JP2000054047A - Hypoeutectic Al-Si alloy member in which primary Si is crystallized and method for producing the same - Google Patents
Hypoeutectic Al-Si alloy member in which primary Si is crystallized and method for producing the sameInfo
- Publication number
- JP2000054047A JP2000054047A JP10215396A JP21539698A JP2000054047A JP 2000054047 A JP2000054047 A JP 2000054047A JP 10215396 A JP10215396 A JP 10215396A JP 21539698 A JP21539698 A JP 21539698A JP 2000054047 A JP2000054047 A JP 2000054047A
- Authority
- JP
- Japan
- Prior art keywords
- primary
- hypoeutectic
- weight
- casting
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Forging (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、初晶Siの晶出によっ
て耐摩耗性を改善させ、耐衝撃性(靭性)も良好な亜共
晶Al−Si合金部材及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hypoeutectic Al-Si alloy member having improved abrasion resistance by crystallization of primary crystal Si and excellent impact resistance (toughness), and a method for producing the same.
【0002】[0002]
【従来の技術】A390,ADC14等の過共晶Al−
Si系合金は、マトリックスに初晶Siが晶出分散して
いるので優れた耐摩耗性を示す。初晶Siは、耐摩耗性
の改善に有効であるものの、通常の製造法によるとき粗
大化し易い。初晶Siの粗大化傾向は、Si含有量が多
くなるほど顕著になる。Si自体は脆い材料であり、マ
トリックスに粗大化した初晶Siが分散していると、外
力が加わったとき初晶Siを起点として亀裂,破損等が
発生し易くなる。その結果、耐衝撃性(靭性)が低下す
る。これに対し、亜共晶組成では、溶湯からα−Alが
初晶として晶出し、Siは共晶Siとして晶出する。共
晶Siは、微細な晶出物となって結晶粒界やデンドライ
トセルの境界に均一分散する。そのため、AC4A,A
C4C等の亜共晶Al−Si系合金では、優れた耐衝撃
性(靭性)が示される。2. Description of the Related Art Hyper-eutectic Al- such as A390, ADC14, etc.
The Si-based alloy exhibits excellent wear resistance because primary Si is crystallized and dispersed in the matrix. Primary crystal Si is effective for improving wear resistance, but tends to be coarsened by a normal production method. The tendency of primary Si to become coarser becomes more pronounced as the Si content increases. Si itself is a brittle material, and when coarse primary Si is dispersed in the matrix, cracks, breakage, and the like are likely to occur starting from the primary Si when an external force is applied. As a result, impact resistance (toughness) decreases. On the other hand, in the hypoeutectic composition, α-Al is crystallized from the molten metal as primary crystals, and Si is crystallized as eutectic Si. Eutectic Si is finely crystallized and is uniformly dispersed at crystal grain boundaries and boundaries of dendrite cells. Therefore, AC4A, A
A hypoeutectic Al-Si alloy such as C4C exhibits excellent impact resistance (toughness).
【0003】[0003]
【発明が解決しようとする課題】しかし、亜共晶組成で
は、耐摩耗性の改善に有効な初晶Siの晶出が本質的に
期待できないため、過共晶Al−Si系合金に比較して
耐摩耗性に劣った材料となる。この亜共晶組成のAl−
Si系合金において、適正粒径の初晶Siを晶出させる
ことが可能になると、亜共晶系特有の優れた耐衝撃性
(靭性)に加えて耐摩耗性が付与された材料が得られ
る。However, in the hypoeutectic composition, since the crystallization of primary Si which is effective for improving the wear resistance cannot be essentially expected, it is compared with the hypereutectic Al-Si alloy. And a material with poor abrasion resistance. This hypoeutectic Al-
When it becomes possible to crystallize primary Si having an appropriate grain size in a Si-based alloy, a material having abrasion resistance in addition to excellent impact resistance (toughness) unique to a hypoeutectic system is obtained. .
【0004】[0004]
【課題を解決するための手段】本発明は、このような要
求に応えるべく案出されたものであり、一次鋳造材に共
晶Siが晶出している部分が局部的にSiリッチになっ
ていることを利用し、Siリッチ部分を選択的に溶解し
て初晶Siが晶出した二次鋳造組織とすることにより、
耐摩耗性、耐衝撃性の双方に優れた亜共晶Al−Si合
金部材を得ることを目的とする。本発明の亜共晶Al−
Si合金部材は、その目的を達成するため、Si:6.
5〜11.0重量%、P:0.001〜0.01重量
%、残部が実質的にAlの組成をもつ亜共晶Al−Si
合金であって、鋳造材を固液共存域に再加熱して鋳造す
ることにより得られる二次鋳造組織に平均粒径6〜9μ
mの初晶Siが面積率1〜3%で分散していることを特
徴とする。DISCLOSURE OF THE INVENTION The present invention has been devised in order to meet such a demand, and a portion where eutectic Si is crystallized in a primary casting material becomes locally rich in Si. By making use of the fact that the Si-rich portion is selectively dissolved to form a secondary casting structure in which primary Si is crystallized,
An object is to obtain a hypoeutectic Al-Si alloy member excellent in both wear resistance and impact resistance. Hypoeutectic Al- of the present invention
In order to achieve the object, the Si alloy member is made of Si: 6.
5 to 11.0% by weight, P: 0.001 to 0.01% by weight, with the balance being substantially hypoeutectic Al-Si having a composition of Al
An alloy having an average grain size of 6 to 9 μm in a secondary casting structure obtained by reheating a casting material to a solid-liquid coexistence region and casting.
m primary crystal Si is characterized by being dispersed at an area ratio of 1 to 3%.
【0005】本発明で使用する亜共晶Al−Si合金
は、更にSr:0.003〜0.04重量%,Sb:
0.05〜0.25重量%,Na:0.001〜0.0
1重量%,Ca:0.001〜0.02重量%の1種又
は2種以上、Ti:0.01〜0.2重量%,B:0.
0001〜0.04重量%の1種又は2種以上、及び/
又はCu:0.2〜2重量%,Mg:0.2〜0.7重
量%,Mn:0.1〜0.6重量%の1種又は2種以上
を含むことができる。この亜共晶Al−Si合金部材
は、上記組成をもつ亜共晶Al−Si合金を鋳造した一
次鋳造材を容器内で560〜580℃の温度に再加熱し
て半溶融状態とした後、ダイカスト又は溶湯鍛造の金型
に圧入して二次鋳造材に成形することにより製造され
る。半溶融状態の亜共晶Al−Si合金をダイカスト又
は溶湯鍛造する際、冷却速度を2℃/秒以上,加圧力を
500kg/cm2 以上に設定することが好ましい。二
次鋳造材は、温間鍛造又は熱間鍛造によって鍛造部品と
なる。[0005] The hypoeutectic Al-Si alloy used in the present invention further comprises Sr: 0.003-0.04% by weight, Sb:
0.05 to 0.25% by weight, Na: 0.001 to 0.0
1% by weight, one or more of Ca: 0.001 to 0.02% by weight, Ti: 0.01 to 0.2% by weight, B: 0.
One or more of 0001 to 0.04% by weight, and / or
Alternatively, one or more of Cu: 0.2 to 2% by weight, Mg: 0.2 to 0.7% by weight, and Mn: 0.1 to 0.6% by weight can be contained. This hypoeutectic Al-Si alloy member is obtained by reheating a primary casting material obtained by casting a hypoeutectic Al-Si alloy having the above composition to a temperature of 560 to 580 ° C in a container, to a semi-molten state. It is manufactured by press-fitting into a die casting or molten metal forging die and forming it into a secondary casting material. When die-casting or melt-forging a semi-eutectic hypoeutectic Al-Si alloy, it is preferable to set the cooling rate to 2 ° C / sec or more and the pressure to 500 kg / cm 2 or more. The secondary casting material becomes a forged part by warm forging or hot forging.
