JP2000058377A - Laminated ceramic capacitor - Google Patents
Laminated ceramic capacitorInfo
- Publication number
- JP2000058377A JP2000058377A JP10227202A JP22720298A JP2000058377A JP 2000058377 A JP2000058377 A JP 2000058377A JP 10227202 A JP10227202 A JP 10227202A JP 22720298 A JP22720298 A JP 22720298A JP 2000058377 A JP2000058377 A JP 2000058377A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic capacitor
- multilayer ceramic
- dielectric
- tio
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003985 ceramic capacitor Substances 0.000 title claims abstract description 48
- 239000000919 ceramic Substances 0.000 claims abstract description 52
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 7
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 26
- 239000000843 powder Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 15
- 239000002994 raw material Substances 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 238000007747 plating Methods 0.000 claims description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 4
- JXDXDSKXFRTAPA-UHFFFAOYSA-N calcium;barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[Ca+2].[Ti+4].[Ba+2] JXDXDSKXFRTAPA-UHFFFAOYSA-N 0.000 abstract description 13
- -1 Tb2O3 Inorganic materials 0.000 abstract description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 239000002131 composite material Substances 0.000 abstract 1
- 239000000470 constituent Substances 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(III) oxide Inorganic materials O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 abstract 1
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(III) oxide Inorganic materials O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 abstract 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 abstract 1
- JYTUFVYWTIKZGR-UHFFFAOYSA-N holmium oxide Inorganic materials [O][Ho]O[Ho][O] JYTUFVYWTIKZGR-UHFFFAOYSA-N 0.000 abstract 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 abstract 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 abstract 1
- 229910052573 porcelain Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- FIXNOXLJNSSSLJ-UHFFFAOYSA-N ytterbium(III) oxide Inorganic materials O=[Yb]O[Yb]=O FIXNOXLJNSSSLJ-UHFFFAOYSA-N 0.000 abstract 1
- 239000011575 calcium Substances 0.000 description 13
- 239000010936 titanium Substances 0.000 description 13
- 238000010304 firing Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 229910052788 barium Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000010953 base metal Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910052691 Erbium Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- FQNGWRSKYZLJDK-UHFFFAOYSA-N [Ca].[Ba] Chemical compound [Ca].[Ba] FQNGWRSKYZLJDK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電子機器に用いら
れる積層セラミックコンデンサ、特に、ニッケル又は、
ニッケル合金からなる内部電極を有する積層セラミック
コンデンサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic capacitor for use in electronic equipment, and
The present invention relates to a multilayer ceramic capacitor having internal electrodes made of a nickel alloy.
【0002】[0002]
【従来の技術】積層セラミックコンデンサはセラミック
素子と内部電極金属が積層されたものである。最近で
は、コスト低減のため内部電極に高価な貴金属であるA
gやPdに代わって安価な卑金属であるNiが用いられ
るようになった。Niを電極に用いる場合には、Niが
酸化されない還元雰囲気で焼成する必要がある。還元雰
囲気中での焼成では、チタン酸バリウムからなるセラミ
ックは本来、還元されて半導体化する。しかしながら、
例えば、特公昭57−42588号公報に示されるよう
な、チタン酸バリウム固溶体における、バリウムサイト
/チタンサイトの比を化学量論比より過剰にした誘電体
材料の非還元化技術が発明されて以来、Niを電極とし
た積層セラミックコンデンサの実用化が可能となり、そ
の生産量が拡大している。2. Description of the Related Art A multilayer ceramic capacitor is formed by laminating a ceramic element and an internal electrode metal. Recently, an expensive noble metal, A, has been used for internal electrodes to reduce costs.
Inexpensive base metal Ni has been used in place of g and Pd. When Ni is used for the electrode, it is necessary to fire in a reducing atmosphere in which Ni is not oxidized. By firing in a reducing atmosphere, the ceramic made of barium titanate is originally reduced to a semiconductor. However,
For example, since the non-reducing technology of a dielectric material in which the ratio of barium site / titanium site in a barium titanate solid solution was made to be higher than the stoichiometric ratio as disclosed in JP-B-57-42588, was invented. And a multilayer ceramic capacitor using Ni as an electrode can be put to practical use, and the production volume thereof is expanding.
【0003】[0003]
【発明が解決しようとする課題】近年のエレクトロニク
スの発展に伴い電子部品の小型化が急速に進行し、積層
セラミックコンデンサも小型化、大容量化の傾向が顕著
である。又、これら積層セラミックコンデンサは、小型
大容量化とともに静電容量の温度安定性が求められてお
り、これまでの積層セラミックコンデンサ用のセラミッ
ク材料の開発は、誘電率の温度特性がよく、しかも高い
誘電率を持たせることに主眼が置かれていた。そして温
度特性のよい高誘電率材料として多くの材料が提案さ
れ、実用化されてきた。これらは、いずれも誘電率が3
000以上と高い材料である。そして、これらの材料が
提供されたことによって、静電容量の温度変化が少なく
高容量の積層セラミックコンデンサが可能となり、市場
拡大に大いに貢献してきた。With the development of electronics in recent years, the miniaturization of electronic components has rapidly progressed, and the tendency of multilayer ceramic capacitors to be smaller and have a larger capacity has been remarkable. In addition, these multilayer ceramic capacitors are required to have a small size and a large capacity, and also to have a temperature stability of an electrostatic capacitance. To date, the development of ceramic materials for multilayer ceramic capacitors has been required to have a good temperature characteristic of a dielectric constant and a high dielectric constant. The emphasis was on having a dielectric constant. Many materials have been proposed and put into practical use as high dielectric constant materials having good temperature characteristics. These have a dielectric constant of 3
It is a high material of over 000. The provision of these materials has made it possible to produce a high-capacity monolithic ceramic capacitor with a small temperature change in capacitance, which has greatly contributed to market expansion.
【0004】しかしながら、近年ではさらに小型大容量
化の要求が強まり、誘電体セラミック層をさらに薄層化
し、かつ多層化する必要が生じてきた。ところが、薄層
化することにより誘電体には高電界強度の電圧が印加さ
れることになり、従来の材料では誘電率が低下する、温
度特性が悪化する、信頼性が低下するなどの不都合が生
じ、積層セラミックコンデンサの大容量化にとって大き
な支障となっていた。特に、積層セラミックコンデンサ
の誘電体層の厚みを5μm以下にまで薄層化すると、内
部電極間のセラミック粒子の個数が10個以下程度と少
なくなり、信頼性の低下が著しく、薄層化に限界が生じ
ていた。このため、信頼性の高いしかも誘電率の電界強
度に対する安定性に優れた材料の開発が望まれている。However, in recent years, there has been an increasing demand for further miniaturization and large capacity, and it has become necessary to further reduce the thickness of the dielectric ceramic layer and increase the number of layers. However, the thinning of the layer causes a high electric field strength voltage to be applied to the dielectric, which causes disadvantages such as a decrease in the dielectric constant, a deterioration in the temperature characteristics, and a decrease in the reliability of the conventional material. This has been a major obstacle to increasing the capacity of the multilayer ceramic capacitor. In particular, when the thickness of the dielectric layer of the multilayer ceramic capacitor is reduced to 5 μm or less, the number of ceramic particles between the internal electrodes is reduced to about 10 or less, and the reliability is significantly reduced. Had occurred. For this reason, there is a demand for the development of a material that is highly reliable and that has excellent stability against the electric field strength of the dielectric constant.
【0005】そこで、本発明の目的は、誘電体セラミッ
ク層を薄層にして高電圧を印加した場合でも誘電率の低
下が小さく、実際の高電界がかけられた状態で安定した
静電容量を示し、静電容量の温度特性がJIS規格で規
定するB特性及びEIA規格で規定するX7R特性を満
足し、信頼性の高い、誘電体セラミック層を薄層化した
大容量の積層セラミックコンデンサを提供することにあ
る。Therefore, an object of the present invention is to reduce the dielectric constant even when a high voltage is applied by making the dielectric ceramic layer thin, and to provide a stable capacitance under an actual high electric field. Provided is a high-capacity multilayer ceramic capacitor with a thin dielectric ceramic layer that satisfies the B characteristic specified by the JIS standard and the X7R characteristic specified by the EIA standard. Is to do.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明の積層セラミックコンデンサは、複数の誘電
体セラミック層と、該誘電体セラミック層間に形成され
た内部電極と、該内部電極に電気的に接続された外部電
極とを備えた積層セラミックコンデンサにおいて、前記
誘電体セラミック層が、次の組成式、 {Ba1-xCaxO}mTiO2+αRe2O3+βMgO+
γMnO (但し、Re2O3は、Y2O3、Gd2O3、Tb2O3、D
y2O3、Ho2O3、Er2O3及びYb2O3の中から選ば
れる少なくとも1種以上であり、α、β及びγはモル比
を表わし、0.001≦α≦0.10、0.001≦β
≦0.12、0.001<γ≦0.12、1.000<
m≦1.035、0.005<x≦0.22の範囲内に
ある)で表わされ、かつ該誘電体セラミック層に用いる
{Ba1-xCaxO}TiO2原料中のアルカリ金属酸化
物の含有量が0.02重量%以下である主成分100重
量部に対して、第1の副成分をLi2O−(Si、T
i)O2−MO系(但し、MOはAl2O3及びZrO2の
中から選ばれる少なくとも1種である)の酸化物とし、
第2の副成分をSiO2−TiO2−XO系(XOはBa
O、CaO、SrO、MgO、ZnO及びMnOの中か
ら選ばれる少なくとも1種である)の酸化物としたとき
に、該第1又は第2の副成分のどちらか一方を0.2〜
5.0重量部含有しており、前記内部電極はニッケル又
はニッケル合金からなることを特徴とする。In order to achieve the above object, a multilayer ceramic capacitor according to the present invention comprises: a plurality of dielectric ceramic layers; an internal electrode formed between the dielectric ceramic layers; Wherein the dielectric ceramic layer has the following composition formula: {Ba 1 -x Ca x O} m TiO 2 + αRe 2 O 3 + βMgO +
γMnO (where Re 2 O 3 is Y 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , D
and the y 2 O 3, Ho 2 O 3, Er 2 O 3 and Yb 2 O 3 of at least one or more selected from among, alpha, beta and γ represent mole ratios, 0.001 ≦ α ≦ 0. 10, 0.001 ≦ β
≦ 0.12, 0.001 <γ ≦ 0.12, 1.000 <
m ≦ 1.035, 0.005 <x ≦ 0.22), and alkali metal in {Ba 1 -x Ca x O} TiO 2 raw material used for the dielectric ceramic layer With respect to 100 parts by weight of the main component having an oxide content of 0.02% by weight or less, the first subcomponent is Li 2 O— (Si, T
i) an oxide of an O 2 -MO system (where MO is at least one selected from Al 2 O 3 and ZrO 2 );
The second subcomponent is a SiO 2 —TiO 2 —XO system (XO is Ba
O, CaO, SrO, MgO, at least one selected from ZnO and MnO) when one of the first or second subcomponent is 0.2 to 0.2
The internal electrode is made of nickel or a nickel alloy.
