力効率を向
上させて発生電力の増大が図れるものであり、この場合
に液体空気製造手段のない簡便な構成とすることができ
る等の利点が得られる。According to the present embodiment, as in each of the above-described embodiments, the absorption refrigerating means 2 is used to produce cold heat using surplus electric power and heat energy at night, and ice is produced and stored by this cold heat. By cooling the seawater 15 by melting ice when the daytime power demand is high, and by cooling the condenser 9 and the like with the cooled seawater 15, the output efficiency of the steam turbine 8 is improved and the generated power is increased. In this case, advantages such as a simple structure without a liquid air producing means can be obtained.
【0104】第10実施形態(図13)
図13は本発明の第13実施形態を示すシステム構成図
である。 Tenth Embodiment (FIG. 13) FIG. 13 is a system configuration diagram showing a thirteenth embodiment of the present invention.
【0105】この図13に示すように、本実施形態のシ
ステムは第9実施形態を変形したもので、吸収式冷凍手
段2の冷熱器23と氷貯蔵海水冷却手段39との間で潜
熱媒体97aを循環して冷熱を貯蔵する潜熱貯蔵手段9
7を備えている。そして、電力需要が低下した時に余剰
電力と熱エネルギとを用いて潜熱貯蔵手段97に冷熱を
貯蔵するとともに、潜熱貯蔵手段97から冷媒を氷貯蔵
海水冷却手段39に熱移送回路96を介して循環させて
氷貯蔵海水冷却手段39で氷を製造および貯蔵し、電力
需要が増大した時に原子力発電設備1の復水器9および
吸収式冷凍手段2の復液器24の冷却用海水15を氷貯
蔵海水冷却手段39で冷却するようにしてある。As shown in FIG. 13, the system of this embodiment is a modification of the ninth embodiment, in which the latent heat medium 97a is provided between the cooler 23 of the absorption refrigeration means 2 and the ice storage seawater cooling means 39. Latent heat storage means 9 for circulating cold energy to store cold heat
Equipped with 7. Then, when the power demand is reduced, the cold heat is stored in the latent heat storage means 97 by using the surplus power and the heat energy, and the refrigerant is circulated from the latent heat storage means 97 to the ice storage seawater cooling means 39 via the heat transfer circuit 96. Then, the ice storage seawater cooling means 39 manufactures and stores ice, and when the power demand increases, the condenser 9 of the nuclear power generation facility 1 and the cooling seawater 15 of the condenser 24 of the absorption refrigeration means 2 are ice-stored. The seawater cooling means 39 is used for cooling.
【0106】また、本実施形態のシステムにおいては熱
移送回路96から分岐回路98を引出して、非常時に潜
熱貯蔵手段97から原子力発電設備1のサプレッション
プール41に冷媒を循環させて除熱することができるよ
うにしてある。In the system of this embodiment, the branch circuit 98 can be drawn from the heat transfer circuit 96 to circulate the refrigerant from the latent heat storage means 97 to the suppression pool 41 of the nuclear power generation facility 1 to remove heat in an emergency. I can do it.
【0107】なお、本実施形態において、潜熱貯蔵手段
97で使用する潜熱媒体97a、熱移送回路96および
分岐回路98で循環させる冷媒としては、アンモニアあ
るいは潜熱蓄熱粒子混相媒体が適用できる。In this embodiment, ammonia or latent heat storage particle mixed phase medium can be applied as the latent heat medium 97a used in the latent heat storage means 97, the refrigerant circulated in the heat transfer circuit 96 and the branch circuit 98.
【0108】本実施形態によれば、潜熱貯蔵手段97で
の蓄熱を利用して海水15の氷を製造および貯蔵するこ
とで前記第9実施形態と同様に、原子力発電設備1の復
水器9の等の冷却を行うことにより、蒸気タービン8の
出力効率を向上させ、発生電力を増大させることができ
るとともに、非常用炉心冷却系を作動させる事態が発生
した場合においても、潜熱貯蔵手段97の冷熱を取出し
てサプレッションプール41の炉心冷却水を冷却するこ
とにより原子炉の安全性を高めることができる。According to the present embodiment, the storage of the latent heat storage means 97 is used to manufacture and store the ice in the seawater 15 so that the condenser 9 of the nuclear power generation facility 1 can be manufactured as in the ninth embodiment. And the like, the output efficiency of the steam turbine 8 can be improved and the generated power can be increased, and the latent heat storage means 97 of the latent heat storage means 97 can be used even when the emergency core cooling system is operated. By extracting cold heat and cooling the core cooling water of the suppression pool 41, the safety of the nuclear reactor can be enhanced.
【0109】第11実施形態(図14〜図16)
本実施形態のシステムは、第1実施形態の吸収式冷凍シ
ステム2に代えて、混合媒体サイクル利用の混合媒体発
電設備および冷媒製造手段を設置したものである。 Eleventh Embodiment (FIGS. 14 to 16) In the system of this embodiment, instead of the absorption refrigeration system 2 of the first embodiment, a mixed medium power generation facility using a mixed medium cycle and a refrigerant production means are installed. It was done.
【0110】図14は本実施形態のシステム全体を示す
構成図であり、図15は要部を詳細に示す説明図であ
り、図16は図15の変形例を示す説明図である。FIG. 14 is a block diagram showing the entire system of the present embodiment, FIG. 15 is an explanatory view showing details of essential parts, and FIG. 16 is an explanatory diagram showing a modification of FIG.
【0111】図14に示すように、本実施形態では、概
略的に、原子力発電設備1と、この原子力発電設備1の
蒸気タービン8のの排蒸気を熱源とする水・アンモニア
混合媒体サイクル利用の混合媒体発電設備99および高
濃度アンモニア蒸気利用の冷媒製造手段100と、この
冷媒製造手段100で製造した冷媒を用いて冷却するこ
とにより液体空気を製造する液体空気製造手段3と、こ
の液体空気製造手段3によって製造した液体空気を貯え
る液体空気貯蔵槽4と、この液体空気貯蔵槽4に貯えた
液体空気を気化する時に得られる冷熱と液体空気製造手
段3で空気を凝固する時に得られる発熱とをそれぞれ保
持してそれらの各作用時にその保持熱を使用して熱交換
を行う貯蔵冷熱変換手段5と、原子力発電設備1、混合
媒体発電設備99および冷媒製造手段100で使用する
海水を液体空気貯蔵槽4から排出される空気の冷熱との
熱交換によって冷却する冷却水冷却熱交換手段としての
海水冷却熱交換手段6を備えている。そして、電力需要
が低下した時に原子力発電設備1の余剰電力と熱エネル
ギとを用いて液体空気製造手段3を稼動することにより
液体空気を製造して液体空気貯蔵槽4に貯蔵するととも
に、混合媒体発電設備99および冷媒製造手段100を
稼動して冷媒を製造し、電力需要が増大した時に液体空
気貯蔵槽4から排出されて気化した空気を用い原子力発
電設備1の復水器および混合媒体発電設備99の凝縮器
への冷却用の海水を冷却するようになっている。As shown in FIG. 14, in the present embodiment, the use of the water / ammonia mixed medium cycle, in which the nuclear power generation facility 1 and the exhaust steam of the steam turbine 8 of the nuclear power generation facility 1 are used as heat sources, is schematically illustrated. The mixed-medium power generation facility 99 and the refrigerant production means 100 using high-concentration ammonia vapor, the liquid air production means 3 for producing liquid air by cooling using the refrigerant produced by the refrigerant production means 100, and the liquid air production Liquid air storage tank 4 for storing the liquid air produced by the means 3, cold heat obtained when the liquid air stored in the liquid air storage vessel 4 is vaporized, and heat generated when the air is solidified by the liquid air producing means 3. And the storage / cooling heat converting means 5 for holding and holding each of them to perform heat exchange using the retained heat, the nuclear power generation facility 1, and the mixed medium power generation facility 99. The seawater used in refrigerant production means 100 and is provided with a sea water cooling heat exchange means 6 as a cooling water cooling heat exchange means for cooling by heat exchange with the cold air discharged from the liquid air storage tank 4. Then, when the power demand decreases, the liquid air producing means 3 is operated by using the surplus electric power and the thermal energy of the nuclear power generation facility 1 to produce the liquid air and store it in the liquid air storage tank 4, and at the same time, the mixed medium. A condenser and a mixed medium power generation facility of the nuclear power generation facility 1 are manufactured by operating the power generation facility 99 and the refrigerant production means 100 to produce a refrigerant, and using the vaporized air discharged from the liquid air storage tank 4 when the power demand increases. It is designed to cool the seawater for cooling to the 99 condenser.
【0112】即ち、原子力発電設備1は、原子炉7、蒸
気タービン8、主循環ポンプ10等で構成されており、
蒸気タービン8に発電機11が同軸的に結合されてい
る。そして、原子炉7で生成された飽和蒸気が蒸気ター
ビン8を駆動して発電を行い、蒸気タービン8の排気
は、混合媒体発電設備99の混合媒体サイクル部で復水
とされ、主循環ポンプ10で加圧されて循環するように
なっている。That is, the nuclear power generation facility 1 is composed of a reactor 7, a steam turbine 8, a main circulation pump 10 and the like,
A generator 11 is coaxially coupled to the steam turbine 8. Then, the saturated steam generated in the nuclear reactor 7 drives the steam turbine 8 to generate electric power, and the exhaust gas of the steam turbine 8 is condensed into the mixed medium cycle portion of the mixed medium power generation facility 99, and the main circulation pump 10 It is pressurized and circulated.
