[go: up one dir, main page]

JP2000042370A - Catalyst device for purifying exhaust gas and its using method - Google Patents

Catalyst device for purifying exhaust gas and its using method

Info

Publication number
JP2000042370A
JP2000042370A JP10215343A JP21534398A JP2000042370A JP 2000042370 A JP2000042370 A JP 2000042370A JP 10215343 A JP10215343 A JP 10215343A JP 21534398 A JP21534398 A JP 21534398A JP 2000042370 A JP2000042370 A JP 2000042370A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
group
powder
element selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10215343A
Other languages
Japanese (ja)
Inventor
Masaki Nakamura
雅紀 中村
Katsuo Suga
克雄 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10215343A priority Critical patent/JP2000042370A/en
Priority to KR1019990007403A priority patent/KR100326747B1/en
Priority to DE69931417T priority patent/DE69931417T2/en
Priority to US09/263,836 priority patent/US6395675B1/en
Priority to EP99104579A priority patent/EP0941757B1/en
Publication of JP2000042370A publication Critical patent/JP2000042370A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst device for purifying exhaust gas capable of preventing the poisoning due to the sulfur in the exhaust gas, improving the NOx purifying performance in lean atmosphere and sufficiently manifesting the function as a ternary catalyst, and to provide the using method capable of effectively manifesting the NOx purifying function. SOLUTION: This catalyst device for purifying the exhaust gas is constituted by arranging the catalyst containing at least one element among Na, Mg, Ca, Sr, Ba, Y and La and alumina is arranged at the first half of exhaust gas stream, and arranging the catalyst containing the powder carrying at least one kind noble metal selected among platinum, palladium and rhodium on a porous body and a composite oxide powder expressed by formula (Ln1-αAα)1-βBOδ (In the formula, Ln is at least one kind element among La, Ce, Nd and Sm, A is Mg, Ca, Sr, Ba, Na, K and Cs, B is at least one kind element among Fe, Co, Ni and Mn, 0<=α<=1, 0<β<1, δ is the oxygen quantity satisfying the valency of each element) at the second half of the exhaust gas stream.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車(ガソリ
ン,ディーゼル)、ボイラー等の内燃機関から排出され
る排気ガス中の炭化水素(HC)、一酸化炭素(CO)
および窒素酸化物(NOx)を浄化する排気ガス浄化用
触媒装置及びその使用方法に関し、特に酸素過剰雰囲気
下でのNOxの浄化性能に優れる排気ガス浄化用触媒装
置及びその使用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hydrocarbons (HC) and carbon monoxide (CO) in exhaust gas discharged from internal combustion engines such as automobiles (gasoline and diesel) and boilers.
The present invention relates to an exhaust gas purifying catalyst device for purifying nitrogen oxides (NOx) and a method of using the same, and more particularly to an exhaust gas purifying catalyst device excellent in NOx purifying performance in an oxygen-excess atmosphere and a method of using the same.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇問題および地球温
暖化問題の関点から、低燃費自動車の実現が期待されて
おり、特にガソリン自動車に対しては希薄燃焼自動車の
開発が注目されている。希薄燃焼自動車においては、希
薄燃焼走行時の排気ガス雰囲気は、理論空燃状態(以
下、「ストイキ状態」と称す)に比べて酸素過剰雰囲気
(以下、「リーン雰囲気」と称す)となる。リーン雰囲
気において、従来の三元触媒を適応させた場合には、過
剰な酸素の影響からNOx浄化作用が不十分となるとい
う問題があった。このためリーン雰囲気下においてもN
Oxを浄化できる触媒の開発が望まれていた。
2. Description of the Related Art In recent years, in view of the problem of depletion of petroleum resources and the problem of global warming, the realization of fuel-efficient vehicles is expected. . In a lean-burn vehicle, the exhaust gas atmosphere during lean-burn operation is an oxygen-excess atmosphere (hereinafter, referred to as a "lean atmosphere") as compared to a stoichiometric air-fuel state (hereinafter, referred to as a "stoichiometric state"). When a conventional three-way catalyst is applied in a lean atmosphere, there has been a problem that the effect of excessive oxygen makes the NOx purification action insufficient. Therefore, even in a lean atmosphere, N
The development of a catalyst that can purify Ox has been desired.

【0003】従来より、リーン雰囲気下におけるNOx
浄化性能を向上させる触媒は種々提案されており、例え
ば特開平5−168860号公報には、ランタンと白金
(Pt)とを多孔質担体に担持させてランタンをNOx
吸収材として用いる触媒が提案されている。これはリー
ン雰囲気下でNOxを吸収し、ストイキ状態あるいは燃
料過剰(リッチ)雰囲気下でNOxを放出浄化するもの
である。
Conventionally, NOx in a lean atmosphere has been
Various catalysts for improving the purification performance have been proposed. For example, JP-A-5-168860 discloses that lanthanum and platinum (Pt) are supported on a porous carrier to convert lanthanum into NOx.
Catalysts for use as absorbers have been proposed. This is to absorb NOx in a lean atmosphere and to release and purify NOx in a stoichiometric or fuel-rich (rich) atmosphere.

【0004】しかしながら、上記従来のNOx吸収触媒
燃料及び潤滑油内には硫黄が含まれており、この硫黄が
酸化物として排気ガス中に排出されるため、NOx吸収
材が硫黄による被毒を受け、NOx吸収能の低下、いわ
ゆる硫黄被毒がおこってしまう。この硫黄被毒を防止す
るため、NOx吸収触媒の前段に硫黄トラップ触媒を配
置し、リーン域で硫黄酸化物を吸収させ、後段のNOx
吸収触媒に硫黄酸化物を流入させないという方法が特開
平6−58138号公報に提案されている。しかし、こ
の方法では硫黄トラップ触媒が、吸収した硫黄酸化物に
より飽和してしまい、それ以上の硫黄酸化物はNOx吸
収触媒に流入して、結局硫黄被毒がおきてしまう。
[0004] However, the conventional NOx-absorbing catalytic fuel and lubricating oil contain sulfur, and this sulfur is exhausted as an oxide into the exhaust gas, so that the NOx absorbent is poisoned by the sulfur. In addition, the reduction of NOx absorption capacity, so-called sulfur poisoning, occurs. In order to prevent this sulfur poisoning, a sulfur trap catalyst is arranged in front of the NOx absorption catalyst to absorb sulfur oxides in a lean region, and the subsequent NOx
A method for preventing sulfur oxides from flowing into the absorption catalyst has been proposed in JP-A-6-58138. However, in this method, the sulfur trap catalyst is saturated by the absorbed sulfur oxides, and more sulfur oxides flow into the NOx absorption catalyst, resulting in sulfur poisoning.

【0005】そこで、ストイキ時に硫黄酸化物を硫黄ト
ラップ触媒から放出させて、次の硫黄酸化物を吸収させ
るようにする方法が提案されている。しかし、この方法
にも硫黄トラップ触媒の触媒組成によっては硫黄トラ
ップ触媒のストイキ時の放出性能が十分でないという問
題や、放出された硫黄酸化物が後段のNOx吸収触媒
を被毒してしまうという問題を生じる可能性がある。
[0005] Therefore, a method has been proposed in which sulfur oxide is released from the sulfur trap catalyst during stoichiometry to absorb the next sulfur oxide. However, this method also has a problem that the sulfur trap catalyst does not have sufficient release performance at the time of stoichiometry, depending on the catalyst composition of the sulfur trap catalyst, and a problem that the released sulfur oxides poison the subsequent NOx absorption catalyst. May occur.

【0006】[0006]

【発明が解決しようとする課題】従って、請求項1〜6
記載の発明の目的は、排気ガス中の硫黄による被毒を防
止し、従来の触媒では十分な活性を示さなかったリーン
雰囲気下におけるNOx浄化性能を向上させることがで
き、かつ三元触媒としての機能を十分に発現することが
できる排気ガス浄化用触媒装置を提供するにある。
SUMMARY OF THE INVENTION Accordingly, claims 1 to 6 are provided.
An object of the described invention is to prevent poisoning by sulfur in exhaust gas, improve NOx purification performance under a lean atmosphere, which did not show sufficient activity with a conventional catalyst, and achieve a three-way catalyst. An object of the present invention is to provide an exhaust gas purifying catalyst device capable of sufficiently exhibiting functions.