【0007】又、前記誘電体セラミック層に用いる{B
a1-xCaxO}TiO2原料の平均粒径は、0.1〜
0.7μmであることを特徴とする。Further, ΔB used for the dielectric ceramic layer
The average particle size of the a 1-x Ca x O} TiO 2 raw material is 0.1 to
It is 0.7 μm.
【0008】又、前記第1の副成分は、xLi2O−y
(SiwTi1-w)O2−zMO(但し、x、y及びzは
モル%であり、wは0.30≦w≦1.0の範囲内にあ
る)で表わしたとき、それぞれの成分を頂点とする三元
組成図の、A(x=20,y=80,z=0)、B(x
=10,y=80,z=10)、C(x=10、y=7
0、z=20)、D(x=35、y=45、z=2
0)、E(x=45、y=45、z=10)、F(x=
45、y=55、z=0)、(但し、直線A−F上の組
成の場合は、wは0.3≦w<1.0の範囲内)で示さ
れる各点を結ぶ直線で囲まれた領域の内部又は線上にあ
ることを特徴とする。The first subcomponent is xLi 2 O-y
When represented by (Si w Ti 1-w ) O 2 -zMO (where x, y and z are mol%, and w is in the range of 0.30 ≦ w ≦ 1.0), A (x = 20, y = 80, z = 0), B (x
= 10, y = 80, z = 10), C (x = 10, y = 7)
0, z = 20), D (x = 35, y = 45, z = 2)
0), E (x = 45, y = 45, z = 10), F (x =
45, y = 55, z = 0) (however, in the case of the composition on the straight line AF, w is within a range of 0.3 ≦ w <1.0) and is surrounded by a straight line connecting points. Characterized in that it is located inside or on a line of the specified area.
【0009】又、前記第2の副成分は、xSiO2−y
TiO2−zXO系(但し、x、y及びzはモル%であ
る)で表わしたとき、それぞれの成分を頂点とする三元
組成図の、A(x=85、y=1、z=14)、B(x
=35、y=51、z=14)、C(x=30、y=2
0、z=50)、D(x=39、y=1、z=60)で
示される各点を結ぶ直線で囲まれた領域の内部又は線上
にあることを特徴とする。The second subcomponent is xSiO 2 -y
When expressed in a TiO 2 -zXO system (where x, y and z are mol%), A (x = 85, y = 1, z = 14) ), B (x
= 35, y = 51, z = 14), C (x = 30, y = 2)
0, z = 50) and D (x = 39, y = 1, z = 60) are inside or on a line surrounded by a straight line connecting points.
【0010】又、前記第2の副成分中には、前記SiO
2−TiO2−XO系の酸化物100重量部に対して、A
l2O3及びZrO2のうち少なくとも1種を合計で15
重量部以下(但し、ZrO2は5重量部以下)含有する
ことを特徴とする。In the second subcomponent, the SiO 2
For 100 parts by weight of the 2- TiO 2 —XO-based oxide, A
at least one of l 2 O 3 and ZrO 2 in a total of 15
It is characterized by containing not more than 5 parts by weight (however, not more than 5 parts by weight of ZrO 2 ).
【0011】又、前記外部電極は、導電性金属粉末、又
はガラスフリットを添加した導電性金属粉末の焼結層か
らなることを特徴とする。Further, the external electrode is formed of a sintered layer of a conductive metal powder or a conductive metal powder to which glass frit is added.
【0012】さらに、前記外部電極は、導電性金属粉
末、又はガラスフリットを添加した導電性金属粉末の焼
結層と、その上に形成されためっき層からなることを特
徴とする。Further, the external electrode comprises a sintered layer of a conductive metal powder or a conductive metal powder to which glass frit is added, and a plating layer formed thereon.
【0013】[0013]
【発明の実施の形態】まず、本発明の積層セラミックコ
ンデンサを、図面に基づき説明する。図1は本発明の積
層セラミックコンデンサの一例を示す断面図、図2は図
1の積層セラミックコンデンサのうち、内部電極を有す
る誘電体セラミック層部分を示す平面図、図3は図1の
積層セラミックコンデンサのうち、セラミック積層体部
分を示す分解斜視図である。本発明の積層セラミックコ
ンデンサ1は図1に示すように、内部電極4を介して複
数枚の誘電体セラミック層2a、2bを積層して得られ
たセラミック積層体3の両端面に、外部電極5、並びに
必要により第1のめっき層6及び第2のめっき層7が形
成されたものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a multilayer ceramic capacitor according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing an example of the multilayer ceramic capacitor of the present invention, FIG. 2 is a plan view showing a dielectric ceramic layer portion having internal electrodes in the multilayer ceramic capacitor of FIG. 1, and FIG. FIG. 3 is an exploded perspective view showing a ceramic laminate portion of the capacitor. As shown in FIG. 1, a multilayer ceramic capacitor 1 of the present invention has external electrodes 5 on both end surfaces of a ceramic laminate 3 obtained by laminating a plurality of dielectric ceramic layers 2a and 2b via internal electrodes 4. And, if necessary, a first plating layer 6 and a second plating layer 7 are formed.
【0014】誘電体セラミック層2a、2bは、チタン
酸バリウムカルシウム{Ba1-xCaxO}mTiO2と、
Y2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、E
r2O3及びYb2O3の中から選ばれる少なくとも1種類
以上と、MgOと、MnOを主成分とし、副成分として
Li2O−(Si,Ti)O2−MO系(MOはAl
2O3、ZrO2の中から選ばれる少なくとも1種類)の
酸化物、又はSiO2−TiO2−XO系(XOはBa
O、CaO、SrO、MgO、ZnO及びMnOの中か
ら選ばれる少なくとも1種類)の酸化物のどちらか一方
を含有させた誘電体磁器組成物で構成される。これによ
って、還元性雰囲気中で焼成しても、半導体化すること
なく焼成することができ、静電容量の温度特性がJIS
規格で規定するB特性及びEIA規格で規定するX7R
特性を満足し、室温及び高温の絶縁抵抗の高い、高信頼
性で絶縁耐力の優れた積層セラミックコンデンサが得ら
れる。The dielectric ceramic layers 2a and 2b are made of barium calcium titanate {Ba 1 -x Ca x O} m TiO 2 ;
Y 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , E
At least one selected from r 2 O 3 and Yb 2 O 3 , MgO and MnO as main components, and Li 2 O— (Si, Ti) O 2 —MO system (MO is Al
Oxides of at least one selected from 2 O 3 and ZrO 2 , or SiO 2 —TiO 2 —XO-based (XO is Ba)
O, CaO, SrO, MgO, ZnO and MnO) (at least one selected from oxides). Thus, even when firing in a reducing atmosphere, firing can be performed without forming a semiconductor, and the temperature characteristic of the capacitance is reduced according to JIS.
B characteristic specified by the standard and X7R specified by the EIA standard
A multilayer ceramic capacitor that satisfies the characteristics, has high insulation resistance at room temperature and high temperature, has high reliability, and has excellent dielectric strength can be obtained.
【0015】ここで、チタン酸バリウムカルシウム原料
として、平均粒径が0.1〜0.7μmのものを用いる
ことによって、誘電体セラミック層が薄く電界強度が高
くなった場合でも誘電率の電界による変化が小さく、
又、信頼性の高い積層セラミックコンデンサが得られ
る。又、誘電体セラミックは、Re成分(但し、Re
は、Y、Gd、Tb、Dy、Ho、Er及びYbの中か
ら選ばれる少なくとも1種以上)が焼成時の拡散によっ
て粒界近傍及び粒界に存在するコア・シェル構造を取
る。Here, by using a barium calcium titanate material having an average particle size of 0.1 to 0.7 μm, even if the dielectric ceramic layer is thin and the electric field strength is high, the electric field of the dielectric constant can be reduced. Little change,
Further, a highly reliable multilayer ceramic capacitor can be obtained. Also, the dielectric ceramic has a Re component (however, Re
Has a core-shell structure in which at least one selected from the group consisting of Y, Gd, Tb, Dy, Ho, Er and Yb) exists near and at the grain boundaries due to diffusion during firing.
【0016】又、チタン酸バリウムカルシウム原料とし
て、Na2O、K2Oなどのアルカリ金属酸化物の含有量
が0.02重量%以下のものを用いることによって、信
頼性の高い誘電体が得られる。By using a barium calcium titanate having an alkali metal oxide content of 0.02% by weight or less such as Na 2 O or K 2 O, a highly reliable dielectric material can be obtained. Can be
【0017】又、チタン酸バリウムカルシウム原料とし
ての(バリウム+カルシウム)/チタンの比(n)は特
に限定しない。粉末原料作製の安定性を考えた場合、n
は0.990〜1.035であれば、合成された粉末の
粒径バラツキが小さく望ましい。The ratio (n) of (barium + calcium) / titanium as a barium calcium titanate raw material is not particularly limited. Considering the stability of powder raw material production, n
If 0.990 to 1.035, the variation in the particle size of the synthesized powder is preferably small.