【0113】混合媒体発電設備99は、原子力発電設備
1の蒸気タービン8の排気で熱移送され、高濃度のアン
モニア蒸気を生成する混合媒体サイクル部101と、こ
こで生成されたアンモニア蒸気によって駆動される混合
媒体タービン102と、この混合媒体タービン102に
同軸的に結合された発電機103とを有する。また、混
合媒体サイクル部101で生成されたアンモニア蒸気は
冷媒製造手段100に移送され、後述する冷却あるいは
加熱等に使用された後、混合媒体サイクル部101に回
帰する構成となっている。The mixed medium power generation facility 99 is driven by the mixed medium cycle unit 101 that is heat-transferred by the exhaust gas of the steam turbine 8 of the nuclear power generation facility 1 to generate high-concentration ammonia vapor and the ammonia vapor generated here. A mixed medium turbine 102 and a generator 103 coaxially coupled to the mixed medium turbine 102. Further, the ammonia vapor generated in the mixed medium cycle unit 101 is transferred to the refrigerant production unit 100, used for cooling or heating described later, and then returned to the mixed medium cycle unit 101.
【0114】冷媒製造手段100では、高濃度のアンモ
ニア蒸気を用いて冷媒が製造され、この冷媒が液体空気
製造手段3の第1の熱交換装置29に熱移送回路32を
介して循環することで液体空気製造用の冷熱が送られる
ようになっている。In the refrigerant producing means 100, a refrigerant is produced using high-concentration ammonia vapor, and this refrigerant is circulated to the first heat exchange device 29 of the liquid air producing means 3 via the heat transfer circuit 32. Cold heat is supplied to produce liquid air.
【0115】図15は、混合媒体発電設備99、冷媒製
造手段100等の構成を詳細に示したものである。FIG. 15 shows in detail the construction of the mixed medium power generation facility 99, the refrigerant producing means 100 and the like.
【0116】この図15に示すように、混合媒体サイク
ル部101は、原子力発電設備1の蒸気タービン8から
の排気蒸気によって水・アンモニア混合媒体を加熱する
混合媒体加熱器104と、この混合媒体加熱器104で
蒸発したアンモニア濃度の高い混合媒体を混合媒体ター
ビン102の駆動後に復液させる低圧復液器105と、
この低圧復液器105で復液となった混合媒体を混合媒
体加熱器104に還流させるための中圧ポンプ106お
よび高圧ポンプ107と、両ポンプ106,107間に
設けられた中圧分離器108および中圧復液器109
と、複数の絞り弁110,111,112,113とを
備えている。As shown in FIG. 15, the mixed medium cycle unit 101 includes a mixed medium heater 104 for heating the water / ammonia mixed medium by the exhaust steam from the steam turbine 8 of the nuclear power generation facility 1, and the mixed medium heating unit 104. A low-pressure condenser 105 for condensing the mixed medium having a high ammonia concentration evaporated in the vessel 104 after driving the mixed-medium turbine 102;
A medium pressure pump 106 and a high pressure pump 107 for returning the mixed medium which has been condensed in the low pressure condenser 105 to the mixed medium heater 104, and a medium pressure separator 108 provided between the pumps 106 and 107. And medium pressure condenser 109
And a plurality of throttle valves 110, 111, 112, 113.
【0117】そして、混合媒体タービン102の排気が
低圧復液器105に流入して低圧復液が流れる熱交換部
114で冷却された後、中圧分離器108で分離された
低濃度アンモニア液の混合媒体の減圧されたものと吸収
・混合され、さらに海水が流れる熱交換部115で冷却
されて低圧復液となる。低圧復液は中圧ポンプ106で
加圧された後に分流され、一方は低圧復液器105の熱
交換部114としての配管で熱交換を行って中圧分離器
108に導かれ、他方は中圧復液器109に導かれる。
中圧分離器108に流入した復液は、蒸気と液とに分留
され、液は絞り弁112を経由して低圧復液器71に戻
され、蒸気は中圧復液器109に導かれる。中圧復液器
109では、中圧分離器109で分離された蒸気と低圧
復液の分流とが混合した状態で流入し、海水が流れる熱
交換部116で冷却され、中圧復液となる。中圧復液は
高圧ポンプ107により、絞り弁113を経て混合媒体
加熱器104に還流する。Then, after the exhaust gas of the mixed medium turbine 102 flows into the low-pressure condenser 105 and is cooled in the heat exchange section 114 in which the low-pressure condenser flows, the low-concentration ammonia liquid separated in the intermediate-pressure separator 108 is discharged. It is absorbed and mixed with the decompressed mixed medium, and is further cooled in the heat exchange section 115 through which seawater flows to become a low-pressure condensate. The low-pressure condensate is pressurized after being pressurized by the medium-pressure pump 106, and is branched, one of which is subjected to heat exchange through a pipe serving as the heat exchange section 114 of the low-pressure condenser 105 and guided to the medium-pressure separator 108, and the other of which is medium-concentrated. It is guided to the pressure condenser 109.
The condensate that has flowed into the medium pressure separator 108 is fractionated into vapor and liquid, the liquid is returned to the low pressure condenser 71 via the throttle valve 112, and the vapor is guided to the medium pressure condenser 109. . In the medium-pressure condenser 109, the steam separated by the medium-pressure separator 109 and the branched stream of the low-pressure condenser flow in a mixed state, and the seawater is cooled in the heat exchange section 116 to become a medium-pressure condenser. . The medium-pressure condensate is returned to the mixed medium heater 104 by the high-pressure pump 107 through the throttle valve 113.
【0118】一方、冷媒製造手段100は、凝縮器11
7、膨張弁118、蒸発器119等によって構成されて
いる。そして、混合媒体加熱器104で蒸発した高濃度
のアンモニア蒸気が混合媒体タービン102の上流側で
分流されて凝縮器117に導かれ、海水が流れる熱交換
部120で冷却されて凝縮液が生成される。この凝縮液
は膨張弁118で断熱膨張された後、蒸発器119に導
かれる。蒸発器119では、冷却を行う対象物によって
加熱された冷媒が流れる熱交換部121で加熱されて蒸
気となる。ここで発生した蒸気は、混合媒体タービン1
02からの排気と合流して低圧復液器105に導かれ
る。On the other hand, the refrigerant producing means 100 is composed of the condenser 11
7, an expansion valve 118, an evaporator 119 and the like. Then, the high-concentration ammonia vapor evaporated in the mixed medium heater 104 is diverted on the upstream side of the mixed medium turbine 102 and guided to the condenser 117, cooled in the heat exchange section 120 through which seawater flows, and a condensed liquid is generated. It The condensate is adiabatically expanded by the expansion valve 118 and then introduced to the evaporator 119. In the evaporator 119, the refrigerant heated by the object to be cooled is heated in the heat exchange section 121 to become steam. The steam generated here is mixed medium turbine 1
It joins with the exhaust gas from 02 and is led to the low-pressure condenser 105.
【0119】このような構成において、夜間の電力需要
の少ない時には混合媒体加熱器104で水・アンモニア
混合媒体が加熱され、蒸発したアンモニア濃度の高い混
合媒体は分流されて混合媒体タービン102と冷媒製造
手段100に導かれる。混合媒体タービン102を駆動
して低温、低圧になった混合媒体の排気は、低圧復液器
105に導かれて低圧復液となる。この低圧復液は、ア
ンモニア濃度の低い混合媒体をつくために中圧分離器1
08に導かれるものと、中圧復液器109に導かれるも
のに分離される。中圧復液器109で生成された中圧復
液は、高圧ポンプ107で加圧されて混合媒体加熱器1
04に還流する。In such a configuration, when the power demand at night is low, the water / ammonia mixed medium is heated by the mixed medium heater 104, and the evaporated mixed medium having a high ammonia concentration is diverted to produce the mixed medium turbine 102 and the refrigerant. It is guided to the means 100. The exhaust of the mixed medium, which has become low temperature and low pressure by driving the mixed medium turbine 102, is guided to the low pressure condenser 105 and becomes low pressure condensed liquid. This low pressure condensate is used in the medium pressure separator 1 to create a mixed medium with a low ammonia concentration.
It is separated into the one guided to 08 and the one guided to the intermediate pressure condenser 109. The medium-pressure condensate produced by the medium-pressure condensate unit 109 is pressurized by the high-pressure pump 107, and the mixed-medium heater 1
Reflux to 04.
