[go: up one dir, main page]

JP2000049655A - Automatic frequency identification system for lc resonance tag - Google Patents

Automatic frequency identification system for lc resonance tag

Info

Publication number
JP2000049655A
JP2000049655A JP10244333A JP24433398A JP2000049655A JP 2000049655 A JP2000049655 A JP 2000049655A JP 10244333 A JP10244333 A JP 10244333A JP 24433398 A JP24433398 A JP 24433398A JP 2000049655 A JP2000049655 A JP 2000049655A
Authority
JP
Japan
Prior art keywords
frequency
resonance
change
transponder
tag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10244333A
Other languages
Japanese (ja)
Inventor
Masamitsu Kobayashi
将允 (マサミツ) 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOBAYASHI MUSEN KK
Original Assignee
KOBAYASHI MUSEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOBAYASHI MUSEN KK filed Critical KOBAYASHI MUSEN KK
Priority to JP10244333A priority Critical patent/JP2000049655A/en
Publication of JP2000049655A publication Critical patent/JP2000049655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the retrieving process speeds of various automatic ID identification devices using an LC resonance tag constituted by combining plural resonance frequencies and to increase the number of identification IDs by preventing misidentification. SOLUTION: In order to detect individual resonance frequencies of the LC resonance tag 30 consisting of plural resonance circuits 31a to 31n, amplitude variation and a phase shift of an electromagnetic wave due to the presence of the resonance tag in an induced electromagnetic field are observed independently. Features of the variation and shift are analyzed to exclude factors causing misrecognition. The total retrieving process speed is increased by using a detection system by frequency sweeping and a detection system by scanning in combination and the center frequency of the resonance frequency can precisely be set high, so the number of frequencies which can be identified in the same retrieval frequency range is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は,LC共振タグを
利用した非接触による各種自動ID識別装置において動
作する自動周波数識別方式に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to an automatic frequency identification system which operates in various non-contact automatic ID identification devices using an LC resonance tag.

【0002】[0002]

【従来の技術】セラミック振動子や水晶振動子を用いた
Q特性(尖鋭度)の高い共振回路の応答特性は,リンギ
ング特性が顕著に観測されるが,廉価なLC共振タグで
はQ特性が低く,リンギング特性に頼って識別すること
は困難である。従来の方式には所謂ディップメーター方
式と称される方式で,連続的に周波数を変化する(掃引
と称す)発振器を用いて,LC共振タグの共振周波数近
辺でエネルギー変化が起こることを発振器が感知して,
共振周波数を特定する方法,もしくは,所謂エコー波感
知方式と称される方式で,独立した周波数を順次変化さ
せる(スキャンニングと称す)と同時に発射を断続的に
遮断し,遮断直後にLC共振タグから反射波として発射
される電波を,別に設けられた受信機で受信し解析し
て,共振周波数を特定する方法がある。
2. Description of the Related Art A ringing characteristic is remarkably observed in a resonance circuit having a high Q characteristic (sharpness) using a ceramic resonator or a crystal resonator, but a low-cost LC resonance tag has a low Q characteristic. , It is difficult to identify the ringing based on the ringing characteristics. The conventional method uses a so-called dip meter method, which uses an oscillator that changes its frequency continuously (called a sweep) and detects that an energy change occurs near the resonance frequency of the LC resonance tag. do it,
In the method of specifying the resonance frequency, or the so-called echo wave sensing method, the independent frequency is sequentially changed (called scanning) and the emission is intermittently cut off at the same time. There is a method of receiving and analyzing a radio wave emitted as a reflected wave from a receiver provided separately and specifying a resonance frequency.

【0003】[0003]

【発明が解決しようとする課題】上記ディップメーター
方式では,質問器から発射される質問波により形成され
る誘導電磁界内に,共振特性を有しない金属物等の導電
物質が存在する場合にも,エネルギー変化を誘発して誤
検出(本来検出すべきLC共振タグの共振周波数以外の
要因による検出)の原因となる。更に,この方式による
共振周波数の確定は誤差が大きく,周波数識別分解能は
非常に低い。エコー波感知方式では,反射波の振幅を検
出する方式の為に,雑音信号との弁別が困難で,外部雑
音の強い環境下で使用すると誤検出を起こし易い。この
方式において周波数識別分解能を向上させる為には,ス
キャンニング周波数のステップ変化幅を極力小さくして
スキャンニングする必要がある。しかし,LC共振タグ
の共振中心周波数を充分な精度をもって検出する為に必
要な個々のスキャンニング周波数の数は飛躍的に多くな
り,実用的な処理速度を得ることが困難となる。これは
図3および図4を以って後述する。そこで,この発明
は,金属物等の導電物質等の存在による誤検出,並びに
外部雑音の強い環境下等での誤検出を防止し,総合処理
速度を高速化するとともに,精度高くLC共振タグの共
振中心周波数を検出可能とすることにより,周波数識別
分解能を向上し,同一検索周波数範囲内により多くの周
波数の割り当てを可能とすることを目的とする。
In the above dip meter system, even when a conductive material such as a metal material having no resonance characteristic exists in an induction electromagnetic field formed by an interrogation wave emitted from an interrogator. , And induces an energy change, resulting in erroneous detection (detection due to factors other than the resonance frequency of the LC resonance tag to be originally detected). Further, the determination of the resonance frequency by this method has a large error, and the frequency identification resolution is very low. In the echo wave sensing method, it is difficult to discriminate it from a noise signal because of the method of detecting the amplitude of a reflected wave, and erroneous detection is likely to occur when used in an environment where external noise is strong. In order to improve the frequency discrimination resolution in this method, it is necessary to perform scanning while minimizing the step change width of the scanning frequency. However, the number of individual scanning frequencies required to detect the resonance center frequency of the LC resonance tag with sufficient accuracy increases dramatically, and it is difficult to obtain a practical processing speed. This will be described later with reference to FIGS. Accordingly, the present invention prevents erroneous detection due to the presence of a conductive substance such as a metal object and erroneous detection in an environment where external noise is strong, so as to speed up the overall processing speed and to provide a highly accurate LC resonance tag. An object of the present invention is to improve the frequency discrimination resolution by enabling detection of the resonance center frequency, and to allow more frequencies to be allocated within the same search frequency range.

【0004】[0004]

【課題を解決するための手段】この発明は上記目的を達
成するものであり,質問器より発射された質問波(電磁
波)による誘導電磁界に変化を誘起する要因は,本来の
目的のLC共振タグの共振回路以外に種々考え得るが,
その大半は金属物等の導電物質による影響および外部雑
音による影響である。しかし,これらの要因が誘起する
誘導電磁界の変化は,共振回路により誘起される変化と
は趣を異にする。即ち,金属物等の導電物質による影響
では,その瞬時的な移動または反射に対して容易に位相
変化を起こすことはあり得るが,振幅変化を起こすこと
は少ない。一方,外部雑音による影響については,振幅
変化は起こすが,その振幅を制限する限り,質問器より
発射される電磁波の位相に対して位相変化を起こすこと
は少ない。これは一般のFM放送が外部雑音に対して優
れていることに等しい。これらの変化の相違に着眼して
位相変化および振幅変化を独立に観察し,相互の変化の
特性を識別要因とすることで,誤検出要因を排除するこ
とが可能となる。
SUMMARY OF THE INVENTION The present invention achieves the above object, and a factor which induces a change in an induced electromagnetic field due to an interrogation wave (electromagnetic wave) emitted from an interrogator is the LC resonance of the original purpose. There can be various other than the resonance circuit of the tag,
Most of the effects are caused by conductive materials such as metal objects and the effects of external noise. However, the change of the induced electromagnetic field induced by these factors is different from the change induced by the resonance circuit. That is, under the influence of a conductive material such as a metal object, the phase change can easily occur with respect to the instantaneous movement or reflection, but the amplitude change rarely occurs. On the other hand, with respect to the influence of external noise, the amplitude changes, but as long as the amplitude is limited, there is little change in the phase of the electromagnetic wave emitted from the interrogator. This is equivalent to the fact that ordinary FM broadcasting is excellent against external noise. By observing the phase change and the amplitude change independently with a focus on the difference between these changes, and using the characteristics of the mutual change as identification factors, it is possible to eliminate the erroneous detection factors.

【0005】周波数掃引による検出方式は,同一検索周
波数範囲を検索する為に要する検索時間は極めて短い
が,共振回路の共振中心周波数を確定するという点では
精度が劣る。一方,スキャンニング検出方式では,共振
回路の共振中心周波数を確定するという点では優れいる
が,同一検索周波数範囲を検索する為に要する検索時間
は遅い。周波数掃引検出方式により大まかな共振周波数
を検出し,検出された周波数を中心に微小なステップで
ファインスキャンニング検出することにより,総合的に
検索時間を短縮しながら,共振中心周波数を精度高く確
定できる。
[0005] In the detection method using the frequency sweep, the search time required to search the same search frequency range is extremely short, but the accuracy is inferior in determining the resonance center frequency of the resonance circuit. On the other hand, the scanning detection method is excellent in that the resonance center frequency of the resonance circuit is determined, but the search time required to search the same search frequency range is slow. Approximate resonance frequency is detected by the frequency sweep detection method, and fine scanning is detected in small steps around the detected frequency, so that the resonance center frequency can be determined with high accuracy while shortening the search time overall. .

【0006】上記説明したように,誘導電磁界の振幅変
化と位相変化に着目し,双方の特性を検出の要因とし,
且つ,周波数掃引による検出方式およびスキャンニング
による検出方式を併用すれば,LC共振タグを利用した
非接触自動ID識別装置において,確実かつ正確な識
別,高速な処理,識別ID数の増大を実現する自動周波
数識別方式の提供が可能となる。
As described above, focusing on the amplitude change and phase change of the induced electromagnetic field, both characteristics are used as factors for detection.
In addition, by using the detection method based on the frequency sweep and the detection method based on the scanning together, in the non-contact automatic ID identification device using the LC resonance tag, reliable and accurate identification, high-speed processing, and an increase in the number of identification IDs are realized. An automatic frequency identification method can be provided.

【0007】[0007]

【発明の実施の形態】以下,この発明の実施の一形態を
図に従って詳述する。図1はこの発明による自動周波数
識別方式を搭載した,LC共振タグ自動ID識別装置の
一例を示したブロックダイヤグラムであり,図1中の1
0は,質問器としてのLC共振タグ自動ID識別装置を
表わし,30は応答器としてのLC共振タグ,31a,
31b等は応答器30を構成する各共振回路を示す。図
2は総合的な動作を示したフローチャートである。図3
および図4は,それぞれ粗い周波数ステップでスキャン
ニングした場合,および細かい周波数ステップでスキャ
ンニングした場合の中心周波数検出誤差を説明した図で
ある。CPU11は,検索モードを位相変化による検出
手段に設定し(A),送信掃引発振器12を駆動して検
索周波数範囲の最低掃引周波数から最高掃引周波数まで
を高速で掃引する(B)。掃引発振波は,高周波増幅器
A13および高周波増幅器B14で増幅されて送信アン
テナ15から検索領域内に発射される。送信遮断制御器
17は,高周波増幅器が通常の増幅器として動作するよ
うに制御する。LC共振タグ30は,共振周波数のそれ
ぞれ異なる共振回路,31a,31bおよび31n等の
任意の組み合わせで構成されている。送信アンテナ15
より発射された電磁波により形成された誘導電磁界内に
置かれた共振回路は,誘導電磁界に変化を与え,生じた
変化分は受信アンテナ25より受信される。CPU11
は送信機を制御すると同時に,受信アンテナ25より受
信した信号を振幅制限器20で振幅制限し,送信機の掃
引発振波と位相比較器19で位相比較し,位相差の変化
により生じる電圧をA/D変換器A18を通して取り込
む。LC共振タグは共振点近辺で遅延現象を起こすの
で,掃引発振波と位相比較すれば,位相の変化に対して
位相比較器が電圧を発生し,その存在を検出することが
できる(C)。外部雑音は振幅制限されているため共振
周波数として検出されない。検索最高掃引周波数まで掃
引しても共振周波数が検出されない場合には,再度,検
索最低掃引周波数に設定して掃引検索を繰り返す
(B)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram showing an example of an LC resonance tag automatic ID identification device equipped with an automatic frequency identification method according to the present invention.
0 indicates an LC resonance tag automatic ID identification device as an interrogator, 30 indicates an LC resonance tag as a transponder, 31a,
Reference numerals 31b and the like denote each resonance circuit constituting the transponder 30. FIG. 2 is a flowchart showing the overall operation. FIG.
FIGS. 4A and 4B are diagrams illustrating the center frequency detection error when scanning is performed at a coarse frequency step and when scanning is performed at a fine frequency step, respectively. The CPU 11 sets the search mode to the phase change detection means (A), and drives the transmission sweep oscillator 12 to sweep the search frequency range from the lowest sweep frequency to the highest sweep frequency at high speed (B). The swept oscillation wave is amplified by the high-frequency amplifier A13 and the high-frequency amplifier B14 and emitted from the transmission antenna 15 into the search area. The transmission cutoff controller 17 controls the high-frequency amplifier to operate as a normal amplifier. The LC resonance tag 30 is constituted by an arbitrary combination of resonance circuits having different resonance frequencies, 31a, 31b and 31n. Transmission antenna 15
The resonance circuit placed in the induced electromagnetic field formed by the emitted electromagnetic waves gives a change to the induced electromagnetic field, and the resulting change is received by the receiving antenna 25. CPU11
Simultaneously controls the transmitter, limits the amplitude of the signal received from the receiving antenna 25 by the amplitude limiter 20, compares the phase with the sweep oscillation wave of the transmitter by the phase comparator 19, and converts the voltage generated by the change in the phase difference into A. The data is fetched through the / D converter A18. Since the LC resonance tag causes a delay phenomenon near the resonance point, if the phase is compared with the swept oscillating wave, the phase comparator generates a voltage with respect to the change in the phase, and the presence thereof can be detected (C). External noise is not detected as a resonance frequency because the amplitude is limited. If the resonance frequency is not detected even after sweeping to the search maximum sweep frequency, the sweep search is repeated by setting the search minimum sweep frequency again (B).

【0008】この方式により検出されたLC共振タグの
共振周波数の誤差は非常に大きいと同時に,金属物等の
導電物質の影響による可能性もある。CPU11は,次
の手順により検索モードを振幅変化による検出手段に設
定する(D)。即ち,送信掃引発振制御器16を制御
し,送信掃引発振器12からスキャンニング周波数とし
て,先に検出された周波数の近傍の固定された周波数を
発振させる。更に,送信遮断制御器17を介して高周波
増幅器13および14を制御し,送信アンテナ15から
間欠的に発振波を検索領域内に発射させる(E)。受信
機は,LC共振タグが発射する反射波を受信するため
に,送信遮断された直後より動作を開始し,受信アンテ
ナ25より受信した信号を,必要があれば受信機ローカ
ル発振器23を駆動して周波数変換器24により所望の
周波数に変換する。受信された信号は振幅検波器22に
より検波され,その振幅値はA/D変換器B21を介し
てCPUが読み取る(F)。順次設定されたスキャンニ
ング周波数を変化させながら設定範囲をすべて検索し,
検波された振幅値を比較して正確な共振中心周波数を検
出する(H)。もし,設定された全スキャンニング周波
数範囲において何も検出されない場合は,金属物等の導
電物質又は外部雑音と判定してエラー処理を行い
(G),最初の検索プロセス(A)から再開する。次の
検索サイクルでは,これらエラー処理された周波数につ
いて,回数を設けてリトライ等の処理をする必要があ
る。
[0008] The error of the resonance frequency of the LC resonance tag detected by this method is very large, and at the same time, it may be due to the influence of a conductive material such as a metal object. The CPU 11 sets the search mode to the detection means based on the amplitude change by the following procedure (D). That is, the transmission sweep oscillation controller 16 is controlled, and the transmission sweep oscillator 12 oscillates a fixed frequency near the previously detected frequency as the scanning frequency. Further, the high-frequency amplifiers 13 and 14 are controlled via the transmission cutoff controller 17 so that the transmission antenna 15 intermittently emits oscillation waves into the search area (E). The receiver starts the operation immediately after the transmission is cut off to receive the reflected wave emitted from the LC resonance tag, and drives the signal received from the reception antenna 25 and, if necessary, the local oscillator 23 of the receiver. To a desired frequency by the frequency converter 24. The received signal is detected by the amplitude detector 22, and the amplitude value is read by the CPU via the A / D converter B21 (F). Searching the entire setting range while changing the scanning frequency set sequentially,
An accurate resonance center frequency is detected by comparing the detected amplitude values (H). If nothing is detected in the set entire scanning frequency range, it is determined as a conductive material such as a metal object or external noise, error processing is performed (G), and the process is restarted from the first search process (A). In the next search cycle, it is necessary to perform a process such as retry for the error-processed frequency after setting the number of times.

【0009】検索周波数範囲すべてを掃引したかを確認
する(I)。もし,最高掃引周波数に達していなけれ
ば,検索モードを位相変化による検出手段に戻し
(J),複数共振回路の検索を目的に,残された検索周
波数範囲について共振タグ検出の作業を続行する。検索
周波数範囲すべての掃引が完了し,検出されたすべての
周波数についてファインスキャンニングにより正確な共
振中心周波数を確定して,検索サイクルは完了する。検
出されたすべての周波数の組み合わせから要求されるデ
ータを構成・作成・照合し(K),そのデータに従って
自動ID識別装置の要求する機能,例えば,LEDやL
CD等の表示駆動・スイッチ等による開閉・スピーカ等
の発音体の駆動またはホストコンピュータへの取得デー
タ転送等を,外部機能制御回路26a,26b,26c
および26n等を介して制御する(L)。
It is checked whether the entire search frequency range has been swept (I). If the maximum sweep frequency has not been reached, the search mode is returned to the detection means based on the phase change (J), and the operation of detecting the resonance tag is continued in the remaining search frequency range for the purpose of searching for a plurality of resonance circuits. The sweep of the entire search frequency range is completed, and the accurate resonance center frequency is determined by fine scanning for all the detected frequencies, and the search cycle is completed. The data required from all detected frequency combinations is composed, created, and collated (K), and functions required by the automatic ID identification device according to the data, such as LED and L
The external function control circuits 26a, 26b, 26c perform display driving of a CD or the like, opening / closing by a switch, driving of a sounding body such as a speaker, or transfer of acquired data to a host computer.
And 26n and the like (L).

【0010】図3,図4において表わされる曲線(a)
は,共に共振回路の周波数の変化に対する振幅応答特性
であり,中心の線(b)は,共に共振回路の中心周波数
を表わす。粗いステップでスキャンニングした場合の実
際の中心周波数に対する検出最大誤差は,図3のf1,
f2,f3,f4の如くスキャンニングした場合に生
じ,その誤差は図3中の最大応答値(c)から,中心周
波数からの誤差(e)で表わされる。一方,細かいステ
ップでスキャンニングした場合の実際の中心周波数に対
する検出最大誤差は,同様に図4のf1からf14の如
くスキャンニングした場合に生じ,その誤差は図4中の
最大応答値(f)から,中心周波数からの誤差(h)で
表わされる。図からも明らかなように,細かいステップ
でスキャンニングした場合は粗い場合に比べ,精度の高
い検出が実現できる。尚,この発明は上記の実施形態に
限定するものではなく,この発明の技術的範囲内におい
て種々の改変による実施形態が可能であり,この発明が
それらの改変された実施形態にも及ぶことは当然であ
る。
Curves (a) represented in FIGS. 3 and 4
Are the amplitude response characteristics to the change in the frequency of the resonance circuit, and the center line (b) represents the center frequency of the resonance circuit. The maximum detection error with respect to the actual center frequency when scanning is performed in a coarse step is f1 in FIG.
The error occurs when scanning is performed as in f2, f3, and f4, and the error is represented by an error (e) from the center frequency from the maximum response value (c) in FIG. On the other hand, the maximum detection error with respect to the actual center frequency when scanning is performed in fine steps similarly occurs when scanning is performed like f1 to f14 in FIG. 4, and the error is the maximum response value (f) in FIG. , And is represented by an error (h) from the center frequency. As is clear from the figure, detection with higher accuracy can be realized when scanning is performed in fine steps, as compared with coarse scanning. It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made within the technical scope of the present invention. The present invention extends to the modified embodiments. Of course.

【0011】[0011]

【発明の効果】この発明は以上のように構成されてお
り,金属物等の導電物質による影響,ならびに外部雑音
の影響等による誤検出を排除しつつ,総合的な検索時間
の短縮に効果を発揮する。更に,共振中心周波数を精度
高く確定できるため,周波数識別分解能が向上し,同一
検索周波数範囲内で識別可能ID数の増大に効果を発揮
する。
The present invention is configured as described above, and eliminates erroneous detection due to the influence of conductive materials such as metal objects and the influence of external noise while reducing the overall search time. Demonstrate. Further, since the resonance center frequency can be determined with high accuracy, the frequency identification resolution is improved, and the effect of increasing the number of identifiable IDs within the same search frequency range is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 LC共振タグ自動ID識別装置のブロックダ
イヤグラム
FIG. 1 is a block diagram of an LC resonance tag automatic ID identification device.

【図2】 フローチャートFIG. 2 is a flowchart.

【図3】 粗い周波数ステップでスキャンニングした場
合の中心周波数検出誤差の説明
FIG. 3 is an explanation of a center frequency detection error when scanning is performed at a coarse frequency step.

【図4】 細かい周波数ステップでスキャンニングした
場合の中心周波数検出誤差の説明
FIG. 4 is an explanation of a center frequency detection error when scanning is performed in fine frequency steps.

【符号の説明】[Explanation of symbols]

10 LC共振タグ自動ID識別装置 30 LC共振タグ 31a 共振回路A 31b 共振回路B 31n 共振回路N Reference Signs List 10 LC resonance tag automatic ID identification device 30 LC resonance tag 31a Resonance circuit A 31b Resonance circuit B 31n Resonance circuit N

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質問器より複数の質問波を発射し,誘
導電磁界内に存在する一つ乃至複数のLC共振回路で構
成された応答器により誘導電磁界に変化を誘起し,誘導
電磁界の変化を受信し,該応答器のLC共振回路の周波
数構成または周波数の組み合わせを識別することによ
り,該応答器を特定することが可能なことを利用した非
接触自動ID識別装置において,誘導電磁界内に誘起さ
れた変化を電磁波の振幅変化と位相変化に分割し,これ
らの変化を独立に観察し,相互の変化の特性を識別要因
として構成したことを特徴とする,LC共振タグ自動周
波数識別方式。
An interrogator emits a plurality of interrogation waves, and induces a change in the induced electromagnetic field by a transponder constituted by one or more LC resonance circuits existing in the induced electromagnetic field. In the non-contact automatic ID identification device utilizing the ability to identify the transponder by receiving the change of the response and identifying the frequency configuration or the frequency combination of the LC resonance circuit of the transponder, The change induced in the field is divided into the amplitude change and the phase change of the electromagnetic wave, these changes are observed independently, and the characteristics of the mutual change are configured as identification factors. Identification method.
【請求項2】 質問器より複数の質問波を発射し,誘
導電磁界内に存在する一つ乃至複数のLC共振回路で構
成された応答器により誘導電磁界に変化を誘起し,誘導
電磁界の変化を受信し,該応答器のLC共振回路の周波
数構成または周波数の組み合わせを識別することによ
り,該応答器を特定することが可能なことを利用した非
接触自動ID識別装置において,誘導電磁界形成のため
に,連続的に周波数を可変する発振器および独立した周
波数を順次変化する発振器を併設して構成したことを特
徴とする,LC共振タグ自動周波数識別方式。
2. An interrogator emits a plurality of interrogation waves, and induces a change in the induced electromagnetic field by a transponder formed of one or more LC resonance circuits existing in the induced electromagnetic field. In the non-contact automatic ID identification device utilizing the ability to identify the transponder by receiving the change of the response and identifying the frequency configuration or the frequency combination of the LC resonance circuit of the transponder, An LC resonance tag automatic frequency identification method, comprising an oscillator that continuously varies a frequency and an oscillator that varies an independent frequency sequentially to form a field.
JP10244333A 1998-07-28 1998-07-28 Automatic frequency identification system for lc resonance tag Pending JP2000049655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10244333A JP2000049655A (en) 1998-07-28 1998-07-28 Automatic frequency identification system for lc resonance tag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10244333A JP2000049655A (en) 1998-07-28 1998-07-28 Automatic frequency identification system for lc resonance tag

Publications (1)

Publication Number Publication Date
JP2000049655A true JP2000049655A (en) 2000-02-18

Family

ID=17117156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10244333A Pending JP2000049655A (en) 1998-07-28 1998-07-28 Automatic frequency identification system for lc resonance tag

Country Status (1)

Country Link
JP (1) JP2000049655A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092453A (en) * 2006-10-04 2008-04-17 Secom Co Ltd Peeping detection device
JP2011508300A (en) * 2007-12-19 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for identifying an object
EP2922173A1 (en) * 2014-03-18 2015-09-23 Honeywell International Inc. Automated load tracking and system tuning mechanism for wireless charging
JP7492234B2 (en) 2020-10-26 2024-05-29 株式会社京三製作所 On-board device and method for selecting information for maintenance inspection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092453A (en) * 2006-10-04 2008-04-17 Secom Co Ltd Peeping detection device
JP2011508300A (en) * 2007-12-19 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for identifying an object
US9818053B2 (en) 2007-12-19 2017-11-14 Koninklijke Philips N.V. Identification of objects using frequency characteristics of RFID tags
EP2922173A1 (en) * 2014-03-18 2015-09-23 Honeywell International Inc. Automated load tracking and system tuning mechanism for wireless charging
US9385727B2 (en) 2014-03-18 2016-07-05 Honeywell International Inc. Automated load tracking and system tuning mechanism for wireless charging
JP7492234B2 (en) 2020-10-26 2024-05-29 株式会社京三製作所 On-board device and method for selecting information for maintenance inspection

Similar Documents

Publication Publication Date Title
US10824829B2 (en) Systems and methods to determine kinematical parameters
EP0254297B1 (en) Coordinates input system
JP4758598B2 (en) Zone-based radio frequency identification
US6982646B2 (en) Object identification system with adaptive transceivers and methods of operation
US20060247526A1 (en) Distance measurement method and device using ultrasonic waves
US7375630B2 (en) Dual technology sensor device with range gated sensitivity
US4698632A (en) Radar detector
JP2003139866A5 (en)
CN106407854B (en) Middleware device, driving method for reader, and method for determining label misidentification
EP2615476B1 (en) Buried object detector
JP2003139848A (en) Two-frequency type microwave sensor
JP2000049655A (en) Automatic frequency identification system for lc resonance tag
KR100791622B1 (en) Distance measuring system and distance measuring method for measuring distance between RFID reader and RDF tag
Karmakar Anti-collision methods for chipless RFID systems
JP2003207567A (en) Device for specifying position of moving body and its method
CN108919273A (en) A kind of distance detection system and method
AU2013348455B2 (en) Registering of a transponder tag via an alternating electromagnetic field
JP3329744B2 (en) Microwave detector
US20150212033A1 (en) Proximity Sensor Detecting Metallic and Non-Metallic Objects
CN110413159B (en) Electromagnetic touch handwriting device with automatic phase correction function
JPS58127188A (en) Target data detector for secondary radar
JP2000187067A (en) Bearing detecting apparatus
RU1818608C (en) Fathometer
US5973597A (en) Theft checking system
KR20090029423A (en) Method and device for displaying location using ultra wide band