【0018】又、上記主成分中に含有させたLi2O−
(Si,Ti)O2−MO系の酸化物によって、125
0℃以下と比較的低温度で焼結させることができ、高温
負荷特性が向上する。又、上記主成分中に含有させたS
iO2−TiO2−XO系の酸化物によって、焼結性がよ
くなるとともに、高温負荷特性及び耐湿負荷特性が向上
する。さらに、前記SiO2−TiO2−XOの酸化物に
Al2O3、ZrO2を含有させることで、より高い絶縁
抵抗が得られる。Further, Li 2 O—
125 (Si, Ti) O 2 -MO based oxide
Sintering can be performed at a relatively low temperature of 0 ° C. or less, and high-temperature load characteristics are improved. In addition, S contained in the above main component
by iO 2 -TiO 2 -XO based oxides, along with sinterability is improved, thereby improving the high-temperature load characteristics and moisture load characteristics. Further, when the oxide of SiO 2 —TiO 2 —XO contains Al 2 O 3 and ZrO 2 , higher insulation resistance can be obtained.
【0019】次に、内部電極4は、卑金属であるニッケ
ル又はニッケル合金によって構成される。Next, the internal electrode 4 is made of nickel or a nickel alloy which is a base metal.
【0020】又、外部電極5は、Ag、Pd、Ag−P
d、Cu、Cu合金などの種々の導電性金属の焼結層、
又は、上記導電性金属粉末とB2O3−Li2O−SiO2
−BaO系、B2O3−SiO2−BaO系,Li2O−S
iO2−BaO系、B2O3−SiO2−ZnO系などの種
々のガラスフリットとを配合した焼結層によって構成さ
れる。そして、この焼結層の上に、めっき層を形成する
ことも可能である。このめっき層としては、Ni、C
u、Ni−Cu合金などからなる第1のめっき層6のみ
でもよいし、さらにその上にはんだ、錫などの第2のめ
っき層7を形成してもよい。The external electrodes 5 are made of Ag, Pd, Ag-P
d, Cu, sintered layers of various conductive metals such as Cu alloys,
Alternatively, the conductive metal powder and B 2 O 3 —Li 2 O—SiO 2
—BaO, B 2 O 3 —SiO 2 —BaO, Li 2 O—S
It is constituted by a sintered layer in which various glass frit such as iO 2 —BaO type, B 2 O 3 —SiO 2 —ZnO type are mixed. And it is also possible to form a plating layer on this sintered layer. As this plating layer, Ni, C
Only the first plating layer 6 made of u, Ni—Cu alloy, or the like may be used, or a second plating layer 7 made of solder, tin, or the like may be further formed thereon.
【0021】次に、本発明の積層セラミックコンデンサ
の製造方法について、図1〜3を参照して製造工程順に説
明する。まず、誘電体セラミック用の原料として、酸化
物や炭酸塩などを高温で反応させる固相法により作製し
た原料粉末や、アルコキシド法あるいは水熱合成法など
の湿式合成法により作製した原料粉末を準備する。な
お、添加剤などは、酸化物や炭酸塩などの粉末以外に、
アルコキシド、有機金属などの溶液を用いることもでき
る。Next, a method of manufacturing a multilayer ceramic capacitor according to the present invention will be described in the order of manufacturing steps with reference to FIGS. First, as a raw material for a dielectric ceramic, a raw material powder prepared by a solid phase method in which an oxide or a carbonate is reacted at a high temperature, or a raw material powder prepared by a wet synthesis method such as an alkoxide method or a hydrothermal method is prepared. I do. In addition, additives and the like, in addition to powders such as oxides and carbonates,
Solutions such as alkoxides and organic metals can also be used.
【0022】その後、準備した原料を所定の組成比率に
秤量し混合した後、有機バインダを加えてスラリー化
し、シート状に成形してグリーンシート(誘電体セラミ
ック層2a、2b)を得る。次いで、グリーンシート
(誘電体セラミック層2b)の一面にニッケル又はニッ
ケル合金からなる内部電極4を形成する。なお、内部電
極4を形成する方法は、スクリーン印刷などによる形成
でも、蒸着、めっき法による形成でも構わない。Thereafter, the prepared raw materials are weighed and mixed at a predetermined composition ratio, and then mixed with an organic binder to form a slurry, and formed into a sheet to obtain green sheets (dielectric ceramic layers 2a and 2b). Next, an internal electrode 4 made of nickel or a nickel alloy is formed on one surface of the green sheet (dielectric ceramic layer 2b). The method for forming the internal electrodes 4 may be screen printing or the like, or may be deposition or plating.
【0023】その後、内部電極4を有するグリーンシー
ト(誘電体セラミック層2b)を必要枚数積層し、図3
に示す如く、内部電極を有しないグリーンシート(誘電
体セラミック層2a)に挟んで圧着し、積層体とする。
そして、この積層体を還元雰囲気中、所定の温度にて焼
成し、セラミック積層体3を得る。Thereafter, a required number of green sheets (dielectric ceramic layers 2b) having the internal electrodes 4 are laminated, and FIG.
As shown in (1), a green sheet (dielectric ceramic layer 2a) having no internal electrode is sandwiched and pressed to form a laminate.
Then, the laminate is fired at a predetermined temperature in a reducing atmosphere to obtain a ceramic laminate 3.
【0024】その後、セラミック積層体3の両端面に、
内部電極4と電気的に接続するように、一対の外部電極
5を形成する。なお、一般的に、外部電極5は、材料と
なる金属粉末ペーストを焼成により得たセラミック積層
体3に塗布して、焼き付けることによって形成される
が、焼成前に塗布して、セラミック積層体3と同時に形
成することもできる。Then, on both end surfaces of the ceramic laminate 3,
A pair of external electrodes 5 are formed so as to be electrically connected to the internal electrodes 4. In general, the external electrode 5 is formed by applying a metal powder paste as a material to the ceramic laminate 3 obtained by firing and baking. It can also be formed at the same time.
【0025】そして最後に、外部電極5上に必要に応じ
て、第1のめっき層6、第2のめっき層7を形成し、積
層セラミックコンデンサ1を完成させる。Finally, a first plating layer 6 and a second plating layer 7 are formed on the external electrodes 5 as necessary, and the multilayer ceramic capacitor 1 is completed.
【0026】[0026]
【実施例】(実施例1)まず、出発原料としてTiO2、
BaCO3及びCaCO3を準備し、混合粉砕した後、1
000℃以上の温度で加熱して、表1に示す9種類のチ
タン酸バリウムカルシウムを合成した。なお、原料の粒
子径は走査型電子顕微鏡で観察し、その平均粒径を求め
た。EXAMPLES (Example 1) First, TiO 2 as a starting material ,
BaCO 3 and CaCO 3 were prepared and mixed and pulverized.
By heating at a temperature of 000 ° C. or more, nine kinds of barium calcium titanates shown in Table 1 were synthesized. The particle size of the raw material was observed with a scanning electron microscope, and the average particle size was determined.
【0027】[0027]
【表1】 [Table 1]
【0028】又、第1の副成分として0.25Li2O
−0.65(0.30TiO2・0.70SiO2)−
0.10Al2O3(モル比)の組成割合になるように、
各成分の酸化物、炭酸塩及び水酸化物を秤量し、混合粉
砕して粉末を得た。同様に、第2の副成分として、0.
66SiO2−0.17TiO2−0.15BaO−0.
02MnO(モル比)の組成割合になるように、各成分
の酸化物、炭酸塩及び水酸化物を秤量し、混合粉砕して
粉末を得た。次に、これら第1及び第2の副成分の粉末
を別々の白金ルツボ中において、1500℃まで加熱し
た後、急冷し、粉砕することによって、平均粒径が1μ
m以下のそれぞれの酸化物粉末を得た。Also, 0.25Li 2 O is used as the first subcomponent.
-0.65 (0.30TiO 2 · 0.70SiO 2) -
0.10 Al 2 O 3 (molar ratio)
The oxides, carbonates and hydroxides of each component were weighed and mixed and pulverized to obtain a powder. Similarly, as the second subcomponent, 0.
66SiO 2 -0.17TiO 2 -0.15BaO-0.
Oxides, carbonates and hydroxides of the respective components were weighed so as to have a composition ratio of 02MnO (molar ratio) and mixed and pulverized to obtain a powder. Next, the powders of the first and second subcomponents are heated to 1500 ° C. in separate platinum crucibles, quenched, and pulverized, so that the average particle diameter is 1 μm.
m or less of each oxide powder was obtained.
【0029】次に、チタン酸バリウムカルシウムとして
の(Ba,Ca)/Tiモル比mを調整するためのBa
CO3あるいはTiO2、及び純度99%以上のY2O3、
Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、
Yb2O3、MgO及びMnOを準備した。これらの原料
粉末と第1又は第2の副成分である上記酸化物粉末を表
2に示す組成になるように秤量した。なお、第1、及び
第2の副成分の添加量は、主成分[{Ba1-xCaxO}m
TiO2+αRe2O3+βMgO+γMnO]100重量
部に対する添加重量部数である。そして、この秤量物に
ポリビニルブチラール系バインダー及びエタノールなど
の有機溶剤を加えて、ボールミルにより湿式混合し、セ
ラミックスラリーを調整した。このセラミックスラリー
をドクターブレード法によりシート成形し、厚み4.5
μmの矩形のグリーンシートを得た。次に、このセラミ
ックグリーンシート上に、Niを主体とする導電ペース
トを印刷し、内部電極を構成するための導電ペースト層
を形成した。Next, Ba for adjusting the (Ba, Ca) / Ti molar ratio m as barium calcium titanate is used.
