JP2000045753A - Exhaust gas purification device for internal combustion engine - Google Patents
Exhaust gas purification device for internal combustion engineInfo
- Publication number
- JP2000045753A JP2000045753A JP10229985A JP22998598A JP2000045753A JP 2000045753 A JP2000045753 A JP 2000045753A JP 10229985 A JP10229985 A JP 10229985A JP 22998598 A JP22998598 A JP 22998598A JP 2000045753 A JP2000045753 A JP 2000045753A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- sulfur
- nox
- temperature
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
(57)【要約】
【課題】 NOx吸収触媒(NOx吸収剤)の硫黄被毒
による劣化を精度良く判定し、付着した硫黄を除去して
再生させる
【解決手段】 排気系にSOxセンサを配置して排気ガ
ス中の硫黄濃度を検出し(S102)、検出値に基づい
てSOx積算量を算出する(S104)。積算量が所定
値Aを超えるとき通電加熱し(S106,S108)、
排気温度Tcatが所定温度Bを超えると(S11
0)、空燃比をリッチ化する(S112)。
PROBLEM TO BE SOLVED: To accurately determine the deterioration of a NOx absorption catalyst (NOx absorbent) due to sulfur poisoning, to remove adhered sulfur and to regenerate the sulfur. SOLUTION: An SOx sensor is disposed in an exhaust system. Then, the sulfur concentration in the exhaust gas is detected (S102), and the integrated amount of SOx is calculated based on the detected value (S104). When the integrated amount exceeds the predetermined value A, the heating is performed (S106, S108),
When the exhaust temperature Tcat exceeds the predetermined temperature B (S11
0), enrich the air-fuel ratio (S112).
Description
【0001】[0001]
【発明の属する技術分野】この発明は内燃機関の排気浄
化装置に関し、より詳しくは、硫黄などの被毒に対し、
容易に被毒を除去してNOx吸収剤(NOx吸収触媒)
を再生するようにしたものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly, to an exhaust gas purifying apparatus for preventing poisoning such as sulfur.
NOx absorbent (NOx absorption catalyst) by removing poison easily
To play.
【0002】[0002]
【従来の技術】内燃機関の排気ガス浄化触媒としては、
酸化触媒、三元触媒、NOx選択還元触媒、NOx吸収
触媒(NOx吸収剤)、HC吸収触媒などが種々提案さ
れている。近年、リーンバーン機関など空燃比のリーン
化が進みつつあり、そのような機関にあってはNOx吸
収触媒(NOx吸収剤)などを用いてリーン雰囲気での
NOx(窒素酸化物)成分の浄化を図っている。2. Description of the Related Art As an exhaust gas purifying catalyst for an internal combustion engine,
Various oxidation catalysts, three-way catalysts, NOx selective reduction catalysts, NOx absorption catalysts (NOx absorbents), HC absorption catalysts, and the like have been proposed. In recent years, lean air-fuel ratios such as lean burn engines have been progressing. In such engines, purification of NOx (nitrogen oxide) components in a lean atmosphere using a NOx absorption catalyst (NOx absorbent) or the like has been carried out. I'm trying.
【0003】ところで、燃料には硫黄Sが含まれている
が、その硫黄が触媒表面あるいはミクロポアにSOx
(硫黄酸化物)として付着(吸収)すると、触媒の浄化
効率を低下させる。特に、上記したNOx吸収触媒(N
Ox吸収剤)、即ち、リーン雰囲気でNOxを吸収し、
未燃焼HC(還元剤)の供給を受けて吸収したNOxを
還元浄化する触媒にあっては、硫黄が吸収されやすく、
いわゆる硫黄被毒を生じてNOx吸収効率を低下させて
いる。[0003] By the way, the fuel contains sulfur S, and the sulfur is deposited on the catalyst surface or on the micropores by SOx.
When attached (absorbed) as (sulfur oxide), the purification efficiency of the catalyst is reduced. In particular, the NOx absorption catalyst (N
Ox absorbent), that is, absorb NOx in a lean atmosphere,
In a catalyst for reducing and purifying NOx absorbed by supplying unburned HC (reducing agent), sulfur is easily absorbed,
The so-called sulfur poisoning is caused to lower the NOx absorption efficiency.
【0004】そこで、特開平6−66129号公報は、
車両走行距離、NOx吸収量あるいは排気温度から硫黄
被毒量を推定し、推定値が所定値を超えたとき、電気ヒ
ータを一定時間通電加熱すると共に、供給する混合気の
空燃比を理論空燃比にし、SOxを除去して触媒を再生
する技術を提案している。Therefore, Japanese Patent Application Laid-Open No. 6-66129 discloses that
The sulfur poisoning amount is estimated from the vehicle traveling distance, the NOx absorption amount or the exhaust gas temperature. When the estimated value exceeds a predetermined value, the electric heater is energized and heated for a certain period of time, and the air-fuel ratio of the supplied air-fuel mixture is changed to the stoichiometric air-fuel ratio And a technique for regenerating the catalyst by removing SOx is proposed.
【0005】また、特開平7−217474号公報も、
機関回転数などから硫黄被毒量を推定し、推定値が許容
値を超えると共に、排気ガス温度が所定値を超えると
き、供給する混合気の空燃比をリッチ化し、SOxを除
去して触媒を再生する技術を提案している。[0005] Japanese Patent Application Laid-Open No. 7-217474 also discloses that
The sulfur poisoning amount is estimated from the engine speed, etc., and when the estimated value exceeds the allowable value and the exhaust gas temperature exceeds a predetermined value, the air-fuel ratio of the supplied mixture is enriched, SOx is removed, and the catalyst is removed. We propose a technology to regenerate.
【0006】[0006]
【発明が解決しようとする課題】ところで、日本国内で
販売される燃料中の硫黄は30ppmに規制されている
が、米国では平均値で400ppm、規制値で1000
ppmと硫黄含有量が多く、欧州でも国により異なるも
のの、数百ppm以上の国が過半数である。By the way, sulfur in fuel sold in Japan is regulated to 30 ppm, but in the United States, the average value is 400 ppm and the regulated value is 1000 ppm.
The sulfur content is as high as ppm, and although it varies from country to country in Europe, the majority is in a few hundred ppm or more.