【0006】[0006]
【作用】本発明の亜共晶Al−Si合金部材は、一次鋳
造,再溶解,二次鋳造の工程を経て製造され、必要に応
じて温間鍛造又は熱間鍛造される。一次鋳造で得られる
鋳造組織に晶出する共晶Siは、Si,P等の含有量を
規制することにより、容易に再溶解する平均粒径に調整
される。 一次鋳造で得られた鋳造組織は、図1に示す
ようにα−Al晶のデンドライトの間に共晶Siが晶出
している。共晶Siの晶出部は、局部的にSiリッチに
なっている。一次鋳造材を560〜580℃の温度範囲
に加熱すると、融点の低い共晶Si晶出部が選択的に溶
解し、α−Al晶が未溶解で残存する半溶融状態にな
る。半溶融状態のAl−Si合金を二次鋳造すると、S
i含有量が局部的に高くなっている融液部から初晶Si
が晶出する。その結果、図2に示すようにこのようにし
て、亜共晶組成であるにも拘わらず初晶Siが晶出し、
亜共晶組成の優れた耐衝撃性に加えて耐摩耗性が改善さ
れた亜共晶Al−Si合金部材が得られる。The hypoeutectic Al-Si alloy member of the present invention is manufactured through the steps of primary casting, remelting and secondary casting, and is subjected to warm forging or hot forging as required. Eutectic Si crystallized in the cast structure obtained in the primary casting is adjusted to an average particle size that is easily redissolved by regulating the contents of Si, P and the like. In the cast structure obtained by the primary casting, eutectic Si is crystallized between the α-Al crystal dendrites as shown in FIG. The crystallized portion of eutectic Si is locally rich in Si. When the primary cast material is heated to a temperature range of 560 to 580 ° C., a eutectic Si crystallization portion having a low melting point is selectively dissolved, and a semi-molten state is left in which α-Al crystals remain undissolved. When a semi-molten Al-Si alloy is secondarily cast, S
Primary crystal Si from the melt where the i content is locally high
Crystallizes out. As a result, as shown in FIG. 2, primary Si was crystallized in this way despite the hypoeutectic composition,
A hypoeutectic Al-Si alloy member with improved wear resistance in addition to excellent impact resistance having a hypoeutectic composition can be obtained.
【0007】以下、本発明の二次鋳造部品又は鍛造部品
に使用される亜共晶Al−Si合金の成分,含有量,製
造条件等を説明する。Si:6.5〜11.0重量% Al−Si系でSi含有量6.5〜11.0重量%の範
囲は、亜共晶組成に属する。そのため、通常の鋳造法に
よるとき、Siは、初晶Siとして晶出することなく、
細かな共晶Siとなって晶出し結晶粒界やデンドライト
セルの境界に分散する。得られた鋳造材は、耐衝撃性が
良好であるものの、耐摩耗性に劣る。しかし、本発明に
従って一次鋳造材を再溶解して二次鋳造する場合、共晶
点以下のSi含有量であっても、Si含有量を6.5〜
11重量%の範囲に維持すると、共晶Siよりも大きな
初晶Siが溶融部分から晶出し、耐摩耗性が向上する。
6.5〜11重量%のSi含有量は、鋳造時の湯流れを
良好にする上でも有効である。しかし、6.5重量%に
満たないSi含有量では、晶出する初晶Siが少なす
ぎ、耐摩耗性の向上に寄与しない。逆に11重量%を超
えるSi含有量では、一次鋳造材中に粗大な初晶Siが
晶出して耐摩耗性は向上するものの、初晶Siが衝撃ク
ラックの起点となり耐衝撃性が劣化する。Hereinafter, the components, contents, production conditions, and the like of the hypoeutectic Al-Si alloy used for the secondary cast part or the forged part of the present invention will be described. Si: 6.5 to 11.0% by weight The range of the Si content of 6.5 to 11.0% by weight in the Al-Si system belongs to the hypoeutectic composition. Therefore, when using a normal casting method, Si is not crystallized as primary Si,
It becomes fine eutectic Si and crystallizes and disperses at crystal grain boundaries and boundaries of dendrite cells. The obtained cast material has good impact resistance, but is inferior in wear resistance. However, when the secondary casting is performed by remelting the primary casting material according to the present invention, even if the Si content is below the eutectic point, the Si content is increased to 6.5 to 6.5.
When the content is maintained in the range of 11% by weight, primary crystal Si larger than eutectic Si is crystallized from a molten portion, and wear resistance is improved.
The Si content of 6.5 to 11% by weight is also effective in improving the flow of molten metal during casting. However, if the Si content is less than 6.5% by weight, the amount of primary crystal Si to be crystallized is too small and does not contribute to the improvement of wear resistance. Conversely, if the Si content exceeds 11% by weight, coarse primary crystal Si is crystallized in the primary casting material and wear resistance is improved, but primary crystal Si becomes a starting point of impact cracks and impact resistance is deteriorated.
【0008】P:0.001〜0.01重量% 一次鋳造材を所定温度まで加熱して半溶融状態にしたと
き、共晶Siが融液部分に移行する。融液部分に含まれ
ているPは、半溶融状態の亜共晶Al−Si合金を二次
鋳造して冷却する際、初晶Siを溶融部分に晶出させる
結晶核として働く。P含有量を0.001〜0.01重
量%の範囲に維持すると、初晶Siの析出に有効な適正
量の結晶核が生成する。P含有量が0.001重量%を
下回ると、結晶核の個数が少なすぎ、初晶Siの晶出が
不十分になる。逆に0.01重量%を超えるP含有量で
は、湯流れが悪化する。平均粒径6〜9μmの初晶Siが面積率1〜3%で分散
した二次鋳造組織 Si,P含有量を規制した亜共晶Al−Si合金の一次
鋳造材を半溶融状態に加熱して二次鋳造するとき初晶S
iが晶出するが、この初晶Siの粒径及び面積率が耐摩
耗性や耐衝撃性に影響を及ぼす。良好な耐摩耗性を得る
上で、初晶Siの平均粒径を6〜9μmの範囲に、面積
率を1〜3%の範囲に制御することが必要である。平均
粒径が6μm未満の初晶Siでは耐摩耗性が不十分であ
り、逆に9μmを超える平均粒径では耐衝撃性が劣化す
る傾向がみられる。同様に、初晶Siの面積率が1%に
満たないと耐摩耗性が不十分になり、3%を超えると耐
衝撃性が劣化する。 P: 0.001 to 0.01% by weight When the primary casting material is heated to a predetermined temperature to be in a semi-molten state, eutectic Si moves to the melt portion. P contained in the melt portion acts as a crystal nucleus for crystallizing primary Si in the melt portion when the semi-eutectic hypoeutectic Al-Si alloy is secondarily cast and cooled. When the P content is maintained in the range of 0.001 to 0.01% by weight, an appropriate amount of crystal nuclei effective for precipitation of primary Si is generated. If the P content is less than 0.001% by weight, the number of crystal nuclei is too small, and the crystallization of primary Si becomes insufficient. Conversely, if the P content exceeds 0.01% by weight, the flow of the molten metal deteriorates. Primary Si having an average particle size of 6 to 9 μm is dispersed at an area ratio of 1 to 3%.