CO 3 or TiO 2 , and Y 2 O 3 having a purity of 99% or more,
Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 ,
Yb 2 O 3 , MgO and MnO were prepared. These raw material powders and the oxide powder as the first or second subcomponent were weighed to have the composition shown in Table 2. The amount of the first and second subcomponents added depends on the amount of the main component [{Ba 1-x Ca x O} m
[TiO 2 + αRe 2 O 3 + βMgO + γMnO] 100 parts by weight. An organic solvent such as a polyvinyl butyral-based binder and ethanol was added to the weighed product, and the mixture was wet-mixed with a ball mill to prepare a ceramic slurry. This ceramic slurry is formed into a sheet by a doctor blade method and has a thickness of 4.5.
A rectangular green sheet of μm was obtained. Next, a conductive paste mainly composed of Ni was printed on the ceramic green sheet to form a conductive paste layer for forming internal electrodes.
【0030】[0030]
【表2】 [Table 2]
【0031】その後、導電ペースト層が形成されたセラ
ミックグリーンシートを導電ペースト層の引き出されて
いる側が互い違いとなるように複数枚積層し、積層体を
得た。この積層体を、N2雰囲気中にて350℃の温度
に加熱し、バインダーを燃焼させた後、酸素分圧10-9
〜10-12MPaのH2−N2−H2Oガスからなる還元性
雰囲気中において表3に示す温度で2時間焼成し、セラ
ミック焼結体を得た。Thereafter, a plurality of ceramic green sheets on which the conductive paste layer was formed were laminated so that the side from which the conductive paste layer was drawn out was alternated, to obtain a laminate. This laminate was heated to a temperature of 350 ° C. in an N 2 atmosphere to burn the binder, and then the oxygen partial pressure was 10 −9.
It was calcined at a temperature shown in Table 3 for 2 hours in a reducing atmosphere composed of H 2 —N 2 —H 2 O gas of 10 to 10 −12 MPa to obtain a ceramic sintered body.
【0032】焼成後、得られたセラミック焼結体の両端
面にB2O3−Li2O−SiO2−BaO系のガラスフリ
ットを含有するAgペーストを塗布し、N2雰囲気中で
600℃の温度で焼付け、内部電極と電気的に接続され
た外部電極を形成した。After firing, an Ag paste containing a glass frit of B 2 O 3 —Li 2 O—SiO 2 —BaO system was applied to both end surfaces of the obtained ceramic sintered body, and the paste was heated to 600 ° C. in an N 2 atmosphere. At this temperature, an external electrode electrically connected to the internal electrode was formed.
【0033】このようにして得られた積層セラミックコ
ンデンサの外形寸法は幅:5.0mm、長さ:5.7m
m、厚さ:2.4mmであり、内部電極間に介在する誘
電体セラミック層の厚みは3μmであった。又、有効誘
電体セラミック層の総数は5であり、一層当たりの対向
電極の面積は16.3×10-6m2であった。The external dimensions of the multilayer ceramic capacitor thus obtained are as follows: width: 5.0 mm, length: 5.7 m
m, thickness: 2.4 mm, and the thickness of the dielectric ceramic layer interposed between the internal electrodes was 3 μm. The total number of effective dielectric ceramic layers was 5, and the area of the counter electrode per layer was 16.3 × 10 −6 m 2 .
【0034】次に、これらこれら積層セラミックコンデ
ンサの電気的特性を測定した。静電容量及び誘電損失
(tanδ)は自動ブリッジ式測定器を用い、JISC
5102にしたがって測定し、得られた静電容量から誘
電率を算出した。又、絶縁抵抗計を用い、10Vの直流
電圧を2分間印加して25℃での絶縁抵抗を求め、比抵
抗(ρ)を算出した。Next, the electrical characteristics of these multilayer ceramic capacitors were measured. Capacitance and dielectric loss (tan δ) were measured using JISC
The measurement was performed according to 5102, and the dielectric constant was calculated from the obtained capacitance. Further, using an insulation resistance meter, a DC voltage of 10 V was applied for 2 minutes to determine the insulation resistance at 25 ° C., and the specific resistance (ρ) was calculated.
【0035】又、DCバイアス特性を測定した。即ち、
直流電圧を15V印加(即ち、5kV/mm印加)した
状態での静電容量を求め、直流電圧を印加しない場合の
静電容量に対する容量変化率(ΔC%)を求めた。Further, the DC bias characteristics were measured. That is,
The capacitance was measured when a DC voltage of 15 V was applied (that is, 5 kV / mm was applied), and the capacitance change rate (ΔC%) with respect to the capacitance when no DC voltage was applied was determined.
【0036】又、温度変化に対する静電容量の変化率を
測定した。この容量温度変化率については、20℃での
静電容量を基準とした−25℃から85℃間の変化率の
最大値(ΔC/C20)と、25℃での静電容量を基準
とした−55℃から125℃間の変化率の最大値(ΔC
/C25)を求めた。Further, the rate of change of the capacitance with respect to the temperature change was measured. The rate of change of the capacitance with temperature is based on the maximum value (ΔC / C20) of the rate of change between −25 ° C. and 85 ° C. based on the capacitance at 20 ° C. and the capacitance at 25 ° C. The maximum value of the rate of change between -55 ° C and 125 ° C (ΔC
/ C25).
【0037】又、高温負荷試験として、温度150℃に
て直流電圧を30V印加して、その絶縁抵抗の経時変化
を測定した。なお、高温負荷試験では、各試料の絶縁抵
抗値が105Ω以下になったときの時間を寿命時間と
し、複数の試料についての平均寿命時間を求めた。Further, as a high temperature load test, a DC voltage of 30 V was applied at a temperature of 150 ° C., and the change with time of the insulation resistance was measured. In the high-temperature load test, the time when the insulation resistance value of each sample became 10 5 Ω or less was defined as the lifetime, and the average lifetime for a plurality of samples was determined.
【0038】さらに、昇圧速度100V/秒でDC電圧
を印加し、絶縁破壊電圧を測定した。以上の結果を表3
に示す。Further, a DC voltage was applied at a step-up rate of 100 V / sec, and a dielectric breakdown voltage was measured. Table 3 shows the above results.
Shown in
【0039】[0039]
【表3】 [Table 3]
【0040】又、得られた積層セラミックコンデンサの
断面を研磨し化学エッチングして、誘電体セラミックの
グレイン径を走査型電子顕微鏡で観察したところ、本発
明の範囲内の試料においては、いずれも原料であるチタ
ン酸バリウムカルシウムの粒子径とほとんど同じであっ
た。The cross section of the obtained multilayer ceramic capacitor was polished and chemically etched, and the grain diameter of the dielectric ceramic was observed with a scanning electron microscope. Was almost the same as the particle size of barium calcium titanate.
【0041】表1〜表3から明らかなように、本発明に
よる積層セラミックコンデンサでは、温度に対する静電
容量の変化率が−25℃〜+85℃の範囲でJIS規格
に規定するB特性規格を満足し、−55℃〜125℃の
範囲内でEIA規格に規定するX7R特性規格を満足す
る。しかも、5kV/mmのDC電圧を印加した場合の
容量変化率が51%以内と小さく、薄層での使用に際し
ても静電容量の変化が小さい。さらに、高温負荷試験で
の平均寿命時間は52時間以上と長く、焼成温度も12
50℃以下の温度で焼成可能である。As is clear from Tables 1 to 3, the multilayer ceramic capacitor according to the present invention satisfies the B characteristic standard stipulated by the JIS standard when the rate of change of the capacitance with respect to temperature is in the range of -25 ° C. to + 85 ° C. However, it satisfies the X7R characteristic standard specified in the EIA standard within the range of -55 ° C to 125 ° C. In addition, the rate of change in capacitance when a DC voltage of 5 kV / mm is applied is as small as 51% or less, and the change in capacitance is small even when used in a thin layer. Further, the average life time in the high temperature load test is as long as 52 hours or more, and the firing temperature is 12 hours.
It can be fired at a temperature of 50 ° C. or less.
【0042】ここで、本発明の組成限定理由について説
明する。 {Ba1-xCaxO}mTiO2+αRe2O3+βMgO+
γMnO (但し、Re2O3は、Y2O3、Gd2O3、Tb2O3、D
y2O3、Ho2O3、Er2O3及びYb2O3の中から選ば
れる少なくとも1種以上であり、α、β及びγはモル比
を表わす)において、試料番号1のように、CaO量x
が0.005以下の場合には、電圧印加による容量変化
率が大きく、平均寿命時間が極端に短かくなり好ましく
ない。一方、試料番号2のようにCaO量xが0.22
を超える場合には、誘電損失が大きくなり好ましくな
い。したがって、CaO量xは0.005<x≦0.2
2の範囲が好ましい。Here, the reasons for limiting the composition of the present invention will be described. {Ba 1-x Ca x O} m TiO 2 + αRe 2 O 3 + βMgO +
γMnO (where Re 2 O 3 is Y 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , D
y 2 O 3 , Ho 2 O 3 , Er 2 O 3, and Yb 2 O 3 , and at least one selected from the group consisting of α, β, and γ, which represents a molar ratio. , CaO amount x
Is 0.005 or less, the rate of change in capacitance due to voltage application is large, and the average life time is extremely short. On the other hand, as shown in Sample No. 2, the CaO amount x was 0.22.
If it exceeds, the dielectric loss is undesirably large. Therefore, the CaO amount x is 0.005 <x ≦ 0.2
A range of 2 is preferred.