【0007】燃料中の硫黄含有量が増加するにつれて硫
黄被毒も増加することから、硫黄被毒を精度良く求めて
触媒(NOx吸収剤)を的確に再生させる必要がある
が、上記した従来技術においては車両走行距離などから
硫黄被毒量を推定するものであって、排気ガス中の硫黄
濃度を検出し、それに基づいて硫黄被毒量を推定して触
媒再生処理を行うものでなかった。Since the sulfur poisoning increases as the sulfur content in the fuel increases, it is necessary to accurately determine the sulfur poisoning and accurately regenerate the catalyst (NOx absorbent). In this method, the amount of sulfur poisoning is estimated from the distance traveled by the vehicle and the like, but the sulfur concentration in the exhaust gas is detected, and the amount of sulfur poisoning is estimated based on the detected amount, and the catalyst regeneration process is not performed.
【0008】従って、この発明の目的は上記した不都合
を解消することにあり、排気ガス中の硫黄濃度を検出
し、それに基づいて硫黄被毒によるNOx吸収剤の劣化
をより直接的に判定して的確に再生処理を行うようにし
た内燃機関の排気浄化装置を提供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to eliminate the above-mentioned disadvantages, and to detect the sulfur concentration in exhaust gas and to directly determine the deterioration of the NOx absorbent due to sulfur poisoning based on the detected sulfur concentration. An object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine, which performs a proper regeneration process.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
めに、請求項1項にあっては、内燃機関の排気系に設け
られ、排気ガスがリーン雰囲気にあるとき排気ガス中の
NOxを吸収するNOx吸収剤と、前記NOx吸収剤を
加熱する加熱手段と、前記NOx吸収剤の配置位置の上
流側に設けられ、排気ガス中の硫黄濃度を検出する硫黄
濃度検出手段と、前記硫黄濃度検出手段の出力に基づい
て前記NOx吸収剤の硫黄被毒による劣化を判定する劣
化判定手段と、前記NOx吸収剤の温度を推定する温度
推定手段と、前記劣化判定手段により前記劣化が判定さ
れ、かつ前記温度推定手段により推定された温度が硫黄
被毒再生温度より高いとき、理論空燃比あるいはそれ以
下のリッチ空燃比を供給する硫黄除去制御手段とを備え
る如く構成した。In order to achieve the above object, according to the present invention, NOx in an exhaust gas of an exhaust gas is provided in an exhaust system of an internal combustion engine when the exhaust gas is in a lean atmosphere. A NOx absorbent to be absorbed, a heating means for heating the NOx absorbent, a sulfur concentration detecting means provided upstream of an arrangement position of the NOx absorbent and detecting a sulfur concentration in exhaust gas; Deterioration determination means for determining deterioration of the NOx absorbent due to sulfur poisoning based on the output of the detection means, temperature estimation means for estimating the temperature of the NOx absorbent, and the deterioration determination means for determining the deterioration, Further, when the temperature estimated by the temperature estimating means is higher than the sulfur poisoning regeneration temperature, a sulfur removal control means for supplying a rich air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio is provided.
【0010】これによって、排気ガス中の硫黄濃度を検
出し、それに基づいて硫黄被毒による劣化をより直接的
に判定することで劣化判定精度を向上させることができ
る。従って、硫黄含有量が多い燃料を用いるときも、N
Ox吸収剤の再生処理を的確に行うことができる。[0010] Accordingly, the sulfur concentration in the exhaust gas is detected, and the deterioration due to sulfur poisoning is more directly determined based on the detected sulfur concentration, so that the deterioration determination accuracy can be improved. Therefore, even when a fuel having a high sulfur content is used, N
The regeneration treatment of the Ox absorbent can be accurately performed.
【0011】[0011]
【発明の実施の形態】以下、添付図面に即してこの発明
に係る内燃機関の排気浄化装置の実施の形態を説明す
る。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an exhaust gas purifying apparatus for an internal combustion engine according to the present invention.
【0012】図1は、その排気浄化装置を概略的に示す
全体図である。FIG. 1 is an overall view schematically showing the exhaust gas purifying apparatus.
【0013】図において、符号10は4気筒などの多気
筒内燃機関(以下「エンジン」という)の本体を示し、
吸気管12の先端に配置されたエアクリーナ(図示せ
ず)から導入された吸気は、スロットルバルブ14でそ
の流量を調節されつつサージタンクと吸気マニホルド
(共に図示せず)を経て、各気筒へ流入される。In FIG. 1, reference numeral 10 denotes a main body of a multi-cylinder internal combustion engine (hereinafter referred to as an "engine") such as a four-cylinder engine.
The intake air introduced from an air cleaner (not shown) disposed at the end of the intake pipe 12 flows into each cylinder via a surge tank and an intake manifold (both not shown) while the flow rate is adjusted by a throttle valve 14. Is done.
【0014】各気筒の吸気バルブ(図示せず)の付近に
はインジェクタ(燃料噴射弁)16が設けられて燃料を
噴射する。噴射されて吸気と一体となった混合気は、各
気筒内で図示しない点火プラグで点火されて燃焼してピ
ストン(図示せず)を駆動する。An injector (fuel injection valve) 16 is provided near an intake valve (not shown) of each cylinder to inject fuel. The air-fuel mixture injected and integrated with the intake air is ignited by an ignition plug (not shown) in each cylinder and burns to drive a piston (not shown).
【0015】燃焼後の排気ガスは、排気バルブ(図示せ
ず)および排気マニホルド(図示せず)を介して排気管
18に送られる。排気管18においては上流側に三元触
媒22が配置されて排気ガス中のHC,CO,NOx成
分などを浄化すると共に、その下流にNOx吸収触媒
(前記したNOx吸収剤)24が配置される。The exhaust gas after combustion is sent to an exhaust pipe 18 via an exhaust valve (not shown) and an exhaust manifold (not shown). In the exhaust pipe 18, a three-way catalyst 22 is arranged on the upstream side to purify HC, CO, NOx components and the like in the exhaust gas, and a NOx absorption catalyst (the above-mentioned NOx absorbent) 24 is arranged downstream thereof. .
【0016】NOx吸収触媒24は、先に述べた特開平
6−66129号公報あるいは特開平7−217474
号公報に記載されるNOx吸収剤と同種の触媒であっ
て、リーン雰囲気(酸化雰囲気)で排気ガス中のNOx
を吸収すると共に、排気ガス中の酸素濃度が低下する
と、即ち、リッチ雰囲気において未燃HC,COと反応
してNOxを還元浄化する。The NOx absorption catalyst 24 is disclosed in Japanese Patent Laid-Open No. 6-66129 or Japanese Patent Laid-Open No. 7-217474.