When primary casting of a hypoeutectic Al-Si alloy with regulated secondary casting structure Si and P content is semi-molten and subjected to secondary casting, primary crystal S
Although i is crystallized, the particle size and area ratio of the primary crystal Si affect wear resistance and impact resistance. In order to obtain good wear resistance, it is necessary to control the average grain size of the primary crystal Si in the range of 6 to 9 μm and the area ratio in the range of 1 to 3%. With primary crystal Si having an average particle size of less than 6 μm, the wear resistance is insufficient, and conversely, with an average particle size of more than 9 μm, the impact resistance tends to deteriorate. Similarly, if the area ratio of the primary crystal Si is less than 1%, the wear resistance is insufficient, and if it exceeds 3%, the impact resistance is deteriorated.
【0009】Sr:0.003〜0.04重量%,S
b:0.05〜0.25重量%,Na:0.001〜
0.01重量%,Ca:0.001〜0.02重量%:
これらの合金成分は、本発明に従ってSi,P含有量を
規制した亜共晶Al−Si合金を溶解して金型鋳造,D
C鋳造等で一次鋳造材にする際、共晶Siを微細化する
作用を呈する。微細化された共晶Siは、後工程の再溶
解時に溶解し易い。更に、後続するダイカスト鋳造,溶
湯鍛造等の二次鋳造段階でも、目標とする初晶Si以外
の共晶Siを微細化し、耐衝撃性を向上させる作用を呈
する。何れの合金成分も、規定した範囲に満たない場合
には添加効果が少なくなる。他方、規定範囲を超える添
加量では、湯流れを悪化させ、添加成分に由来する酸化
物等の非金属介在物を増加させる。増加した非金属介在
物は、結果的に製品に巻き込まれ、耐衝撃性を劣化させ
る原因になる。 Sr: 0.003-0.04% by weight, S
b: 0.05 to 0.25% by weight, Na: 0.001 to
0.01% by weight, Ca: 0.001 to 0.02% by weight :
These alloy components are prepared by melting a hypoeutectic Al-Si alloy in which the contents of Si and P are regulated in accordance with the present invention, and performing die casting.
When it is made into a primary casting material by C casting or the like, it has an effect of miniaturizing eutectic Si. The refined eutectic Si is easily dissolved at the time of re-dissolution in a later step. Further, even in the subsequent secondary casting stage such as die casting or molten forging, the eutectic Si other than the target primary crystal Si is refined, and the effect of improving impact resistance is exhibited. If any of the alloy components is less than the specified range, the effect of addition is reduced. On the other hand, if the added amount exceeds the specified range, the flow of the molten metal is deteriorated, and nonmetallic inclusions such as oxides derived from the added components are increased. The increased non-metallic inclusions are consequently caught in the product and cause the impact resistance to deteriorate.
【0010】Ti:0.01〜0.2重量%,B:0.
0001〜0.04重量% Si,P含有量が規制された亜共晶Al−Si合金を鋳
造して一次鋳造材とするとき、初晶として晶出するα−
Al晶を微細化させる作用を呈する。初晶のα−Al晶
は、後工程のダイカスト鋳造や溶湯鍛造時に溶融しない
ため、小粒径ほど湯の流動性を改善し、成形性及び押し
湯性を向上させる。このような効果は、Ti:0.01
〜0.2重量%及び/又はB:0.0001〜0.04
重量%の範囲で顕著になる。0.01重量%未満のTi
や0.001重量%未満のBでは、α−Al晶が大きく
成長するため、成形性や押し湯性を改善する効果が小さ
くなる。逆に0.2重量%を超えるTi含有量や0.0
4重量%を超えるB含有量では、大きな金属間化合物が
生成し、耐衝撃性を劣化させる。α−Al晶はデンドラ
イト状に成長するが、適正量のTi,B添加や鋳造条件
の制御等によって大きく成長することが抑えられる。良
好な成形性,押し湯性等を確保する上でデンドライトア
−ムスペ−シングは小さいほど好ましく、好適には平均
粒径として50μm以下に規制される。[0010] Ti: 0.01-0.2% by weight, B: 0.
0001-0.04% by weight When a hypoeutectic Al-Si alloy having a regulated Si and P content is cast into a primary cast material, α- crystallized as a primary crystal.
It has the function of refining Al crystals. The primary α-Al crystal is not melted during die casting or molten forging in the subsequent process, so that the smaller the particle size, the better the fluidity of the molten metal, and the better the formability and pushability. Such an effect can be obtained when Ti: 0.01
-0.2% by weight and / or B: 0.0001-0.04
It becomes remarkable in the range of weight%. Less than 0.01% by weight of Ti
If the content of B is less than 0.001% by weight, the α-Al crystal grows large, and the effect of improving the formability and the hot-rolling property is reduced. Conversely, a Ti content exceeding 0.2% by weight or 0.0%
When the B content exceeds 4% by weight, a large intermetallic compound is formed, and the impact resistance is deteriorated. The α-Al crystal grows in a dendrite shape, but its growth is suppressed by adding an appropriate amount of Ti or B or controlling casting conditions. The dendrite arm spacing is preferably as small as possible from the standpoint of ensuring good moldability, hot-rolling property, etc., and the average particle diameter is preferably regulated to 50 μm or less.
【0011】Cu:0.2〜2重量% 必要に応じて添加される合金成分であり、マトリックス
の強度及び耐摩耗性を向上させる作用を呈する。しか
し、2重量%を超える多量のCuを添加すると、融点が
低く偏析し易いAl−Cu系の溶湯が生じ、Al−Cu
−Mg系,Cu−Mg系等の金属間化合物を偏析層とし
て晶出させる。偏析層は、耐衝撃性を著しく低下させる
原因になる。逆に0.2重量%に満たないCu含有量で
は、Cu添加による強度及び耐摩耗性の向上が顕著でな
い。また、適量のCu添加は、T6処理によってAlC
u2 等を析出させ、T6処理材の強度を向上させる。Mg:0.2〜0.7重量% 必要に応じて添加される合金成分であり、T6処理によ
ってMg2 Siとして析出し、T6処理材の強度を向上
させる。Mg含有量が0.2重量%未満では、T6処理
で析出するMg2 Siの量が少なく、強度向上に及ぼす
影響が小さくなる。逆に0.7重量%を超えるMg含有
量では、Mg系の酸化物巻込みが増加し、耐衝撃性が劣
化する。[0011] Cu: 0.2 to 2% by weight is an alloy component added as necessary, and has an effect of improving the strength and wear resistance of the matrix. However, when a large amount of Cu exceeding 2% by weight is added, an Al-Cu-based molten metal having a low melting point and easy to segregate is generated, and Al-Cu is added.
An intermetallic compound such as -Mg or Cu-Mg is crystallized as a segregation layer. The segregation layer causes a significant decrease in impact resistance. Conversely, if the Cu content is less than 0.2% by weight, the strength and wear resistance are not significantly improved by the addition of Cu. In addition, the addition of an appropriate amount of Cu is performed by T6 treatment.
precipitating u 2, etc., to improve the strength of the T6 treatment material. Mg: 0.2 to 0.7% by weight An alloy component added as needed, precipitates as Mg 2 Si by T6 treatment, and improves the strength of the T6 treated material. If the Mg content is less than 0.2% by weight, the amount of Mg 2 Si precipitated by the T6 treatment is small, and the effect on the strength improvement is small. Conversely, if the Mg content exceeds 0.7% by weight, the entrainment of Mg-based oxides increases, and the impact resistance deteriorates.