【0120】一方、冷媒製造手段100に導かれた混合
媒体蒸気は、凝縮器117において海水で冷却されて液
となり、膨張弁118で冷媒となって蒸発器119に導
かれる。蒸発器119で蒸気となった冷媒は液体空気製
造システム3の第1の熱交換装置29との間を循環する
熱移送媒体で加熱されて蒸発する。この生成された蒸気
は、混合媒体タービン102からの排気と合流して前記
と同様の処理が行われる。On the other hand, the mixed medium vapor guided to the refrigerant producing means 100 is cooled by seawater in the condenser 117 to become a liquid, and becomes a refrigerant in the expansion valve 118 and is introduced into the evaporator 119. The refrigerant that has become vapor in the evaporator 119 is heated and evaporated by the heat transfer medium that circulates between the refrigerant and the first heat exchange device 29 of the liquid air manufacturing system 3. The generated steam merges with the exhaust gas from the mixed medium turbine 102 and the same processing as described above is performed.
【0121】一方、昼間の電力需要が多い時には、混合
媒体加熱器104で生成されたアンモニア濃度の高い混
合媒体蒸気を冷媒製造手段100に導くことなく、全て
混合媒体タービン64に導いて混合媒体タービン102
の駆動により発電を行う。また、貯蔵冷熱変換手段5で
気化された空気を海水冷却熱交換手段6に導き海水15
に注入してこれを冷却し、混合媒体発電設備99の低圧
復液器105に導き熱交換を行う。この場合、海水15
が低温になっているため、混合媒体タービン102の出
口部温度が低くなり、タービン効率を向上させることが
でき、発電量を増大させることでピーク電力需要に寄与
することができる。On the other hand, when there is a large demand for electric power in the daytime, the mixed medium vapor having a high ammonia concentration generated in the mixed medium heater 104 is not guided to the refrigerant producing means 100 but is entirely guided to the mixed medium turbine 64 and the mixed medium turbine 64. 102
Power is generated by driving. Further, the air vaporized by the storage cold heat conversion means 5 is guided to the seawater cooling heat exchange means 6 and the seawater 15
It is introduced into a low pressure condenser 105 of the mixed-medium power generation facility 99 to perform heat exchange. In this case, seawater 15
Is low, the outlet temperature of the mixed medium turbine 102 is low, the turbine efficiency can be improved, and the amount of power generation can be increased to contribute to the peak power demand.
【0122】したがって、本実施形態によれば、第1実
施形態の効果に加えて、混合媒体発電設備99でも発電
を行うことにより、熱効率を蒸気タービン発電の場合に
比べて向上することができるとともに、貯蔵氷を使用し
て冷却した海水15を低圧復液器105に供給すること
により、混合媒体タービン102の出口圧力を低下さ
せ、混合媒体発電設備99の効率を向上することがで
き、発電量増大が図れるという効果が奏される。Therefore, according to the present embodiment, in addition to the effect of the first embodiment, the thermal efficiency can be improved as compared with the case of steam turbine power generation by generating power also in the mixed medium power generation facility 99. By supplying the seawater 15 cooled using the stored ice to the low-pressure condenser 105, the outlet pressure of the mixed-medium turbine 102 can be lowered, and the efficiency of the mixed-medium power generation facility 99 can be improved. The effect of increasing the number is achieved.
【0123】図16は、本実施形態の変形例を示してい
る。FIG. 16 shows a modification of this embodiment.
【0124】即ち、前記の図15に示したシステムに対
し、本例では、混合媒体加熱器104で蒸発した混合媒
体を分離する高圧分離器122を備えている。また、低
圧復液器105は吸収器123と凝縮器124とを有す
る構成とし、この低圧復液器105からの復液の還流経
路に熱交換器125を設けてある。そして、混合媒体タ
ービン102からの排気とともに、中圧分離器108で
分離された冷媒液を熱交換器125で冷却した後に吸収
器122に導くようにしてある。なお、中圧分離器10
8には、高圧分離器122で分離された液冷媒が流入す
るようになっている。さらに、冷媒製造手段100は凝
縮器126および膨張弁127を有する構成とし、中圧
分離器108で分離した蒸気は、凝縮器126および膨
張弁127を介して冷媒製造手段100の蒸発器121
に導かれるルートと、途中で分離して混合媒体タービン
102の中段に導かれるルートとに分かれるようにして
ある。That is, in contrast to the system shown in FIG. 15, the high pressure separator 122 for separating the mixed medium evaporated in the mixed medium heater 104 is provided in this example. Further, the low-pressure condenser 105 is configured to have an absorber 123 and a condenser 124, and a heat exchanger 125 is provided in a return path of the condensed liquid from the low-pressure condenser 105. Then, together with the exhaust from the mixed medium turbine 102, the refrigerant liquid separated by the intermediate pressure separator 108 is cooled by the heat exchanger 125 and then guided to the absorber 122. The medium pressure separator 10
The liquid refrigerant separated by the high pressure separator 122 flows into the No. 8. Further, the refrigerant producing means 100 is configured to have the condenser 126 and the expansion valve 127, and the vapor separated by the intermediate pressure separator 108 passes through the condenser 126 and the expansion valve 127, and the evaporator 121 of the refrigerant producing means 100.
And a route guided to the middle stage of the mixed medium turbine 102 by being separated in the middle.
【0125】このような構成においては、混合媒体加熱
器104で蒸気タービン8の排気と熱交換が行われ、混
合媒体は高圧分離器121でアンモニア濃度の高い蒸気
と、低い液に分離される。蒸気は、混合媒体タービン1
02に導かれ、混合媒体タービン102を駆動して発電
を行い、その排気は低圧復液器105の吸収器123に
導かれる。この吸収器123で、タービン排気と中圧分
離器108で分離された液で熱交換をして減圧したもの
との混合および吸収が行われ、凝縮器124において、
海水が流れる熱交換部128で熱交換が行われ、凝縮に
より低圧復液が生成される。低圧復液は、高圧ポンプ1
07で加圧され、熱交換器125の熱交換部129で中
圧分離器108の分離液との熱交換の後、混合媒体加熱
器104に還流するものと、減圧弁130での減圧後に
中圧分離器108への流入するものとに分流される。高
圧分離器121で分離した液は、別の減圧弁131で減
圧されて中圧分離器108に流入する。この中圧分離器
108で分離した蒸気は、混合媒体タービン102の中
圧段に導かれる一方、分離した液は、熱交換器125の
熱交換部129で冷却された後、絞り弁132を経由し
て吸収器123に導かれる。In such a structure, the mixed medium heater 104 exchanges heat with the exhaust gas of the steam turbine 8, and the high pressure separator 121 separates the mixed medium into a vapor having a high ammonia concentration and a liquid having a low ammonia concentration. Steam mixed media turbine 1
02, the mixed medium turbine 102 is driven to generate electric power, and the exhaust gas is guided to the absorber 123 of the low pressure condenser 105. In this absorber 123, the turbine exhaust and the liquid separated in the intermediate pressure separator 108 are mixed and absorbed by heat-exchanged and reduced pressure, and in the condenser 124,
Heat exchange is performed in the heat exchange unit 128 in which seawater flows, and low-pressure condensate is generated by condensation. Low-pressure condensate is the high-pressure pump 1
After being pressurized in 07, after heat exchange with the separated liquid in the intermediate pressure separator 108 in the heat exchange section 129 of the heat exchanger 125, the medium is returned to the mixed medium heater 104, and after decompression by the pressure reducing valve 130 It is divided into the one that flows into the pressure separator 108. The liquid separated by the high pressure separator 121 is decompressed by another decompression valve 131 and flows into the intermediate pressure separator 108. The steam separated by the intermediate pressure separator 108 is guided to the intermediate pressure stage of the mixed medium turbine 102, while the separated liquid is cooled by the heat exchange section 129 of the heat exchanger 125 and then passes through the throttle valve 132. Then, it is guided to the absorber 123.
【0126】また、冷媒製造システム100では、高圧
分離器121で分離されたアンモニア濃度の高い蒸気が
凝縮器117に導かれ、海水が流れる熱交換部120で
凝縮されて液となり、膨張弁118で冷媒となって蒸発
器119に導かれる。この蒸発器119には、中圧分離
器108で分離されたアンモニア濃度の高い蒸気が凝縮
器126を介して導かれる。この際、凝縮器126では
蒸気が海水の流れる熱交換部133で凝縮されて液とな
り、膨張弁127で冷媒となって蒸発器119に流入す
る。蒸発器119では、冷却を行う対象物で加熱された
冷媒が流れる熱交換部121で熱交換が行われ、蒸気が
生成される。生成した蒸気は吸収器123に導かれる。Further, in the refrigerant manufacturing system 100, the vapor having a high ammonia concentration separated by the high pressure separator 121 is guided to the condenser 117, condensed in the heat exchange section 120 through which seawater flows and becomes a liquid, and the expansion valve 118 It becomes a refrigerant and is guided to the evaporator 119. The vapor having a high ammonia concentration separated by the medium pressure separator 108 is introduced into the evaporator 119 via the condenser 126. At this time, in the condenser 126, the steam is condensed in the heat exchange section 133 through which seawater flows to become a liquid, and the expansion valve 127 becomes a refrigerant to flow into the evaporator 119. In the evaporator 119, heat is exchanged in the heat exchange section 121 in which the refrigerant heated by the object to be cooled flows, and steam is generated. The generated vapor is guided to the absorber 123.