【0043】又、試料番号3のように、Re2O3量αが
0.001未満の場合には、平均寿命時間が極端に短くな
り好ましくない。一方、試料番号4のようにRe2O3量
αが0.10を超える場合には、温度特性がB特性/X
7R特性を満足せず、平均寿命時間が短くなり好ましく
ない。したがって、Re2O3量αは0.001≦α≦
0.10の範囲が好ましい。As shown in Sample No. 3, the amount α of Re 2 O 3 was
If it is less than 0.001, the average life time becomes extremely short, which is not preferable. On the other hand, when the amount α of Re 2 O 3 exceeds 0.10 as in Sample No. 4, the temperature characteristic becomes B characteristic / X characteristic.
The 7R characteristics are not satisfied, and the average life time is undesirably short. Therefore, the Re 2 O 3 amount α is 0.001 ≦ α ≦
A range of 0.10 is preferred.
【0044】又、試料番号5のように、MgO量βが
0.001未満の場合には、電圧印加による容量変化率
が大きく、温度特性がB特性/X7R特性を満足しなく
なり好ましくない。一方、試料番号6のように、MgO
の添加量βが0.12を超える場合には、焼結温度が高
くなって平均寿命時間が極端に短くなり好ましくない。
したがって、MgO量βは0.001≦β≦0.12の
範囲が好ましい。When the amount β of MgO is less than 0.001, as in sample No. 5, the rate of change in capacitance due to voltage application is large, and the temperature characteristics do not satisfy the B characteristics / X7R characteristics, which is not preferable. On the other hand, as shown in Sample No. 6, MgO
When the addition amount β exceeds 0.12, the sintering temperature becomes high and the average life time becomes extremely short, which is not preferable.
Therefore, the MgO amount β is preferably in the range of 0.001 ≦ β ≦ 0.12.
【0045】又、試料番号7のように、MnO量γが
0.001以下の場合には、比抵抗が低く、平均寿命時
間が短くなり好ましくない。一方、試料番号8のよう
に、MnO量γが0.12を超える場合には、温度特性
がB特性/X7R特性を満足せず、比抵抗が低くなり、
平均寿命時間が短くなり好ましくない。したがって、M
nO量γは0.001<γ≦0.12の範囲が好まし
い。When the MnO amount γ is 0.001 or less as in Sample No. 7, the specific resistance is low and the average life time is undesirably short. On the other hand, when the MnO amount γ exceeds 0.12 as in Sample No. 8, the temperature characteristics do not satisfy the B characteristics / X7R characteristics, and the specific resistance decreases.
The average life time is undesirably short. Therefore, M
The nO amount γ is preferably in the range of 0.001 <γ ≦ 0.12.
【0046】又、試料番号9、10のように、(Ba,
Ca)/Ti比mが1.000以下の場合には、温度特
性がB特性/X7R特性を満足せず、比抵抗が低くな
り、さらに高温負荷試験では電圧印加すると即短絡不良
となるため好ましくない。一方、試料番号11のよう
に、(Ba,Ca)/Ti比mが1.035を超える場
合には、焼結性が不足して平均寿命時間が極端に短くな
り好ましくない。したがって、(Ba,Ca)/Ti比
mは1.000<m≦1.035の範囲が好ましい。As shown in sample numbers 9 and 10, (Ba,
When the Ca) / Ti ratio m is 1.000 or less, the temperature characteristics do not satisfy the B characteristics / X7R characteristics, the specific resistance decreases, and short-circuit failure occurs immediately upon application of a voltage in a high-temperature load test. Absent. On the other hand, when the (Ba, Ca) / Ti ratio m exceeds 1.035 as in Sample No. 11, the sinterability is insufficient and the average life time is extremely short, which is not preferable. Therefore, the (Ba, Ca) / Ti ratio m is preferably in the range of 1.000 <m ≦ 1.035.
【0047】又、試料番号12、13のように、第1及
び第2の副成分の量が0の場合、焼結が不十分であり、
比抵抗が低く、さらに高温負荷試験では電圧印加すると
即短絡不良となるため好ましくない。一方、試料番号1
4、15のように、第1及び第2の副成分の量が5.0
重量部を超える場合には、ガラス成分に基づく二次相の
生成が増大し、温度特性がB特性/X7R特性を満足せ
ず、平均寿命時間が極端に短くなり好ましくない。した
がって、第1又は第2の副成分のどちらか一方の含有量
は0.2〜5.0重量部の範囲が好ましい。When the amounts of the first and second subcomponents are 0 as in Sample Nos. 12 and 13, sintering is insufficient,
It is not preferable because the specific resistance is low and short-circuit failure occurs immediately when a voltage is applied in a high-temperature load test. On the other hand, sample number 1
As in 4 and 15, the amount of the first and second subcomponents is 5.0.
If the amount exceeds the weight part, the generation of the secondary phase based on the glass component increases, the temperature characteristics do not satisfy the B characteristic / X7R characteristic, and the average life time is extremely short, which is not preferable. Therefore, the content of either the first or the second subcomponent is preferably in the range of 0.2 to 5.0 parts by weight.
【0048】又、チタン酸バリウムカルシウム中に不純
物として含まれるアルカリ金属酸化物の含有量を0.0
2重量%以下としたのは、試料番号16のように、アル
カリ金属酸化物の含有量が0.02重量%を超える場合
には、平均寿命時間が短くなるからである。The content of alkali metal oxide contained as an impurity in barium calcium titanate is set to 0.0
The reason for setting the content to 2% by weight or less is that when the content of the alkali metal oxide exceeds 0.02% by weight as in Sample No. 16, the average life time becomes short.
【0049】なお、試料番号17のように、チタン酸バ
リウムカルシウムの平均粒径が0.7μmを越える場合
には、平均寿命時間が52時間とやや悪い。一方、試料
番号18のように、チタン酸バリウムカルシウムの平均
粒径が0.1μm未満の場合には、誘電率が1040と
やや小さい。したがって、チタン酸バリウムカルシウム
の平均粒径は0.1〜0.7μmの範囲内がより好まし
い。When the average particle size of barium calcium titanate exceeds 0.7 μm as in sample No. 17, the average life time is slightly worse at 52 hours. On the other hand, when the average particle size of barium calcium titanate is less than 0.1 μm as in Sample No. 18, the dielectric constant is slightly smaller at 1040. Therefore, the average particle size of barium calcium titanate is more preferably in the range of 0.1 to 0.7 μm.
【0050】(実施例2)誘電体粉末として、表1のB
のチタン酸バリウムカルシウムを用いて(Ba0.90Ca
0.10O)1.010・TiO2+0.02Dy2O3+0.02
MgO+0.010MnO(モル比)の原料を準備し
た。これに1200〜1500℃で加熱して作製した表
4に示す平均粒径1μm以下の第1の副成分としてのL
i2O−(Si,Ti)O2−MO系の酸化物を添加し
て、その他は実施例1と同様にして積層セラミックコン
デンサを作製した。なお、作製した積層セラミックコン
デンサの寸法形状は、実施例1と同様である。そして、
実施例1と同様にして電気的特性を測定した。その結果
を表5に示す。Example 2 As a dielectric powder, B in Table 1 was used.
Using barium calcium titanate (Ba 0.90 Ca
0.10 O) 1.010 • TiO 2 +0.02 Dy 2 O 3 +0.02
A raw material of MgO + 0.010MnO (molar ratio) was prepared. This was heated at 1200 to 1500 ° C. and produced as a first subcomponent having an average particle size of 1 μm or less as shown in Table 4 as L.
i 2 O- (Si, Ti) was added to O 2 -MO-based oxide, others were produced multilayer ceramic capacitor in the same manner as in Example 1. The dimensions and shape of the manufactured multilayer ceramic capacitor are the same as those in the first embodiment. And
The electrical characteristics were measured in the same manner as in Example 1. Table 5 shows the results.
【0051】[0051]
【表4】 [Table 4]
【0052】[0052]
【表5】 [Table 5]
【0053】表4、5から明らかなように、図4に示す
Li2O−(SiwTi1-w)O2−MO系の酸化物の三元
組成図のA(x=20、y=80、z=0)、B(x=
10、y=80、z=10)、C(x=10、y=7
0、z=20)、D(x=35、y=45、z=2
0)、E(x=45、y=45、z=10)、F(x=
45、y=55、z=0)(但し、x、y、zはモル
%、直線A−F上の組成の場合、wは0.3≦w<1.
0の範囲内)で示される各点を結ぶ直線で囲まれた領域
の内部又は線上にある酸化物が添加された試料番号10
1〜112、118、120のものは、誘電率が185
0以上と大きく、温度に対する静電容量の変化率が−2
5℃〜+85℃での範囲でJIS規格に規定するB特性
規格を満足し、−55℃と125℃での範囲内でEIA
規格に規定するX7R特性規格を満足する。しかも、5
kV/mmのDC電圧を印加した場合の容量変化率が4
3%以内と小さく、薄層での使用に際しても静電容量の
変化が小さい。さらに、高温負荷試験での平均寿命時間
は80時間以上と長く、焼成温度も1250℃以下の温
度で焼成可能である。As is clear from Tables 4 and 5, A (x = 20, y) in the ternary composition diagram of the Li 2 O— (Si w Ti 1-w ) O 2 —MO-based oxide shown in FIG. = 80, z = 0), B (x =
10, y = 80, z = 10), C (x = 10, y = 7)
0, z = 20), D (x = 35, y = 45, z = 2)
0), E (x = 45, y = 45, z = 10), F (x =
45, y = 55, z = 0) (where x, y, and z are mol%, and w is 0.3 ≦ w <1.
Sample No. 10 to which the oxide was added in or on the region surrounded by the straight line connecting the points indicated by (0 range)
1 to 112, 118 and 120 have a dielectric constant of 185.
0 or more, and the rate of change of capacitance with respect to temperature is -2.
Satisfies the B characteristic standard stipulated in the JIS standard in the range of 5 ° C. to + 85 ° C., and EIA in the range of −55 ° C. and 125 ° C.