【0007】また、請求項7記載の発明の目的は、本発
明の排気ガス浄化用触媒装置のそのNOx浄化作用が特
に有効に発現できる排気ガス浄化用触媒の使用方法を提
供するにある。
It is another object of the present invention to provide a method of using an exhaust gas purifying catalyst which can exhibit the NOx purifying action of the exhaust gas purifying catalyst device of the present invention particularly effectively.

【0008】[0008]

【課題を解決するための手段】請求項1記載の排ガス浄
化用触媒装置は、Na,Mg,Ca,Sr,Ba,Y及
びLaから成る群より選ばれる少なくとも1種の元素
と、アルミナと、Fe,Mn,Co及びNiから成る群
より選ばれる少なくとも1種の元素とを含む触媒を排気
流れに対して前段に配置し、白金、パラジウム及びロジ
ウムから成る群より選ばれた少なくとも1種の貴金属を
多孔質体に担持した粉末と、次の一般式
According to a first aspect of the present invention, there is provided a catalyst device for purifying exhaust gas, comprising at least one element selected from the group consisting of Na, Mg, Ca, Sr, Ba, Y and La; A catalyst comprising at least one element selected from the group consisting of Fe, Mn, Co and Ni is disposed upstream of the exhaust stream, and at least one noble metal selected from the group consisting of platinum, palladium and rhodium; And a powder having the following general formula

【数2】 (式中、LnはLa,Ce,Nd及びSmから成る群よ
り選ばれた少なくとも1種の元素、AはMg,Ca,S
r,Ba,Na,K及びCsから成る群より選ばれた少
なくとも1種の元素、Bは鉄、コバルト、ニッケル及び
マンガンから成る群より選ばれた少なくとも1種の元
素、0≦α≦1,0<β<1,δは各元素の原子価を満
足する酸素量を示す)で表される複合酸化物粉末とを含
有する触媒を、排気流れに対して後段に配置して成るこ
とを特徴とする。
(Equation 2) (Where Ln is at least one element selected from the group consisting of La, Ce, Nd and Sm, and A is Mg, Ca, S
at least one element selected from the group consisting of r, Ba, Na, K and Cs; B is at least one element selected from the group consisting of iron, cobalt, nickel and manganese; 0 ≦ α ≦ 1, 0 <β <1, δ indicates the amount of oxygen that satisfies the valence of each element), and a catalyst containing a composite oxide powder represented by the following formula: And

【0009】請求項2記載の排ガス浄化用触媒装置は、
請求項1記載の排気ガス浄化用触媒において、前段に配
置する触媒が、Na,Mg,Ca,Sr,Ba,Y及び
Laから成る群より選ばれる少なくとも1種の元素と、
Fe,Mn,Co及びNiから成る群より選ばれる少な
くとも1種の元素との複合酸化物を、アルミナに担持し
てなることを特徴とする。
The exhaust gas purifying catalyst device according to claim 2 is
2. The exhaust gas purifying catalyst according to claim 1, wherein the catalyst disposed at the preceding stage is at least one element selected from the group consisting of Na, Mg, Ca, Sr, Ba, Y and La;
A composite oxide with at least one element selected from the group consisting of Fe, Mn, Co and Ni is supported on alumina.

【0010】請求項3記載の排ガス浄化用触媒装置は、
請求項1記載の排気ガス浄化用触媒において、前段に配
置する触媒が、Na,Mg,Ca,Sr,Ba,Y及び
Laから成る群より選ばれる少なくとも1種の元素とア
ルミナとの複合酸化物に、Fe,Mn,Co及びNiか
ら成る群より選ばれる少なくとも1種の元素を担持して
なることを特徴とする。
The catalyst device for purifying exhaust gas according to claim 3 is
2. The exhaust gas purifying catalyst according to claim 1, wherein the catalyst disposed in the preceding stage is a composite oxide of alumina and at least one element selected from the group consisting of Na, Mg, Ca, Sr, Ba, Y and La. And at least one element selected from the group consisting of Fe, Mn, Co and Ni.

【0011】請求項4記載の排ガス浄化用触媒装置は、
請求項1記載の排気ガス浄化用触媒において、前段に配
置する触媒が、Fe,Mn,Co及びNiから成る群よ
り選ばれる少なくとも1種の元素とアルミナとの複合酸
化物に、Na,Mg,Ca,Sr,Ba,Y及びLaか
ら成る群より選ばれる少なくとも1種の元素を担持して
なることを特徴とする。
The catalyst device for purifying exhaust gas according to claim 4 is
2. The exhaust gas purifying catalyst according to claim 1, wherein the catalyst disposed in the preceding stage is a composite oxide of alumina and at least one element selected from the group consisting of Fe, Mn, Co and Ni, and Na, Mg, It is characterized by carrying at least one element selected from the group consisting of Ca, Sr, Ba, Y and La.

【0012】請求項5記載の排ガス浄化用触媒装置は、
請求項1記載の排気ガス浄化用触媒において、前段に配
置する触媒が、Na,Mg,Ca,Sr,Ba,Y及び
Laから成る群より選ばれる少なくとも1種の元素と、
Fe,Mn,Co及びNiから成る群より選ばれる少な
くとも1種の元素とアルミナとの複合酸化物からなるこ
とを特徴とする。
The catalyst device for purifying exhaust gas according to claim 5 is
2. The exhaust gas purifying catalyst according to claim 1, wherein the catalyst disposed at the preceding stage is at least one element selected from the group consisting of Na, Mg, Ca, Sr, Ba, Y and La;
It is characterized by comprising a composite oxide of alumina and at least one element selected from the group consisting of Fe, Mn, Co and Ni.

【0013】請求項6記載の排ガス浄化用触媒装置は、
請求項1〜5いずれかの項記載の排気ガス浄化用触媒に
おいて、前段に配置する触媒が、更に貴金属を含有する
ことを特徴とする。
[0013] The exhaust gas purifying catalyst device according to claim 6 is
The exhaust gas purifying catalyst according to any one of claims 1 to 5, wherein the catalyst disposed in the preceding stage further contains a noble metal.

【0014】請求項7記載の排ガス浄化用触媒装置の使
用方法は、請求項1〜6いずれかの項記載の排気ガス浄
化用触媒装置を、空燃比が10〜14.8の範囲と、1
5〜50の範囲とを繰り返すリーンバーンエンジン車に
使用することを特徴とする。
According to a seventh aspect of the present invention, there is provided a method of using the exhaust gas purifying catalyst device according to any one of the first to sixth aspects, wherein the exhaust gas purifying catalytic device has an air-fuel ratio of 10 to 14.8,
It is characterized in that it is used for a lean burn engine vehicle which repeats a range of 5 to 50.

【0015】[0015]

【発明の実施の形態】本発明に用いる、排気流れに対し
て前段に配置する触媒中には、Na,Mg,Ca,S
r,Ba,Y及びLaから成る群より選ばれる少なくと
も1種の元素と、アルミナと、Fe,Mn,Co及びN
iから成る群より選ばれる少なくとも1種の元素とを含
み、その形態は、好ましくは、Na,Mg,Ca,S
r,Ba,Y及びLaから成る群より選ばれる少なくと
も1種の元素とFe,Mn,Co及びNiから成る群よ
り選ばれる少なくとも1種の元素との複合酸化物をアル
ミナが担持して成る場合、Na,Mg,Ca,Sr,B
a,Y及びLaから成る群より選ばれる少なくとも1種
の元素とアルミナとの複合酸化物がFe,Mn,Co及
びNiから成る群より選ばれる少なくとも1種の元素を
担持して成る場合、Fe,Mn,Co及びNiから成る
群より選ばれる少なくとも1種の元素とアルミナとの複
合酸化物に、Na,Mg,Ca,Sr,Ba,Y及びL
aから成る群より選ばれる少なくとも1種の元素を担持
して成る場合、又はNa,Mg,Ca,Sr,Ba,Y
及びLaから成る群より選ばれる少なくとも1種の元素
と、Fe,Mn,Co及びNiから成る群より選ばれる
少なくとも1種の元素とアルミナとの複合酸化物から成
る場合がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Na, Mg, Ca, S
at least one element selected from the group consisting of r, Ba, Y and La, alumina, Fe, Mn, Co and N
and at least one element selected from the group consisting of i, i.e., Na, Mg, Ca, S
When alumina carries a composite oxide of at least one element selected from the group consisting of r, Ba, Y and La and at least one element selected from the group consisting of Fe, Mn, Co and Ni , Na, Mg, Ca, Sr, B
When the composite oxide of alumina and at least one element selected from the group consisting of a, Y and La carries at least one element selected from the group consisting of Fe, Mn, Co and Ni, , Mn, Co and Ni at least one element selected from the group consisting of alumina and Na, Mg, Ca, Sr, Ba, Y and L
a carrying at least one element selected from the group consisting of Na, Mg, Ca, Sr, Ba, Y
And a composite oxide of at least one element selected from the group consisting of La and La, and at least one element selected from the group consisting of Fe, Mn, Co and Ni, and alumina.