Of the same kind of catalyst as the NOx absorbent described in Japanese Patent Application
When the oxygen concentration in the exhaust gas is reduced, that is, in the rich atmosphere, it reacts with unburned HC and CO to reduce and purify NOx.
【0017】ここで、NOx吸収触媒24を担持する担
体は、素材を押し出し成形した後、焼成してセラミック
化し、次いで適宜な長さに裁断して製作される。担体に
は電流路が形成され、NOx吸収触媒24自体が電熱ヒ
ータ構造を備える電気加熱式の触媒として構成される。
電流路は正負極端子24a,24bに接続される。Here, the carrier for carrying the NOx absorption catalyst 24 is manufactured by extruding a material, firing it to form a ceramic, and then cutting it to an appropriate length. A current path is formed in the carrier, and the NOx absorption catalyst 24 itself is configured as an electrically heated catalyst having an electric heater structure.
The current path is connected to the positive and negative terminals 24a, 24b.
【0018】図1の装置は切換スイッチ26を備え、切
換スイッチ26の端子26aが26bに切り換えられる
と、正極端子24aはオルタネータ28に接続され、オ
ルタネータ28より電流の供給を受けてNOx吸収触媒
24の温度を上昇させる。The apparatus shown in FIG. 1 has a changeover switch 26. When the terminal 26a of the changeover switch 26 is switched to 26b, the positive terminal 24a is connected to the alternator 28 and receives a current from the alternator 28 to supply the NOx absorption catalyst 24. Raise the temperature of.
【0019】尚、切換スイッチ26の端子26aが端子
26cに切り換えられると、オルタネータ28の出力は
バッテリ30の正電極に接続され、バッテリ30を充電
する。バッテリ30の正電極は線32を介して前記した
空気ポンプ34のモータ(図示せず)を含む電気負荷に
接続される。When the terminal 26a of the changeover switch 26 is switched to the terminal 26c, the output of the alternator 28 is connected to the positive electrode of the battery 30, and charges the battery 30. The positive electrode of the battery 30 is connected via a line 32 to an electric load including the motor (not shown) of the air pump 34 described above.
【0020】空気ポンプ34は、排気管18のNOx吸
収触媒24配置位置の上流で分岐された分岐路36の他
端に接続され、酸素を供給して未燃焼成分の燃焼を促進
し、浄化効率を向上させる。The air pump 34 is connected to the other end of a branch passage 36 branched upstream of the exhaust pipe 18 at the position where the NOx absorption catalyst 24 is disposed, supplies oxygen to promote the combustion of unburned components, and improves the purification efficiency. Improve.
【0021】図1においてエンジン本体10のカム軸ま
たはクランク軸(共に図示せず)の付近にクランク角セ
ンサ38が設けられ、所定クランク角度ごとに信号CR
Kを出力すると共に、特定気筒の特定クランク角度で気
筒判別信号を出力する。In FIG. 1, a crank angle sensor 38 is provided near a camshaft or a crankshaft (both not shown) of the engine body 10, and a signal CR is provided at every predetermined crank angle.
In addition to outputting K, a cylinder discrimination signal is output at a specific crank angle of a specific cylinder.
【0022】スロットルバルブ14にはスロットル開度
センサ40が設けられてスロットル開度θTHに比例し
た信号を出力する。その下流の分岐路42の末端には絶
対圧センサ44が設けられ、吸気管内絶対圧PBAに応
じた信号を出力する。The throttle valve 14 is provided with a throttle opening sensor 40 for outputting a signal proportional to the throttle opening θTH. An absolute pressure sensor 44 is provided at the end of the downstream branch passage 42 and outputs a signal corresponding to the intake pipe absolute pressure PBA.
【0023】さらに、分岐位置の下流には吸気温センサ
46が設けられて吸入空気温度TAに比例する信号を出
力すると共に、シリンダブロックなどの適宜位置には水
温センサ48が設けられてエンジン冷却水温TWに応じ
た信号を出力する。Further, an intake air temperature sensor 46 is provided downstream of the branch position to output a signal proportional to the intake air temperature TA, and a water temperature sensor 48 is provided at an appropriate position such as a cylinder block so that the engine cooling water temperature is provided. A signal corresponding to TW is output.
【0024】さらに、排気管18にはO2 センサ50が
設けられ、排気ガス中の酸素濃度に比例した信号を出力
する。Further, an O 2 sensor 50 is provided in the exhaust pipe 18 and outputs a signal proportional to the oxygen concentration in the exhaust gas.
【0025】さらに、三元触媒22とNOx吸収触媒2
4の間には排気温度センサ52が設けられ、NOx吸収
触媒24の配置位置付近の排気ガス温度Tcatに応じ
た信号を出力する。Further, the three-way catalyst 22 and the NOx absorption catalyst 2
An exhaust temperature sensor 52 is provided between the exhaust gas sensors 4 and 4 and outputs a signal corresponding to the exhaust gas temperature Tcat near the position where the NOx absorption catalyst 24 is disposed.
【0026】さらに、NOx吸収触媒24の下流にはS
Oxセンサ(前記した硫黄濃度検出手段)54が設けら
れ、排気ガス中の硫黄の濃度Scに比例する信号を出力
する。Further, at the downstream of the NOx absorption catalyst 24, S
An Ox sensor (sulfur concentration detecting means) 54 is provided, and outputs a signal proportional to the concentration Sc of sulfur in the exhaust gas.
【0027】図2はSOxセンサ54の構成を詳細に示
す、説明断面図である。FIG. 2 is an explanatory sectional view showing the configuration of the SOx sensor 54 in detail.
【0028】SOxセンサ54はジルコニア磁器などの
酸素イオン伝導性の固体電解質層を積層してなる板状体
を呈し、第1の測定室(内部空間)54a,第2の測定
室(内部空間)54bおよび第3の測定室(内部空間)
54cが形成されると共に、大気に連通する基準室54
dが形成される。The SOx sensor 54 has the shape of a plate formed by laminating solid electrolyte layers of oxygen ion conductivity such as zirconia porcelain, and has a first measuring chamber (internal space) 54a and a second measuring chamber (internal space). 54b and third measurement chamber (internal space)
54c is formed, and a reference chamber 54 communicating with the atmosphere is formed.
d is formed.