【0012】Mn:0.1〜0.6重量% 必要に応じて添加される合金成分であり、Al‐Mn‐
Si系の金属間化合物として晶出し、耐摩耗性を向上さ
せる。このような効果は、0.1重量%以上のMn含有
量で顕著になる。しかし、0.6重量%を超えるMn含
有量では、巨大な晶出物が生成し、耐衝撃性が劣化す
る。以上に掲げた合金成分の他に、本発明が対象とする
亜共晶Al‐Si合金は、ダイカスト鋳造時に金型への
焼付きを防止する作用を呈するFeを含んでいても良
い。しかし、Fe含有量が多いと、Al‐Si‐Fe系
の晶出物が生成し、半溶融状態での流動性を低下させ、
成形性や湯流れ性に悪影響を及ぼす。この点から、Fe
を合金成分として添加する場合、その含有量を0.1〜
0.5重量%の範囲に規制する。Ni,Zn,Cr等、
その他の元素は耐衝撃性,耐食性に悪影響を及ぼすので
少ないほど好ましく、具体的にはそれぞれ0.3重量%
以下に規制される。 Mn: 0.1 to 0.6% by weight An alloy component added as necessary, and Al-Mn-
It is crystallized as a Si-based intermetallic compound to improve wear resistance. Such an effect becomes remarkable at a Mn content of 0.1% by weight or more. However, when the Mn content exceeds 0.6% by weight, a huge crystallized substance is formed, and the impact resistance is deteriorated. In addition to the alloy components listed above, the hypoeutectic Al-Si alloy targeted by the present invention may contain Fe which has an effect of preventing seizure on a mold during die casting. However, when the Fe content is large, an Al-Si-Fe-based crystallized substance is generated, which lowers the fluidity in a semi-molten state,
It has an adverse effect on moldability and flowability. From this point, Fe
When added as an alloy component, the content is 0.1 to
It is restricted to the range of 0.5% by weight. Ni, Zn, Cr, etc.
Other elements are more preferable because they have a bad influence on impact resistance and corrosion resistance.
It is regulated as follows.
【0013】一次鋳造 以上のように合金設計された亜共晶Al―Si合金は、
溶解後に脱ガス,微細化,脱滓等の溶湯処理が常法に従
って施される。次いで、金型鋳造(インゴット鋳造),
DC鋳造等によって一次鋳造材を製造する。一次鋳造材
は、共晶Siが細かく、またα−Al晶のデンドライト
アームスペーシングも細かい方が好ましい。α−Al晶
のデンドライトアームスペーシングを細かくする鋳造法
としては、Ti‐B系の結晶微細化剤を添加する方法,
凝固界面を電磁攪拌又は機械攪拌してα−Al晶のデン
ドライトアームスペーシングを分断して微細化する方法
等が採用される。α−Al晶のデンドライトは、二次鋳
造に先立つ再加熱で一次鋳造材を半溶融状態にすると
き、溶融することなく溶湯中に残存する。そのため、α
−Al晶のデンドライトアームスペーシングが細かいほ
ど、半溶融状態での流動性が良い。その結果、押し湯効
果が効き、二次鋳造材に成形する際にポロシティ,引け
巣等の鋳造欠陥が発生しにくく、健全な鋳造組織をもつ
二次鋳造材が得られる。また、一次鋳造材に晶出してい
る共晶Siが細かいほど、再加熱により一次鋳造材が容
易に半溶融状態となる。[0013] The hypoeutectic Al-Si alloy designed as above is as follows :
After the melting, a molten metal treatment such as degassing, miniaturization, and deslagging is performed according to a conventional method. Next, die casting (ingot casting),
A primary casting material is manufactured by DC casting or the like. It is preferable that the primary cast material has a fine eutectic Si and a fine dendrite arm spacing of an α-Al crystal. As a casting method for reducing the dendrite arm spacing of α-Al crystals, a method of adding a Ti—B-based crystal refining agent,
A method in which the solidification interface is magnetically or mechanically stirred to separate α-Al crystal dendrite arm spacing to make the solidification finer or the like is employed. The α-Al crystal dendrite remains in the molten metal without melting when the primary cast material is brought into a semi-molten state by reheating prior to secondary casting. Therefore, α
-The finer the dendrite arm spacing of Al crystals, the better the fluidity in the semi-molten state. As a result, the feeder effect is effective, and casting defects such as porosity and shrinkage cavities are less likely to occur when forming into a secondary casting material, and a secondary casting material having a sound casting structure can be obtained. Further, the finer the eutectic Si crystallized in the primary casting material, the more easily the primary casting material becomes a semi-molten state by reheating.
【0014】一次鋳造材は、560〜580℃の加熱に
より半溶融状態になる。560〜580℃の加熱温度範
囲は、α−Al晶を溶解させずに、α−Al晶の粒界や
デンドライトセルの境界に晶出している共晶Si等の共
晶相を選択的に溶解させる上で有効な温度範囲である。
Al−Si系の状態図では共晶Siの融点はほぼ575
℃であるが、実際のAl―Si系合金においてはMg2
Si,Al2 Cu等に由来するAl‐Si‐金属間化合
物系の三元系以上の共晶等が存在する。そこで、共晶S
iの溶解状態を調査・研究したところ、560℃で共晶
Siの溶解が始まることが判った。しかし、580℃を
超えると、周辺のα−Al晶の溶解が始まり、融液部分
のSi含有量が下がり、冷却時に晶出する初晶Siが少
量となり、微細な共晶Siが多くなる。具体的には、P
を0.001重量%及び0.004重量%添加したAl
―Si系においてSi含有量と初晶Si晶出温度との関
係を調査した図3にみられるように、P:0.001重
量%のときSi含有量がほぼ13重量%付近までは共晶
温度が574℃となっており、少量の初晶Siと多量の
共晶Siが晶出する。他方、0.004重量%のPを添
加した系では、初晶Siが多量に晶出する。このことか
ら、580℃で初晶Siが晶出する場合、融液部分のS
i含有量がほぼ13重量%になっていることが判る。[0014] The primary cast material is brought into a semi-molten state by heating at 560-580 ° C. The heating temperature range of 560 to 580 ° C. selectively melts the eutectic phase such as eutectic Si crystallized at the grain boundary of the α-Al crystal and the boundary of the dendrite cell without dissolving the α-Al crystal. This is an effective temperature range for performing
In the phase diagram of the Al-Si system, the melting point of eutectic Si is almost 575.
° C, but Mg 2
A ternary or higher eutectic of an Al-Si-intermetallic compound derived from Si, Al 2 Cu, or the like exists. Therefore, eutectic S
Investigation and study of the dissolution state of i revealed that dissolution of eutectic Si began at 560 ° C. However, when the temperature exceeds 580 ° C., melting of the surrounding α-Al crystals starts, the Si content in the melt decreases, the amount of primary crystal Si crystallized during cooling decreases, and the amount of fine eutectic Si increases. Specifically, P
Containing 0.001% by weight and 0.004% by weight of Al
As shown in FIG. 3 in which the relationship between the Si content and the primary Si crystallization temperature was investigated in the Si system, when P: 0.001% by weight, the eutectic was observed until the Si content was approximately 13% by weight. The temperature is 574 ° C., and a small amount of primary crystal Si and a large amount of eutectic Si are crystallized. On the other hand, in a system to which 0.004% by weight of P is added, a large amount of primary crystal Si is crystallized. From this, when primary Si is crystallized at 580 ° C., S
It can be seen that the i content is approximately 13% by weight.