【0016】このように本発明で用いる前段の触媒に、
アルカリ金属やアルカリ土類金属と遷移金属とアルミナ
との複合酸化物を含むことで、吸収した硫黄酸化物の分
解が容易となる。これは生成する硫酸塩が複合硫酸塩と
なるため単独の硫酸塩よりもアルカリ金属、アルカリ土
類金属、遷移金属、アルミナと硫酸との結合が弱まるた
めであると考えられる。
As described above, the catalyst at the first stage used in the present invention includes:
By containing a composite oxide of an alkali metal or an alkaline earth metal, a transition metal, and alumina, the absorbed sulfur oxide is easily decomposed. This is presumably because the resulting sulfate is a complex sulfate, which weakens the bond between alkali metal, alkaline earth metal, transition metal and alumina and sulfuric acid as compared with a single sulfate.

【0017】かかる前段の触媒は、各成分の全てが複合
化していることが好ましいが、その一部が複合化してい
る場合でも上記作用は得られる。
It is preferable that all of the components of the former catalyst are complexed. However, even when a part of the components is complexed, the above effect can be obtained.

【0018】前段の触媒は、Na,Mg.Ca,Sr,
Ba,Y及びLaから成る群から選ばれる少なくとも一
種とアルミナとを複合酸化物としなくとも、Fe,M
n,Co及びNiから成る群から選ばれる少なくとも一
種とともにアルミナに担持することでも硫黄酸化物の放
出性能が向上する。また、Na,Mg.Ca,Sr,B
a,Y及びLaから成る群から選ばれる少なくとも一種
がアルミナと複合化されていれば、それにFe,Mn,
Co及びNiから成る群から選ばれる少なくとも一種を
担持または複合化することで、さらに放出性能が向上す
る。
The catalyst in the first stage is composed of Na, Mg. Ca, Sr,
Even if at least one member selected from the group consisting of Ba, Y and La and alumina are not used as a composite oxide, Fe, M
By supporting on alumina together with at least one selected from the group consisting of n, Co and Ni, the release performance of sulfur oxides is improved. Na, Mg. Ca, Sr, B
If at least one selected from the group consisting of a, Y, and La is complexed with alumina, Fe, Mn,
By carrying or complexing at least one selected from the group consisting of Co and Ni, the release performance is further improved.

【0019】前記複合酸化物は、排ガス中の硫黄を効果
的に吸収・脱離させるために、本発明の前段排気ガス浄
化用触媒1Lあたり0.1〜200g含有されることが
好ましい。Na,Mg.Ca,Sr,Ba,Y及びLa
から成る群から選ばれる少なくとも1種の元素は、前段
排気ガス浄化用触媒中、排ガス中の硫黄を吸収・脱離さ
せるために1〜30重量%含有されることが好ましく、
また、Fe,Mn.Co,Niから成る群より選ばれる
少なくとも1種の元素は、前段排気ガス浄化用触媒中吸
収した硫黄の脱離促進の点から0.1〜10重量%含有
されることが好ましい。
In order to effectively absorb and desorb the sulfur in the exhaust gas, the composite oxide is preferably contained in an amount of 0.1 to 200 g per liter of the catalyst for purifying exhaust gas at the preceding stage of the present invention. Na, Mg. Ca, Sr, Ba, Y and La
It is preferable that at least one element selected from the group consisting of 1 to 30% by weight is contained in the catalyst for purifying exhaust gas in order to absorb and desorb sulfur in exhaust gas,
Further, Fe, Mn. At least one element selected from the group consisting of Co and Ni is preferably contained in an amount of 0.1 to 10% by weight from the viewpoint of promoting the desorption of sulfur absorbed in the upstream exhaust gas purifying catalyst.

【0020】本発明に用いる、排気流れに対して前段に
配置する排気ガス浄化用触媒中には、更に好ましくは白
金、パラジウム及びロジウムから成る群より選ばれた少
なくとも1種の貴金属が含まれる。かかる貴金属として
は、白金、パラジウム及びロジウムから成る群より選ば
れる少なくとも1種が用いられ、例えばPtとRh、P
dとRh、Pdのみ等の種々の組み合わせが可能であ
り、かかる触媒貴金属を担持することにより、硫黄酸化
物の吸収性能が向上する。
The exhaust gas purifying catalyst used in the present invention, which is disposed upstream of the exhaust stream, preferably contains at least one noble metal selected from the group consisting of platinum, palladium and rhodium. As such a noble metal, at least one selected from the group consisting of platinum, palladium and rhodium is used. For example, Pt, Rh, P
Various combinations such as only d, Rh, and Pd are possible, and by supporting such a catalytic noble metal, the absorption performance of sulfur oxides is improved.

【0021】また前記貴金属の含有量は、特に限定され
ないが、硫黄の吸収性能向上の点から前段の排気ガス浄
化用触媒1Lあたり0.1〜10gが好ましい。
The content of the noble metal is not particularly limited, but is preferably 0.1 to 10 g per liter of the preceding exhaust gas purifying catalyst from the viewpoint of improving the absorption performance of sulfur.

【0022】一方、本発明に用いる、排気流れに対して
後段に配置する排気ガス浄化用触媒中には、まず白金、
パラジウム及びロジウムから成る群より選ばれた少なく
とも1種の貴金属を多孔質体に担持した粉末が含まれ
る。かかる貴金属としては、白金、パラジウム及びロジ
ウムから成る群より選ばれる少なくとも1種が用いら
れ、例えばPtとRh、PdとRh、Pdのみ等の種々
の組み合わせが可能であるが、特にPdとRh、Pdの
みの貴金属を用いると、前記数2の式で表わされる複合
酸化物との相互作用が更に高まりNOx吸収作用がより
向上するため好ましい。
On the other hand, in the exhaust gas purifying catalyst used in the present invention and disposed downstream of the exhaust gas flow, platinum, platinum,
The powder includes at least one noble metal selected from the group consisting of palladium and rhodium supported on a porous body. As such a noble metal, at least one selected from the group consisting of platinum, palladium and rhodium is used. For example, various combinations such as Pt and Rh, Pd and Rh, and Pd alone are possible. The use of a noble metal of only Pd is preferable because the interaction with the complex oxide represented by the above formula (2) is further enhanced, and the NOx absorption action is further improved.

【0023】前記貴金属の含有量は、NOx吸収能と三
元触媒性能が十分に得られれば特に限定されないが、
0.1gより少ないと十分な三元性能が得られず、10
gより多く使用しても有意な特性向上はみられない点か
ら、本発明に用いる後段の排気ガス浄化用触媒1Lあた
り0.1〜10gが好ましい。
The content of the noble metal is not particularly limited as long as the NOx absorption capacity and the three-way catalyst performance are sufficiently obtained.
If the amount is less than 0.1 g, sufficient ternary performance cannot be obtained, and
From the point that no significant improvement in characteristics is observed even when the amount is larger than 0.1 g, the amount is preferably 0.1 to 10 g per liter of the latter-stage exhaust gas purifying catalyst used in the present invention.

【0024】本発明に用いる後段の触媒はストイキ時の
三元触媒としての機能も必要であるため、Pt,Pd及
びRhから成る群より選ばれた少なくとも一種は、少な
くとも一部が多孔質体に担持されることが好ましく、特
にアルミナに担持されることが好ましい。ここで用いる
アルミナは耐熱性の高いものが好ましく、なかでも比表
面積が50〜300m2 /gの活性アルミナが好まし
い。またアルミナの耐熱性を向上させるために、従来か
ら三元触媒で適用されているように、セリウム、ランタ
ン等の希土類化合物やジルコニウムなどの添加物をさら
に加えてもよい。
Since the latter catalyst used in the present invention also needs to function as a three-way catalyst at the time of stoichiometry, at least one selected from the group consisting of Pt, Pd and Rh is at least partially formed into a porous material. It is preferably supported, and particularly preferably supported on alumina. The alumina used here is preferably one having high heat resistance, and among them, activated alumina having a specific surface area of 50 to 300 m 2 / g is preferred. In order to improve the heat resistance of alumina, a rare earth compound such as cerium or lanthanum or an additive such as zirconium may be further added as conventionally used in a three-way catalyst.