【0127】このような構成によっても、前記同様の効
果が奏される。With this structure, the same effect as described above can be obtained.
【0128】第12実施形態(図17)
本実施形態は、第11実施形態における液体空気製造手
段3を削除し、これに代えて図13で示した潜熱貯蔵手
段97を設置し、かつ海水冷却熱交換手段39を氷貯蔵
海水冷却手段39に変更したものである。そして、潜熱
貯蔵手段97と冷媒製造手段100および氷貯蔵海水冷
却手段39との間を、アンモニアあるいは潜熱蓄熱粒子
混相媒体の熱移送回路96,134で接続してある。Twelfth Embodiment (FIG. 17) In this embodiment, the liquid air producing means 3 in the eleventh embodiment is deleted, the latent heat storage means 97 shown in FIG. 13 is installed in place of this, and seawater cooling is performed. The heat exchange means 39 is replaced with the ice storage seawater cooling means 39. The latent heat storage means 97 is connected to the refrigerant production means 100 and the ice storage seawater cooling means 39 by heat transfer circuits 96 and 134 for ammonia or latent heat storage particles mixed phase medium.
【0129】このような構成によれば、夜間の電力需要
の少ない時には冷媒製造手段100で冷媒を製造し、潜
熱貯蔵手段97にアンモニアあるいは潜熱蓄熱粒子混相
媒体で冷熱を移送して貯蔵し、潜熱貯蔵手段97に貯蔵
された冷熱をアンモニアあるいは潜熱蓄熱粒子混相媒体
で氷貯蔵海水冷却手段39に移送し、過冷却装置を用い
て海水15により氷を生成して貯蔵を行うことができ
る。According to such a structure, when the power demand at night is low, the refrigerant is manufactured by the refrigerant manufacturing means 100, and cold heat is transferred to and stored in the latent heat storage means 97 by the ammonia or latent heat storage particle mixed phase medium to store the latent heat. The cold heat stored in the storage means 97 can be transferred to the ice storage seawater cooling means 39 with ammonia or a latent heat storage particle mixed phase medium, and ice can be generated by the seawater 15 using a supercooling device and stored.
【0130】そして、昼間の電力需要が多い時には、氷
貯蔵海水冷却手段39に貯蔵された氷を溶かして海水1
5と混合して海水15の温度を下げ、混合媒体発電設備
99の復液器の冷却を行う。低温の海水15で復液器の
冷却を行うことにより、混合媒体タービン102の出口
背圧を下げることができ、この混合媒体タービン102
の効率を向上することができ、発電量増大ひいては昼間
の電力需要増大に対処することができる。When there is a large demand for electric power in the daytime, the ice stored in the ice storage seawater cooling means 39 is melted to form the seawater 1
5, the temperature of the seawater 15 is lowered, and the condenser of the mixed-medium power generation facility 99 is cooled. By cooling the condenser with the low-temperature seawater 15, the outlet back pressure of the mixed medium turbine 102 can be reduced.
It is possible to improve the efficiency of the power generation, and it is possible to cope with the increase in the amount of power generation and thus the power demand in the daytime.
【0131】以上の各実施形態では、原子炉を熱源とし
た発電プラントを適用したが、本発明の適用範囲はこれ
に限られるものではなく、ガス冷却高温炉発電設備、化
石燃料燃焼発電プラント、廃棄物発電プラント等でガス
タービン、水蒸気タービンの温度カスケードを形成する
場合の水蒸気タービンの復水器に対して広く適用するこ
とができる。In each of the above embodiments, a power plant using a nuclear reactor as a heat source was applied, but the scope of application of the present invention is not limited to this, and a gas cooling high temperature reactor power plant, a fossil fuel combustion power plant, It can be widely applied to a steam turbine condenser when forming a temperature cascade of a gas turbine or a steam turbine in a waste power generation plant or the like.
【0132】[0132]
【発明の効果】以上で詳述したように、本発明によれ
ば、夜間や休日などの余剰な電気力や熱エネルギを用い
て低温媒体の形で冷熱を貯蔵しておき、昼間等のピーク
電力発生時等に冷熱を利用して復水器等に供給する冷却
水の低温化等を可能とし、それにより発電効率を向上さ
せることができ、電力需要の変化に対する負荷平準化が
図れる冷熱貯蔵型の負荷平準化発電システムおよびその
システムを用いた発電方法を提供することができる。As described above in detail, according to the present invention, cold heat is stored in the form of a low temperature medium by using excess electric power and heat energy at night or on holidays, and peaks during the daytime are stored. Cooling heat storage that can lower the temperature of the cooling water supplied to the condenser etc. by using cold heat when electricity is generated, thereby improving power generation efficiency and leveling the load against changes in power demand A load-leveling power generation system of the type and a power generation method using the system can be provided.
【図1】本発明の第1実施形態を示すシステム構成図。FIG. 1 is a system configuration diagram showing a first embodiment of the present invention.
【図2】本発明の第2実施形態を示すシステム構成図。FIG. 2 is a system configuration diagram showing a second embodiment of the present invention.
【図3】本発明の第3実施形態を示すシステム構成図。FIG. 3 is a system configuration diagram showing a third embodiment of the present invention.
【図4】本発明の第4実施形態を示すシステム構成図。FIG. 4 is a system configuration diagram showing a fourth embodiment of the present invention.
【図5】本発明の第5実施形態を示すシステム構成図。FIG. 5 is a system configuration diagram showing a fifth embodiment of the present invention.
【図6】本発明の第6実施形態を示すシステム構成図。FIG. 6 is a system configuration diagram showing a sixth embodiment of the present invention.
【図7】図6に示したシステムの要部についての一例を
示す説明図。7 is an explanatory diagram showing an example of a main part of the system shown in FIG.
【図8】図6に示したシステムの要部についての異なる
例を示す説明図。8 is an explanatory diagram showing a different example of the main part of the system shown in FIG.
【図9】本発明の第7実施形態を示すシステム構成図。FIG. 9 is a system configuration diagram showing a seventh embodiment of the present invention.
【図10】本発明の第8実施形態を示すシステム構成
図。FIG. 10 is a system configuration diagram showing an eighth embodiment of the invention.
【図11】図10の要部を詳細に示す説明図。FIG. 11 is an explanatory diagram showing in detail the main parts of FIG.
【図12】本発明の第9実施形態を示すシステム構成
図。FIG. 12 is a system configuration diagram showing a ninth embodiment of the invention.
【図13】本発明の第10実施形態を示すシステム構成
図。FIG. 13 is a system configuration diagram showing a tenth embodiment of the invention.
【図14】本発明の第11実施形態のシステム全体を示
す構成図。FIG. 14 is a configuration diagram showing the entire system of an eleventh embodiment of the present invention.
【図15】図14の要部を詳細に示す説明図。FIG. 15 is an explanatory diagram showing details of a main part of FIG.
【図16】図15の変形例を示す説明図。16 is an explanatory diagram showing a modified example of FIG.
【図17】本発明の第12実施形態を示すシステム構成
図。FIG. 17 is a system configuration diagram showing a twelfth embodiment of the present invention.