【0015】図3のSi含有量と初晶Si晶出温度との
関係を、本発明に従った亜共晶Al―Si系合金につい
ての実験結果に当てはめてみると、亜共晶組成であるに
も拘わらず初晶Siが晶出する理由は次のように推察さ
れる。すなわち、共晶Siが晶出している鋳造組織(図
1)をもつ一次鋳造材を560〜580℃の温度範囲で
溶解すると、α−Al晶が溶解しない半溶融状態になる
ため、融液部分のSi含有量が高くなっている。しか
も、初晶Si晶出の核になるPが融液部分に含まれてい
るので、半溶融状態からの冷却過程で融液部分から初晶
Siが晶出する。融液部分のSi含有量は、図3に示し
たSi含有量と初晶Si晶出温度との関係から13重量
%程度まで上昇しているものと考えられる。しかし、一
次鋳造材の加熱温度が580℃を超えると、α−Al晶
の溶解が開始され、結果として融液部分のSi含有量が
低下するため、初晶Siの晶出量が減り、微細な共晶S
iが多くなる。このようなことから、耐摩耗性の改善に
有効な初晶Siを晶出させるためには、一次鋳造材を5
60〜580℃の温度範囲に加熱し、半溶融状態にする
ことが必要である。When the relationship between the Si content and the primary crystallization temperature of Si in FIG. 3 is applied to the experimental results of the hypoeutectic Al—Si alloy according to the present invention, the hypoeutectic composition is obtained. Nevertheless, the reason why primary Si is crystallized is assumed as follows. That is, when a primary casting material having a casting structure in which eutectic Si is crystallized (FIG. 1) is melted in a temperature range of 560 to 580 ° C., a semi-molten state in which α-Al crystals do not melt is obtained. Has a high Si content. In addition, since P serving as a nucleus for crystallization of primary Si is contained in the melt, primary Si is crystallized from the melt during the cooling process from the semi-molten state. It is considered that the Si content in the melt portion has increased to about 13% by weight from the relationship between the Si content and the primary Si crystallization temperature shown in FIG. However, when the heating temperature of the primary casting material exceeds 580 ° C., melting of α-Al crystals starts, and as a result, the Si content in the melt decreases, so that the crystallization amount of primary Si decreases, and Eutectic S
i increases. For this reason, in order to crystallize primary Si which is effective for improving wear resistance, it is necessary to use a primary cast material of 5%.
It is necessary to heat to a temperature range of 60 to 580 ° C. to make a semi-molten state.
【0016】二次鋳造 半溶融状態の一次鋳造材は、製品形状に対応するキャビ
ティをもった金型を用いてダイカスト鋳造又は溶湯鍛造
され、二次鋳造材に成形される。このとき、半溶融状態
の一次鋳造材に500kg/cm2 以上の圧力を加えて
金型に圧入し、2℃/秒以上で冷却することが好まし
い。加圧により、ポロシティ,引け巣等の鋳造欠陥が二
次鋳造材に発生することが防止される。また、鋳造され
るAl―Si合金が完全に溶解していない湯流れの悪い
半溶融状態であることから、金型キャビティの隅々まで
溶湯を充填する上でも加圧が有効である。二次鋳造時の
溶湯冷却速度は、二次鋳造材の組織に影響を及ぼす。冷
却速度を2℃/秒以上と速くすることにより、結晶粒が
微細化され、耐衝撃性の改善に有効な緻密な二次鋳造組
織となる。しかも、金型内面に溶湯が接触したとき、加
圧によって凝固収縮が阻止されるため、金型を介した抜
熱作用が充分に働き、内部まで緻密な二次鋳造組織とな
り、優れた耐衝撃性を示す二次鋳造部材が得られる。ま
た、二次鋳造部材を鍛造すると、更に耐衝撃性が向上し
た鍛造部材が得られる。[0016] The secondary casting semi-molten primary casting material is die cast or molten forged using a mold having a cavity corresponding to the product shape, and formed into a secondary casting material. At this time, it is preferable to apply a pressure of 500 kg / cm 2 or more to the semi-molten primary casting material and press-fit it into a mold, and cool it at 2 ° C./sec or more. The pressurization prevents casting defects such as porosity and shrinkage cavities from occurring in the secondary casting material. Further, since the Al-Si alloy to be cast is in a semi-molten state in which the molten metal is not completely melted and the flow of the molten metal is poor, the pressurization is also effective in filling the molten metal into every corner of the mold cavity. The molten metal cooling rate during the secondary casting affects the structure of the secondary casting material. By increasing the cooling rate to 2 ° C./sec or more, the crystal grains are refined and a dense secondary casting structure effective for improving impact resistance is obtained. In addition, when the molten metal comes in contact with the inner surface of the mold, the solidification shrinkage is prevented by the pressurization, so the heat removal action through the mold works sufficiently, and a dense secondary casting structure is formed inside, resulting in excellent impact resistance. A secondary cast member having good properties is obtained. Further, when the secondary cast member is forged, a forged member having further improved impact resistance can be obtained.
【0017】二次鋳造されたAl‐Si合金は、鋳造材
(F材)のまま機械加工が施され、鋳造部材として使用
できる。また、必要に応じT6処理(490〜540℃
×1〜6時間→水冷→150〜180℃×4〜8時間→
空冷)でMg2 Si,AlCu2 等を析出させて強度を
上昇させた後で、機械加工しても良い。或いは、二次鋳
造によって得られたF材を温間鍛造又は熱間鍛造した後
で機械加工を施した鍛造部品としても使用できる。この
場合にも、機械加工に先立ってF材と同じT6処理を施
しても良い。鍛造により、Al‐Si合金の靭性(耐衝
撃性)が更に向上する。なお、本発明に従ったAl‐S
i合金では、割れの起点となりやすい初晶Siを晶出さ
せているので、鍛造は冷間ではなく温間又は熱間で実施
される。The secondary cast Al-Si alloy is machined as cast material (F material) and can be used as a cast member. If necessary, T6 treatment (490-540 ° C)
× 1 to 6 hours → water cooling → 150 to 180 ° C × 4 to 8 hours →
After increasing the strength by precipitating Mg 2 Si, AlCu 2 or the like by air cooling), machining may be performed. Alternatively, it can also be used as a forged part obtained by subjecting F material obtained by secondary casting to warm forging or hot forging and then performing machining. Also in this case, the same T6 treatment as that of the F material may be performed prior to machining. The forging further improves the toughness (impact resistance) of the Al-Si alloy. The Al-S according to the present invention
In the i-alloy, primary crystal Si, which is likely to be the starting point of cracking, is crystallized, so that forging is performed not warm but hot or hot.
【0018】[0018]
【実施例】各種亜共晶Al―Si合金を溶製し、常法に
従った溶湯処理を施した後、径45mm,高さ25mm
の金型に鋳込み、一次鋳造材を作製した。得られた一次
鋳造材の組成を調査した結果を表1に示す。なお、組成
が同じAl―Si合金についてそれぞれ3個の試料を作
製し、そのうち一次鋳造材のみの試料を比較例として扱
った。EXAMPLE After melting various hypoeutectic Al-Si alloys and subjecting them to a molten metal treatment according to a conventional method, the diameter was 45 mm and the height was 25 mm.
And a primary casting material was produced. Table 1 shows the results of investigating the composition of the obtained primary casting material. In addition, three samples were prepared for each of the Al—Si alloys having the same composition, and a sample containing only the primary cast material was treated as a comparative example.