【0025】更に本発明で用いる後段触媒は、ストイキ
時の三元触媒としての機能も必要であるため、従来から
三元触媒で用いられている添加物を更に加えても良く、
例えば酸素ストレージ機能を有するセリアや、貴金属へ
のHC吸着被毒を緩和するバリウムや、Rhの耐熱性向
上に寄与するジルコニア等である。
Further, since the latter catalyst used in the present invention also needs to function as a three-way catalyst during stoichiometry, additives conventionally used in three-way catalysts may be further added.
For example, there are ceria having an oxygen storage function, barium which reduces HC adsorption poisoning to noble metals, and zirconia which contributes to improvement in heat resistance of Rh.

【0026】また、本発明に用いる後段排気ガス浄化用
触媒中に含まれる複合酸化物は、次の一般式
The composite oxide contained in the catalyst for purifying the second stage exhaust gas used in the present invention is represented by the following general formula:

【数3】 で表される。(Equation 3) It is represented by

【0027】希土類金属としては、ランタン、セリウ
ム、ネオジム及びサマリウムが、アルカリ金属としては
カリウム、ナトリウム及びセシウムが、アルカリ土類金
属としてはマグネシウム、カルシウム、ストロンチウム
及びバリウムが、また遷移金属としては、鉄、コバル
ト、ニッケル及びマンガンが好適に使用できる。
Rare earth metals include lanthanum, cerium, neodymium and samarium, potassium, sodium and cesium as alkali metals, magnesium, calcium, strontium and barium as alkaline earth metals, and iron as a transition metal. , Cobalt, nickel and manganese can be suitably used.

【0028】このような上記ペロブスカイト型酸化物の
ような複合酸化物は、酸素欠損を生じ、この生成した酸
素欠損を介してNOxの吸着が容易になり、リーン雰囲
気においてNOxを吸収するという特性を利用すること
により、NOxの浄化性能を向上させることが可能とな
っている。
A complex oxide such as the above-described perovskite oxide has a property that oxygen deficiency is generated, NOx is easily adsorbed through the generated oxygen deficiency, and NOx is absorbed in a lean atmosphere. Utilization makes it possible to improve NOx purification performance.

【0029】また、一般にペロブスカイト型酸化物は触
媒組成物中のアルミナ系酸化物と固相反応を起こして活
性が失活する場合があり、これを抑制するために、アル
ミナ系酸化物にランタン等をプリコートする方法や、ジ
ルコニアのようにペロブスカイトとの反応性が小さい材
料を用いる方法がある。
In general, the perovskite-type oxide may cause a solid phase reaction with the alumina-based oxide in the catalyst composition and deactivate the activity. And a method using a material having low reactivity with perovskite such as zirconia.

【0030】これに対して本発明のようにペロブスカイ
ト型酸化物のAサイトを量論比から僅かに欠損させるこ
とにより、ペロブスカイト型酸化物と接する他の酸化物
(アルミナ等)との間での固相反応を抑制し、熱的安定
性を向上させ、熱耐久後の浄化性能を高く維持できるこ
とが可能となった。
On the other hand, by slightly losing the A site of the perovskite oxide from the stoichiometric ratio as in the present invention, the A site of the perovskite oxide can be exchanged with another oxide (alumina or the like) in contact with the perovskite oxide. It has become possible to suppress the solid-phase reaction, improve the thermal stability, and maintain high purification performance after heat endurance.

【0031】Aサイトの置換量は、0≦α≦1であり特
に限定されないが、NOx吸収能力を十分に得るために
は、特に、0.2≦α≦1であることが好ましい。
The substitution amount of the A site is 0.ltoreq..alpha..ltoreq.1, and is not particularly limited. However, in order to obtain a sufficient NOx absorbing ability, it is particularly preferably 0.2.ltoreq..alpha..ltoreq.1.

【0032】βの値は、1以上だと単相のペロブスカイ
ト構造を構成しなくなるので0<β<1であることが好
ましい。δの値は各原子の価数を満足する酸素量であ
り、およそ0<δ<4程度である。
If the value of β is 1 or more, a single-phase perovskite structure is not formed, so that 0 <β <1 is preferable. The value of δ is the amount of oxygen that satisfies the valence of each atom, and is approximately 0 <δ <4.

【0033】本発明で用いられる複合酸化物、特に部分
置換ペロブスカイト酸化物は、その部分置換量とともに
リーン雰囲気下でNOxを吸収する性能を発現させる
が、その吸収機構は、気相中のNOxが複合酸化物上で
NO2 に酸化され、複合酸化物表面のMg,Ca,S
r,Ba,Na,K及びCsから成る群より選ばれた少
なくとも1種の元素の近傍に硝酸基あるいはそれに近い
状態で吸収されるものと考えられる。従ってリーン雰囲
気下でNOxを有効に吸収するための複合酸化物の組成
は、硝酸塩を容易に製造し得るMg,Ca,Sr,B
a,Na,K及びCsから成る群より選ばれた少なくと
も1種の元素を含有し、更に、NOxをNO2に酸化す
ることができる遷移金属元素を含有することが重要であ
る。
The composite oxide used in the present invention, particularly the partially substituted perovskite oxide, exhibits the ability to absorb NOx in a lean atmosphere together with the partially substituted amount thereof. Oxidized to NO 2 on the composite oxide, and Mg, Ca, S on the surface of the composite oxide
It is considered that nitric acid is absorbed in the vicinity of at least one element selected from the group consisting of r, Ba, Na, K, and Cs in the state of or close to nitric acid groups. Therefore, the composition of the composite oxide for effectively absorbing NOx under a lean atmosphere is made of Mg, Ca, Sr, B which can easily produce nitrate.
a, containing at least one element selected from the group consisting of Na, K and Cs, further, it is important to contain a transition metal element capable of oxidizing NOx to NO 2.

【0034】該複合酸化物の各構成元素は、触媒に含ま
れるこれらの全てが複合化している場合に、その上記し
た作用は最大限に発揮されるが、少なくとも一部が複合
体を形成しうる場合でも十分に上記作用を得ることがで
きる。
Each of the constituent elements of the composite oxide exerts the above effects to the maximum when all of these contained in the catalyst are complexed, but at least a part of the complex oxide forms a complex. Even if it is possible, the above effect can be sufficiently obtained.

【0035】該複合酸化物の各構成元素は、熱耐久後で
も別々の酸化物として分離することなく複合酸化物とし
て存在することができ、これは例えばX線回折測定によ
り確認することができる。
Each constituent element of the composite oxide can exist as a composite oxide without being separated as a separate oxide even after thermal endurance, and this can be confirmed by, for example, X-ray diffraction measurement.

【0036】該複合酸化物中の各構成元素には、その上
記作用を妨げる量でなければ微量の不純物を含んでも構
わず、例えばバリウム中に含まれるストロンチウムや、
ランタン中に含まれるセリウム、ネオジム、サマリウム
やジルコニウム中に含まれるハフニウムやイオウ等であ
る。
Each constituent element in the composite oxide may contain a trace amount of impurities as long as it does not interfere with the above-mentioned action. For example, strontium contained in barium,
Cerium, neodymium, samarium contained in lanthanum and hafnium and sulfur contained in zirconium.

【0037】前記複合酸化物は、その作用が得られる量
が触媒中に含有されれば特に含有量は限定されず、本発
明の後段排気ガス浄化用触媒1Lあたり20〜100g
含有されることが好ましい。
The content of the composite oxide is not particularly limited as long as the effect of the composite oxide is obtained in the catalyst, and is 20 to 100 g per liter of the second-stage exhaust gas purifying catalyst of the present invention.
It is preferable to be contained.

【0038】本発明に用いる後段排気ガス浄化用触媒
は、前記貴金属と、複合酸化物とを共存させることによ
り、各々単独では得られないNOx浄化作用を得ること
が可能となっている。即ち、排気ガス雰囲気がリーンと
なった場合には、本発明の排気ガス浄化用触媒中の複合
酸化物によるNOx吸収作用により、高いNOx浄化性
能が得られる。該複合酸化物のNOx吸収し、また排気
ガス雰囲気がリーンからストイキに変化すると該複合酸
化物からNOxが放出され、高いNOx浄化性能が得ら
れる。該複合酸化物を構成する各成分の単独物を単に混
合しただけでは得られない優れたNOx浄化性能を得る
ものである。
The second-stage exhaust gas purifying catalyst used in the present invention is capable of obtaining a NOx purifying action which cannot be obtained independently by coexistence of the noble metal and the composite oxide. That is, when the exhaust gas atmosphere becomes lean, high NOx purification performance can be obtained by the NOx absorbing action of the composite oxide in the exhaust gas purification catalyst of the present invention. When the composite oxide absorbs NOx and the exhaust gas atmosphere changes from lean to stoichiometric, NOx is released from the composite oxide and high NOx purification performance is obtained. It is intended to obtain excellent NOx purification performance which cannot be obtained by simply mixing individual components of the composite oxide.