1 原子力発電設備 2 吸収式冷凍手段 3 液体空気製造手段 4 液体空気貯蔵槽 5 貯蔵冷熱変換手段 6 海水冷却熱交換手段(冷却水冷却熱交換手段) 7 原子炉 8 蒸気タービン 9 復水器 10 主循環ポンプ 11 発電機 12 主蒸気管 13 排気管 14 復水冷却系配管 15 海水(冷却水) 16 給水系配管 17 抽気配管 18 閉ループ状の配管 19 加熱器 20 分離器 21 凝縮器 22 膨張弁 23 冷熱器 24 復液器 25 ポンプ 26 熱交換機 27 絞り弁 28 圧縮機 29 (第1の)熱交換装置 30 (第2の)熱交換装置 31 液体空気製造器 32 冷媒循環配管 33 循環配管 34 排気管 35 膨張タービン発電設備 36 液体空気供給配管 37 膨張タービン 38 発電機 39 氷貯蔵海水冷却手段(氷貯蔵冷却水冷却手段) 40 熱回路 41 サプレッションプール 42 氷貯蔵非常用炉心冷却手段 43 熱移送回路 44 過冷却炉心冷却水移送回路 45 熱移送回路 46,46a 海水凍結淡水化手段 47 冷淡水移送冷却手段 48 海水導入管 48a ポンプ 49 冷淡水循環配管 50 製氷用熱回路 50a 冷媒循環ポンプ 50b バルブ 51 受熱用熱交換器 52 製氷コイル 53 製氷槽 54 排水管 55 給排水熱交換器 56 淡水排出管 57 淡水貯蔵槽 58 凍結管部 59a,59b,59c バルブ 60 熱回路 61 冷淡水循環用ポンプ 62 バルブ 63 熱交換器 64 製氷パネル 65 熱移送回路 66 深冷空気分離装置 67 液体酸素貯蔵槽 68 液体窒素貯蔵槽 69 前段冷却器 70 精製装置 71 後段冷却器 72 モータ 73 圧縮機 74,75 熱交換器 76 膨張タービン 77,78 熱貯蔵槽 79 低圧精留塔 80 中圧精留塔 81 複式精留塔 82 過冷却器 83,84,85,86,87 膨張弁 88,89 気液分離器 90 液体酸素 91 液体窒素 92 液体空気 93 気体空気・窒素 94 加圧ポンプ 95 蒸発器 96 熱移送回路 97 潜熱貯蔵手段 98 分岐回路 99 混合媒体発電設備 100 冷媒製造手段 101 混合媒体サイクル部 102 混合媒体タービン 103 発電機 104 混合媒体加熱器 105 低圧復液器 106 中圧ポンプ 107 高圧ポンプ 108 中圧分離器 109 中圧復液器 110,111,112,113 絞り弁 114 熱交換部 115 熱交換部 116 熱交換部 117 凝縮器 118 膨張弁 119 蒸発器 120,121 熱交換部 122 高圧分離器 123 吸収器 124 凝縮器 125 熱交換器 126 凝縮器 127 膨張弁 128,129 熱交換部 130 減圧弁 131 減圧弁 132 絞り弁 133 熱交換部 134 熱移送回路 1 Nuclear power generation facility 2 absorption type refrigeration means 3 Liquid air production means 4 Liquid air storage tank 5 Storage cold heat conversion means 6 Seawater cooling heat exchange means (cooling water cooling heat exchange means) 7 nuclear reactor 8 steam turbine 9 condenser 10 Main circulation pump 11 generator 12 Main steam pipe 13 Exhaust pipe 14 Condensate cooling system piping 15 Seawater (cooling water) 16 Water supply system piping 17 Bleed pipe 18 Closed loop piping 19 heater 20 separator 21 condenser 22 Expansion valve 23 Refrigerator 24 Condenser 25 pumps 26 heat exchanger 27 Throttle valve 28 compressor 29 (First) heat exchange device 30 (Second) heat exchange device 31 Liquid Air Maker 32 Refrigerant circulation piping 33 Circulation piping 34 Exhaust pipe 35 Expansion turbine power generation equipment 36 Liquid air supply piping 37 Expansion turbine 38 generator 39 Ice storage seawater cooling means (ice storage cooling water cooling means) 40 thermal circuit 41 Suppression pool 42 Ice storage emergency core cooling means 43 Heat transfer circuit 44 Supercooling core cooling water transfer circuit 45 heat transfer circuit 46,46a Seawater freezing desalination means 47 Cooling and fresh water transfer cooling means 48 Seawater introduction pipe 48a pump 49 Cold and fresh water circulation piping 50 Thermal circuit for ice making 50a Refrigerant circulation pump 50b valve 51 Heat receiving heat exchanger 52 ice coil 53 ice maker 54 drainage pipe 55 Water supply / drainage heat exchanger 56 Fresh water discharge pipe 57 Fresh water storage tank 58 Freezing tube 59a, 59b, 59c valves 60 thermal circuit 61 Pump for cooling and fresh water circulation 62 valves 63 heat exchanger 64 ice making panel 65 heat transfer circuit 66 Deep Air Separation Device 67 Liquid oxygen storage tank 68 Liquid nitrogen storage tank 69 precooler 70 Purifier 71 Rear cooler 72 motor 73 Compressor 74,75 heat exchanger 76 expansion turbine 77,78 Heat storage tank 79 Low pressure rectification tower 80 Medium pressure rectification tower 81 Double rectification tower 82 Supercooler 83,84,85,86,87 Expansion valve 88,89 gas-liquid separator 90 Liquid oxygen 91 Liquid nitrogen 92 Liquid air 93 Gas Air / Nitrogen 94 pressurizing pump 95 evaporator 96 heat transfer circuit 97 Latent heat storage means 98 branch circuits 99 Mixed media power generation equipment 100 Refrigerant manufacturing means 101 Mixed medium cycle unit 102 mixed media turbine 103 generator 104 Mixed medium heater 105 Low pressure condenser 106 Medium pressure pump 107 High pressure pump 108 Medium pressure separator 109 Medium pressure condenser 110,111,112,113 Throttle valve 114 heat exchange section 115 heat exchange section 116 heat exchange section 117 condenser 118 expansion valve 119 evaporator 120,121 heat exchange section 122 high pressure separator 123 absorber 124 condenser 125 heat exchanger 126 condenser 127 expansion valve 128,129 heat exchange section 130 Pressure reducing valve 131 Pressure reducing valve 132 Throttle valve 133 heat exchange section 134 Heat transfer circuit
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01K 25/10 F01K 25/10 W F R F25B 27/02 F25B 27/02 K F25J 5/00 F25J 5/00 F28D 20/02 G21D 5/12 G21D 5/12 9/00 9/00 F28D 20/00 C (72)発明者 廣野 秀治 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 武内 豊 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 岩下 強 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 3G081 BA02 BB00 BC04 BD10 DA07 DA27 4D047 AA08 BA08 CA06 CA16 EA04─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F01K 25/10 F01K 25/10 W F R F25B 27/02 F25B 27/02 K F25J 5/00 F25J 5 / 00 F28D 20/02 G21D 5/12 G21D 5/12 9/00 9/00 F28D 20/00 C (72) Inventor Hideji Hirono 1 Komukai Toshiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Stock Company Toshiba Research and Development In the center (72) Inventor Yutaka Takeuchi 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Stock company Toshiba Research and Development Center (72) Inventor Tsuyoshi Iwashita 1 Komu-shi Toshiba-cho, Kawasaki-shi, Kanagawa F-term in Toshiba Research and Development Center (reference) 3G081 BA02 BB00 BC04 BD10 DA07 DA27 4D047 AA08 BA08 CA06 CA16 EA04
Claims (21)
のタービンの中段より抽気した中圧蒸気ガスを熱源とす
る吸収式冷凍手段と、この吸収式冷凍手段の冷媒との熱
交換によって空気冷却を行う液体空気製造手段と、この
液体空気製造手段によって製造した液体空気を貯える液
体空気貯蔵槽と、この液体空気貯蔵槽に貯えた液体空気
を気化する時に得られる冷熱と前記液体空気製造手段で
空気を凝固する時に得られる発熱とをそれぞれ保持して
それらの各作用時にその保持熱を使用して熱交換を行う
貯蔵冷熱変換手段と、前記原子力発電設備の復水器およ
び前記吸収式冷凍手段の復液器で使用する冷却水を前記
液体空気貯蔵槽から排出される空気の冷熱との熱交換に
よって冷却する冷却水冷却熱交換手段とを備え、電力需
要が低下した時に前記原子力発電設備の余剰電力と熱エ
ネルギとを用いて前記吸収式冷凍手段および前記液体空
気製造手段を稼動することにより液体空気を製造して前
記液体空気貯蔵槽に貯蔵する一方、電力需要が増大した
時に前記液体空気貯蔵槽から排出されて気化した空気を
用いて前記原子力発電設備の復水器および前記吸収式冷
凍手段の復液器への冷却水を冷却することを特徴とする
冷熱貯蔵型負荷平準化発電システム。1. A nuclear power generation facility, an absorption type refrigeration means using a medium pressure steam gas extracted from a middle stage of a turbine of the nuclear power generation facility as a heat source, and heat exchange with a refrigerant of the absorption type refrigeration means for air cooling. Liquid air producing means for performing, liquid air storage tank for storing the liquid air produced by the liquid air producing means, cold heat obtained when the liquid air stored in the liquid air storage vessel is vaporized, and air by the liquid air producing means. The storage cold-heat conversion means for holding the heat generated when solidifying each of them and performing heat exchange by using the retained heat at each of their actions, and the condenser of the nuclear power generation facility and the absorption refrigeration means. A cooling water cooling heat exchange means for cooling the cooling water used in the condenser by heat exchange with the cold heat of the air discharged from the liquid air storage tank, and when the power demand drops, The liquid air is manufactured by operating the absorption refrigeration means and the liquid air manufacturing means by using the surplus power and thermal energy of the nuclear power generation facility and stored in the liquid air storage tank, while the power demand increases. A cold heat storage type characterized by cooling the cooling water to the condenser of the nuclear power plant and the condenser of the absorption refrigerating means by using the vaporized air discharged from the liquid air storage tank Load leveling power generation system.
電システムにおいて、液体空気を気化する時に得られる
冷熱と、液体空気を製造する時に得られる発熱との熱交
換を行う場合に前記貯蔵冷熱変換手段で用いる冷媒は、
プロパンまたはアンモニアであることを特徴とする冷熱
貯蔵型負荷平準化発電システム。2. The cold heat storage type load leveling power generation system according to claim 1, wherein the cold heat obtained when the liquid air is vaporized and the heat generated when the liquid air is produced are exchanged with each other. Refrigerant used in the cold heat conversion means,
A cold heat storage type load leveling power generation system characterized by being propane or ammonia.
電システムにおいて、前記吸収式冷凍手段と前記液体空
気製造手段との熱交換は、それらの熱交換部間を循環す
る冷媒によって行うものとし、前記冷媒は、潜熱蓄熱粒
子を含むものであることを特徴とする冷熱貯蔵型負荷平
準化発電システム。3. The cold heat storage type load leveling power generation system according to claim 1, wherein the heat exchange between said absorption refrigeration means and said liquid air production means is performed by a refrigerant circulating between those heat exchange parts. The cold heat storage type load leveling power generation system, wherein the refrigerant contains latent heat storage particles.