Satisfies the X7R characteristic standard specified in the standard. And 5
When the DC voltage of kV / mm is applied, the capacity change rate is 4
Within 3%, the change in capacitance is small even when used in a thin layer. Further, the average life time in the high temperature load test is as long as 80 hours or more, and the firing can be performed at a firing temperature of 1250 ° C. or less.
【0054】これに対して、Li2O−(Si,Ti)
O2−MO系の酸化物が上記組成範囲外の場合には、試
料番号113〜117、119、121〜122のよう
に、焼結不足となって高温負荷試験で電圧を印加すると
即短絡不良となる。On the other hand, Li 2 O— (Si, Ti)
When the O 2 -MO-based oxide is out of the above composition range, sintering becomes insufficient and a short circuit failure occurs immediately when a voltage is applied in a high-temperature load test as in sample numbers 113 to 117, 119 and 121 to 122. Becomes
【0055】(実施例3)誘電体粉末として、表1のB
のチタン酸バリウムカルシウムを用いて(Ba0.90Ca
0.10O)1.010・TiO2+0.02Gd2O3+0.05
MgO+0.010MnO(モル比)の原料を準備し
た。これに1200〜1500℃で加熱して作成した表
6に示す平均粒径1μm以下の第2の副成分としてのS
iO2−TiO2−XO系(Al2O3、ZrO2を添加含有
させた場合も含む)の酸化物を添加して、その他は実施
例1と同様にして積層セラミックコンデンサを作製し
た。なお、作製した積層セラミックコンデンサの寸法形
状は、実施例1と同様である。そして、実施例1と同様
にして電気的特性を測定した。その結果を表7に示す。(Example 3) As a dielectric powder, B in Table 1 was used.
Using barium calcium titanate (Ba 0.90 Ca
0.10 O) 1.010 • TiO 2 + 0.02Gd 2 O 3 +0.05
A raw material of MgO + 0.010MnO (molar ratio) was prepared. This was heated at 1200 to 1500 ° C. and prepared as a second subcomponent having an average particle size of 1 μm or less shown in Table 6 as S.
A multilayer ceramic capacitor was manufactured in the same manner as in Example 1 except that an oxide of iO 2 —TiO 2 —XO system (including the case where Al 2 O 3 and ZrO 2 were added) was added. The dimensions and shape of the manufactured multilayer ceramic capacitor are the same as those in the first embodiment. Then, the electrical characteristics were measured in the same manner as in Example 1. Table 7 shows the results.
【0056】[0056]
【表6】 [Table 6]
【0057】[0057]
【表7】 [Table 7]
【0058】表6、表7から明らかなように、図5に示
すSiO2−TiO2−XO系の酸化物の三元組成図のA
(x=85、y=1、z=14)、B(x=35、y=
51、z=14)、C(x=30、y=20、z=5
0)、D(x=39、y=1、z=60)(但し、x、
y、zはモル%)で示される各点を結ぶ直線で囲まれた
領域の内部又は線上にある酸化物が添加された試料番号
201〜210のものは、誘電率が1890以上と大き
く、温度に対する静電容量の変化率が−25℃〜+85
℃での範囲でJIS規格に規定するB特性規格を満足
し、−55℃と125℃での範囲内でEIA規格に規定
するX7R特性規格を満足する。しかも、5kV/mm
のDC電圧を印加した場合の容量変化率が44%以内と
小さく、薄層での使用に際しても静電容量の変化が小さ
い。さらに、高温負荷試験での平均寿命時間は85時間
以上と長く、焼成温度も1250℃以下の温度で焼成可
能である。As is clear from Tables 6 and 7, A in the ternary composition diagram of the SiO 2 —TiO 2 —XO-based oxide shown in FIG.
(X = 85, y = 1, z = 14), B (x = 35, y =
51, z = 14), C (x = 30, y = 20, z = 5
0), D (x = 39, y = 1, z = 60) (where x,
(y and z are mol%) Samples 201 to 210 to which the oxide is added inside or on the line surrounded by the straight line connecting the points indicated by The change rate of the capacitance with respect to -25 ° C to +85
In the range of ℃, it satisfies the B characteristic standard specified in the JIS standard, and in the range of -55 ° C and 125 ° C, it satisfies the X7R characteristic standard specified in the EIA standard. Moreover, 5 kV / mm
The rate of change in capacitance when the DC voltage is applied is as small as 44% or less, and the change in capacitance is small even when used in a thin layer. Furthermore, the average life time in the high temperature load test is as long as 85 hours or more, and the firing can be performed at a firing temperature of 1250 ° C. or less.
【0059】これに対して、SiO2−TiO2−XO系
の酸化物が上記組成範囲外の場合には、試料番号213
〜216、219のように、焼結不足となって高温負荷
試験で電圧を印加すると即短絡不良となる。On the other hand, when the SiO 2 —TiO 2 —XO-based oxide is out of the above composition range, sample No. 213
As shown in FIGS. 216 and 219, sintering becomes insufficient and short-circuit failure occurs immediately when a voltage is applied in a high-temperature load test.
【0060】又、試料番号211、212のように、S
iO2−TiO2−XO系の酸化物に、Al2O3、ZrO
2を含有させることで、比抵抗を高めることができる
が、試料番号217、218のように、Al2O3の添加
量が15重量部を越えるか、又はZrO2の添加量が5
重量部を越えると、焼結不足となって高温負荷試験で電
圧を印加すると即短絡不良となる。As shown in sample numbers 211 and 212, S
Al 2 O 3 and ZrO are added to the iO 2 -TiO 2 -XO-based oxide.
2 , the specific resistance can be increased. However, as shown in sample numbers 217 and 218, the addition amount of Al 2 O 3 exceeds 15 parts by weight, or the addition amount of ZrO 2 is 5 parts.
If the amount exceeds the weight part, sintering becomes insufficient, and short circuit failure occurs immediately when a voltage is applied in a high temperature load test.
【0061】なお、上記実施例1〜3で得られた本発明
の範囲内の試料について、その誘電体セラミックの粒子
を透過型電子顕微鏡で分析した結果、いずれの試料にお
いてもRe成分(但し、Reは、Y、Gd、Tb、D
y、Ho、Er及びYbの中から選ばれる少なくとも1
種以上)が粒界近傍および粒界に拡散したコア・シェル
構造を取っていることが確認された。As for the samples within the scope of the present invention obtained in Examples 1 to 3, the particles of the dielectric ceramic were analyzed by a transmission electron microscope. As a result, the Re component (however, Re is Y, Gd, Tb, D
at least one selected from y, Ho, Er and Yb
(Species or more) had a core-shell structure diffused in and near the grain boundaries.
【0062】[0062]
【発明の効果】以上の説明で明らかなように、本発明に
よれば、積層セラミックコンデンサの誘電体セラミック
層が還元雰囲気中で焼成しても還元されず、半導体化し
ない誘電体磁器組成物から構成されているので、電極材
料として卑金属であるニッケル又はニッケル合金を用い
ることができ、しかも1250℃以下と比較的低温で焼
成可能であるため、積層セラミックコンデンサのコスト
ダウンを図ることができる。As is apparent from the above description, according to the present invention, the dielectric ceramic layer of the multilayer ceramic capacitor is not reduced even if it is fired in a reducing atmosphere, and the dielectric ceramic layer does not become a semiconductor. Since it is constituted, nickel or a nickel alloy, which is a base metal, can be used as an electrode material, and can be fired at a relatively low temperature of 1250 ° C. or less, so that the cost of the multilayer ceramic capacitor can be reduced.
【0063】又、この誘電体磁器組成物を用いた積層セ
ラミックコンデンサは、薄層にして高電界がかけられた
場合でも誘電率即ち静電容量の減少が小さく、しかも信
頼性が高い。したがって、小型薄層で大容量の積層セラ
ミックコンデンサを得ることができる。Further, the multilayer ceramic capacitor using the dielectric ceramic composition has a small decrease in the dielectric constant, that is, the capacitance even when a high electric field is applied in a thin layer, and has high reliability. Therefore, it is possible to obtain a small-sized, thin-layer, large-capacity multilayer ceramic capacitor.
【図1】本発明の積層セラミックコンデンサの一例を示
す断面図である。FIG. 1 is a sectional view showing an example of a multilayer ceramic capacitor of the present invention.
【図2】図1の積層セラミックコンデンサのうち内部電
極を有する誘電体セラミック層部分を示す平面図であ
る。FIG. 2 is a plan view showing a dielectric ceramic layer portion having internal electrodes in the multilayer ceramic capacitor of FIG. 1;
【図3】図1の積層セラミックコンデンサのうちセラミ
ック積層体部分を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a ceramic laminate portion of the multilayer ceramic capacitor of FIG. 1;
【図4】Li2O−(SiwTi1-w)O2−MO系の酸化
物の三元組成図である。FIG. 4 is a ternary composition diagram of a Li 2 O— (Si w Ti 1-w ) O 2 —MO-based oxide.
【図5】SiO2−TiO2−XO系の酸化物の三元組成
図である。FIG. 5 is a ternary composition diagram of an SiO 2 —TiO 2 —XO-based oxide.