【0019】 [0019]
【0020】各組成ごとに2個の一次鋳造材を570℃
に加熱して3分間保持することにより半溶融状態にし
た。半溶融状態にあるAl−Si合金の径45mmの面
に800kg/cm2 の圧力を加え、径85mm,高さ
7mmのキャビティをもつ金型に圧入した。金型に圧入
されたAl−Si合金は、約150℃/秒の冷却速度で
冷却され、二次鋳造材に成形された。一つの二次鋳造材
から試験片を切り出し、ミクロ組織を観察した。観察結
果を、一次鋳造されたままの組識と比較して表2に示
す。また、表1の試料番号1−Fについて、一次鋳造材
及び二次鋳造材のミクロ組識をそれぞれ図1及び図2に
示す。一次鋳造材(図1)では細かな共晶Siが結晶粒
界やデンドライトセルの境界に分散晶出しているのに対
し、二次鋳造材(図2)では共晶Siの中に初晶Siが
晶出している。Two primary castings of each composition were heated at 570 ° C.
To a semi-molten state by holding for 3 minutes. A pressure of 800 kg / cm 2 was applied to a surface of a semi-molten Al-Si alloy having a diameter of 45 mm, and the Al-Si alloy was pressed into a mold having a cavity having a diameter of 85 mm and a height of 7 mm. The Al—Si alloy pressed into the mold was cooled at a cooling rate of about 150 ° C./sec and formed into a secondary casting. A test piece was cut out from one secondary casting material and the microstructure was observed. The results of the observation are shown in Table 2 in comparison with the as-cast primary structure. 1 and 2 show the microstructures of the primary casting material and the secondary casting material for the sample numbers 1-F in Table 1, respectively. In the primary cast material (FIG. 1), fine eutectic Si is dispersed and crystallized at the grain boundaries and the boundaries of dendrite cells, whereas in the secondary cast material (FIG. 2), primary eutectic Si is included in the eutectic Si. Is crystallized.
【0021】 [0021]
【0022】残りの二次鋳造材にT6処理(500℃×
3時間→水冷→160℃×5時間→空冷)を施し、2個
の試験片を切り出し、それぞれを摩耗試験及びシャルピ
ー衝撃試験に供した。摩耗試験では、面圧:6MPa,
滑り速度1m/秒,相手材:鋳鉄,摺動面粗さ:Ra =
1.6μm,摺動距離:4km,潤滑剤有り,試験温
度:80℃の条件を採用し、試験片の摩耗深さを測定し
た。シャルピー衝撃試験は、JISに準拠した。なお、
一次鋳造材にT6処理を施したものを比較材として使用
した。表3の調査結果にみられるように、本発明に従っ
て二次鋳造及びT6処理が施された材料は、何れも耐摩
耗性,靭性共に優れた値を示した。他方、一次鋳造材に
T6処理を施した比較材は、亜共晶Al−Si合金特有
の優れた衝撃値をもっていたが、摩耗深さが最低でも2
2μm以上と大きく、耐摩耗性に劣っていることが判
る。T6 treatment (500 ° C. ×
(3 hours → water cooling → 160 ° C. × 5 hours → air cooling), and two test pieces were cut out and subjected to an abrasion test and a Charpy impact test. In the wear test, surface pressure: 6 MPa,
Sliding speed 1 m / sec, mating material: cast iron, sliding surface roughness: Ra =
The wear depth of the test piece was measured under the conditions of 1.6 μm, sliding distance: 4 km, lubricant, and test temperature: 80 ° C. The Charpy impact test conformed to JIS. In addition,
The primary cast material subjected to T6 treatment was used as a comparative material. As can be seen from the examination results in Table 3, the materials subjected to the secondary casting and the T6 treatment according to the present invention showed excellent values in both wear resistance and toughness. On the other hand, the comparative material obtained by subjecting the primary cast material to the T6 treatment had an excellent impact value unique to the hypoeutectic Al-Si alloy, but the wear depth was at least 2 mm.
It is as large as 2 μm or more, which indicates that the abrasion resistance is poor.
【0023】 [0023]
【0024】以上の結果をまとめると、本発明が対象と
する亜共晶Al−Si合金では、一次鋳造材では初晶S
iの晶出がみられないが、一次鋳造材を半溶融状態にし
た後で二次鋳造するとき平均粒径7.2〜8.2μmの
初晶Siが面積率1.8〜2.8%で晶出した鋳造組識
となっていた。この二次鋳造材にT6処理を施した本発
明試料と一次鋳造材にT6処理を施した比較例試料とを
比較すると、シャルピー衝撃値に関しては比較例試料よ
りも本発明試料が若干劣るが、耐摩耗性に関しては本発
明試料が格段に優れている。すなわち、得られたAl−
Si合金材は、亜共晶組成特有の優れた靭性を維持する
と共に、初晶Siの晶出によって耐摩耗性が改善された
材料となる。Summarizing the above results, in the hypoeutectic Al-Si alloy targeted by the present invention, primary S
Although no crystallization of i is observed, primary crystal Si having an average particle size of 7.2 to 8.2 μm has an area ratio of 1.8 to 2.8 when secondary casting is performed after the primary casting material is in a semi-molten state. The casting organization was crystallized in%. A comparison of the sample of the present invention obtained by subjecting the secondary cast material to T6 treatment and the sample of the comparative example obtained by subjecting the primary cast material to T6 treatment shows that the Charpy impact value of the sample of the present invention is slightly inferior to that of the comparative sample, With respect to abrasion resistance, the sample of the present invention is remarkably excellent. That is, the obtained Al-
The Si alloy material is a material that maintains excellent toughness peculiar to the hypoeutectic composition and has improved wear resistance due to crystallization of primary crystal Si.
【0025】[0025]
【発明の効果】以上に説明したように、本発明の亜共晶
Al−Si合金は、一次鋳造材に晶出している部分のS
i含有量が局部的に高くなっていることを利用し、再加
熱によって共晶Si晶出部を選択的に溶解させた半溶融
状態にした後で二次鋳造することにより、亜共晶組成に
おいて初晶Siが晶出した鋳造組識としている。このよ
うにして得られた亜共晶Al−Si合金材は、晶出した
初晶Siによって耐摩耗性が改善されると共に、亜共晶
組成特有の優れた耐衝撃性,靭性を兼ね備えているた
め、自動車用シフトフォークを始めとして各種機能部材
として広範な分野で使用される。As described above, the hypoeutectic Al-Si alloy according to the present invention has the following characteristics:
Utilizing the fact that the i content is locally high, the eutectic Si crystallized portion is selectively melted to a semi-molten state by reheating, and then subjected to secondary casting, whereby the hypoeutectic composition is obtained. , A casting structure in which primary Si was crystallized. The hypoeutectic Al-Si alloy material thus obtained has improved wear resistance due to the crystallized primary crystal Si, and also has excellent impact resistance and toughness unique to the hypoeutectic composition. Therefore, they are used in a wide range of fields as various functional members including shift forks for automobiles.
【図1】 本発明で規定した組成をもつ亜共晶Al−S
i合金一次鋳造材の鋳造組識を示す顕微鏡写真FIG. 1 shows a hypoeutectic Al—S having a composition specified in the present invention.
Micrograph showing casting structure of i-alloy primary casting material
【図2】 本発明で規定した組成をもつ亜共晶Al−S
i合金二次鋳造材の鋳造組識を示す顕微鏡写真FIG. 2 shows a hypoeutectic Al—S having a composition specified in the present invention.