電システムにおいて、前記貯蔵冷熱変換手段と、前記冷
却水冷却熱交換手段との間に、気化した空気を作動流体
とする膨張タービン発電設備を設けたことを特徴とする
冷熱貯蔵型負荷平準化発電システム。4. The cold heat storage type load leveling power generation system according to claim 1, wherein an expansion turbine power generation using vaporized air as a working fluid is provided between the stored cold heat conversion means and the cooling water cooling heat exchange means. A cold heat storage type load leveling power generation system characterized by having facilities.
冷熱貯蔵型負荷平準化発電システムにおいて、前記冷却
水冷却熱交換手段の冷却水上流側に、液体空気を気化す
る時に得られる冷熱を前記貯蔵冷熱変換手段から供給し
て氷を製造するとともに製造した氷を用いて前記冷却水
との熱交換を行わせる氷貯蔵冷却水冷却手段を設けたこ
とを特徴とする冷熱貯蔵型負荷平準化発電システム。5. The cold heat storage type load leveling power generation system according to any one of claims 1 to 4, wherein the cold heat obtained when the liquid air is vaporized upstream of the cooling water of the cooling water cooling heat exchange means. Is provided from the storage cold heat conversion means to produce ice, and the ice storage cooling water cooling means for performing heat exchange with the cooling water using the produced ice is provided. Power generation system.
電システムにおいて、前記氷貯蔵冷却水冷却手段と前記
貯蔵冷熱変換手段との熱交換は、それらの熱交換部間を
循環する冷媒によって行うものとし、前記冷媒は、潜熱
蓄熱粒子を含むものであることを特徴とする冷熱貯蔵型
負荷平準化発電システム。6. The cold heat storage type load leveling power generation system according to claim 5, wherein the heat exchange between the ice storage cooling water cooling means and the storage cold heat conversion means is performed by a refrigerant circulating between the heat exchange sections. The cold heat storage type load leveling power generation system, wherein the refrigerant contains latent heat storage particles.
冷熱貯蔵型負荷平準化発電システムにおいて、前記吸収
式冷凍手段の冷媒との熱交換によって氷を製造するとと
もに製造した氷を前記原子力発電設備のサプレッション
プールに供給する氷貯蔵非常用炉心冷却手段を設けたこ
とを特徴とする冷熱貯蔵型負荷平準化発電システム。7. The cold heat storage type load leveling power generation system according to claim 1, wherein ice is produced by heat exchange with a refrigerant of the absorption refrigeration means, and the produced ice is produced by the nuclear power. A cold heat storage type load leveling power generation system comprising an ice storage emergency core cooling means for supplying to a suppression pool of a power generation facility.
電システムにおいて、前記吸収式冷凍手段と前記氷貯蔵
非常用炉心冷却手段との熱交換は、それらの熱交換部間
を循環する冷媒によって行うものとし、前記冷媒は、潜
熱蓄熱粒子を含むものであることを特徴とする冷熱貯蔵
型負荷平準化発電システム。8. The cold heat storage type load leveling power generation system according to claim 7, wherein the heat exchange between said absorption refrigeration means and said ice storage emergency core cooling means is a refrigerant circulating between those heat exchange parts. The cold heat storage type load leveling power generation system, wherein the refrigerant contains latent heat storage particles.
冷熱貯蔵型負荷平準化発電システムにおいて、前記貯蔵
冷熱変換手段の冷熱との熱交換によって氷を製造すると
ともに製造した氷を前記原子力発電設備のサプレッショ
ンプールに供給する氷貯蔵非常用炉心冷却手段を設けた
ことを特徴とする冷熱貯蔵型負荷平準化発電システム。9. The cold heat storage type load leveling power generation system according to any one of claims 1 to 6, wherein ice is manufactured by heat exchange with the cold heat of the storage cold heat conversion means, and the manufactured ice is used as the nuclear power. A cold heat storage type load leveling power generation system comprising an ice storage emergency core cooling means for supplying to a suppression pool of a power generation facility.
発電システムにおいて、前記貯蔵冷熱変換手段と前記氷
貯蔵非常用炉心冷却手段との熱交換は、それらの間を循
環する冷媒によって行うものとし、前記冷媒は、潜熱蓄
熱粒子を含むものであることを特徴とする冷熱貯蔵型負
荷平準化発電システム。10. The cold heat storage type load leveling power generation system according to claim 9, wherein heat exchange between said storage cold heat conversion means and said ice storage emergency core cooling means is performed by a refrigerant circulating between them. The cold heat storage type load leveling power generation system, wherein the refrigerant contains latent heat storage particles.
載の冷熱貯蔵型負荷平準化発電システムにおいて、前記
原子力発電設備の復水器および前記吸収式冷凍手段の復
液器への冷却水を海水とし、かつ前記冷却水冷却熱交換
手段または氷貯蔵非常用炉心冷却手段に代え、または加
えて、海水を凍結後に解凍して淡水を得る海水凍結淡水
化手段と、この海水凍結淡水化手段で得られた低温の淡
水の移送によって前記冷却水の冷却を行う冷淡水移送冷
却手段を設けたことを特徴とする冷熱貯蔵型負荷平準化
発電システム。11. The cold heat storage type load leveling power generation system according to any one of claims 5 to 10, wherein cooling water to a condenser of the nuclear power generation facility and a condenser of the absorption refrigeration unit is supplied. Seawater, and in place of or in addition to the cooling water cooling heat exchange means or ice storage emergency core cooling means, seawater frozen desalination means for thawing seawater to obtain fresh water after freezing, and this seawater frozen desalination means A cold heat storage type load leveling power generation system comprising a cold fresh water transfer cooling means for cooling the cooling water by transferring the obtained low temperature fresh water.
化発電システムにおいて、前記海水凍結淡水化手段は、
スタティック方式、ハーベスト方式その他の間接方式の
製氷手段を適用したものであることを特徴とする冷熱貯
蔵型負荷平準化発電システム。12. The cold heat storage type load leveling power generation system according to claim 11, wherein the seawater freezing desalination means comprises:
A cold heat storage type load leveling power generation system characterized by applying static, harvesting or other indirect ice making means.
載の冷熱貯蔵型負荷平準化発電システムにおいて、前記
液体空気製造手段は、液体空気とともに液体酸素および
液体窒素を製造する深冷空気分離装置を有するものとす
る一方、前記液体空気貯蔵槽に加えて液体酸素貯蔵槽お
よび液体窒素貯蔵槽を備え、電力需要が低下した時に余
剰電力と熱エネルギとを用いて液体空気とともに液体酸
素および液体窒素を製造して前記各貯蔵槽にそれぞれ貯
蔵し、電力需要が増大した時に前記液体空気および前記
液体窒素を気化して前記原子力発電設備の復水器および
前記吸収式冷凍手段の復液器の冷却水を冷却するととも
に、前記液体酸素は化石燃料火力発電プラントでの燃焼
用その他の用途に用いることを特徴とする冷熱貯蔵型負
荷平準化発電システム。13. The cold heat storage type load leveling power generation system according to claim 1, wherein the liquid air producing means produces liquid oxygen and liquid nitrogen together with liquid air. On the other hand, a liquid oxygen storage tank and a liquid nitrogen storage tank are provided in addition to the liquid air storage tank, and liquid oxygen and liquid nitrogen are used together with liquid air by using surplus power and thermal energy when the power demand decreases. Is stored in each of the storage tanks, and when the power demand increases, the liquid air and the liquid nitrogen are vaporized to cool the condenser of the nuclear power generation facility and the condenser of the absorption refrigeration means. A cold heat storage type load leveling power generation system characterized in that the liquid oxygen is used for combustion in a fossil-fuel-fired power plant as well as for cooling water. Mu.
備のタービンの中段より抽気した中圧蒸気を熱源とする
吸収式冷凍手段と、この吸収式冷凍手段の冷媒との熱交
換によって氷を製造するとともに貯蔵し、その氷と前記
原子力発電設備の復水器および前記吸収式冷凍手段の復
液器で使用する冷却水との熱交換を行わせる氷貯蔵冷却
水冷却手段とを備え、電力需要が低下した時に前記原子
力発電設備の余剰電力と熱エネルギとを用いて前記吸収
式冷凍手段および前記氷貯蔵冷却水冷却手段を稼動する
ことにより氷の製造および貯蔵を行う一方、電力需要が
増大した時に前記氷貯蔵冷却水冷却手段に貯蔵した氷を
用いて前記原子力発電設備の復水器および前記吸収式冷
凍手段の復液器の冷却水を冷却することを特徴とする冷
熱貯蔵型負荷平準化発電システム。14. Ice is manufactured by heat exchange between a nuclear power generation facility, an absorption type refrigeration means using a medium pressure steam extracted from a middle stage of a turbine of the nuclear power generation facility as a heat source, and a refrigerant of the absorption type refrigeration means. And an ice storage cooling water cooling means for storing heat with the ice and the cooling water used in the condenser of the nuclear power generation facility and the condenser of the absorption type refrigeration means to perform heat exchange. When the power demand increases, while the ice production and storage is performed by operating the absorption refrigeration means and the ice storage cooling water cooling means by using the surplus power and thermal energy of the nuclear power generation facility when the power demand increases. Cold heat storage type load leveling, characterized in that the ice water stored in the ice storage cooling water cooling means is used to cool the cooling water of the condenser of the nuclear power generation facility and the condenser of the absorption refrigeration means. Power generation system.