【0029】排気ガスはガス拡散律速層54mを通って
第1の測定室54aに流れる。第1の測定室54aには
電極54e,54fでポンプセルが構成され、測定室内
の酸素を汲み出し、酸素分圧をNOxが還元され得ない
値に制御する。その酸素分圧を電極54g,54hの電
位差として検出することで、排気ガス中の酸素濃度を検
出する。The exhaust gas flows to the first measurement chamber 54a through the gas diffusion control layer 54m. A pump cell is formed in the first measurement chamber 54a by electrodes 54e and 54f, pumps oxygen in the measurement chamber, and controls the oxygen partial pressure to a value at which NOx cannot be reduced. The oxygen concentration in the exhaust gas is detected by detecting the oxygen partial pressure as a potential difference between the electrodes 54g and 54h.
【0030】同様に、第2の測定室54bにはRhなど
のNOx還元触媒からなる電極54i,54jが設けら
れ、電位差を検出することで酸素分圧、即ち、NOxの
還元あるいは分解によって発生される酸素分圧を検出し
てNOx濃度を検出する。Similarly, the second measurement chamber 54b is provided with electrodes 54i and 54j made of a NOx reduction catalyst such as Rh. Oxygen partial pressure is detected by detecting a potential difference, that is, NOx is generated by reduction or decomposition. The oxygen partial pressure is detected to detect the NOx concentration.
【0031】同様に、第3の測定室54cにはPtなど
のSOx還元触媒からなる電極54k,54lが設けら
れ、それらの電位差からSOx濃度を検出する。このよ
うに、SOxセンサ54は、SOx濃度のみならず、酸
素濃度とNOx濃度も併せて検出することができる。Similarly, the third measurement chamber 54c is provided with electrodes 54k and 54l made of a SOx reduction catalyst such as Pt, and detects the SOx concentration from the potential difference between them. As described above, the SOx sensor 54 can detect not only the SOx concentration but also the oxygen concentration and the NOx concentration.
【0032】これらセンサ群の出力は、電子制御ユニッ
ト(以下「ECU」と言う)60に送られる。The outputs of these sensor groups are sent to an electronic control unit (hereinafter referred to as “ECU”) 60.
【0033】ECU60は、入力回路60a、CPU6
0b、記憶手段60c、および出力回路60dよりな
る。入力回路60aは、各種センサからの入力信号波形
を整形する、信号レベルを所定レベルに変換する、アナ
ログ信号値をデジタル信号値に変換する、などの処理を
行う。記憶手段60cは、CPU60bが実行する各種
演算プログラムおよび演算結果などを記憶する。The ECU 60 includes an input circuit 60a, a CPU 6
0b, storage means 60c, and output circuit 60d. The input circuit 60a performs processes such as shaping input signal waveforms from various sensors, converting a signal level to a predetermined level, and converting an analog signal value to a digital signal value. The storage unit 60c stores various calculation programs executed by the CPU 60b, calculation results, and the like.
【0034】CPU60bは前記したCRK信号をカウ
ントしてエンジン回転数NEを検出し、検出したエンジ
ン回転数NEと吸気管内絶対圧PBAとから燃料噴射量
(インジェクタ開弁時間)を演算し、目標空燃比などで
補正する。The CPU 60b counts the CRK signal to detect the engine speed NE, calculates the fuel injection amount (injector opening time) from the detected engine speed NE and the absolute pressure PBA in the intake pipe, and calculates the target idle speed. Correct with fuel ratio.
【0035】目標空燃比は、低負荷運転時には理論空燃
比を超えるリーン方向の値(例えば30:1など)に、
高負荷運転時には理論空燃比未満のリッチ方向の値(例
えば12:1)に設定される。The target air-fuel ratio is set to a value in a lean direction (for example, 30: 1) exceeding the stoichiometric air-fuel ratio during low load operation.
During high load operation, the value is set to a value in a rich direction (for example, 12: 1) lower than the stoichiometric air-fuel ratio.
【0036】さらに、CPU60bは、NOx吸収触媒
24の硫黄被毒による劣化を判定し、その除去(再生)
作業を行う。即ち、排気ガス中の硫黄成分がSOx(硫
黄酸化物)として触媒表面あるいはミクロポアに付着
し、触媒の浄化効率を低下させる、いわゆる硫黄被毒が
甚だしくなるとNOx吸収効率を低下させることから、
吸収したSOxを除去してNOx吸収触媒24を再生さ
せる。Further, the CPU 60b determines deterioration of the NOx absorption catalyst 24 due to sulfur poisoning, and removes (regenerates) the deterioration.
Do the work. That is, the sulfur component in the exhaust gas adheres to the catalyst surface or the micropores as SOx (sulfur oxide), which lowers the purification efficiency of the catalyst. If so-called sulfur poisoning becomes severe, the NOx absorption efficiency decreases.
The NOx absorption catalyst 24 is regenerated by removing the absorbed SOx.
【0037】次いで、この発明に係る内燃機関の排気浄
化装置の動作を説明する。Next, the operation of the exhaust gas purifying apparatus for an internal combustion engine according to the present invention will be described.
【0038】図3は、その動作を示すフロー・チャート
である。尚、図示のプログラムは、適宜な時間間隔(例
えば80msec)ごとに実行される。FIG. 3 is a flow chart showing the operation. The illustrated program is executed at appropriate time intervals (for example, 80 msec).
【0039】以下説明すると、S100において制御条
件、より詳しくは硫黄被毒劣化判定および触媒再生処理
を行う条件が成立しているか否か判断する。具体的に
は、NOx吸収触媒24が例えば300℃から400℃
にあって活性化していると共に、エンジン10が定常運
転状態にあるとき、この条件が成立と判断される。In the following, it is determined in S100 whether or not the control conditions, more specifically, the conditions for performing the sulfur poisoning deterioration determination and the catalyst regeneration processing are satisfied. Specifically, the NOx absorption catalyst 24 is, for example, 300 ° C. to 400 ° C.
And the engine 10 is in a steady operation state, it is determined that this condition is satisfied.
【0040】S100で否定されるときは以降の処理を
スキップすると共に、肯定されるときはS102に進
み、前記したSOxセンサ54の出力Sc(排気ガス中
の硫黄濃度)をサンプリングする。When the result in S100 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S102, where the output Sc (the concentration of sulfur in the exhaust gas) of the SOx sensor 54 is sampled.