Micrograph showing casting structure of i-alloy secondary casting material
【図3】 Al−Si合金のSi含有量と初晶Si晶出
温度との関係を示すグラフFIG. 3 is a graph showing the relationship between the Si content of an Al—Si alloy and the primary Si crystallization temperature.
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成10年7月30日(1998.7.3
0)[Submission date] July 30, 1998 (July 7, 1998)
0)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図1[Correction target item name] Fig. 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図1】 FIG.
【手続補正2】[Procedure amendment 2]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図2[Correction target item name] Figure 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図2】 FIG. 2
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 1/02 503 C22C 1/02 503J (72)発明者 倉増 幸雄 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グル−プ技術センタ− 内──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C22C 1/02 503 C22C 1/02 503J (72) Inventor Yukio Kuramasu 1-34, Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture No. 1 Nippon Light Metal Co., Ltd. Group Technology Center
Claims (7)
0.001〜0.01重量%、残部が実質的にAlの組
成をもち、一次鋳造材を固液共存域に再加熱して二次鋳
造することにより得られる鋳造組織に平均粒径6〜9μ
mの初晶Siが面積率1〜3%で分散していることを特
徴とする耐衝撃性及び耐摩耗性に優れた亜共晶Al―S
i合金部材。1. Si: 6.5 to 11.0% by weight, P:
0.001 to 0.01% by weight, with the balance being substantially Al. The casting structure obtained by reheating the primary casting material to the solid-liquid coexistence region and performing secondary casting has an average particle size of 6 to 9μ
m-primary crystal Si is dispersed at an area ratio of 1 to 3%, and is hypoeutectic Al-S excellent in impact resistance and wear resistance.
i alloy members.
%,Sb:0.05〜0.25重量%,Na:0.00
1〜0.01重量%,Ca:0.001〜0.02重量
%の1種又は2種以上を含む請求項1記載の亜共晶Al
―Si合金部材。2. Sr: 0.003 to 0.04% by weight, Sb: 0.05 to 0.25% by weight, Na: 0.00
2. The hypoeutectic Al according to claim 1, comprising one or more of 1 to 0.01% by weight and Ca: 0.001 to 0.02% by weight.
-Si alloy members.
B:0.0001〜0.04重量%の1種又は2種以上
を含む請求項1又は2記載の亜共晶Al−Si合金部
材。3. Ti: 0.01 to 0.2% by weight,
B: The hypoeutectic Al-Si alloy member according to claim 1, comprising one or more of 0.0001 to 0.04 wt%.
l−Si合金に更にCu:0.2〜2重量%,Mg:
0.2〜0.7重量%,Mn:0.1〜0.6重量%の
1種又は2種以上を含む請求項1〜3の何れかに記載の
亜共晶Al−Si合金部材。4. The hypoeutectic A according to claim 1,
Cu: 0.2-2% by weight, Mg:
The hypoeutectic Al-Si alloy member according to any one of claims 1 to 3, comprising one or more of 0.2 to 0.7 wt% and Mn: 0.1 to 0.6 wt%.
つ亜共晶Al−Si合金を鋳造した一次鋳造材を容器内
で560〜580℃の温度に再加熱して半溶融状態とし
た後、ダイカスト又は溶湯鍛造の金型に圧入して二次鋳
造材に成形することを特徴とする亜共晶Al−Si合金
部材の製造方法。5. A semi-molten state by reheating a primary cast material obtained by casting a hypoeutectic Al-Si alloy having the composition according to claim 1 to a temperature of 560 to 580 ° C. in a container. Forming a secondary eutectic Al-Si alloy member by press-fitting into a die casting or molten metal forging die.
イカスト鋳造又は溶湯鍛造する際、半溶融状態にある溶
湯の冷却速度を2℃/秒以上,加圧力を500kg/c
m2 以上に設定する請求項5記載の亜共晶Al−Si合
金部材の製造方法。6. When a semi-eutectic hypoeutectic Al-Si alloy is die-casted or forged, a cooling rate of the semi-molten molten metal is 2 ° C./sec or more, and a pressing force is 500 kg / c.
method for producing a hypoeutectic Al-Si alloy member according to claim 5, wherein the set to m 2 or more.
次鋳造材を温間鍛造又は熱間鍛造する亜共晶Al−Si
合金部材の製造方法。7. A hypoeutectic Al-Si for warm forging or hot forging the secondary cast material obtained by the method according to claim 5 or 6.
A method for manufacturing an alloy member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10215396A JP2000054047A (en) | 1998-07-30 | 1998-07-30 | Hypoeutectic Al-Si alloy member in which primary Si is crystallized and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10215396A JP2000054047A (en) | 1998-07-30 | 1998-07-30 | Hypoeutectic Al-Si alloy member in which primary Si is crystallized and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000054047A true JP2000054047A (en) | 2000-02-22 |
Family
ID=16671636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10215396A Pending JP2000054047A (en) | 1998-07-30 | 1998-07-30 | Hypoeutectic Al-Si alloy member in which primary Si is crystallized and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000054047A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002339030A (en) * | 2001-05-17 | 2002-11-27 | Yamaha Motor Co Ltd | Aluminum alloy for diecasting |
JP2003027169A (en) * | 2001-07-19 | 2003-01-29 | Yamaha Motor Co Ltd | Aluminum alloy and aluminum alloy casting |
WO2004009271A1 (en) * | 2002-07-22 | 2004-01-29 | Showa Denko K.K. | Continuous cast aluminum alloy rod and production method and apparatus thereof |
JP2006316341A (en) * | 2005-04-14 | 2006-11-24 | Daiki Aluminium Industry Co Ltd | Aluminum alloy for casting and cast aluminum alloy |
JP2006322032A (en) * | 2005-05-18 | 2006-11-30 | Toyota Central Res & Dev Lab Inc | Aluminum alloy for semi-solid casting, aluminum alloy casting and manufacturing method thereof |
JP2007031788A (en) * | 2005-07-27 | 2007-02-08 | Aisin Aw Co Ltd | Aluminum alloy for casting, manufacturing method therefor, and method for manufacturing cast product of aluminum alloy |
JP2008111153A (en) * | 2006-10-30 | 2008-05-15 | Hitachi Metals Ltd | Aluminum die casting alloy and compressor impeller using the same |
WO2010079677A1 (en) | 2009-01-06 | 2010-07-15 | Nippon Light Metal Company, Ltd. | Method of production of aluminum alloy |
US20120230861A1 (en) * | 2011-03-09 | 2012-09-13 | Hyundai Motor Company | Swash plate and method of manufacturing the same |
JP2013204066A (en) * | 2012-03-27 | 2013-10-07 | Toyota Central R&D Labs Inc | Aluminum alloy member and method of manufacturing the same |
JP2014194051A (en) * | 2013-03-28 | 2014-10-09 | Kobe Steel Ltd | Aluminum alloy brazing material and brazing sheet |
WO2015151369A1 (en) * | 2014-03-31 | 2015-10-08 | アイシン軽金属株式会社 | Aluminum alloy and die casting method |
CN106825496A (en) * | 2016-12-16 | 2017-06-13 | 浙江天雅江涛动力有限公司 | A kind of wrought aluminium alloy workpiece casting forging unification moulding process |
CN108779521A (en) * | 2016-11-01 | 2018-11-09 | 株式会社Uacj | Low pressure casting aluminium alloy |
JPWO2021064865A1 (en) * | 2019-10-01 | 2021-04-08 | ||
CN116529404A (en) * | 2020-10-30 | 2023-08-01 | 株式会社力森诺科 | Aluminum alloys for sliding parts and sliding parts |
-
1998