化発電システムにおいて、前記吸収式冷凍手段と前記氷
貯蔵冷却水冷却手段との間で潜熱媒体を循環して冷熱を
貯蔵する潜熱貯蔵手段を備え、電力需要が低下した時に
余剰電力と熱エネルギとを用いて潜熱貯蔵手段の潜熱媒
体を冷却して冷熱を貯蔵するとともに、前記潜熱貯蔵手
段から冷媒を前記氷貯蔵冷却水冷却手段に循環させて前
記氷貯蔵冷却水冷却手段で氷を製造および貯蔵し、電力
需要が増大した時に前記原子力発電設備の復水器および
前記吸収式冷凍手段の復液器の冷却水を前記氷貯蔵冷却
水冷却手段で冷却することを特徴とする冷熱貯蔵型負荷
平準化発電システム。15. The cold heat storage type load leveling power generation system according to claim 14, wherein a latent heat medium is circulated between the absorption refrigeration means and the ice storage cooling water cooling means to store cold heat. When the power demand is reduced, the latent heat medium of the latent heat storage means is cooled by using the surplus power and thermal energy to store cold heat, and the refrigerant is circulated from the latent heat storage means to the ice storage cooling water cooling means. Then, ice is produced and stored by the ice storage cooling water cooling means, and when the power demand increases, the cooling water of the condenser of the nuclear power generation facility and the condenser of the absorption type refrigeration means is changed to the ice storage cooling water. A cold heat storage type load leveling power generation system characterized by being cooled by a cooling means.
化発電システムにおいて、非常時に前記潜熱貯蔵手段か
ら前記原子力発電設備のサプレッションプールに冷媒を
循環させて除熱することを特徴とする冷熱貯蔵型負荷平
準化発電システム。16. The cold heat storage type load leveling power generation system according to claim 15, wherein a refrigerant is circulated from the latent heat storage means to a suppression pool of the nuclear power generation facility to remove heat in an emergency. Type load leveling power generation system.
備の低圧タービンの中段より抽気した蒸気または高圧タ
ービンの排蒸気を熱源とする水・アンモニア混合媒体サ
イクル利用の混合媒体発電設備および高濃度アンモニア
蒸気利用の冷媒製造手段と、この冷媒製造手段で製造し
た冷媒を用いて冷却することにより液体空気を製造する
液体空気製造手段と、この液体空気製造手段によって製
造した液体空気を貯える液体空気貯蔵槽と、この液体空
気貯蔵槽に貯えた液体空気を気化する時に得られる冷熱
と前記液体空気製造手段で空気を凝固する時に得られる
発熱とをそれぞれ保持してそれらの各作用時にその保持
熱を使用して熱交換を行う貯蔵冷熱変換手段と、前記原
子力発電設備、混合媒体発電設備および冷媒製造手段で
使用する冷却水を前記液体空気貯蔵槽から排出される空
気の冷熱との熱交換によって冷却する冷却水冷却熱交換
手段とを備え、電力需要が低下した時に前記原子力発電
設備の余剰電力と熱エネルギとを用いて前記液体空気製
造手段を稼動することにより液体空気を製造して前記液
体空気貯蔵槽に貯蔵するとともに、前記混合媒体発電設
備および冷媒製造手段を稼動して冷媒を製造し、電力需
要が増大した時に前記液体空気貯蔵槽から排出されて気
化した空気を用いて前記原子力発電設備の復水器および
前記混合媒体発電設備の凝縮器への冷却水を冷却するこ
とを特徴とする冷熱貯蔵型負荷平準化発電システム。17. A nuclear power plant, a mixed medium power plant using a water / ammonia mixed medium cycle, and a high-concentration ammonia vapor, which use as heat sources steam extracted from the middle stage of the low-pressure turbine of this nuclear power plant or exhaust steam of the high-pressure turbine. Refrigerant producing means for use, liquid air producing means for producing liquid air by cooling using the refrigerant produced by the refrigerant producing means, and a liquid air storage tank for storing the liquid air produced by the liquid air producing means The cold heat obtained when the liquid air stored in the liquid air storage tank is vaporized and the heat generated when the liquid air is solidified by the liquid air producing means are respectively retained, and the retained heat is used at each of these actions. The storage cold heat conversion means for exchanging heat and the cooling water used in the nuclear power generation equipment, mixed medium power generation equipment and refrigerant production means The cooling water cooling heat exchange means for cooling by heat exchange with the cold heat of the air discharged from the liquid air storage tank, and using the surplus power and thermal energy of the nuclear power generation facility when the power demand decreases Liquid air is produced by operating the liquid air producing means and stored in the liquid air storage tank, and the mixed medium power generation facility and the refrigerant producing means are operated to produce the refrigerant, and when the power demand increases, Cold heat storage type load leveling power generation, characterized in that the cooling water to the condenser of the nuclear power generation facility and the condenser of the mixed medium power generation facility is cooled by using the vaporized air discharged from the liquid air storage tank. system.
備の低圧タービンの中段より抽気した蒸気または高圧タ
ービンの排蒸気を熱源とする水・アンモニア混合媒体サ
イクル利用の混合媒体発電設備および高濃度アンモニア
蒸気利用の冷媒製造手段と、この冷媒製造手段で製造し
た冷熱を貯蔵する潜熱貯蔵手段と、この潜熱貯蔵手段に
熱移送回路を介して接続され、前記混合媒体発電設備の
凝縮器への冷却水を氷の状態で貯蔵して冷却する氷貯蔵
冷却水冷却手段とを備え、電力需要が低下した時に余剰
電力および熱エネルギを用いて前記潜熱貯蔵手段の潜熱
蓄熱粒子を冷却するとともに貯蔵し、かつ前記潜熱貯蔵
手段から潜熱蓄熱粒子を前記氷貯蔵海水冷却手段との間
で循環させて氷の製造および貯蔵を行い、電力需要が増
大した時に前記原子力発電設備の復水器および前記混合
媒体発電設備の凝縮器の冷却水を前記氷貯蔵海水冷却手
段によって冷却することを特徴とする冷熱貯蔵型負荷平
準化発電システム。18. A nuclear power generation facility, a mixed medium power generation facility using a water / ammonia mixed medium cycle, and a high-concentration ammonia vapor that use steam extracted from the middle stage of the low pressure turbine of the nuclear power generation facility or exhaust steam of the high pressure turbine as a heat source. Refrigerant producing means for use, latent heat storage means for storing cold heat produced by the refrigerant producing means, and a latent heat storage means connected to the latent heat storage means via a heat transfer circuit, for supplying cooling water to the condenser of the mixed medium power generation facility. An ice storage cooling water cooling means for storing and cooling in the state of ice, and cooling and storing the latent heat storage particles of the latent heat storage means by using surplus power and thermal energy when the power demand decreases, and The latent heat storage particles are circulated between the latent heat storage means and the ice storage seawater cooling means to produce and store ice, and when the power demand increases, the atoms A cold heat storage type load leveling power generation system, wherein cooling water for a condenser of a power generation facility and a condenser of the mixed medium power generation facility is cooled by the ice storage seawater cooling means.
発電設備に代えて、ガス冷却高温炉発電設備、化石燃料
燃焼発電設備または廃棄物焼却発電プラントを備え、こ
れらの発電設備に適用される蒸気タービンの復水器への
冷却水を電力需要増大時に冷却することを特徴とする冷
熱貯蔵型負荷平準化発電システム。19. A gas-cooled high temperature reactor power generation facility, a fossil fuel combustion power generation facility or a waste incineration power generation plant is provided in place of the nuclear power generation facility according to any one of claims 1 to 18, and is applied to these power generation facilities. A cold heat storage type load leveling power generation system, characterized in that cooling water for a condenser of a steam turbine is cooled when power demand increases.
蔵型負荷平準化発電システムを使用して、昼夜連続的に
発電を行い、夜間の電力需要が低下した時に発電設備の
余剰電力と熱エネルギとを用いて冷熱の貯蔵を行い、昼
間の電力需要が増大した時に前記貯蔵した冷熱を前記発
電設備の復水器およびその発電設備の付帯設備または手
段の復液器または凝縮器の冷却水を冷却することを特徴
とする発電方法。20. The cold heat storage type load leveling power generation system according to any one of claims 1 to 19 is used to continuously generate power during the day and night, and the surplus power and heat of the power generation facility are reduced when the power demand at night decreases. Cold energy is stored by using energy, and when the daytime power demand increases, the stored cold energy is used for the condenser of the power generation equipment and the cooling water for the condenser or condenser of the auxiliary equipment or means of the power generation equipment. A method for generating electricity, which comprises cooling the.