【0039】また本発明に用いる後段触媒は熱耐久後に
おいても高いNOx吸収作用を有し、これは該複合酸化
物がAサイト割合の少ないペロブスカイト型構造をとっ
ており、他成分(例えばアルミナ)との固相反応が回避
されたためである。
The post-catalyst used in the present invention has a high NOx absorbing effect even after heat endurance. This is because the composite oxide has a perovskite type structure having a small proportion of A site, and other components (for example, alumina) This is because the solid-phase reaction with is avoided.

【0040】本発明の触媒装置として、上記前段触媒を
排気ガス流れに対して上流側に、また上記後段触媒を排
気ガス流れに対して下流側に配置する。このように配置
することにより、リーン域で前段の触媒が排気ガス中の
硫黄酸化物を吸収し、後段のNOx吸収触媒には硫黄酸
化物のない排気ガスが流入することになる。そのため、
後段のNOx吸収触蝶は硫黄酸化物を吸収することな
く、即ち、硫黄による被毒を受けることなく、NOxの
みを効率的に吸収できる。そして、ストイキ〜リッチ時
には、前段の触媒から硫黄酸化物が放出され、同時に、
後段の触媒のNOxも放出される。このようなサイクル
を繰り返すことで、硫黄酸化物の被毒を受けずにNOx
の吸収/浄化を行うことが可能となる。また、ストイキ
〜リッチ時に前段触媒から放出される硫黄酸化物の吸収
が抑制されるため、放出された硫黄酸化物を後段のNO
x吸収触媒に流入させないような特別な機関を必要とし
ない。
In the catalyst device of the present invention, the first-stage catalyst is disposed upstream with respect to the exhaust gas flow, and the second-stage catalyst is disposed downstream with respect to the exhaust gas flow. With this arrangement, in the lean region, the catalyst at the preceding stage absorbs the sulfur oxides in the exhaust gas, and the exhaust gas without sulfur oxides flows into the NOx absorption catalyst at the subsequent stage. for that reason,
The subsequent NOx absorbing butterfly can efficiently absorb only NOx without absorbing sulfur oxides, that is, without being poisoned by sulfur. Then, at the time of stoichiometric to rich, sulfur oxides are released from the preceding catalyst, and at the same time,
NOx of the subsequent catalyst is also released. By repeating such a cycle, NOx can be eliminated without being poisoned by sulfur oxides.
Can be absorbed / purified. Further, since the absorption of sulfur oxides released from the pre-stage catalyst during stoichiometric to rich conditions is suppressed, the released sulfur oxides are
It does not require a special engine that does not flow into the x-absorption catalyst.

【0041】本発明に用いる複合酸化物は、複合酸化物
の各構成元素の硝酸塩、酢酸塩、炭酸塩、クエン酸、塩
酸塩等を、所望する複合酸化物の組成比に混合し、仮焼
成した後粉砕して、熱処理焼成する固相反応や、複合酸
化物の各構成元素の硝酸塩、酢酸塩、炭酸塩、塩酸塩、
クエン酸塩等を、所望する複合酸化物の組成比に混合
し、水に溶解した後、必要に応じてNH4 OHやNH3
CO3 等のアルカリ溶液を滴下して沈殿物を生成し、ろ
過した後沈殿物を乾燥させて焼成する共沈法により調製
することができるが、これらの方法に限定されるもので
はなく、前記以外の方法でも複合酸化物が形成されるも
のであればよい。
The composite oxide used in the present invention is prepared by mixing nitrate, acetate, carbonate, citric acid, hydrochloride and the like of each constituent element of the composite oxide in a desired composition ratio of the composite oxide, and calcining the mixture. And then pulverized and heat treated and calcined, and the nitrate, acetate, carbonate, hydrochloride,
Citrate and the like are mixed in a desired composite oxide composition ratio and dissolved in water, and then, if necessary, NH 4 OH or NH 3
A precipitate is formed by dropping an alkaline solution such as CO 3 and the like, and the precipitate can be prepared by a coprecipitation method in which the precipitate is dried, filtered, dried and calcined, but is not limited to these methods. Any other method may be used as long as the composite oxide is formed.

【0042】かかる方法により、複合酸化物を構成する
各成分の少なくとも一部を複合化することができる。
According to such a method, at least a part of each component constituting the composite oxide can be composited.

【0043】本発明で用いる複合酸化物の触媒調製用原
料には、前記したように、その上記作用を妨げる量でな
ければ微量の不純物を含んでも構わず、例えばバリウム
中に含まれるストロンチウムや、ランタン中に含まれる
セリウム、ネオジム、サマリウムや、ジルコニウム中に
含まれるハフニウムやイオウ等である。
As described above, the raw material for preparing the catalyst of the composite oxide used in the present invention may contain a trace amount of impurities as long as the amount does not interfere with the above-mentioned effects. For example, strontium contained in barium, Cerium, neodymium, and samarium contained in lanthanum, and hafnium and sulfur contained in zirconium.

【0044】本発明に用いる貴金属担持多孔質体の貴金
属原料化合物としては、無機酸塩、炭酸塩、アンモニウ
ム塩、有機酸塩、ハロゲン化物、酸化物、ナトリウム
塩、アンミン錯化合物等を組み合わせて使用することが
できるが、特に水溶性の塩を使用することが触媒性能を
向上させる観点から好ましい。貴金属の多孔質体への担
持法としては特殊な方法に限定されず、成分の著しい偏
在を伴わない限り、公知の蒸発乾固法、沈殿法、含浸
法、イオン交換法等の種々の方法を用いることができ
る。特にアルミナへの担持には、分散性を高める点から
含浸法が好ましい。
As the noble metal raw material compound of the noble metal-supporting porous material used in the present invention, inorganic acid salts, carbonates, ammonium salts, organic acid salts, halides, oxides, sodium salts, ammine complex compounds and the like are used in combination. However, it is particularly preferable to use a water-soluble salt from the viewpoint of improving the catalyst performance. The method of supporting the noble metal on the porous body is not limited to a special method, and various methods such as a known evaporating and drying method, a precipitation method, an impregnation method, and an ion exchange method can be used as long as there is no significant uneven distribution of components. Can be used. In particular, the impregnation method is preferable for supporting on alumina, from the viewpoint of increasing dispersibility.

【0045】イオン交換法、含浸法による場合、金属原
料は溶液で用いることが多いため、その溶液に酸あるい
は塩基を添加して、pHを調節することもできる。pH
を調節することにより、更に、高分散担持できる可能性
もある。
In the case of the ion exchange method or the impregnation method, since the metal raw material is often used in a solution, the pH can be adjusted by adding an acid or a base to the solution. pH
By adjusting the value, it is possible that the particles can be further highly dispersed and supported.

【0046】本発明の触媒は、一体構造型担体に担持し
て用いるのが好ましく、貴金属担持多孔質体と複合酸化
物とを粉砕してスラリーとし、触媒担体にコートして、
400〜900℃の温度で焼成することにより、本発明
の排気ガス浄化用触媒を得ることができる。
The catalyst of the present invention is preferably used by being supported on a monolithic carrier. The noble metal-supported porous body and the composite oxide are pulverized to form a slurry, which is coated on the catalyst carrier.
By firing at a temperature of 400 to 900 ° C., the exhaust gas purifying catalyst of the present invention can be obtained.

【0047】貴金属担持多孔質体と複合酸化物を粉砕す
るにあたっての粉砕方法は特に限定されず、好ましくは
貴金属担持多孔質体と複合酸化物とを含む水性スラリー
を湿式粉砕して調整する方法を用いることができる。
The pulverization method for pulverizing the noble metal-supported porous body and the composite oxide is not particularly limited, and preferably, a method of adjusting the aqueous slurry containing the noble metal-supported porous body and the composite oxide by wet pulverization. Can be used.

【0048】粉砕に使用することのできる装置は特に限
定されず、市販のボール式振動ミルを用いることがで
き、ボール径、粉砕時間、振幅、振動周波数を調整して
所望の粒径を得る。
The apparatus that can be used for the pulverization is not particularly limited, and a commercially available ball-type vibrating mill can be used, and a desired particle size is obtained by adjusting the ball diameter, the pulverizing time, the amplitude, and the vibration frequency.