1 積層セラミックコンデンサ 2a、2b 誘電体セラミック層 3 セラミック積層体 4 内部電極 5 外部電極 6、7 めっき層 DESCRIPTION OF SYMBOLS 1 Multilayer ceramic capacitor 2a, 2b Dielectric ceramic layer 3 Ceramic laminated body 4 Internal electrode 5 External electrode 6, 7 Plating layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜地 幸生 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 Fターム(参考) 5E082 AB03 BC14 EE04 EE23 EE35 FG06 FG22 FG26 FG27 FG54 GG10 GG11 GG26 GG28 JJ03 JJ05 JJ21 JJ23 MM23 MM24 PP03 PP09 5G303 AA01 AB06 AB11 BA12 CA01 CB01 CB03 CB06 CB16 CB17 CB18 CB30 CB32 CB35 CB38 CB39 CB40 CB41 CB43 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yukio Hamachi 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto F-term in Murata Manufacturing Co., Ltd. (reference) 5E082 AB03 BC14 EE04 EE23 EE35 FG06 FG22 FG26 FG27 FG54 GG10 GG11 GG26 GG28 JJ03 JJ05 JJ21 JJ23 MM23 MM24 PP03 PP09 5G303 AA01 AB06 AB11 BA12 CA01 CB01 CB03 CB06 CB16 CB17 CB18 CB30 CB32 CB35 CB38 CB39 CB40 CB41 CB43
Claims (7)
セラミック層間に形成された内部電極と、該内部電極に
電気的に接続された外部電極とを備えた積層セラミック
コンデンサにおいて、 前記誘電体セラミック層が、次の組成式、 {Ba1-xCaxO}mTiO2+αRe2O3+βMgO+
γMnO (但し、Re2O3は、Y2O3、Gd2O3、Tb2O3、D
y2O3、Ho2O3、Er2O3及びYb2O3の中から選ば
れる少なくとも1種以上であり、α、β及びγはモル比
を表わし 0.001≦α≦0.10 0.001≦β≦0.12 0.001<γ≦0.12 1.000<m≦1.035 0.005<x≦0.22 の範囲内にある)で表わされ、かつ該誘電体セラミック
層に用いる{Ba1-xCaxO}TiO2原料中のアルカ
リ金属酸化物の含有量が0.02重量%以下である主成
分100重量部に対して、第1の副成分をLi2O−
(Si、Ti)O2−MO系(但し、MOはAl2O3及
びZrO2の中から選ばれる少なくとも1種である)の
酸化物とし、第2の副成分をSiO2−TiO2−XO系
(XOはBaO、CaO、SrO、MgO、ZnO及び
MnOの中から選ばれる少なくとも1種である)の酸化
物としたときに、該第1又は第2の副成分のどちらか一
方を0.2〜5.0重量部含有しており、 前記内部電極はニッケル又はニッケル合金からなること
を特徴とする、積層セラミックコンデンサ。1. A multilayer ceramic capacitor comprising: a plurality of dielectric ceramic layers; an internal electrode formed between the dielectric ceramic layers; and an external electrode electrically connected to the internal electrode. The ceramic layer has the following composition formula: {Ba 1 -x Ca x O} m TiO 2 + αRe 2 O 3 + βMgO +
γMnO (where Re 2 O 3 is Y 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , D
and the y 2 O 3, Ho 2 O 3, Er 2 O 3 and Yb 2 O 3 of at least one or more selected from among, alpha, beta and γ represent mole ratio 0.001 ≦ α ≦ 0.10 0.001 ≦ β ≦ 0.12 0.001 <γ ≦ 0.12 1.000 <m ≦ 1.035 0.005 <x ≦ 0.22) and the dielectric relative to 100 parts by weight of the main component content used in the body ceramic layer {Ba 1-x Ca x O } alkali metal oxide of the TiO 2 in the raw material is 0.02 wt% or less, the first subcomponent Li 2 O-
An oxide of (Si, Ti) O 2 —MO (where MO is at least one selected from Al 2 O 3 and ZrO 2 ), and the second subcomponent is SiO 2 —TiO 2 — When an XO-based oxide (XO is at least one selected from BaO, CaO, SrO, MgO, ZnO, and MnO) is used, one of the first and second subcomponents may be 0. .2 to 5.0 parts by weight, wherein the internal electrode is made of nickel or a nickel alloy.
1-xCaxO}TiO2原料の平均粒径は、0.1〜0.
7μmであることを特徴とする、請求項1記載の積層セ
ラミックコンデンサ。2. Ba used in the dielectric ceramic layer
The average particle size of the 1-x Ca x O} TiO 2 raw material is 0.1 to 0.
The multilayer ceramic capacitor according to claim 1, wherein the thickness is 7 µm.
(SiwTi1-w)O2−zMO(但し、x、y及びzは
モル%であり、wは0.30≦w≦1.0の範囲内にあ
る)で表わしたとき、それぞれの成分を頂点とする三元
組成図の A(x=20,y=80,z=0) B(x=10,y=80,z=10) C(x=10、y=70、z=20) D(x=35、y=45、z=20) E(x=45、y=45、z=10) F(x=45、y=55、z=0) (但し、直線A−F上の組成の場合は、wは0.3≦w
<1.0の範囲内)で示される各点を結ぶ直線で囲まれ
た領域の内部又は線上にあることを特徴とする、請求項
1又は請求項2記載の積層セラミックコンデンサ。3. The method according to claim 1, wherein the first subcomponent is xLi 2 O-y.
When represented by (Si w Ti 1-w ) O 2 -zMO (where x, y and z are mol%, and w is in the range of 0.30 ≦ w ≦ 1.0), A (x = 20, y = 80, z = 0) B (x = 10, y = 80, z = 10) C (x = 10, y = 70, z = 20) D (x = 35, y = 45, z = 20) E (x = 45, y = 45, z = 10) F (x = 45, y = 55, z = 0) (However, the straight line A− For the composition on F, w is 0.3 ≦ w
3. The multilayer ceramic capacitor according to claim 1, wherein the multilayer ceramic capacitor is located inside or on a line surrounded by a straight line connecting the points indicated by (<1.0 range). 4.
iO2−zXO(但し、x、y及びzはモル%である)で
表わしたとき、それぞれの成分を頂点とする三元組成図
の A(x=85、y=1、z=14) B(x=35、y=51、z=14) C(x=30、y=20、z=50) D(x=39、y=1、z=60) で示される各点を結ぶ直線で囲まれた領域の内部又は線
上にあることを特徴とする、請求項1又は請求項2記載
の積層セラミックコンデンサ。4. The method according to claim 1, wherein the second subcomponent is xSiO 2 -yT
When represented by iO 2 -zXO (where x, y and z are mol%), A (x = 85, y = 1, z = 14) of a ternary composition diagram having each component at the top (X = 35, y = 51, z = 14) C (x = 30, y = 20, z = 50) D (x = 39, y = 1, z = 60) A straight line connecting points 3. The multilayer ceramic capacitor according to claim 1, wherein the multilayer ceramic capacitor is located inside or on a line of the enclosed area.
−TiO2−XO系の酸化物100重量部に対して、A
l2O3及びZrO2のうち少なくとも1種を合計で15
重量部以下(但し、ZrO2は5重量部以下)含有する
ことを特徴とする、請求項4記載の積層セラミックコン
デンサ。5. The method according to claim 1, wherein the second sub-component comprises the SiO 2
The oxide 100 parts by weight of -TiO 2 -XO series, A
at least one of l 2 O 3 and ZrO 2 in a total of 15
The following parts by weight (however, less ZrO 2 is 5 parts by weight), characterized in that it contains, multilayer ceramic capacitor according to claim 4, wherein.
ガラスフリットを添加した導電性金属粉末の焼結層から
なることを特徴とする、請求項1〜5のうちいずれかに
記載の積層セラミックコンデンサ。6. The laminate according to claim 1, wherein the external electrode is formed of a sintered layer of a conductive metal powder or a conductive metal powder to which glass frit is added. Ceramic capacitors.