【0041】次いでS104に進み、検出した硫黄濃度
Scおよび係数aに基づいてNOx吸収触媒24に吸収
(吸着)されたと推定されるSOx積算量(即ち、硫黄
被毒量)Stを算出する。Next, the program proceeds to S104, in which an integrated SOx amount (that is, a sulfur poisoning amount) St estimated to be absorbed (adsorbed) by the NOx absorption catalyst 24 is calculated based on the detected sulfur concentration Sc and the coefficient a.
【0042】より具体的には、SOx積算量Stは、排
気管18を流れた排気ガスボリュームVgを求め、求め
た値に検出した硫黄濃度を乗じ、その積を前記した所定
時間にわたって積算することで求める。More specifically, the SOx integrated amount St is obtained by obtaining the exhaust gas volume Vg flowing through the exhaust pipe 18, multiplying the obtained value by the detected sulfur concentration, and integrating the product over the above-mentioned predetermined time. Ask for.
【0043】この排気ガスボリュームVgは、エンジン
回転数NEと吸気管内絶対圧PBAとから検索自在にマ
ップ化しておく。尚、係数aはNOx吸収触媒24の配
置位置に供給されたSOx積算値の中の、NOx吸収触
媒24に吸収(吸着)されたと推定される割合を示す係
数である。The exhaust gas volume Vg is mapped in a searchable manner from the engine speed NE and the intake pipe absolute pressure PBA. Note that the coefficient a is a coefficient indicating a ratio of the integrated value of SOx supplied to the arrangement position of the NOx absorption catalyst 24, which is estimated to be absorbed (adsorbed) by the NOx absorption catalyst 24.
【0044】次いでS106に進み、求めたSOx積算
量Stが所定値Aを超えるか否か判断する。ここで、所
定値AはNOx吸収触媒24の劣化を判定するに足るし
きい値であり、実験を通じて適宜な値を求めて設定す
る。Then, the program proceeds to S106, in which it is determined whether the calculated SOx integrated amount St exceeds a predetermined value A. Here, the predetermined value A is a threshold enough to determine the deterioration of the NOx absorption catalyst 24, and is set by obtaining an appropriate value through an experiment.
【0045】S106で否定されるときはNOx吸収触
媒24が劣化していないと判定して以降の処理をスキッ
プすると共に、肯定されるときはNOx吸収触媒24が
劣化したと判定してS108に進み、被毒除去作業に入
ってNOx吸収触媒24を通電加熱する。When the result in S106 is negative, it is determined that the NOx absorption catalyst 24 has not deteriorated, and the subsequent processing is skipped. When the result is affirmative, it is determined that the NOx absorption catalyst 24 has deteriorated, and the routine proceeds to S108. Then, the poisoning removal operation is started, and the NOx absorption catalyst 24 is electrically heated.
【0046】より具体的には、前記した切換スイッチ2
6を介してオルタネータ28(あるいはバッテリ30)
をNOx吸収触媒24のヒータの端子24aに接続し、
通電加熱してNOx吸収触媒24を昇温させる。即ち、
吸収されたSOxは触媒温度が700℃前後に達すると
脱離することから、加熱昇温させる。More specifically, the changeover switch 2
6. Alternator 28 (or battery 30) via 6
To the heater terminal 24a of the NOx absorption catalyst 24,
The temperature of the NOx absorption catalyst 24 is increased by energizing and heating. That is,
The absorbed SOx is desorbed when the catalyst temperature reaches around 700 ° C., so the temperature is increased by heating.
【0047】次いでS110に進み、検出した排気温度
Tcatが所定温度Bを超えるか否か判断する。所定温
度Bは700℃程度に設定する。S110で否定される
ときは以降の処理をスキップすると共に、肯定されると
きはS112に進んで空燃比を所定時間(短時間)リッ
チ化する。Then, the program proceeds to S110, in which it is determined whether the detected exhaust gas temperature Tcat exceeds a predetermined temperature B. The predetermined temperature B is set to about 700 ° C. When the result in S110 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S112 to enrich the air-fuel ratio for a predetermined time (short time).
【0048】その結果、排気ガスはリッチ雰囲気とな
り、NOx吸収触媒24から放出されたSOxは未燃H
C,COで還元される。このようにしてNOx吸収触媒
24を再生することができる。As a result, the exhaust gas becomes a rich atmosphere, and the SOx released from the NOx absorption catalyst 24 becomes unburned H
It is reduced with C and CO. Thus, the NOx absorption catalyst 24 can be regenerated.
【0049】尚、検出しているのはNOx吸収触媒24
の配置位置付近の排気温度であり、NOx吸収触媒24
の温度そのものではないが、検出値を適宜補正すること
により、触媒温度とみなすことができる。It is to be noted that the NOx absorption catalyst 24
Of the NOx absorption catalyst 24
Although it is not the temperature itself, it can be regarded as the catalyst temperature by appropriately correcting the detected value.
【0050】この実施の形態は上記の如く、排気ガス中
の硫黄濃度Scを検出し、それに基づいて硫黄被毒によ
る触媒劣化をより直接的に判定し、劣化と判定されると
きは再生処理を行うようにしたので、NOx吸収触媒の
硫黄被毒による劣化を精度良く判定することができ、再
生処理を行うことができる。従って、燃料の硫黄含有量
が増加してもNOx吸収触媒24を的確に再生すること
ができる。In this embodiment, as described above, the sulfur concentration Sc in the exhaust gas is detected, and the catalyst deterioration due to sulfur poisoning is more directly determined based on the detected Sc concentration. Since the deterioration is performed, the deterioration of the NOx absorption catalyst due to sulfur poisoning can be accurately determined, and the regeneration process can be performed. Therefore, even if the sulfur content of the fuel increases, the NOx absorption catalyst 24 can be properly regenerated.
【0051】図4はこの発明の第2の実施の形態に係る
内燃機関の排気浄化装置の動作を示すフロー・チャート
である。FIG. 4 is a flowchart showing the operation of the exhaust gas purifying apparatus for an internal combustion engine according to the second embodiment of the present invention.