【0049】触媒担体としては、公知の触媒担体の中か
ら適宜選択して使用することができ、例えば耐火性材料
からなるモノリス構造を有するハニカム担体やメタル担
体等が挙げられる。
The catalyst carrier can be appropriately selected from known catalyst carriers and used, for example, a honeycomb carrier or a metal carrier having a monolith structure made of a refractory material.

【0050】この触媒担体の形状は、特に制限されない
が、通常はハニカム形状で使用することが好ましく、こ
のハニカム材料としては、一般に例えばセラミックス等
のコージェライト質のものが多く用いられるが、フェラ
イト系ステンレス等の金属材料からなるハニカムを用い
ることも可能であり、更には触媒粉末そのものをハニカ
ム形状に成形しても良い。触媒の形状をハニカム状とす
ることにより、触媒と排気ガスの触媒面積が大きくな
り、圧力損失も抑えられるため自動車用等として用いる
場合に極めて有利である。
Although the shape of the catalyst carrier is not particularly limited, it is usually preferable to use a honeycomb shape. As the honeycomb material, for example, cordierite materials such as ceramics are generally used. It is also possible to use a honeycomb made of a metal material such as stainless steel, and further, the catalyst powder itself may be formed into a honeycomb shape. By making the shape of the catalyst into a honeycomb shape, the area of the catalyst and the exhaust gas becomes large, and the pressure loss is suppressed, which is extremely advantageous when the catalyst is used for an automobile or the like.

【0051】更に好ましくは、得られた前記排気ガス浄
化用触媒に、アルカリ金属及び/又はアルカリ土類金属
を含浸担持させる。使用できるアルカリ金属及びアルカ
リ土類金属としては、リチウム、ナトリウム、カリウ
ム、セシウム、マグネシウム、カルシウム、ストロンチ
ウム及びバリウムからなる群より選ばれる一種以上の元
素である。
More preferably, the obtained exhaust gas purifying catalyst is impregnated and supported with an alkali metal and / or an alkaline earth metal. The usable alkali metal and alkaline earth metal are at least one element selected from the group consisting of lithium, sodium, potassium, cesium, magnesium, calcium, strontium and barium.

【0052】使用できるアルカリ金属及びアルカリ土類
金属の化合物は、酸化物、酢酸塩、水酸化物、硝酸塩、
炭酸塩等の水溶性のものである。これによりパラジウム
の近傍に塩基性元素であるアルカリ金属及び/又はアル
カリ土類金属を分散性良く担持することが可能となる。
この際、アルカリ金属及びアルカリ土類金属の原料化合
物を同時に、あるいは別個に含有させてもよい。
The alkali metal and alkaline earth metal compounds that can be used include oxides, acetates, hydroxides, nitrates,
It is water-soluble such as carbonate. This makes it possible to carry the alkali metal and / or alkaline earth metal as a basic element in the vicinity of palladium with good dispersibility.
At this time, the starting compounds of the alkali metal and the alkaline earth metal may be contained simultaneously or separately.

【0053】即ち、アルカリ金属化合物及び/又はアル
カリ土類金属化合物からなる粉末の水溶液を、ウォッシ
ュコート成分を担持した上記触媒に含浸し、乾燥し、次
いで、空気中及び/又は空気流通下で200℃〜600
℃焼成するものである。これは、アルカリ金属及びアル
カリ土類金属の原料化合物を一度低温で熱処理し酸化物
形態でコート層中に含有させると、後に高温に曝されて
も複合酸化物を形成し難くなるからである。かかる焼成
温度が、200℃未満だとアルカリ金属化合物及びアル
カリ土類金属化合物が充分に酸化物形態となることがで
きず、逆に600℃を越えると原料塩が急激に分解して
しまい、担体がひび割れてしまうことがあるので好まし
くない。
That is, an aqueous solution of a powder comprising an alkali metal compound and / or an alkaline earth metal compound is impregnated with the above-mentioned catalyst supporting a washcoat component, dried, and then dried in air and / or under a stream of air. ° C to 600
It is baked at ℃. This is because, once the alkali metal and alkaline earth metal raw material compounds are heat-treated at a low temperature and contained in the coat layer in the form of an oxide, it becomes difficult to form a composite oxide even when exposed to a high temperature later. If the calcination temperature is lower than 200 ° C., the alkali metal compound and the alkaline earth metal compound cannot be sufficiently converted into an oxide form. If the calcination temperature exceeds 600 ° C., the raw material salt is rapidly decomposed, and However, it is not preferable because it may crack.

【0054】上記本発明の排気ガス浄化用触媒は、その
使用条件を特に限定されないが、好ましくは空燃比が1
0〜50、更に好ましくは空燃比が10〜14.8と1
5〜50の範囲とを繰り返すリーンバーンエンジン車に
使用することができる。このような使用方法とすること
により、NOx吸収・放出のサイクルが極めて有効に成
立し、特に効率の良いNOx浄化が可能となる。即ち、
空燃比が10〜50の範囲内の空燃比の大きな領域(リ
ーン領域)でNOxを吸収し、空燃比の小さな領域(リ
ッチおよび/またはストイキ)でNOxを浄化すること
により、高いNOx浄化性能を得ることができるのであ
り、さらに好適な範囲は、空燃比の小さな領域が10か
ら14.8、空燃比の大きな領域が15〜50である。
The use conditions of the exhaust gas purifying catalyst of the present invention are not particularly limited.
0 to 50, more preferably an air-fuel ratio of 10 to 14.8 and 1
It can be used for lean burn engine vehicles that repeat the range of 5 to 50. With such a method of use, the cycle of NOx absorption / release is extremely effectively established, and particularly efficient NOx purification becomes possible. That is,
High NOx purification performance is achieved by absorbing NOx in a large air-fuel ratio region (lean region) within an air-fuel ratio range of 10 to 50 and purifying NOx in a small air-fuel ratio region (rich and / or stoichiometric). More preferable ranges are 10 to 14.8 for a region having a small air-fuel ratio and 15 to 50 for a region having a large air-fuel ratio.

【0055】[0055]

【実施例】以下、本発明を次の実施例及び比較例により
説明する。実施例1 酢酸マグネシウム水溶液を活性アルミナに含浸し、乾燥
後、空気中900℃で4時間焼成して、マグネシウムと
アルミナとの複合酸化物の粉末(粉末A)を得た。この
粉末のマグネシウム濃度は10.0重量%であった。か
かる粉末Aは、酢酸マグネシウムと硝酸アルミニウムの
水溶液を、粉末Aのマグネシウム濃度が10.0重量%
になるような割合で混合し、乾燥後、空気中400℃で
4時間焼成することにより、または、活性アルミナに酢
酸マグネシウム水溶液を、粉末Aのマグネシウム濃度が
10.0重量%になるような割合で含浸し、アンモニア
水で共沈させ、その沈殿物を乾燥後、空気中400℃で
4時間焼成することによっても得られる。
The present invention will be described below with reference to the following examples and comparative examples. Example 1 Activated alumina was impregnated with an aqueous solution of magnesium acetate, dried, and calcined in air at 900 ° C. for 4 hours to obtain a composite oxide powder of magnesium and alumina (powder A). The magnesium concentration of this powder was 10.0% by weight. The powder A was prepared by mixing an aqueous solution of magnesium acetate and aluminum nitrate with the magnesium concentration of the powder A being 10.0% by weight.
And dried and calcined in air at 400 ° C. for 4 hours, or by adding an aqueous solution of magnesium acetate to activated alumina so that the magnesium concentration of powder A becomes 10.0% by weight. And coprecipitated with aqueous ammonia. The precipitate is dried and then calcined at 400 ° C. for 4 hours in air.

【0056】上記粉末A900gと水900gとを磁性
ボ−ルミルに投入し、1時間混合粉砕してスラリー液を
得た。このスラリー液をコーディライト質モノリス担体
(1,3L、400セル)に付着させ、空気流にてセル
内の余剰のスラリーを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、コート層重量200g/
L−担体の前段触媒を得た。
900 g of the powder A and 900 g of water were charged into a magnetic ball mill and mixed and pulverized for 1 hour to obtain a slurry liquid. This slurry liquid was adhered to a cordierite-based monolithic carrier (1, 3 L, 400 cells), excess slurry in the cells was removed by an air stream, dried at 130 ° C., baked at 400 ° C. for 1 hour, and coated. Layer weight 200g /
An L-support pre-catalyst was obtained.

【0057】硝酸パラジウム水溶液を活性アルミナ粉末
に含浸し、乾燥後400℃で1時間焼成して、Pd担持
アルミナ粉末(粉末B)を得た。この粉末BのPd濃度
は5.0重量%であった。
The activated alumina powder was impregnated with an aqueous palladium nitrate solution, dried and calcined at 400 ° C. for 1 hour to obtain Pd-supported alumina powder (powder B). The Pd concentration of this powder B was 5.0% by weight.

【0058】硝酸ロジウム水溶液を活性アルミナ粉末に
含浸し、乾燥後400℃で1時間焼成して、Rh担持ア
ルミナ粉末(粉末C)を得た。この粉末CのRh濃度は
3.0重量%であった。
The activated alumina powder was impregnated with an aqueous rhodium nitrate solution, dried and calcined at 400 ° C. for 1 hour to obtain a Rh-supported alumina powder (powder C). The Rh concentration of the powder C was 3.0% by weight.

【0059】炭酸ランタンと炭酸バリウムと炭酸コバル
トとの混合物にクエン酸を加え、乾燥後700℃で焼成
し、粉末Dを得た。この粉末Dは金属原子比でランタン
/バリウム/コバルト=2/7/10であった。
Citric acid was added to a mixture of lanthanum carbonate, barium carbonate and cobalt carbonate, dried and calcined at 700 ° C. to obtain a powder D. This powder D had a metal atom ratio of lanthanum / barium / cobalt = 2/7/10.

【0060】上記粉末Bを347g、上記粉末Cを58
g、上記粉末Dを360g、活性アルミナ粉末を136
g、水900gを磁性ボールミルに投入し、1時間混合
粉砕してスラリー液を得た。このスラリー液をコーディ
エライト質モノリス担体(1.3L,400セル)に付
着させ、空気流にてセル内の余剰のスラリーを取り除い
て130℃で乾燥した後、400℃で1時間焼成し、コ
ート層重量200g/L−担体の後段触媒を得た。
347 g of the powder B and 58 of the powder C were used.
g, the powder D was 360 g, and the activated alumina powder was 136.
g of water and 900 g of water were charged into a magnetic ball mill and mixed and pulverized for 1 hour to obtain a slurry liquid. This slurry liquid was adhered to a cordierite-based monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by an air stream, dried at 130 ° C., and calcined at 400 ° C. for 1 hour. A post-stage catalyst having a coat layer weight of 200 g / L-carrier was obtained.

【0061】排気流れに対して、上記前段触媒と上記後
段触媒とを組み合わせて設置して、本発明の排気ガス浄
化用触媒装置を得た。
The exhaust gas purification catalyst device of the present invention was obtained by installing the above-mentioned first-stage catalyst and the above-mentioned second-stage catalyst in combination with respect to the exhaust gas flow.

【0062】実施例2 上記粉末Aの酢酸マグネシウムを酢酸ナトリウムとした
以外は実施例1と同様の方法で、排気ガス浄化用触媒装
置を得た。
Example 2 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 1 except that magnesium acetate of the powder A was changed to sodium acetate.

【0063】実施例3 上記粉末Aの酢酸マグネシウムを酢酸カルシウムとした
以外は実施例1と同様の方法で、排気ガス浄化用触媒装
置を得た。
Example 3 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 1 except that magnesium acetate of the powder A was changed to calcium acetate.

【0064】実施例4 上記粉末Aの酢酸マグネシウムを酢酸ストロンチウムと
した以外は実施例1と同様の方法で、排気ガス浄化用触
媒装置を得た。
Example 4 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 1 except that strontium acetate was used as the magnesium acetate of the powder A.

【0065】実施例5 上記粉末Aの酢酸マジネシウムを酢酸バリウムとした以
外は実施例1と同様の方法で、排気ガス浄化用触媒装置
を得た。
Example 5 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 1 except that barium acetate was used as the magnesium acetate of the powder A.

【0066】実施例6 上記粉末Aの酢酸マグネシウムを硝酸イットリウムとし
た以外は実施例1と同様の方法で、排気ガス浄化用触媒
装置を得た。
Example 6 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 1 except that magnesium acetate of the powder A was changed to yttrium nitrate.

【0067】実施例7 上記粉末Aの酢酸マグネシウムを硝酸ランタンとした以
外は実施例1と同様の方法で排気ガス浄化用触媒装置を
得た。
Example 7 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 1 except that lanthanum nitrate was used as the magnesium acetate of the powder A.

【0068】実施例8 酢酸マグネシウム水溶液と硝酸鉄水溶液とを混合し、乾
燥空気中900℃で4時間焼成し、酢酸マジネシウムと
硝酸鉄との複合酸化物を得た。これを活性アルミナに含
浸し、乾燥後空気中400℃で2時間焼成して、マグネ
シウム、鉄複合酸化物担持アルミナの粉末(粉末E)を
得た。この粉末Eのマグネシウム濃度は10.0重量
%、鉄濃度は5重量%であった。
Example 8 An aqueous solution of magnesium acetate and an aqueous solution of iron nitrate were mixed and calcined at 900 ° C. for 4 hours in dry air to obtain a composite oxide of magnesium acetate and iron nitrate. This was impregnated with activated alumina, dried and calcined in air at 400 ° C. for 2 hours to obtain a powder of alumina supporting magnesium and iron composite oxide (powder E). The powder E had a magnesium concentration of 10.0% by weight and an iron concentration of 5% by weight.

【0069】上記粉末E900gと水900gとを磁性
ボ−ルミルに投入し、1時間混合粉砕してスラリー液を
得た。このスラリー液をコーディライト質モノリス担体
(1.3L、400セル)に付着させ、空気流にてセル
内の余剰のスラリーを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、コート層重量200g/
L一担体の前段触媒を得た。後段には実施例1の後段に
配置した触媒を用いて、本発明の排気ガス浄化用触媒装
置を得た。
The above powder E (900 g) and water (900 g) were charged into a magnetic ball mill and mixed and pulverized for 1 hour to obtain a slurry liquid. This slurry liquid was adhered to a cordierite type monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by air flow, dried at 130 ° C., baked at 400 ° C. for 1 hour, and coated. Layer weight 200g /
An L-carrier pre-catalyst was obtained. A catalyst device for purifying exhaust gas of the present invention was obtained in the latter stage using the catalyst arranged in the latter stage of Example 1.

【0070】実施例9 上記粉末Eの酢酸マグネシウムを酢酸ナトリウムとした
以外は実施例8と同様の方法で、排気ガス浄化用触媒装
置を得た。
Example 9 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 8, except that sodium acetate was used as the magnesium acetate of the powder E.

【0071】実施例10 上記粉末Eの酢酸マジネシウムを酢酸カルシウムとした
以外は実施例8と同様の方法で、排気ガス浄化用触媒装
置を得た。
Example 10 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 8 except that magnesium acetate in the powder E was changed to calcium acetate.

【0072】実施例11 上記粉末Eの酢酸マグネシウムを酢酸ストロンチウムと
した以外は実施例8と同様の方法で、排気ガス浄化用触
媒装置を得た。
Example 11 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 8, except that strontium acetate was used as the magnesium acetate for the powder E.

【0073】実施例12 上記粉末Eの酢酸マグネシウムを酢酸バリウムとした以
外は実施例8と同様の方法で、排気ガス浄化用触媒装置
を得た。
Example 12 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 8, except that magnesium acetate of the powder E was changed to barium acetate.

【0074】実施例13 上記粉末Eの酢酸マグネシウムを硝酸イットリウムとし
た以外は実施例8と同様の方法で、排気ガス浄化用触媒
装置を得た。
Example 13 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 8 except that magnesium acetate of the powder E was changed to yttrium nitrate.

【0075】実施例14 上記粉末Eの酢酸マグネシウムを硝酸ランタンとした以
外は実施例8と同様の方法で、排気ガス浄化用触媒装置
を得た。
Example 14 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 8, except that lanthanum nitrate was used as the magnesium acetate of the powder E.

【0076】実施例15 上記粉末Eの硝酸鉄を硝酸マンがンとした以外は実施例
8と同様の方法で、排気ガス浄化用触媒装置を得た。
Example 15 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 8 except that the iron nitrate of the powder E was changed to manganese nitrate.