ガラスフリットを添加した導電性金属粉末の焼結層と、
その上に形成されためっき層からなることを特徴とす
る、請求項1〜5のうちいずれかに記載の積層セラミッ
クコンデンサ。7. The external electrode, comprising: a sintered layer of a conductive metal powder or a conductive metal powder to which glass frit is added;
The multilayer ceramic capacitor according to any one of claims 1 to 5, comprising a plating layer formed thereon.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22720298A JP3336967B2 (en) | 1998-08-11 | 1998-08-11 | Multilayer ceramic capacitors |
US09/369,988 US6243254B1 (en) | 1998-08-11 | 1999-08-06 | Dielectric ceramic composition and laminated ceramic capacitor using the same |
TW088113529A TW434583B (en) | 1998-08-11 | 1999-08-07 | Dielectric ceramic composition and laminated ceramic capacitor using the same |
GB9918739A GB2340488B (en) | 1998-08-11 | 1999-08-09 | Dielectric ceramic composition and laminated ceramic capacitor using the same |
KR1019990032926A KR100324722B1 (en) | 1998-08-11 | 1999-08-11 | Dielectric ceramic composition and laminated ceramic capacitor using the same |
CN99117792A CN1093103C (en) | 1998-08-11 | 1999-08-11 | Dielectric ceramic composition and laminated ceramic capacitor with said composition |
DE19937999A DE19937999B4 (en) | 1998-08-11 | 1999-08-11 | Dielectric ceramic composition and laminated ceramic capacitor using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22720298A JP3336967B2 (en) | 1998-08-11 | 1998-08-11 | Multilayer ceramic capacitors |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000058377A true JP2000058377A (en) | 2000-02-25 |
JP3336967B2 JP3336967B2 (en) | 2002-10-21 |
Family
ID=16857105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22720298A Expired - Lifetime JP3336967B2 (en) | 1998-08-11 | 1998-08-11 | Multilayer ceramic capacitors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3336967B2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231560A (en) * | 2001-01-31 | 2002-08-16 | Murata Mfg Co Ltd | Dielectric ceramic and laminated ceramic capacitor |
JP2002274935A (en) * | 2001-03-16 | 2002-09-25 | Kyocera Corp | Dielectric ceramic and laminated electronic part |
JP2002284571A (en) * | 2001-03-27 | 2002-10-03 | Kyocera Corp | Dielectric ceramic having excellent thermal and dc bias properties |
JP2003040671A (en) * | 2001-07-30 | 2003-02-13 | Kyocera Corp | Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts |
JP2003048774A (en) * | 2001-08-01 | 2003-02-21 | Kyocera Corp | Dielectric porcelain, method of producing the same, and multilayer-type electronic parts |
JP2003063863A (en) * | 2001-08-29 | 2003-03-05 | Kyocera Corp | Dielectric porcelain and laminated electronic part and method for producing the latter |
US6853536B2 (en) | 2003-01-24 | 2005-02-08 | Murata Manufacturing Co., Ltd. | Dielectric ceramic, method of producing the same, and monolithic ceramic capacitor |
US6900977B2 (en) | 2003-03-03 | 2005-05-31 | Murata Manufacturing Co., Ltd. | Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor |
JP2007258661A (en) * | 2005-09-28 | 2007-10-04 | Kyocera Corp | Laminated ceramic capacitor and its manufacturing method |
JP2008297133A (en) * | 2007-05-29 | 2008-12-11 | Kyocera Corp | Dielectric porcelain and capacitor |
JP2012036021A (en) * | 2010-08-04 | 2012-02-23 | Murata Mfg Co Ltd | Dielectric ceramic and laminated ceramic capacitor |
WO2013027500A1 (en) * | 2011-08-23 | 2013-02-28 | 株式会社村田製作所 | Laminated ceramic capacitor and method for producing laminated ceramic capacitor |
CN103803968A (en) * | 2014-01-09 | 2014-05-21 | 深圳顺络电子股份有限公司 | Low-middle-dielectric constant low-temperature co-fired ceramic material and preparation method thereof |
WO2017012800A1 (en) | 2015-07-17 | 2017-01-26 | Epcos Ag | Dielectric composition, dielectric element, electronic component and laminated electronic component |
WO2017012797A1 (en) | 2015-07-17 | 2017-01-26 | Epcos Ag | Dielectric composition, dielectric element, electronic component and multi-layer electronic component |
WO2017012791A1 (en) | 2015-07-17 | 2017-01-26 | Epcos Ag | Dielectric composition, dielectric element, electronic component and laminated electronic component |
KR101918036B1 (en) | 2016-08-09 | 2018-11-13 | 가부시키가이샤 무라타 세이사쿠쇼 | Ceramic electronic component and dielectric ceramic composition |
US10513464B2 (en) | 2016-03-24 | 2019-12-24 | Tdk Corporation | Dielectric composition, dielectric element, electronic component, and multilayer electronic component |
CN110783106A (en) * | 2018-07-24 | 2020-02-11 | Tdk株式会社 | Laminated ceramic electronic component |
CN112689908A (en) * | 2018-09-28 | 2021-04-20 | 株式会社村田制作所 | Piezoelectric laminated element |
US20220319777A1 (en) * | 2021-03-31 | 2022-10-06 | Tdk Corporation | Laminated electronic component |
CN115159977A (en) * | 2022-06-22 | 2022-10-11 | 苏州博恩希普新材料科技有限公司 | Wide-temperature-range low-loss dielectric ceramic material and preparation method thereof |
-
1998
- 1998-08-11 JP JP22720298A patent/JP3336967B2/en not_active Expired - Lifetime
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231560A (en) * | 2001-01-31 | 2002-08-16 | Murata Mfg Co Ltd | Dielectric ceramic and laminated ceramic capacitor |
JP4691790B2 (en) * | 2001-01-31 | 2011-06-01 | 株式会社村田製作所 | Dielectric ceramic and multilayer ceramic capacitors |
JP4519342B2 (en) * | 2001-03-16 | 2010-08-04 | 京セラ株式会社 | Dielectric porcelain and multilayer electronic components |
JP2002274935A (en) * | 2001-03-16 | 2002-09-25 | Kyocera Corp | Dielectric ceramic and laminated electronic part |
JP2002284571A (en) * | 2001-03-27 | 2002-10-03 | Kyocera Corp | Dielectric ceramic having excellent thermal and dc bias properties |
JP2003040671A (en) * | 2001-07-30 | 2003-02-13 | Kyocera Corp | Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts |
JP4522025B2 (en) * | 2001-07-30 | 2010-08-11 | 京セラ株式会社 | Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component |
JP2003048774A (en) * | 2001-08-01 | 2003-02-21 | Kyocera Corp | Dielectric porcelain, method of producing the same, and multilayer-type electronic parts |
JP2003063863A (en) * | 2001-08-29 | 2003-03-05 | Kyocera Corp | Dielectric porcelain and laminated electronic part and method for producing the latter |
JP4582973B2 (en) * | 2001-08-29 | 2010-11-17 | 京セラ株式会社 | Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component |
US6853536B2 (en) | 2003-01-24 | 2005-02-08 | Murata Manufacturing Co., Ltd. | Dielectric ceramic, method of producing the same, and monolithic ceramic capacitor |
US6900977B2 (en) | 2003-03-03 | 2005-05-31 | Murata Manufacturing Co., Ltd. | Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor |
JP2007258661A (en) * | 2005-09-28 | 2007-10-04 | Kyocera Corp | Laminated ceramic capacitor and its manufacturing method |
JP2008297133A (en) * | 2007-05-29 | 2008-12-11 | Kyocera Corp | Dielectric porcelain and capacitor |
US8673798B2 (en) | 2010-08-04 | 2014-03-18 | Murata Manufacturing Co., Ltd. | Dielectric ceramic and laminated ceramic capacitor |
JP2012036021A (en) * | 2010-08-04 | 2012-02-23 | Murata Mfg Co Ltd | Dielectric ceramic and laminated ceramic capacitor |
WO2013027500A1 (en) * | 2011-08-23 | 2013-02-28 | 株式会社村田製作所 | Laminated ceramic capacitor and method for producing laminated ceramic capacitor |
JP5565528B2 (en) * | 2011-08-23 | 2014-08-06 | 株式会社村田製作所 | Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor |
US8830651B2 (en) | 2011-08-23 | 2014-09-09 | Murata Manufacturing Co., Ltd. | Laminated ceramic capacitor and producing method for laminated ceramic capacitor |
KR101494851B1 (en) | 2011-08-23 | 2015-02-23 | 가부시키가이샤 무라타 세이사쿠쇼 | Laminated ceramic capacitor and method for producing laminated ceramic capacitor |
CN103803968A (en) * | 2014-01-09 | 2014-05-21 | 深圳顺络电子股份有限公司 | Low-middle-dielectric constant low-temperature co-fired ceramic material and preparation method thereof |
WO2017012791A1 (en) | 2015-07-17 | 2017-01-26 | Epcos Ag | Dielectric composition, dielectric element, electronic component and laminated electronic component |
WO2017012797A1 (en) | 2015-07-17 | 2017-01-26 | Epcos Ag | Dielectric composition, dielectric element, electronic component and multi-layer electronic component |
WO2017012800A1 (en) | 2015-07-17 | 2017-01-26 | Epcos Ag | Dielectric composition, dielectric element, electronic component and laminated electronic component |
JP2018531857A (en) * | 2015-07-17 | 2018-11-01 | エプコス アクチエンゲゼルシャフトEpcos Ag | Dielectric composition, dielectric element, electronic component and laminated electronic component |
US10490350B2 (en) | 2015-07-17 | 2019-11-26 | Tdk Electronics Ag | Dielectric composition, dielectric element, electronic component and multi-layer electronic component |
US10513464B2 (en) | 2016-03-24 | 2019-12-24 | Tdk Corporation | Dielectric composition, dielectric element, electronic component, and multilayer electronic component |
KR101918036B1 (en) | 2016-08-09 | 2018-11-13 | 가부시키가이샤 무라타 세이사쿠쇼 | Ceramic electronic component and dielectric ceramic composition |
CN110783106A (en) * | 2018-07-24 | 2020-02-11 | Tdk株式会社 | Laminated ceramic electronic component |
CN112689908A (en) * | 2018-09-28 | 2021-04-20 | 株式会社村田制作所 | Piezoelectric laminated element |
US20220319777A1 (en) * | 2021-03-31 | 2022-10-06 | Tdk Corporation | Laminated electronic component |
US11935700B2 (en) * | 2021-03-31 | 2024-03-19 | Tdk Corporation | Laminated electronic component with differing glass content electrodes |
CN115159977A (en) * | 2022-06-22 | 2022-10-11 | 苏州博恩希普新材料科技有限公司 | Wide-temperature-range low-loss dielectric ceramic material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3336967B2 (en) | 2002-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3918372B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor | |
JP2998639B2 (en) | Multilayer ceramic capacitors | |
JP3336967B2 (en) | Multilayer ceramic capacitors | |
JP3567759B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor | |
EP0851444B1 (en) | Ceramic composition and multilayer ceramic capacitor made therefrom | |
JP3039417B2 (en) | Multilayer ceramic capacitors | |
JP3282520B2 (en) | Multilayer ceramic capacitors | |
JP3039397B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP3509710B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor | |
JP3180690B2 (en) | Multilayer ceramic capacitors | |
EP1178024A2 (en) | Reduction-resistant dielectric ceramic compact and laminated ceramic capacitor | |
JP3180681B2 (en) | Multilayer ceramic capacitors | |
JP3709914B2 (en) | Multilayer ceramic capacitor | |
JPH09232180A (en) | Laminated ceramic capacitor | |
JP3039409B2 (en) | Multilayer ceramic capacitors | |
US7239501B2 (en) | Dielectric ceramic composition and laminated ceramic capacitor | |
JP3603607B2 (en) | Dielectric ceramic, multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor | |
JP3334606B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor | |
JPH11322416A (en) | Dielectric porcelain composition and laminated ceramic capacitor | |
JP3945033B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JP2003165768A (en) | Dielectric ceramic composition and laminated ceramic electronic part | |
JP3678072B2 (en) | Dielectric ceramic composition and multilayer ceramic component | |
JPH1192222A (en) | Dielectric porcelain composition and laminated ceramic capacitor | |
JP3064918B2 (en) | Multilayer ceramic capacitors | |
JP2003142331A (en) | Laminated ceramic electronic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080809 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080809 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090809 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090809 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100809 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100809 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110809 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120809 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120809 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130809 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |