[go: up one dir, main page]

JP2000046756A - Method of measuring conductivity at metal layer interface - Google Patents

Method of measuring conductivity at metal layer interface

Info

Publication number
JP2000046756A
JP2000046756A JP10216795A JP21679598A JP2000046756A JP 2000046756 A JP2000046756 A JP 2000046756A JP 10216795 A JP10216795 A JP 10216795A JP 21679598 A JP21679598 A JP 21679598A JP 2000046756 A JP2000046756 A JP 2000046756A
Authority
JP
Japan
Prior art keywords
dielectric
metal layer
conductivity
interface
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10216795A
Other languages
Japanese (ja)
Other versions
JP3634966B2 (en
Inventor
Akira Nakayama
明 中山
Shinichi Koriyama
慎一 郡山
Kenji Kitazawa
謙治 北澤
Hiroshi Uchimura
弘志 内村
Takeshi Takenoshita
健 竹之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21679598A priority Critical patent/JP3634966B2/en
Publication of JP2000046756A publication Critical patent/JP2000046756A/en
Application granted granted Critical
Publication of JP3634966B2 publication Critical patent/JP3634966B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

(57)【要約】 【課題】金属層と誘電体基板との界面の導電率を測定す
ることのできる新規な測定方法を提供する。 【解決手段】表面に金属層4が被着形成された誘電体基
板5からなる被測定物における金属層4と誘電体基板5
との界面の導電率を測定する方法であって、比誘電率お
よび誘電正接が既知の誘電体円柱6の両端面を、誘電体
基板5が誘電体円柱6と対向するように挟持するか、あ
るいは誘電体円柱6の一方の端面を誘電体基板5と対向
させ、他方の端面を導電率が既知の導体板7と対向させ
て挟持してなる誘電体共振器AまたはBを形成し、誘電
体共振器AまたはBにより生成されたTE0mn モード
(m=1,2,3,・・、n=1,2,3,・・・)の
共振波形から測定した共振周波数f0 および無負荷Q,
Quに基づき、金属層4と誘電体基板5との界面の高周
波導電率を算出する。
(57) Abstract: A novel measurement method capable of measuring the conductivity of an interface between a metal layer and a dielectric substrate is provided. A metal layer (4) and a dielectric substrate (5) in an object to be measured comprising a dielectric substrate (5) having a metal layer (4) adhered to a surface thereof.
A method for measuring the conductivity at the interface with the substrate, wherein both end faces of the dielectric cylinder 6 having a known relative dielectric constant and dielectric loss tangent are sandwiched so that the dielectric substrate 5 faces the dielectric cylinder 6, Alternatively, a dielectric resonator A or B having one end face of the dielectric cylinder 6 opposed to the dielectric substrate 5 and the other end face opposed to the conductor plate 7 having a known conductivity is formed to form a dielectric resonator. The resonance frequency f 0 measured from the resonance waveform of the TE 0 mn mode (m = 1, 2, 3,..., N = 1, 2, 3,...) Generated by the body resonator A or B and no load Q,
Based on Qu, the high-frequency conductivity at the interface between the metal layer 4 and the dielectric substrate 5 is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体基板表面に
形成された金属層の誘電体基板との界面の導電率、特に
高周波領域およびミリ波領域における導電率を測定する
ための方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the conductivity of a metal layer formed on the surface of a dielectric substrate at the interface with the dielectric substrate, particularly the conductivity in a high frequency region and a millimeter wave region. It is.

【0002】[0002]

【従来の技術】一般に、導電率の測定は電気的な材料特
性の測定の中で、最も基本的な測定の一つである。特
に、誘電体基板の表面にIC素子が搭載され、さらにI
C素子と電気的に接続される金属配線層が被着形成され
た半導体素子用パッケージや、回路基板に於いて、その
特性値は設計上重要な要素となる。
2. Description of the Related Art In general, measurement of electrical conductivity is one of the most basic measurements of electrical material properties. In particular, the IC element is mounted on the surface of the dielectric substrate,
In a package for a semiconductor element on which a metal wiring layer electrically connected to the C element is formed and a circuit board, its characteristic value is an important factor in design.

【0003】従来、導電率の測定は、金属層の直流抵抗
を測定することにより測定されてきた。これは、バルク
体の導電率を測定することになる。しかし、電気信号の
周波数が高くなると、表皮効果により電流は金属層の表
面あるいは、金属層が被着された誘電体基板との界面に
集中する。金属層の表面では酸化や表面荒さにより導電
率は劣化し、金属層の誘電体基板との界面では界面の凹
凸形状や導体原子の誘電体基板への拡散、金属層と誘電
体基板との反応により導電率が劣化する。
Conventionally, conductivity has been measured by measuring the direct current resistance of a metal layer. This will measure the conductivity of the bulk body. However, when the frequency of the electric signal increases, the current concentrates on the surface of the metal layer or the interface with the dielectric substrate on which the metal layer is adhered due to the skin effect. On the surface of the metal layer, the conductivity deteriorates due to oxidation and surface roughness, and at the interface of the metal layer with the dielectric substrate, the unevenness of the interface and diffusion of conductor atoms into the dielectric substrate, reaction between the metal layer and the dielectric substrate As a result, the electrical conductivity deteriorates.

【0004】したがって、高周波信号を扱うような半導
体素子用パッケージや高周波用回路基板では、誘電体基
板表面に被着された金属層の表面とともに界面の導電率
測定が重要となる。
[0004] Therefore, in a package for a semiconductor element or a circuit board for a high frequency which handles a high frequency signal, it is important to measure the conductivity of the interface as well as the surface of the metal layer adhered to the surface of the dielectric substrate.

【0005】マイクロ波領域における導体材料の導電率
の高精度な測定技術については、誘電体の複素誘電率測
定において必要になることから、複素誘電率測定法に関
する文献、例えば、小林らによる "Microwave Measurem
ent of Dielectric Properties of Low-Loss Materials
by the Dielectric Rod Resonator Method"(IEEE Tra
ns. MTT, vol. MTT-33, pp586-592, No.7, July 1985)
(文献1)や、"RoundRobin Test on a Dielectric Res
onator Method for Measuring Complex Permittivity a
t Microwave Frequency " (IEICE Trans. ELECTRON.,
E77-C, 6, pp882-887, June 1994)にて論じられ、ま
たJIS規格「JIS R 1627」にも開示されて
いる。
A technique for measuring the conductivity of a conductive material in the microwave region with high accuracy is required in the measurement of the complex permittivity of a dielectric substance. Measurem
ent of Dielectric Properties of Low-Loss Materials
by the Dielectric Rod Resonator Method "(IEEE Tra
ns. MTT, vol. MTT-33, pp586-592, No. 7, July 1985)
(Reference 1) and "RoundRobin Test on a Dielectric Res
onator Method for Measuring Complex Permittivity a
t Microwave Frequency "(IEICE Trans. ELECTRON.,
E77-C, 6, pp. 882-887, June 1994) and are also disclosed in the JIS standard "JIS R 1627".

【0006】図7は、JIS R 1627に記載され
た導電率測定用の1組の誘電体共振器であり、同じ比誘
電率と誘電正接を有し、高さが整数倍で異なる、各々の
誘電体円柱31a,31bの両端面に一対の導体板32
が取り付けられた構造からなる。それぞれの共振器の共
振周波数f0 と無負荷Q,Quの測定値より導体板32
の導電率を算出することができる。
FIG. 7 shows a set of dielectric resonators for conductivity measurement described in JIS R 1627, each having the same relative permittivity and dielectric loss tangent, and having different heights by integral multiples. A pair of conductor plates 32 is provided on both end surfaces of the dielectric cylinders 31a and 31b.
Is attached. From the resonance frequency f 0 of each resonator and the measured values of no-load Q and Qu, the conductor plate 32
Can be calculated.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記文
献やJIS規格に開示された方法は、導体板32の表面
の導電率を測定する場合においてのみ適用されるもので
あって、これまで、金属層と誘電体基板との界面での導
電率を測定する方法については全く知られていないのが
現状であった。
However, the methods disclosed in the above-mentioned documents and JIS standards are applied only when measuring the conductivity of the surface of the conductor plate 32. At present, there is no known method for measuring the conductivity at the interface between the substrate and the dielectric substrate.

【0008】また、車載レーダーやミリ波無線LANの
実現のために、最近では60GHzや77GHzのミリ
波領域における研究開発が行われているが、このような
ミリ波領域における導電率の測定も要求されているが、
どのような測定系を用いるべきか全く知られていない。
Further, research and development in the millimeter wave region of 60 GHz or 77 GHz have recently been carried out in order to realize an on-vehicle radar or a millimeter wave wireless LAN. Has been
It is not known at all what measurement system should be used.

【0009】従って、本発明は、マイクロ波からミリ波
領域における金属層と誘電体基板との界面、すなわち金
属層界面での導電率を測定することのできる新規な測定
方法を提供することを目的とするものである。
Accordingly, an object of the present invention is to provide a novel measurement method capable of measuring the conductivity at the interface between a metal layer and a dielectric substrate in the microwave to millimeter wave region, that is, at the metal layer interface. It is assumed that.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記の課
題に対して検討を重ねた結果、比誘電率、誘電正接が既
知の誘電体材料からなる誘電体円柱の両端面または一方
の端面に、金属層が被着された誘電体基板を所定の関係
になるように取り付けて誘電体共振器を形成することに
より、金属層と誘電体基板との界面、すなわち金属層界
面での導電率を測定することができることを見いだし、
本発明に至った。
Means for Solving the Problems As a result of repeated studies on the above problems, the present inventors have found that both ends or one of the two end surfaces of a dielectric cylinder made of a dielectric material having a known relative dielectric constant and dielectric loss tangent are known. By forming a dielectric resonator by attaching a dielectric substrate having a metal layer adhered to an end face in a predetermined relationship, an interface between the metal layer and the dielectric substrate, that is, a conductive layer at the metal layer interface is formed. Rate can be measured,
The present invention has been reached.

【0011】即ち、本発明の金属層界面の導電率測定方
法は、表面に金属層が被着形成された誘電体基板からな
る被測定物における前記金属層と前記誘電体基板との界
面の導電率を測定する方法であって、比誘電率および誘
電正接が既知の誘電体円柱の両端面を前記被測定物の誘
電体基板が前記誘電体円柱と対向するように挟持する
か、あるいは前記誘電体円柱の一方の端面を前記被測定
物の誘電体基板と対向させ、他方の端面を導電率が既知
の導体板と対向させて挟持してなる誘電体共振器を形成
し、該誘電体共振器により生成されたTE0mn モード
(m=1,2,3,・・、n=1,2,3,・・)の共
振波形から共振周波数f0 および無負荷Q,Quを測定
し、前記共振周波数および無負荷Qに基づき、被測定物
における前記金属層と前記誘電体基板との界面の高周波
導電率を算出することを特徴とするものである。
That is, the method for measuring the conductivity of the interface of a metal layer according to the present invention comprises the steps of: measuring the conductivity of the interface between the metal layer and the dielectric substrate in an object to be measured comprising a dielectric substrate having a metal layer adhered to the surface; A method of measuring the dielectric constant, wherein the dielectric substrate of which the relative dielectric constant and the dielectric loss tangent are known is sandwiched so that the dielectric substrate of the device to be measured faces the dielectric cylinder, or Forming a dielectric resonator in which one end face of the body cylinder is opposed to the dielectric substrate of the object to be measured, and the other end face is sandwiched by being opposed to a conductive plate having a known conductivity; The resonance frequency f 0 and the no-load Q and Qu are measured from the resonance waveform of the TE 0mn mode (m = 1, 2, 3,..., N = 1, 2, 3 ,. Based on the resonance frequency and the no-load Q, the metal layer and the It is characterized in that to calculate the high frequency conductivity of the interface between the dielectric substrate.

【0012】また、上記の前記誘電体共振器への信号の
入力と出力を、先端にループアンテナを形成した同軸ケ
ーブルや、誘電体ストリップとその上下に配置された導
体板から構成される非放射性誘電体線路(以下、単にN
RDガイドという。)により行うことによって、マイク
ロ波領域からミリ波領域における上記導電率を測定する
ことも可能となる。
In addition, the input and output of the signal to the above-mentioned dielectric resonator are performed by using a non-radiation device composed of a coaxial cable having a loop antenna formed at the tip or a dielectric strip and conductor plates disposed above and below the dielectric strip. A dielectric line (hereinafter simply referred to as N
It is called RD guide. ) Makes it possible to measure the conductivity in the microwave to millimeter-wave range.

【0013】[0013]

【発明の実施の形態】図1は、本発明の測定方法におけ
る測定システムの基本的構成の一実施例を示すブロック
図である。図1によれば、シンセサイズドスイーパ1か
ら出力されたマイクロ波信号は、2つに分割され、一方
は基準用としてネットワークアナライザ2に入力され
る。他方は、界面導電率測定用の誘電体共振器3に入力
され、透過した信号がネットワークアナライザ2に入力
されるように構成される。
FIG. 1 is a block diagram showing an embodiment of a basic configuration of a measuring system in a measuring method according to the present invention. According to FIG. 1, a microwave signal output from a synthesized sweeper 1 is divided into two, and one is input to a network analyzer 2 as a reference. The other is configured to be input to the dielectric resonator 3 for measuring the interface conductivity and to transmit the transmitted signal to the network analyzer 2.

【0014】次に、本発明の界面導電率の測定方法とそ
の原理について説明する。本発明の測定方法は、所定の
寸法比(高さt/直径d)を有する誘電体円柱の両端面
に、縁端効果が無視できる程度に充分大きな導体板(通
常は、誘電体円柱の直径dの3倍程度の直径Dを有する
導体板)を平行に設けて挟持した電磁界共振器を構成し
た場合、TE0mn 共振モードによって導体板に流れる高
周波電流は短絡面、即ち、誘電体と導体との界面だけに
分布していることを基本原理とするものである。
Next, the method of measuring the interface conductivity and the principle thereof according to the present invention will be described. The measuring method of the present invention is based on a method in which a dielectric plate having a predetermined dimensional ratio (height t / diameter d) is provided on both end surfaces with a conductor plate (usually, the diameter of the dielectric cylinder is large enough so that the edge effect can be ignored). When a field plate having a diameter D about three times as large as d is provided in parallel and sandwiched therebetween, a high-frequency current flowing through the plate in the TE 0 mn resonance mode is short-circuited, that is, a dielectric and a conductor. It is based on the basic principle that it is distributed only at the interface with.

【0015】つまり、本発明によれば、金属層4が表面
に被着された誘電体基板5を被測定物とするものである
が、図2(a)に示すように、比誘電率、誘電正接が既
知の誘電体材料からなり、所定の寸法比(高さt/直径
d)を有する誘電体円柱6を、前記被測定物の誘電体基
板5が誘電体円柱6の端面と対向するようにして、両端
から挟持して誘電体共振器Aを構成する。
That is, according to the present invention, the dielectric substrate 5 on which the metal layer 4 is adhered is used as an object to be measured. As shown in FIG. A dielectric cylinder 6 made of a dielectric material having a known dielectric loss tangent and having a predetermined dimensional ratio (height t / diameter d) is formed such that the dielectric substrate 5 of the object to be measured faces the end face of the dielectric cylinder 6. Thus, the dielectric resonator A is sandwiched from both ends.

【0016】あるいは、図2(b)に示すように、誘電
体円柱6を、前記被測定物の誘電体基板5が誘電体円柱
6の一方の端面と対向し、誘電体円柱6の他方の端面を
導体板7と対向するように、挟持して誘電体共振器Bを
構成する。
Alternatively, as shown in FIG. 2 (b), the dielectric cylinder 6 is arranged such that the dielectric substrate 5 of the object to be measured faces one end face of the dielectric cylinder 6, and the other of the dielectric cylinder 6. The dielectric resonator B is sandwiched so that the end face faces the conductor plate 7.

【0017】上記の誘電体共振器A,Bにおいては、T
0mn モード(m=1,2,3,・・、n=1,2,
3,・・)によって金属層4に流れる高周波電流は、金
属層4と誘電体基板5の界面だけに分布することを利用
して、界面導電率を測定することができる。
In the above dielectric resonators A and B, T
E 0mn mode (m = 1, 2, 3,..., N = 1, 2, 2,
By using the fact that the high-frequency current flowing through the metal layer 4 is distributed only at the interface between the metal layer 4 and the dielectric substrate 5 according to (3,...), The interface conductivity can be measured.

【0018】より具体的には、図2(a)に示した誘電
体共振器Aを構成した場合には、測定されたTE0mn
ード(m=1,2,3,・・、n=1,2,3,・・)
の共振周波数f0 と無負荷Q、Quから下記数1の
(1)式によって界面導電率σin t を算出することがで
きる。
More specifically, when the dielectric resonator A shown in FIG. 2A is formed, the measured TE 0 mn mode (m = 1, 2, 3,..., N = 1) , 2,3, ...)
The resonance frequency f 0 and unloaded Q, it is possible to calculate the interfacial conductivity sigma in t by the following Equation 1 (1) from Qu.

【0019】[0019]

【数1】 (Equation 1)

【0020】但し、A,B1 、B2 は下記数2の(2)
(3)(4)式により計算する。
However, A, B 1 and B 2 are given by the following equation (2)
(3) Calculated by equation (4).

【0021】[0021]

【数2】 (Equation 2)

【0022】ここで、(1)式のtanδ1 とtanδ
2 はそれぞれ誘電体円柱6と誘電体基板5の誘電正接、
(2)式のμは金属層4の透磁率、ωは2πf0 、∬|
H|2 dSは上下の金属層界面での磁界の積分、We
共振器の電界エネルギー、(3)(4)式のWd1 e とW
d2 e は誘電体円柱6内と誘電体基板5内の電界エネルギ
ーである。
Here, tan δ 1 and tan δ in equation (1)
2 is the dielectric tangent of the dielectric cylinder 6 and the dielectric substrate 5, respectively.
In the equation (2), μ is the magnetic permeability of the metal layer 4, ω is 2πf 0 , ∬ |
H | 2 dS magnetic field of the integration of the upper and lower metal layer interface, W e is the resonator of the field energy, (3) (4) of the W d1 e and W
d2 e is the electric field energy in the dielectric cylinder 6 and in the dielectric substrate 5.

【0023】なお、We 、Wd1 e 、Wd2 e の計算に必要
な誘電体円柱6と誘電体基板5の比誘電率ε'1、ε'2
tanδ1 とtanδ2 は前記文献1に開示された誘電
体円柱共振器法や、小林、佐藤らの「信学技法MW87
−7」(1987年)に開示された空洞共振器法によっ
て測定する。
[0023] Incidentally, W e, W d1 e, W d2 relative permittivity of the dielectric cylinder 6 and the dielectric substrate 5 necessary for the calculation of e ε '1, ε' 2 and tan [delta 1 and tan [delta 2 is the Document 1 And Kobayashi, Sato, et al., "Science Technique MW87."
-7 "(1987).

【0024】また、図2(b)に示した誘電体共振器B
を構成した場合には、測定されたTE0mn モード(m=
1,2,3,・・、n=1,2,3,・・)の共振周波
数f0 と無負荷Q、Quから下記数3の(5)式によっ
て界面導電率σint を算出することができる。
The dielectric resonator B shown in FIG.
Is constructed, the measured TE 0mn mode (m =
The interface conductivity σ int is calculated from the resonance frequency f 0 of 1, 2, 3,..., N = 1, 2, 3,. Can be.

【0025】[0025]

【数3】 (Equation 3)

【0026】ただし、Atop 、Abottom、B1 、B2
下記数4の(6)(7)(8)(9)式により計算す
る。
Here, A top , A bottom , B 1 , and B 2 are calculated by the following equations (6), (7), (8), and (9).

【0027】[0027]

【数4】 (Equation 4)

【0028】ここで、(5)式のσmetal は導体板7の
導電率、(6)式のμtop は金属層4の透磁率、ωは2
πf0 、∬|H|2 dStop は金属層4の界面の磁界の
積分、(7)式のμbottomは導体板7の透磁率、∬|H
2 dSbottomは導体板7と誘電体円柱6との対向面で
の磁界の積分である。
Here, σ metal in equation (5) is the conductivity of the conductive plate 7, μ top in equation (6) is the magnetic permeability of the metal layer 4, and ω is 2
πf 0 , ∬ | H | 2 dS top is the integral of the magnetic field at the interface of the metal layer 4, μ bottom in the equation (7) is the magnetic permeability of the conductor plate 7, ∬ | H
| 2 dS bottom is the integral of the magnetic field at the opposing surface of the conductor plate 7 and the dielectric cylinder 6.

【0029】なお、We 、Wd1 e 、Wd2 e の計算に必要
な誘電体円柱6と誘電体基板5の比誘電率ε'1、ε'2
tanδ1 とtanδ2 及び導体板7の導電率σmetal
は、前記文献1に開示された誘電体円柱共振器法や、小
林、佐藤らの「信学技法MW87−7」(1987年)
に開示された空洞共振器法によって測定する。
It should be noted, W e, W d1 e, W d2 dielectric constant ε '1, ε' the dielectric cylinder 6 and the dielectric substrate 5 necessary for the calculation of e 2 and tan [delta 1 and tan [delta 2 and the conductive plate 7 Conductivity σ metal
Describes the dielectric cylinder resonator method disclosed in the above-mentioned document 1 and “Religion Technique MW87-7” by Kobayashi and Sato (1987).
The measurement is performed by the cavity resonator method disclosed in US Pat.

【0030】なお、上記の測定原理に基づき測定を行う
場合、測定周波数が50GHz以下の場合には、図4に
示すように、誘電体共振器Aに対して同軸ケーブル8を
配設し、同軸ケーブル8の先端にループアンテナ9を形
成させることにより、信号の入力、出力を行うことがで
きる。この場合、ループアンテナ9はループ面が共振器
Aにおける被測定物と平行になるように配置される。ま
た、共振周波数f0 と無負荷Q、Quの測定が挿入損失
が20〜30dBで行えるようにループアンテナ9を位
置を適宜調整する。
When the measurement is performed based on the above measurement principle, and the measurement frequency is 50 GHz or less, a coaxial cable 8 is provided for the dielectric resonator A as shown in FIG. By forming the loop antenna 9 at the end of the cable 8, signal input and output can be performed. In this case, the loop antenna 9 is arranged so that the loop surface is parallel to the device under test in the resonator A. The position of the loop antenna 9 is appropriately adjusted so that the measurement of the resonance frequency f 0 and the no-load Q and Qu can be performed at an insertion loss of 20 to 30 dB.

【0031】しかしながら、測定周波数が50GHz以
上のミリ波領域では、図4に示したような同軸ケーブル
先端のループアンテナでは信号の入力および出力が困難
となる。そこで、測定周波数が50GHzを超える場合
には、誘電体共振器への信号の入力、出力を誘電体スト
リップとその上下に配置された導体板から構成されるN
RDガイドにより行う。
However, in the millimeter wave region where the measurement frequency is 50 GHz or more, it is difficult to input and output signals with the loop antenna at the tip of the coaxial cable as shown in FIG. Therefore, when the measurement frequency exceeds 50 GHz, the input and output of the signal to the dielectric resonator are performed by the dielectric strip and the conductor plate disposed above and below the dielectric strip.
Performed by RD guide.

【0032】そこで、測定周波数が50GHz以上の場
合における測定システムの構成の一実施例を示すブロッ
ク図である。図5によれば、シンセサイズドスイーパ1
1から出力されたマイクロ波信号は、マイクロ波アンプ
12で増幅され、さらにミリ波モジュール13で50〜
75GHzの信号に変換され、さらに2つに分割され、
一方は基準用として検波器R14を介してネットワーク
アナライザ15に入力される。他方は、入力用NRDガ
イド16を介して界面導電率測定用の誘電体共振器17
に入力され、さらに出力用NRDガイド18、検波器A
19を介して透過した信号がネットワークアナライザ1
5に入力されるように構成される。
Therefore, it is a block diagram showing one embodiment of the configuration of the measurement system when the measurement frequency is 50 GHz or more. According to FIG. 5, the synthesized sweeper 1
The microwave signal output from 1 is amplified by the microwave amplifier 12, and further amplified by the millimeter-wave module 13.
It is converted to a 75 GHz signal and further divided into two signals.
One is input to the network analyzer 15 via the detector R14 as a reference. On the other hand, a dielectric resonator 17 for measuring interface conductivity through an input NRD guide 16
And output NRD guide 18, detector A
19 is transmitted through the network analyzer 1
5 is input.

【0033】図6は、図2(a)に示した誘電体共振器
Aを測定系に組み込んだ時の概略平面図(a)と、概略
断面図(b)である。この測定系においては、中央部に
誘電体共振器Aが設置され、その両側には、誘電体共振
器Aへの入力用NRDガイド16と、出力用NRDガイ
ド18が設けられている。NRDガイド16、18は、
いずれも角棒からなる誘電体ストリップ20と、それを
挟持する上下の導体板21、22から構成され、さらに
それぞれのNRDガイド16、18の端部には導波管
(図示せず)と接続するための変換部23、24が設け
られている。また、誘電体基板5と金属層4からなる被
測定物25をシステム内に安定して配設させるために、
誘電体共振器AおよびNRDガイド16、18の一部を
挟持するように、金属製の蓋26、27がはめ込まれて
いる。
FIG. 6 is a schematic plan view (a) when the dielectric resonator A shown in FIG. 2 (a) is incorporated in a measurement system, and a schematic cross-sectional view (b). In this measurement system, a dielectric resonator A is provided at the center, and an NRD guide 16 for input to the dielectric resonator A and an NRD guide 18 for output are provided on both sides thereof. The NRD guides 16 and 18
Each of the NRD guides 16 and 18 is connected to a waveguide (not shown) at the ends of a dielectric strip 20 made of a square bar and upper and lower conductor plates 21 and 22 sandwiching the dielectric strip 20. Conversion units 23 and 24 are provided. Further, in order to stably arrange the device under test 25 composed of the dielectric substrate 5 and the metal layer 4 in the system,
Metal lids 26 and 27 are fitted so as to sandwich the dielectric resonator A and a part of the NRD guides 16 and 18.

【0034】また、上記の測定系においては、誘電体共
振器Aにおける誘電体円柱6の高さはNRDガイド1
6,18の上下導体板21、22の間隔と同一に設定さ
れる。
In the above-described measurement system, the height of the dielectric cylinder 6 in the dielectric resonator A is equal to the height of the NRD guide 1.
The distance between the upper and lower conductive plates 21 and 22 is set to be the same as that of the upper and lower conductive plates 21 and 22.

【0035】さらに、誘電体円柱6の上下に配設された
被測定物25に被着形成された金属層4間の間隔が、共
振周波数の半波長以下になるように誘電体基板5の厚さ
を設定する。これは、金属層4間の間隔が、共振周波数
の半波長よりも大きいと、TE0mn 共振モードの電磁界
が誘電体共振器Aの外に散逸するためである。
Further, the thickness of the dielectric substrate 5 is set so that the distance between the metal layers 4 formed on the DUT 25 disposed above and below the dielectric cylinder 6 is equal to or less than a half wavelength of the resonance frequency. Set the This is because when the distance between the metal layers 4 is larger than a half wavelength of the resonance frequency, the electromagnetic field in the TE0mn resonance mode is dissipated outside the dielectric resonator A.

【0036】さらに、入出力用のNRDガイドの誘電体
ストリップ20を導体板21、22から突出させて、誘
電体ストリップ20の先端と誘電体円柱6に近づけるよ
うに配設し、誘電体ストリップ20の突出部が被測定物
の25の誘電体基板5によって挟持されるように配置す
る。この場合、誘電体ストリップ20の突出部と誘電体
円柱6との距離は、挿入損失が20〜30dBとなるよ
うな位置に調整されることが望ましい。これは、挿入損
失を20〜30dBに調整することにより、共振周波数
0 及び無負荷Q,Quを高い精度で測定することがで
きる。
Further, the dielectric strip 20 of the input / output NRD guide is protruded from the conductor plates 21 and 22 and disposed so as to be close to the tip of the dielectric strip 20 and the dielectric cylinder 6. Are arranged so as to be sandwiched by the 25 dielectric substrates 5 of the device under test. In this case, it is desirable that the distance between the projecting portion of the dielectric strip 20 and the dielectric cylinder 6 is adjusted to a position where the insertion loss becomes 20 to 30 dB. By adjusting the insertion loss to 20 to 30 dB, the resonance frequency f 0 and the no-load Q and Qu can be measured with high accuracy.

【0037】また、上記測定系は、図2(b)に示した
誘電体共振器Bを用いて測定する場合においても、図6
の測定系の被測定物25を誘電体共振器Aから誘電体共
振器Bに置き換えることにより、全く同様にして測定す
ることができる。
The above measurement system is also applicable to the case where the measurement is performed using the dielectric resonator B shown in FIG.
The measurement can be performed in exactly the same manner by replacing the DUT 25 of the measurement system from the dielectric resonator A with the dielectric resonator B.

【0038】[0038]

【実施例】実施例1 50×50mmの2種のガラスセラミックス(No.1、
No.2)からなる誘電体基板上にCrからなる金属層
0.05μm、さらにその上にCuからなる金属層(厚
さ2μm)をスパッタ法で被着形成した被測定試料1、
及びガラスセラミックスグリーンシートの表面に銅ペー
スト塗布後に、同時焼成で形成して厚さ30μmの金属
層を形成した被測定試料2(ガラスセラミックスNo.
1)、被測定試料3(ガラスセラミックスNo.2)にお
ける金属層と誘電体基板との界面の比導電率σr(銅の
導電率σ0 =5.8×107 /Ω・mで規格化した値)
を図2(a)の誘電体共振器Aにより、入出力用線路と
して、先端にループアンテナを形成した同軸ケーブルを
用いた図4の測定系を用いて測定した。
EXAMPLES Example 1 Two types of 50 × 50 mm glass ceramics (No. 1,
No. 2) on a dielectric substrate made of Cr, a metal layer made of Cr having a thickness of 0.05 μm, and a metal layer made of Cu (thickness: 2 μm) further formed thereon by a sputtering method.
And a sample 2 (glass ceramic No. 2) having a 30 μm thick metal layer formed by simultaneous baking after applying a copper paste on the surface of a glass ceramic green sheet.
1), the specific conductivity σr (conductivity of copper σ 0 = 5.8 × 10 7 / Ω · m) at the interface between the metal layer and the dielectric substrate in the sample 3 (glass ceramic No. 2). Value)
Was measured by the dielectric resonator A of FIG. 2A using the measurement system of FIG. 4 using a coaxial cable having a loop antenna at the tip as an input / output line.

【0039】合わせて、被測定試料における金属層の表
面の比導電率σrも測定した。金属層表面の比導電率
は、図3に示すように、誘電体円柱6を、金属層4と誘
電体円柱6とが対向するように両側から挟持した誘電体
共振器Cを形成して、JISR 1627を応用して測
定した。
In addition, the specific conductivity σr of the surface of the metal layer in the sample to be measured was also measured. As shown in FIG. 3, the specific conductivity of the metal layer surface is such that a dielectric resonator C in which the dielectric cylinder 6 is sandwiched from both sides such that the metal layer 4 and the dielectric cylinder 6 face each other is formed. It was measured by applying JISR 1627.

【0040】なお、図2の誘電体円柱6としてC軸に垂
直な端面を持つサファイア(直径d=10.000m
m、高さt=5.004mm)を使用した。また、サフ
ァイア円柱、2種のガラスセラミックスの誘電特性を表
1に示した。測定の結果は、表2に示した。
It should be noted that sapphire having an end face perpendicular to the C axis (diameter d = 10000 m) is used as the dielectric cylinder 6 in FIG.
m, height t = 5.004 mm). Table 1 shows the dielectric properties of the sapphire cylinder and the two types of glass ceramics. The results of the measurement are shown in Table 2.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】表2の結果から明らかなように、同時焼成
の銅導体層表面における比導電率σrは80%程度であ
るのに対して、誘電体基板との界面の比導電率σrは5
0%程度の低い値を示しており、表面と界面の導電率の
違いが明確に測定できていることが分かる。また、本発
明の測定法によれば、メタライズ界面の比導電率の測定
誤差は3%以下となり、高精度な測定結果を得ることが
できた。
As is clear from the results in Table 2, the specific conductivity σr on the surface of the co-fired copper conductor layer is about 80%, while the specific conductivity σr at the interface with the dielectric substrate is 5%.
It shows a low value of about 0%, which indicates that the difference in conductivity between the surface and the interface can be clearly measured. Further, according to the measurement method of the present invention, the measurement error of the specific conductivity at the metallized interface was 3% or less, and a highly accurate measurement result could be obtained.

【0044】実施例2 実施例1における被測定試料3の金属層と誘電体基板と
の界面の比導電率σr(銅の導電率σ0 =5.8×10
7 /Ω・mで規格化した値)を図2(a)の誘電体共振
器Aにより、入出力用線路としてNRDガイドを用いた
図6の測定系を用いて測定した。
Example 2 The specific conductivity σr (conductivity of copper σ 0 = 5.8 × 10) at the interface between the metal layer of the sample 3 to be measured and the dielectric substrate in Example 1 was used.
7 / Ω · m) was measured by the dielectric resonator A of FIG. 2A using the measurement system of FIG. 6 using an NRD guide as an input / output line.

【0045】なお、図1の誘電体円柱6として、C軸に
垂直な端面を持つサファイア(直径d=3.103m
m、高さH=2.251mm)を使用した。また、サフ
ァイア円柱とガラスセラミックスNo.2の60GHzに
おける誘電特性を表3に示した。測定の結果は、表4に
示した。
As the dielectric cylinder 6 in FIG. 1, sapphire having an end face perpendicular to the C axis (diameter d = 3.103 m)
m, height H = 2.251 mm). Table 3 shows the dielectric characteristics of the sapphire cylinder and the glass ceramic No. 2 at 60 GHz. The results of the measurement are shown in Table 4.

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】表4の結果から明らかなように、同時焼成
の銅金属層表面における比導電率σrは40%程度であ
るのに対して、誘電体基板との界面の比導電率σrは1
7%程度の低い値を示した。また、本発明の測定法によ
れば、メタライズ界面の比導電率の測定誤差は1%以下
となり、高精度な測定結果を得ることができた。
As is clear from the results in Table 4, the specific conductivity σr on the surface of the co-fired copper metal layer is about 40%, while the specific conductivity σr at the interface with the dielectric substrate is 1%.
The value was as low as about 7%. Further, according to the measurement method of the present invention, the measurement error of the specific conductivity at the metallized interface was 1% or less, and a highly accurate measurement result was obtained.

【0049】[0049]

【発明の効果】以上詳述した通り、本発明の測定方法に
よれば、従来測定が困難であった金属層の誘電体基板と
の界面の比導電率の測定を精度良く行うことができ、こ
れにより、高周波信号を扱うような半導体素子用パッケ
ージや高周波用回路基板における伝送特性の改善等に有
効である。
As described in detail above, according to the measuring method of the present invention, it is possible to accurately measure the relative conductivity of the interface between the metal layer and the dielectric substrate, which has been difficult to measure conventionally. This is effective in improving the transmission characteristics of a semiconductor element package or a high-frequency circuit board that handles high-frequency signals.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における金属層界面の導電率測定システ
ムの基本的構成を示すブロック図である。
FIG. 1 is a block diagram showing a basic configuration of a conductivity measurement system for a metal layer interface according to the present invention.

【図2】本発明の金属層界面の導電率測定に用いられる
誘電体共振器の構造を示す概略図であり、(a)はその
一例、(b)は他の例を示すものである。
FIGS. 2A and 2B are schematic diagrams showing the structure of a dielectric resonator used for measuring the conductivity of the metal layer interface according to the present invention, wherein FIG. 2A shows one example and FIG. 2B shows another example.

【図3】金属層表面の導電率測定に用いられる誘電体共
振器の構造を示す概略図である。
FIG. 3 is a schematic diagram showing the structure of a dielectric resonator used for measuring the conductivity of the surface of a metal layer.

【図4】本発明における50GHz以下における測定系
を説明するための概略断面図である。
FIG. 4 is a schematic cross-sectional view for explaining a measurement system at 50 GHz or less in the present invention.

【図5】本発明における50GHz以上における金属層
界面の導電率測定システムの全体構成を示すブロック図
である。
FIG. 5 is a block diagram showing the overall configuration of a system for measuring the conductivity of a metal layer interface at 50 GHz or higher in the present invention.

【図6】本発明における50GHz以上における測定系
を説明するための概略平面図(a)と概略断面図(b)
である。
FIG. 6 is a schematic plan view (a) and a schematic cross-sectional view (b) for describing a measurement system at 50 GHz or higher in the present invention.
It is.

【図7】JIS R 1627に記載された金属板の導
電率を測定するための一組の誘電体共振器の構造を示す
概略図である。
FIG. 7 is a schematic diagram showing the structure of a set of dielectric resonators for measuring the conductivity of a metal plate described in JIS R 1627.

【符号の説明】[Explanation of symbols]

1 シンセサイズドスイーパ 2 ネットワークアナライザ 3 誘電体共振器 4 金属層 5 誘電体基板 6 誘電体円柱 7 導体板 DESCRIPTION OF SYMBOLS 1 Synthesized sweeper 2 Network analyzer 3 Dielectric resonator 4 Metal layer 5 Dielectric substrate 6 Dielectric cylinder 7 Conductor plate

フロントページの続き (72)発明者 内村 弘志 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 竹之下 健 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内Continuing from the front page (72) Inventor Hiroshi Uchimura 3-5 Koikodai, Seika-cho, Soraku-gun, Kyoto Kyoto Inside the Central Research Laboratory, Sera Corporation (72) Inventor Ken Takeshita 3-5-kokodai, Seika-cho, Soraku-gun, Kyoto Kyoto Sera Corporation Central Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】表面に金属層が被着形成された誘電体基板
からなる被測定物における前記金属層と前記誘電体基板
との界面の導電率を測定する方法であって、比誘電率お
よび誘電正接が既知の誘電体円柱の両端面を前記被測定
物の誘電体基板が前記誘電体円柱と対向するように挟持
するか、あるいは前記誘電体円柱の一方の端面を前記被
測定物の誘電体基板と対向させ、他方の端面を導電率が
既知の導体板と対向させて挟持してなる誘電体共振器を
形成し、該誘電体共振器により生成されたTE0mn モー
ド(m=1,2,3,・・、n=1,2,3,・・)の
共振波形から共振周波数および無負荷Qを測定し、前記
共振周波数および無負荷Qに基づき、被測定物における
前記金属層と前記誘電体基板との界面の高周波導電率を
算出することを特徴とする金属層界面の導電率測定方
法。
1. A method for measuring the electrical conductivity of an interface between a metal layer and a dielectric substrate in an object to be measured comprising a dielectric substrate having a metal layer adhered to a surface thereof, comprising: Either the both ends of the dielectric cylinder whose dielectric loss tangent is known may be sandwiched so that the dielectric substrate of the device under test faces the dielectric cylinder, or one end surface of the dielectric cylinder may be in contact with the dielectric cylinder of the device under test. A dielectric resonator is formed in such a manner that the dielectric resonator is opposed to a body substrate and the other end face is sandwiched between a conductor plate having a known conductivity, and a TE 0mn mode (m = 1, 1) generated by the dielectric resonator is formed. , N = 1, 2, 3,...) To measure a resonance frequency and a no-load Q, and based on the resonance frequency and the no-load Q, Calculating a high-frequency conductivity at an interface with the dielectric substrate. A method for measuring the conductivity at the interface of the metal layer.
【請求項2】前記誘電体共振器への信号の入力と出力
を、先端にループアンテナを形成した同軸ケーブルによ
って行うことを特徴とする請求項1記載の金属層界面の
導電率測定方法。
2. The method according to claim 1, wherein the input and output of signals to and from the dielectric resonator are performed by a coaxial cable having a loop antenna formed at the end.
【請求項3】前記誘電体共振器への信号の入力と出力
を、誘電体ストリップとその上下に配置された導体板か
ら構成されるNRDガイド(非放射性誘電体線路)によ
り行うことを特徴とする請求項1記載の金属層界面の導
電率測定方法。
3. An NRD guide (non-radiative dielectric line) comprising a dielectric strip and conductor plates disposed above and below the dielectric strip, for inputting and outputting signals to and from the dielectric resonator. The method for measuring conductivity at an interface of a metal layer according to claim 1.
JP21679598A 1998-05-29 1998-07-31 Method for measuring conductivity at metal layer interface Expired - Lifetime JP3634966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21679598A JP3634966B2 (en) 1998-05-29 1998-07-31 Method for measuring conductivity at metal layer interface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14937998 1998-05-29
JP10-149379 1998-05-29
JP21679598A JP3634966B2 (en) 1998-05-29 1998-07-31 Method for measuring conductivity at metal layer interface

Publications (2)

Publication Number Publication Date
JP2000046756A true JP2000046756A (en) 2000-02-18
JP3634966B2 JP3634966B2 (en) 2005-03-30

Family

ID=26479289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21679598A Expired - Lifetime JP3634966B2 (en) 1998-05-29 1998-07-31 Method for measuring conductivity at metal layer interface

Country Status (1)

Country Link
JP (1) JP3634966B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177868A (en) * 2004-12-24 2006-07-06 Kyocera Corp Electromagnetic property measurement method
JP2006208070A (en) * 2005-01-26 2006-08-10 Kyocera Corp Conductivity measurement method
JP2006214833A (en) * 2005-02-02 2006-08-17 Kyocera Corp Resonator excitation method and electromagnetic property measurement method
JP2008164447A (en) * 2006-12-28 2008-07-17 Kobe Steel Ltd Metal plate performance evaluating method, and metal plate performance evaluating apparatus
JP2014165211A (en) * 2013-02-21 2014-09-08 Fujitsu Ltd Measured substrate and measuring method
JP2015227850A (en) * 2014-06-02 2015-12-17 富士通株式会社 High frequency conductivity measuring apparatus and high frequency conductivity measuring method
JP2016153751A (en) * 2015-02-20 2016-08-25 京セラ株式会社 Method for measuring complex dielectric constant
JP2018115905A (en) * 2017-01-17 2018-07-26 住友電気工業株式会社 Evaluation method
JP2020176947A (en) * 2019-04-19 2020-10-29 富士通株式会社 Surface conductivity measuring device
JP2020180807A (en) * 2019-04-23 2020-11-05 富士通株式会社 Specific conductivity measurement method, specific conductivity calculation program and specific conductivity measurement system
CN114113789A (en) * 2021-11-25 2022-03-01 天津大学 A device and method for measuring the electrical conductivity of metal thin films at high frequency
JP2022185395A (en) * 2021-06-02 2022-12-14 住ベリサーチ株式会社 Disk resonator, conductivity measuring device and conductivity measuring method
JP2023125638A (en) * 2022-02-28 2023-09-07 京セラ株式会社 Resonator and measurement method of conductivity

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177868A (en) * 2004-12-24 2006-07-06 Kyocera Corp Electromagnetic property measurement method
JP2006208070A (en) * 2005-01-26 2006-08-10 Kyocera Corp Conductivity measurement method
JP2006214833A (en) * 2005-02-02 2006-08-17 Kyocera Corp Resonator excitation method and electromagnetic property measurement method
JP2008164447A (en) * 2006-12-28 2008-07-17 Kobe Steel Ltd Metal plate performance evaluating method, and metal plate performance evaluating apparatus
JP2014165211A (en) * 2013-02-21 2014-09-08 Fujitsu Ltd Measured substrate and measuring method
JP2015227850A (en) * 2014-06-02 2015-12-17 富士通株式会社 High frequency conductivity measuring apparatus and high frequency conductivity measuring method
JP2016153751A (en) * 2015-02-20 2016-08-25 京セラ株式会社 Method for measuring complex dielectric constant
JP2018115905A (en) * 2017-01-17 2018-07-26 住友電気工業株式会社 Evaluation method
JP2020176947A (en) * 2019-04-19 2020-10-29 富士通株式会社 Surface conductivity measuring device
JP7218664B2 (en) 2019-04-19 2023-02-07 富士通株式会社 Surface conductivity measuring device
JP2020180807A (en) * 2019-04-23 2020-11-05 富士通株式会社 Specific conductivity measurement method, specific conductivity calculation program and specific conductivity measurement system
JP7215313B2 (en) 2019-04-23 2023-01-31 富士通株式会社 Specific conductivity measurement method, specific conductivity calculation program, and specific conductivity measurement system
JP2022185395A (en) * 2021-06-02 2022-12-14 住ベリサーチ株式会社 Disk resonator, conductivity measuring device and conductivity measuring method
JP7699963B2 (en) 2021-06-02 2025-06-30 住ベリサーチ株式会社 DISC RESONATOR, CONDUCTIVITY MEASURING APPARATUS, AND CONDUCTIVITY MEASURING METHOD
CN114113789A (en) * 2021-11-25 2022-03-01 天津大学 A device and method for measuring the electrical conductivity of metal thin films at high frequency
CN114113789B (en) * 2021-11-25 2023-07-21 天津大学 Device and method for measuring electrical conductivity of metal thin film at high frequency
JP2023125638A (en) * 2022-02-28 2023-09-07 京セラ株式会社 Resonator and measurement method of conductivity
JP7691951B2 (en) 2022-02-28 2025-06-12 京セラ株式会社 Resonator and method for measuring electrical conductivity

Also Published As

Publication number Publication date
JP3634966B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
Zwick et al. Determination of the complex permittivity of packaging materials at millimeter-wave frequencies
JP3634966B2 (en) Method for measuring conductivity at metal layer interface
Sayag et al. Compact modeling and comparative analysis of silicon-chip slow-wave transmission lines with slotted bottom metal ground planes
Hirayama et al. Measurement technique for interface and surface conductivities at millimeter-wave frequencies using dielectric rod resonator excited by nonradiative dielectric waveguide
Pannell et al. Two simple methods for the measurement of the dielectric permittivity of low-loss microstrip substrates
JP3532069B2 (en) How to measure surface resistance
JP2001183311A (en) Metal layer conductivity measurement method
US6172497B1 (en) High-frequency wave measurement substrate
JP4726395B2 (en) Electrical property value measurement method
Nakayama et al. Millimeter-wave measurement of complex permittivity using dielectric rod resonator excited by NRD-guide
JP3210769B2 (en) Apparatus and method for measuring dielectric constant
Contopanagos et al. RF characterization and isolation properties of mesoporous Si by on-chip coplanar waveguide measurements
JP2501545Y2 (en) Dielectric substrate measuring device
Kulke et al. RF-Benchmark up to 40 GHz for various LTCC low loss tapes
JP4157387B2 (en) Electrical property measurement method
Engel et al. 3D printed waveguide transition for 77 GHz radar applications
Salski et al. Characterization of Low-Loss Liquids With a Double-Concave Fabry–Perot Open Resonator in the 20–50-GHz Range
JP2021156602A (en) Dielectric material evaluation method, evaluation device and evaluation system
JP3561141B2 (en) Measurement method of linear expansion coefficient
JP4530951B2 (en) Dielectric constant measurement method and open-ended half-wavelength coplanar line resonator
JP4776382B2 (en) Dielectric constant measurement method
Kato et al. Broadband conductivity measurement method up to 110 GHz using a balanced-type circular disk resonator
JP4698244B2 (en) Method for measuring electromagnetic properties
JP3794437B2 (en) Waveguide device, electrical property measuring device, and electrical property measuring method
JP3566238B2 (en) Surface resistance measuring device and method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

EXPY Cancellation because of completion of term