- 1998-07-30 JP JP10215396A patent/JP2000054047A/en active Pending
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002339030A (en) * | 2001-05-17 | 2002-11-27 | Yamaha Motor Co Ltd | Aluminum alloy for diecasting |
JP2003027169A (en) * | 2001-07-19 | 2003-01-29 | Yamaha Motor Co Ltd | Aluminum alloy and aluminum alloy casting |
WO2004009271A1 (en) * | 2002-07-22 | 2004-01-29 | Showa Denko K.K. | Continuous cast aluminum alloy rod and production method and apparatus thereof |
CN1323780C (en) * | 2002-07-22 | 2007-07-04 | 昭和电工株式会社 | Continuous cast aluminum alloy rod and production method and apparatus thereof |
KR100758277B1 (en) * | 2002-07-22 | 2007-09-12 | 쇼와 덴코 가부시키가이샤 | Continuous cast aluminum alloy rod and production method and apparatus thereof |
JP2006316341A (en) * | 2005-04-14 | 2006-11-24 | Daiki Aluminium Industry Co Ltd | Aluminum alloy for casting and cast aluminum alloy |
JP2006322032A (en) * | 2005-05-18 | 2006-11-30 | Toyota Central Res & Dev Lab Inc | Aluminum alloy for semi-solid casting, aluminum alloy casting and manufacturing method thereof |
JP2007031788A (en) * | 2005-07-27 | 2007-02-08 | Aisin Aw Co Ltd | Aluminum alloy for casting, manufacturing method therefor, and method for manufacturing cast product of aluminum alloy |
JP2008111153A (en) * | 2006-10-30 | 2008-05-15 | Hitachi Metals Ltd | Aluminum die casting alloy and compressor impeller using the same |
US9096915B2 (en) | 2009-01-06 | 2015-08-04 | Nippon Light Metal Company, Ltd. | Method of production of aluminum alloy |
WO2010079677A1 (en) | 2009-01-06 | 2010-07-15 | Nippon Light Metal Company, Ltd. | Method of production of aluminum alloy |
JP2010180422A (en) * | 2009-01-06 | 2010-08-19 | Nippon Light Metal Co Ltd | Method for producing aluminum alloy |
US9650700B2 (en) * | 2011-03-09 | 2017-05-16 | Hyundai Motor Company | Swash plate and method of manufacturing the same |
US20120230861A1 (en) * | 2011-03-09 | 2012-09-13 | Hyundai Motor Company | Swash plate and method of manufacturing the same |
JP2013204066A (en) * | 2012-03-27 | 2013-10-07 | Toyota Central R&D Labs Inc | Aluminum alloy member and method of manufacturing the same |
JP2014194051A (en) * | 2013-03-28 | 2014-10-09 | Kobe Steel Ltd | Aluminum alloy brazing material and brazing sheet |
US20160355908A1 (en) * | 2014-03-31 | 2016-12-08 | Aisin Keikinzoku Co., Ltd. | Aluminum alloy and die casting method |
JPWO2015151369A1 (en) * | 2014-03-31 | 2017-04-13 | アイシン軽金属株式会社 | Aluminum alloy and die casting method |
US11359264B2 (en) | 2014-03-31 | 2022-06-14 | Aisin Keikinzoku Co., Ltd. | Aluminum alloy and die casting method |
WO2015151369A1 (en) * | 2014-03-31 | 2015-10-08 | アイシン軽金属株式会社 | Aluminum alloy and die casting method |
EP3536817A4 (en) * | 2016-11-01 | 2019-09-11 | UACJ Corporation | ALUMINUM ALLOY FOR LOW PRESSURE MOLDING |
CN108779521A (en) * | 2016-11-01 | 2018-11-09 | 株式会社Uacj | Low pressure casting aluminium alloy |
JPWO2018084103A1 (en) * | 2016-11-01 | 2019-02-14 | 株式会社Uacj | Aluminum alloy for low pressure casting |
CN106825496B (en) * | 2016-12-16 | 2018-08-03 | 浙江天雅江涛动力有限公司 | A kind of wrought aluminium alloy workpiece casting forging unification moulding process |
CN106825496A (en) * | 2016-12-16 | 2017-06-13 | 浙江天雅江涛动力有限公司 | A kind of wrought aluminium alloy workpiece casting forging unification moulding process |
JPWO2021064865A1 (en) * | 2019-10-01 | 2021-04-08 | ||
WO2021064865A1 (en) * | 2019-10-01 | 2021-04-08 | 株式会社アーレスティ | Aluminum alloy diecast, diecast unit and method for producing same |
CN114555259A (en) * | 2019-10-01 | 2022-05-27 | 株式会社阿雷斯提 | Aluminum alloy die casting, die casting unit and manufacturing method thereof |
JP7270056B2 (en) | 2019-10-01 | 2023-05-09 | 株式会社アーレスティ | Aluminum alloy die casting, die casting unit and manufacturing method thereof |
US12338511B2 (en) | 2019-10-01 | 2025-06-24 | Ahresty Corporation | Aluminum alloy diecast, diecast unit and method for producing same |
CN116529404A (en) * | 2020-10-30 | 2023-08-01 | 株式会社力森诺科 | Aluminum alloys for sliding parts and sliding parts |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115261684A (en) | A kind of cast Al-Si alloy and preparation method thereof | |
US20100288401A1 (en) | Aluminum casting alloy | |
CN109295351B (en) | Die-casting aluminum alloy and preparation method and application thereof | |
JP2000054047A (en) | Hypoeutectic Al-Si alloy member in which primary Si is crystallized and method for producing the same | |
EP1244820A1 (en) | Method for grain refinement of high strength aluminum casting alloys | |
CN103031473A (en) | Processing method of high-toughness Al-Si system die-casting aluminum alloy | |
EP1882754B1 (en) | Aluminium alloy | |
EP1488017A1 (en) | Aluminum alloy | |
GB2570026A (en) | Aluminium alloy for casting | |
WO2006102550A2 (en) | Aluminum alloy | |
CN115305392A (en) | High-strength and high-toughness die-casting aluminum-silicon alloy and preparation method and application thereof | |
JP6229130B2 (en) | Cast aluminum alloy and casting using the same | |
JPH0967635A (en) | Aluminum alloy casting excellent in strength and toughness, by high pressure casting, and its production | |
JP3346186B2 (en) | Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method | |
CN111101031B (en) | Al-Mg2Si-Mg-Mn-Y-B high-strength and high-toughness aluminum alloy and preparation method thereof | |
JP2006322032A (en) | Aluminum alloy for semi-solid casting, aluminum alloy casting and manufacturing method thereof | |
US20220017997A1 (en) | Aluminum alloys for structural high pressure vacuum die casting applications | |
JPWO2003023080A1 (en) | Aluminum alloy for casting, aluminum alloy casting, and method for manufacturing aluminum alloy casting | |
JPH11246925A (en) | Aluminum alloy casting with high toughness, and its manufacture | |
US7201210B2 (en) | Casting of aluminum based wrought alloys and aluminum based casting alloys | |
JP2000355722A (en) | Al-Si die-cast product excellent in airtightness and abrasion resistance and method for producing the same | |
Grassi et al. | Ablation casting | |
CN113913650B (en) | Aluminum alloy, preparation method thereof and die casting | |
JPH0375329A (en) | Aluminum alloy and method for its casting | |
CN113249600A (en) | High-toughness aluminum alloy manufacturing method and impurity and slag removing method |