【0052】第1あるいは第2の実施の形態と相違する
点に焦点をおいて説明すると、S200からS208ま
での処理を行ってS210に進み、NOx吸収触媒24
への通電時間TONが所定時間Cを超えたか否か判断す
る。A description will be given focusing on differences from the first or second embodiment. The processing from S200 to S208 is performed, and the process proceeds to S210, where the NOx absorption catalyst 24
It is determined whether or not the energization time TON to the power supply exceeds a predetermined time C.
【0053】所定時間Cは、NOx吸収触媒24の温度
が700℃に達したと判定するに足りる値を適宜求めて
設定する。The predetermined time C is set by appropriately obtaining a value sufficient to determine that the temperature of the NOx absorption catalyst 24 has reached 700 ° C.
【0054】S210で否定されるときは以降の処理を
スキップすると共に、肯定されるときはS212に進ん
で第1あるいは第2の実施の形態と同様に空燃比を短時
間リッチ化する。When the result in S210 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S212, where the air-fuel ratio is enriched for a short time as in the first or second embodiment.
【0055】第2の実施の形態においては上記の如く、
通電加熱してNOx吸収触媒24の昇温を促進するよう
にしたので、第1の実施の形態と同様に的確に被毒除去
作業を行うことができる。In the second embodiment, as described above,
Since the energization heating is performed to promote the temperature rise of the NOx absorption catalyst 24, the poisoning removal operation can be performed accurately as in the first embodiment.
【0056】また、通電時間TONから排気温度(換言
すれば触媒温度)Tcatを推定するようにしたので、
排気温度センサ52の設置を省略することができる。
尚、残余の構成および効果は第1の実施の形態と同様で
ある。Since the exhaust gas temperature (in other words, the catalyst temperature) Tcat is estimated from the energizing time TON,
The installation of the exhaust temperature sensor 52 can be omitted.
The remaining configuration and effects are the same as in the first embodiment.
【0057】図5はこの発明の第3の実施の形態に係る
内燃機関の排気浄化装置の動作を示すフロー・チャート
である。FIG. 5 is a flow chart showing the operation of the exhaust gas purifying apparatus for an internal combustion engine according to the third embodiment of the present invention.
【0058】従前の実施の形態と相違する点に焦点をお
いて説明すると、S300からS308までの処理を行
ってS310に進み、NOx吸収触媒24への通電電力
量Eが所定電力量Dを超えたか否か判断する。The following description focuses on the differences from the previous embodiment. The processing from S300 to S308 is performed, and the process proceeds to S310, where the amount of power E supplied to the NOx absorption catalyst 24 exceeds the predetermined amount of power D. Is determined.
【0059】通電電力量Eは電圧センサおよび電流セン
サ(共に図示せず)を適宜設置して印加電圧Vおよび印
加電流Iを検出することで算出する。また、所定電力量
Dは、NOx吸収触媒24の温度が700℃に達したと
判定するに足りる値を適宜求めて設定する。The supplied electric energy E is calculated by appropriately installing a voltage sensor and a current sensor (both not shown) and detecting the applied voltage V and the applied current I. The predetermined power amount D is set by appropriately obtaining a value sufficient to determine that the temperature of the NOx absorption catalyst 24 has reached 700 ° C.
【0060】S310で否定されるときは以降の処理を
スキップすると共に、肯定されるときはS312に進ん
で第1あるいは第2の実施の形態と同様に空燃比を短時
間リッチ化する。When the result in S310 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S312 to enrich the air-fuel ratio for a short time as in the first or second embodiment.
【0061】第3の実施の形態においても通電加熱して
NOx吸収触媒24の昇温を促進するようにしたので、
従前の実施の形態と同様に的確に被毒除去作業を行うこ
とができる。尚、残余の構成は従前の実施の形態と同様
である。Also in the third embodiment, the heating is carried out by energizing to promote the temperature rise of the NOx absorption catalyst 24.
Poisoning removal work can be performed accurately as in the previous embodiment. The remaining configuration is the same as in the previous embodiment.
【0062】この発明の第1ないし第3の実施の形態は
上記の如く、内燃機関(エンジン)の排気系(排気管1
8)に設けられ、排気ガスがリーン雰囲気にあるとき排
気ガス中のNOxを吸収するNOx吸収剤(NOx吸収
触媒24)と、前記NOx吸収剤を加熱する加熱手段
(NOx吸収触媒ヒータ)と、前記NOx吸収剤の配置
位置の上流側に設けられ、排気ガス中の硫黄濃度Scを
検出する硫黄濃度検出手段(SOxセンサ54)と、前
記硫黄濃度検出手段の出力に基づいて前記NOx吸収剤
の硫黄被毒による劣化を判定する劣化判定手段(ECU
60,S106,S206,S306)と、前記NOx
吸収剤の温度Tcatを推定する温度推定手段(排気温
度センサ52,ECU60,S110,S210,S3
10)と、前記劣化判定手段により前記劣化が判定さ
れ、かつ前記温度推定手段により推定された温度が硫黄
被毒再生温度(700℃)より高いとき、理論空燃比あ
るいはそれ以下のリッチ空燃比を供給する硫黄除去制御
手段(ECU60,S110からS112,S210か
らS212,S310からS312)とを備える如く構
成した。As described above, the first to third embodiments of the present invention provide an exhaust system (exhaust pipe 1) for an internal combustion engine (engine).
8) a NOx absorbent (NOx absorption catalyst 24) for absorbing NOx in the exhaust gas when the exhaust gas is in a lean atmosphere; heating means (NOx absorption catalyst heater) for heating the NOx absorbent; A sulfur concentration detecting means (SOx sensor 54) which is provided on the upstream side of the arrangement position of the NOx absorbent and detects the sulfur concentration Sc in the exhaust gas, and detects the sulfur concentration of the NOx absorbent based on the output of the sulfur concentration detecting means. Deterioration determination means (ECU for determining deterioration due to sulfur poisoning)
60, S106, S206, S306) and the NOx
Temperature estimating means for estimating the temperature Tcat of the absorbent (exhaust temperature sensor 52, ECU 60, S110, S210, S3
10) When the deterioration is determined by the deterioration determining means and the temperature estimated by the temperature estimating means is higher than the sulfur poisoning regeneration temperature (700 ° C.), the stoichiometric air-fuel ratio or a rich air-fuel ratio lower than the stoichiometric air-fuel ratio is determined. It is configured to include the sulfur removal control means (ECU 60, S110 to S112, S210 to S212, S310 to S312) to be supplied.
【0063】尚、上記において、SOxセンサ54は、
特開平6−174692号公報あるいは特開平9−18
9678号公報に記載される構造を備えるものであって
も良い。また、SOxセンサ54は、排気ガス中の硫黄
の濃度を検出するようにしたが、絶対量を検出するもの
であっても良い。In the above description, the SOx sensor 54 is
JP-A-6-174892 or JP-A-9-18
It may have a structure described in Japanese Patent No. 9678. Further, the SOx sensor 54 detects the concentration of sulfur in the exhaust gas, but may detect the absolute amount.
【0064】尚、上記において、上流側の触媒22を三
元触媒としたが、NOx吸収触媒であっても良い。In the above description, the upstream catalyst 22 is a three-way catalyst, but may be a NOx absorption catalyst.
【0065】[0065]
【発明の効果】請求項1項にあっては、排気ガス中の硫
黄濃度を検出し、それに基づいて硫黄被毒による劣化を
より直接的に判定することで劣化判定精度を向上させる
ことができる。従って、硫黄含有量が多い燃料を用いる
ときも、NOx吸収剤の再生処理を的確に行うことがで
きる。According to the present invention, the accuracy of the deterioration determination can be improved by detecting the concentration of sulfur in the exhaust gas and directly determining the deterioration due to sulfur poisoning based on the detected concentration. . Therefore, even when a fuel having a high sulfur content is used, the regeneration treatment of the NOx absorbent can be accurately performed.
【図1】この発明に係る内燃機関の排気浄化装置を含む
内燃機関の制御装置を全体的に示す概略図である。FIG. 1 is a schematic diagram showing an entire control device of an internal combustion engine including an exhaust gas purification device for an internal combustion engine according to the present invention.
【図2】図1装置のSOxセンサの構成を詳細に示す説
明断面図である。FIG. 2 is an explanatory sectional view showing a configuration of an SOx sensor of the apparatus in FIG. 1 in detail.
【図3】この発明に係る内燃機関の排気浄化装置の動作
を示すフロー・チャートである。FIG. 3 is a flowchart showing the operation of the exhaust gas purifying apparatus for an internal combustion engine according to the present invention.
【図4】この発明の第2の実施の形態に係る内燃機関の
排気浄化装置の動作を示すフロー・チャートである。FIG. 4 is a flowchart showing an operation of the exhaust gas purification device for an internal combustion engine according to the second embodiment of the present invention.
【図5】この発明の第3の実施の形態に係る内燃機関の
排気浄化装置の動作を示すフロー・チャートである。FIG. 5 is a flowchart showing the operation of the exhaust gas purifying apparatus for an internal combustion engine according to the third embodiment of the present invention.
10 内燃機関(エンジン)本体 18 排気管(排気系) 22 三元触媒 24 電気加熱式NOx吸収触媒(NOx吸収剤) 38 クランク角センサ 44 絶対圧センサ 52 排気温度センサ(温度検出手段) 54 SOxせンサ(硫黄濃度検出手段) 60 ECU(電子制御ユニット) Reference Signs List 10 internal combustion engine (engine) body 18 exhaust pipe (exhaust system) 22 three-way catalyst 24 electrically heated NOx absorption catalyst (NOx absorbent) 38 crank angle sensor 44 absolute pressure sensor 52 exhaust temperature sensor (temperature detecting means) 54 SOx Sensor (Sulfur concentration detection means) 60 ECU (Electronic control unit)
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/24 F01N 3/24 L F02D 41/04 305 F02D 41/04 305A Fターム(参考) 3G091 AA12 AA17 AA23 AA28 AB03 AB06 BA11 BA14 BA15 BA19 BA32 BA33 CA04 CA22 CB02 CB08 DA02 DB11 DC03 EA01 EA06 EA07 EA15 EA16 EA17 EA27 EA28 EA30 EA31 EA33 EA34 FA13 FA14 FA18 FB10 FB11 FB12 GA06 GA10 GB17X HA08 HA36 HA37 HA38 HA45 HA47 HB07 3G301 HA01 HA06 HA15 JA15 JA25 JA26 JA33 JB09 KA21 KB02 LB02 MA13 NA08 NA09 NE01 NE13 NE14 NE15 PA07A PA10A PA11A PD01A PD02A PD11A PE01A PE03A PE05A PG01A PG02A Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F01N 3/24 F01N 3/24 L F02D 41/04 305 F02D 41/04 305A F-term (reference) 3G091 AA12 AA17 AA23 AA28 AB03 AB06 BA11 BA14 BA15 BA19 BA32. JB09 KA21 KB02 LB02 MA13 NA08 NA09 NE01 NE13 NE14 NE15 PA07A PA10A PA11A PD01A PD02A PD11A PE01A PE03A PE05A PG01A PG02A
Claims (1)
がリーン雰囲気にあるとき排気ガス中のNOxを吸収す
るNOx吸収剤と、前記NOx吸収剤を加熱する加熱手
段と、前記NOx吸収剤の配置位置の上流側に設けら
れ、排気ガス中の硫黄濃度を検出する硫黄濃度検出手段
と、前記硫黄濃度検出手段の出力に基づいて前記NOx
吸収剤の硫黄被毒による劣化を判定する劣化判定手段
と、前記NOx吸収剤の温度を推定する温度推定手段
と、前記劣化判定手段により前記劣化が判定され、かつ
前記温度推定手段により推定された温度が硫黄被毒再生
温度より高いとき、理論空燃比あるいはそれ以下のリッ
チ空燃比を供給する硫黄除去制御手段とを備えたことを
特徴とする内燃機関の排気浄化装置。1. A NOx absorbent provided in an exhaust system of an internal combustion engine for absorbing NOx in exhaust gas when the exhaust gas is in a lean atmosphere, heating means for heating the NOx absorbent, and the NOx absorbent And a sulfur concentration detecting means for detecting the sulfur concentration in the exhaust gas, and the NOx based on the output of the sulfur concentration detecting means.