復水器、復液器または凝縮器の冷却水として海水を適用
することを特徴とする発電方法。21. The power generation method according to claim 20,
A power generation method characterized in that seawater is applied as cooling water for a condenser, a condenser or a condenser.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23880898A JP2000064813A (en) | 1998-08-25 | 1998-08-25 | Cold storage type load leveling power generating system and power generating method using this system |
CN 99111647 CN1207726C (en) | 1998-08-25 | 1999-08-24 | Heat storage load normalizing power generation system and generation method for said system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23880898A JP2000064813A (en) | 1998-08-25 | 1998-08-25 | Cold storage type load leveling power generating system and power generating method using this system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000064813A true JP2000064813A (en) | 2000-02-29 |
Family
ID=17035602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23880898A Pending JP2000064813A (en) | 1998-08-25 | 1998-08-25 | Cold storage type load leveling power generating system and power generating method using this system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2000064813A (en) |
CN (1) | CN1207726C (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007516407A (en) * | 2003-12-23 | 2007-06-21 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Cryogenic air separation method and equipment |
CN101709659A (en) * | 2009-09-14 | 2010-05-19 | 刘福军 | Process for improving efficiency of steam turbine by adopting liquid air as cooling medium |
FR2990019A1 (en) * | 2012-10-12 | 2013-11-01 | Air Liquide | Method for separating air by cryogenic distillation in column system, involves slacking super-cooled liquid from column by turbines, and sending diphasic flow product toward column that is operated at lower pressure |
JP2014006036A (en) * | 2012-06-27 | 2014-01-16 | Jfe Steel Corp | Raw material air cooling method and apparatus of air liquefaction separation facility |
KR20160148814A (en) * | 2015-06-16 | 2016-12-27 | 현대중공업 주식회사 | Combined cycle power generation system |
KR20170136138A (en) * | 2016-05-31 | 2017-12-11 | 현대중공업 주식회사 | Combined cycle power generation system |
CN110145895A (en) * | 2019-06-17 | 2019-08-20 | 李国庆 | A kind of scroll refrigerant engine |
CN113154796A (en) * | 2021-03-23 | 2021-07-23 | 金川集团股份有限公司 | Variable multi-cycle oxygen-nitrogen cold energy utilization device and method for recycling oxygen-nitrogen resources |
KR20220132303A (en) * | 2021-03-23 | 2022-09-30 | 한국전력기술 주식회사 | Liquefied Air Energy Storage System Linked to Nuclear Power Plant |
CN117570628A (en) * | 2023-12-27 | 2024-02-20 | 济南金孚瑞热能设备制造有限公司 | Efficient refrigerating device for peak shaving and energy storage of virtual power plant |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101719385B (en) * | 2009-12-08 | 2012-05-09 | 华北电力大学 | Superconductive heat tube type nuclear power heat-clod cogeneration system |
US10535437B2 (en) | 2010-02-18 | 2020-01-14 | Terrapower, Llc | Method, system, and apparatus for the thermal storage of nuclear reactor generated energy |
US9761337B2 (en) | 2010-02-18 | 2017-09-12 | Terrapower, Llc | Method, system, and apparatus for the thermal storage of nuclear reactor generated energy |
US9728288B2 (en) * | 2010-02-18 | 2017-08-08 | Terrapower, Llc | Method, system, and apparatus for the thermal storage of energy generated by multiple nuclear reactor systems |
US9748007B2 (en) | 2010-02-18 | 2017-08-29 | Terrapower, Llc | Method, system, and apparatus for the thermal storage of energy generated by multiple nuclear reactor systems |
KR101250516B1 (en) * | 2011-09-08 | 2013-04-03 | 한전원자력연료 주식회사 | passive auxiliary condensing apparatus for nuclear power plant |
CN102817657B (en) * | 2012-09-12 | 2014-08-27 | 重庆大学 | Heat pipe technology based organic Rankine cycle low-temperature exhaust heat power generating system |
FR3015555A1 (en) * | 2013-12-20 | 2015-06-26 | Air Liquide | METHOD AND APPARATUS FOR GENERATING ELECTRICITY USING A THERMAL OR NUCLEAR POWER PLANT |
CN108729967B (en) * | 2017-04-25 | 2024-02-06 | 国家电投集团科学技术研究院有限公司 | Nuclear power generation system and control method thereof |
CN111928399A (en) * | 2020-09-15 | 2020-11-13 | 中山市西江建筑工程有限公司 | Spare cold source system for underground combat readiness engineering |
CN112627925B (en) * | 2020-12-28 | 2023-03-10 | 中国长江三峡集团有限公司 | A flexible power station based on supercritical carbon dioxide power cycle combined with seawater desalination and its regulation method |
-
1998
- 1998-08-25 JP JP23880898A patent/JP2000064813A/en active Pending
-
1999
- 1999-08-24 CN CN 99111647 patent/CN1207726C/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4885734B2 (en) * | 2003-12-23 | 2012-02-29 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Cryogenic air separation method and equipment |
JP2007516407A (en) * | 2003-12-23 | 2007-06-21 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Cryogenic air separation method and equipment |
CN101709659A (en) * | 2009-09-14 | 2010-05-19 | 刘福军 | Process for improving efficiency of steam turbine by adopting liquid air as cooling medium |
JP2014006036A (en) * | 2012-06-27 | 2014-01-16 | Jfe Steel Corp | Raw material air cooling method and apparatus of air liquefaction separation facility |
FR2990019A1 (en) * | 2012-10-12 | 2013-11-01 | Air Liquide | Method for separating air by cryogenic distillation in column system, involves slacking super-cooled liquid from column by turbines, and sending diphasic flow product toward column that is operated at lower pressure |
KR102115054B1 (en) * | 2015-06-16 | 2020-05-26 | 현대중공업파워시스템 주식회사 | Combined cycle power generation system |
KR20160148814A (en) * | 2015-06-16 | 2016-12-27 | 현대중공업 주식회사 | Combined cycle power generation system |
KR20170136138A (en) * | 2016-05-31 | 2017-12-11 | 현대중공업 주식회사 | Combined cycle power generation system |
KR102195228B1 (en) * | 2016-05-31 | 2020-12-28 | 한국조선해양 주식회사 | Combined cycle power generation system |
CN110145895A (en) * | 2019-06-17 | 2019-08-20 | 李国庆 | A kind of scroll refrigerant engine |
CN113154796A (en) * | 2021-03-23 | 2021-07-23 | 金川集团股份有限公司 | Variable multi-cycle oxygen-nitrogen cold energy utilization device and method for recycling oxygen-nitrogen resources |
KR20220132303A (en) * | 2021-03-23 | 2022-09-30 | 한국전력기술 주식회사 | Liquefied Air Energy Storage System Linked to Nuclear Power Plant |
KR102531725B1 (en) | 2021-03-23 | 2023-05-11 | 한국전력기술 주식회사 | Liquid air energy storage system linked to Nuclear power plant |
CN117570628A (en) * | 2023-12-27 | 2024-02-20 | 济南金孚瑞热能设备制造有限公司 | Efficient refrigerating device for peak shaving and energy storage of virtual power plant |
Also Published As
Publication number | Publication date |
---|---|
CN1207726C (en) | 2005-06-22 |
CN1252606A (en) | 2000-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000064813A (en) | Cold storage type load leveling power generating system and power generating method using this system | |
US11578623B2 (en) | Cryogenic combined cycle power plant | |
ES2673976T3 (en) | Method and apparatus for energy storage | |
US8931277B2 (en) | System and method for storing energy and purifying fluid | |
JP4623600B2 (en) | High performance heat storage and cooling system using refrigerant | |
CN111473540B (en) | Ship waste heat driven CO2Supercritical power generation coupling transcritical refrigeration cycle system | |
CN109798159A (en) | Distributed energy-changing method and system | |
JP2001193483A (en) | Gas turbine system | |
RU2680285C2 (en) | Station for reducing gas pressure and liquefying gas | |
JPH11350920A (en) | Exhaust heat recovery system | |
EP2330280A1 (en) | Method of operating a gas turbine; a gas turbine system; and a method and system for cooling a hydrocarbon stream | |
JPH10238366A (en) | Energy storage type gas turbine power generation system | |
JP2001116198A (en) | Air cooling apparatus | |
JPH0320570A (en) | Cooling system and air-cooling method | |
JPH11303646A (en) | Gas turbine power plant | |
JPH11343865A (en) | Cryogenic turbine power generation system | |
JP2000120404A (en) | Combined power generating plant | |
CN109282397B (en) | Novel energy storage air conditioner and method based on air compression refrigeration cycle | |
JP2002168101A (en) | Composite energy system | |
JP2005291094A (en) | Power plant facility using liquefied gas vaporizing device | |
JP2000002790A (en) | Nuclear power combinat | |
KR101103337B1 (en) | Gas precooling device for natural gas liquefaction using absorption chiller | |
CN110294505B (en) | Freezing seawater desalination system based on solar energy and LNG cold energy | |
RU2826330C1 (en) | Heat and cold supply method | |
Gladis et al. | Ice crystal slurry TES system using the orbital rod evaporator |