A deterioration determining means for determining deterioration of the absorbent due to sulfur poisoning; a temperature estimating means for estimating the temperature of the NOx absorbent; and the deterioration being determined by the deterioration determining means, and being estimated by the temperature estimating means. An exhaust gas purifying apparatus for an internal combustion engine, comprising: sulfur removal control means for supplying a rich air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio when the temperature is higher than the sulfur poisoning regeneration temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10229985A JP2000045753A (en) | 1998-07-31 | 1998-07-31 | Exhaust gas purification device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10229985A JP2000045753A (en) | 1998-07-31 | 1998-07-31 | Exhaust gas purification device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000045753A true JP2000045753A (en) | 2000-02-15 |
Family
ID=16900803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10229985A Withdrawn JP2000045753A (en) | 1998-07-31 | 1998-07-31 | Exhaust gas purification device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000045753A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2402892A (en) * | 2003-05-15 | 2004-12-22 | Bosch Gmbh Robert | Method and device for operating an internal combustion engine in whose exhaust-gas region a catalyst is disposed |
JP2006177366A (en) * | 2004-12-23 | 2006-07-06 | Caterpillar Inc | System for monitoring exhaust gas concentration |
JP2006266144A (en) * | 2005-03-23 | 2006-10-05 | Toyota Motor Corp | Exhaust gas purification device for internal combustion engine |
US7134274B2 (en) | 2004-06-10 | 2006-11-14 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas control apparatus for internal combustion engine |
KR100795033B1 (en) | 2006-07-25 | 2008-01-16 | 쌍용자동차 주식회사 | Regeneration method of diesel car |
JP2008064111A (en) * | 2007-11-13 | 2008-03-21 | Honda Motor Co Ltd | Exhaust gas purification device for internal combustion engine |
CN100427729C (en) * | 2004-06-10 | 2008-10-22 | 丰田自动车株式会社 | Exhaust purification device and exhaust purification method for internal combustion engine |
US7509801B2 (en) | 2004-06-10 | 2009-03-31 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas control apparatus for internal combustion engine |
WO2010082104A1 (en) | 2009-01-16 | 2010-07-22 | Toyota Jidosha Kabushiki Kaisha | Temperature sensor, sulfur component detector, and exhaust purification system for internal combustion engine |
DE10023791B4 (en) * | 2000-05-15 | 2011-06-01 | Volkswagen Ag | Method and device for controlling an exhaust gas purification system |
DE10023793B4 (en) * | 2000-05-15 | 2012-10-25 | Volkswagen Ag | Method and apparatus for controlling a desulphurisation of an exhaust gas purification device |
CN102869985A (en) * | 2010-05-12 | 2013-01-09 | 丰田自动车株式会社 | Device for detecting sulfur component |
-
1998
- 1998-07-31 JP JP10229985A patent/JP2000045753A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10023791B4 (en) * | 2000-05-15 | 2011-06-01 | Volkswagen Ag | Method and device for controlling an exhaust gas purification system |
DE10023793B4 (en) * | 2000-05-15 | 2012-10-25 | Volkswagen Ag | Method and apparatus for controlling a desulphurisation of an exhaust gas purification device |
GB2402892B (en) * | 2003-05-15 | 2005-10-26 | Bosch Gmbh Robert | Method and device for operating an internal combustion engine in whose exhaust-gas region a catalyst is disposed |
GB2402892A (en) * | 2003-05-15 | 2004-12-22 | Bosch Gmbh Robert | Method and device for operating an internal combustion engine in whose exhaust-gas region a catalyst is disposed |
US7134274B2 (en) | 2004-06-10 | 2006-11-14 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas control apparatus for internal combustion engine |
CN100427729C (en) * | 2004-06-10 | 2008-10-22 | 丰田自动车株式会社 | Exhaust purification device and exhaust purification method for internal combustion engine |
US7509801B2 (en) | 2004-06-10 | 2009-03-31 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas control apparatus for internal combustion engine |
JP2006177366A (en) * | 2004-12-23 | 2006-07-06 | Caterpillar Inc | System for monitoring exhaust gas concentration |
JP2006266144A (en) * | 2005-03-23 | 2006-10-05 | Toyota Motor Corp | Exhaust gas purification device for internal combustion engine |
KR100795033B1 (en) | 2006-07-25 | 2008-01-16 | 쌍용자동차 주식회사 | Regeneration method of diesel car |
JP2008064111A (en) * | 2007-11-13 | 2008-03-21 | Honda Motor Co Ltd | Exhaust gas purification device for internal combustion engine |
WO2010082104A1 (en) | 2009-01-16 | 2010-07-22 | Toyota Jidosha Kabushiki Kaisha | Temperature sensor, sulfur component detector, and exhaust purification system for internal combustion engine |
US9181842B2 (en) | 2009-01-16 | 2015-11-10 | Toyota Jidosha Kabushiki Kaisha | Temperature sensor, sulfur component detector, and exhaust purification system for internal combustion engine |
CN102869985A (en) * | 2010-05-12 | 2013-01-09 | 丰田自动车株式会社 | Device for detecting sulfur component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7743759B2 (en) | Gas sensor controller | |
JP3361252B2 (en) | Exhaust gas purification device for internal combustion engine | |
CN108691613B (en) | Exhaust gas purification device for internal combustion engine | |
JP2000045753A (en) | Exhaust gas purification device for internal combustion engine | |
CN107614843A (en) | Control devices for internal combustion engines | |
JP3602613B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP6421771B2 (en) | Sulfur oxide detector | |
JP4186259B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4061995B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPWO2004097200A1 (en) | Control device for internal combustion engine | |
JP5790436B2 (en) | Combustion injection method for internal combustion engine and internal combustion engine | |
JP3487246B2 (en) | Diesel engine exhaust purification system | |
JPH11101154A (en) | Exhaust gas purification device for internal combustion engine | |
JPH10246139A (en) | Air-fuel ratio control device for internal combustion engine | |
JP6179377B2 (en) | Exhaust purification device | |
CN114673579B (en) | Exhaust gas purifying device for internal combustion engine | |
JP2000045754A (en) | Exhaust gas purification device for internal combustion engine | |
JP2003314257A (en) | Exhaust gas purification apparatus for internal combustion engine and control method thereof | |
JP6505578B2 (en) | Filter failure detection device, particulate matter detection device | |
JP3609616B2 (en) | Oxygen concentration detector | |
JP2008088962A (en) | Catalyst thermal degradation determination device and catalyst thermal degradation suppression device | |
JP3622597B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP5308870B2 (en) | Catalyst deterioration judgment device | |
JP5790435B2 (en) | Combustion injection method for internal combustion engine and internal combustion engine | |
JPH11107828A (en) | Air-fuel ratio controller for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20051004 |