【0077】実施例16 上記粉末Eの硝酸鉄を硝酸コバルトとした以外は実施例
8と同様の方法で、排気ガス浄化用触媒装置を得た。
Example 16 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 8, except that iron nitrate of the powder E was changed to cobalt nitrate.

【0078】実施例17 上記粉末Eの硝酸鉄を硝酸ニッケルとした以外は実施例
8と同様の方法で、排気ガス浄化用触媒装置を得た。
Example 17 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 8, except that nickel nitrate was used instead of iron nitrate of the powder E.

【0079】実施例18 実施例1で得られた粉末Aに硝酸鉄水溶液を含浸し、乾
燥後、空気中400℃で2時間焼成し、粉末Fを得た。
上記粉末F900gと水900gとを磁性ボ−ルミルに
投入し、1時間混合粉砕してスラリー液を得た。このス
ラリー液をコーディライト質モノリス担体(1.3L、
400セル)に付着させ、空気流にてセル内の余剰のス
ラリーを取り除いて130℃で乾燥した後、400℃で
1時間焼成し、コート層重量200g/L−担体の前段
触媒を得た。後段には実施例1の後段に配置した触媒と
同じ物を配置して、本発明の排気ガス浄化用触媒装置を
得た。
Example 18 Powder A obtained in Example 1 was impregnated with an aqueous solution of iron nitrate, dried, and calcined in air at 400 ° C. for 2 hours to obtain Powder F.
900 g of the powder F and 900 g of water were charged into a magnetic ball mill and mixed and pulverized for 1 hour to obtain a slurry liquid. This slurry liquid was applied to a cordierite monolithic carrier (1.3 L,
After drying at 130 ° C. and calcining at 400 ° C. for 1 hour, a pre-stage catalyst having a coat layer weight of 200 g / L-carrier was obtained. In the subsequent stage, the same catalyst as that arranged in the latter stage of Example 1 was arranged to obtain an exhaust gas purifying catalyst device of the present invention.

【0080】実施例19 上記粉末Aの酢酸マグネシウムを酢酸ナトリウムとした
以外は実施例18と同様の方法で、排気ガス浄化用触媒
装置を得た。
Example 19 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 18 except that magnesium acetate of the powder A was changed to sodium acetate.

【0081】実施例20 上記粉末Aの酢酸マグネシウムを酢酸カルシウムとした
以外は実施例18と同様の方法で、排気ガス浄化用触媒
装置を得た。
Example 20 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 18 except that the magnesium acetate of the powder A was changed to calcium acetate.

【0082】実施例21 上記粉末Aの酢酸マグネシウムを酢酸ストロンチウムと
した以外は実施例18と同様の方法で、排気ガス浄化用
触媒装置を得た。
Example 21 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 18 except that strontium acetate was used as the magnesium acetate for the powder A.

【0083】実施例22 上記粉末Aの酢酸マジネシウムを酢酸バリウムとした以
外は実施例18と同様の方法で、排気ガス浄化用触媒装
置を得た。
Example 22 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 18 except that barium acetate was used as the magnesium acetate of the powder A.

【0084】実施例23 上記粉末Aの酢酸マジネシウムを硝酸イットリウムとし
た以外は実施例18と同様の方法で、排気ガス浄化用触
媒装置を得た。
Example 23 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 18 except that the magnesium A of the powder A was changed to yttrium nitrate.

【0085】実施例24 上記粉末Aの酢酸マジネシウムを硝酸ランタンとした以
外は実施例18と同様の方法で、排気ガス浄化用触媒装
置を得た。
Example 24 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 18, except that magnesium acetate of the powder A was changed to lanthanum nitrate.

【0086】実施例25 上記粉末Fの硝酸鉄を硝酸マンガンとした以外は実施例
18と同様の方法で、排気ガス浄化用触媒装置を得た。
Example 25 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 18 except that manganese nitrate was used as the iron nitrate of the powder F.

【0087】実施例26 上記粉末Fの硝酸鉄を硝酸コバルトとした以外は実施例
18と同様の方法で、排気ガス浄化用触媒装置を得た。
Example 26 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 18 except that the iron nitrate of the powder F was changed to cobalt nitrate.

【0088】実施例27 上記粉末Fの硝酸鉄を硝酸ニッケルとした以外は実施例
18と同様の方法で、排気ガス浄化用触媒装置を得た。
Example 27 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 18 except that the iron nitrate of the powder F was changed to nickel nitrate.

【0089】実施例28 硝酸鉄水溶液を活性アルミナに含浸し、乾燥後、空気中
900℃で4時間焼成して、硝酸鉄とアルミナの複合酸
化物の粉末を得た。この粉末に酢酸マグネシウム水溶液
を含浸し、乾燥後、空気中400℃で2時間焼成し、粉
末を得た。この粉末のマグネシウム濃度は10.0重量
%、鉄濃度は5重量%であった。
Example 28 Activated alumina was impregnated with an aqueous solution of iron nitrate, dried and calcined in air at 900 ° C. for 4 hours to obtain a powder of a composite oxide of iron nitrate and alumina. This powder was impregnated with an aqueous solution of magnesium acetate, dried, and calcined at 400 ° C. for 2 hours in the air to obtain a powder. This powder had a magnesium concentration of 10.0% by weight and an iron concentration of 5% by weight.

【0090】上記粉末900gと水900gとを磁性ボ
一ルミルに投入し、1時間混合粉砕してスラリー液を得
た。このスラリー液をコーディライト質モノリス担体
(1.3L、400セル)に付着させ、空気流にてセル
内の余剰のスラリーを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、コート層重量200g/
L一担体の前段触媒を得た。後段には実施例1の後段に
配置した触媒を用いて、本発明の排気ガス浄化用触媒装
置を得た。
900 g of the above powder and 900 g of water were charged into a magnetic ball mill and mixed and pulverized for 1 hour to obtain a slurry liquid. This slurry liquid was adhered to a cordierite type monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by air flow, dried at 130 ° C., baked at 400 ° C. for 1 hour, and coated. Layer weight 200g /
An L-carrier pre-catalyst was obtained. A catalyst device for purifying exhaust gas of the present invention was obtained in the latter stage using the catalyst arranged in the latter stage of Example 1.

【0091】実施例29 酢酸マジネシウム水溶液と硝酸鉄水溶液とを活性アルミ
ナに含浸し、乾燥後、空気中900℃で4時間焼成し
て、マグネシウムとアルミナの複合酸化物の粉末(粉末
G)を得た。この粉末Gのマグネシウム濃度は10.0
重量%、鉄濃度は5重量%であった。
Example 29 Activated alumina was impregnated with an aqueous solution of magnesium acetate and an aqueous solution of iron nitrate, dried, and calcined in air at 900 ° C. for 4 hours to obtain a powder of a composite oxide of magnesium and alumina (powder G). Was. The magnesium concentration of this powder G was 10.0
% By weight, and the iron concentration was 5% by weight.

【0092】かかる粉末Gは、酢酸マグネシウムと硝酸
鉄と硝酸アルミニウムとの水溶液を粉末Gのマグネシウ
ム濃度が10.0重量%、鉄濃度が5重量%になるよう
な割合で混合し、乾燥後、空気中400℃で4時間焼成
することにより、または、活性アルミナに酢酸マジネシ
ウム水溶液と硝酸鉄とを粉末Gのマグネシウム濃度が1
0.0重量%、鉄濃度が5重量%になるような割合で含
浸し、アンモニア水で共沈させ、その沈殿物を乾燥後、
空気中400℃で4時間焼成することによっても得るこ
とができる。
The powder G was mixed with an aqueous solution of magnesium acetate, iron nitrate, and aluminum nitrate at a ratio such that the magnesium concentration of the powder G was 10.0% by weight and the iron concentration was 5% by weight. By calcination in air at 400 ° C. for 4 hours, or by adding an aqueous solution of magnesium acetate and iron nitrate to activated alumina so that the magnesium concentration of powder G is 1
0.0% by weight, impregnated at a ratio such that the iron concentration becomes 5% by weight, coprecipitated with aqueous ammonia, and after drying the precipitate,
It can also be obtained by baking in air at 400 ° C. for 4 hours.

【0093】上記粉末G900gと水900gとを磁性
ボ−ルミルに投入し、1時間混合粉砕してスラリー液を
得た。このスラリー液をコーディライト質モノリス担体
(1.3L、400セル)に付着させ、空気流にてセル
内の余剰のスラリーを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、コート層重量200g/
L一担体の前段触媒を得た。後段には実施例1の後段に
配置した触媒を用いて、本発明の排気ガス浄化用触媒装
置を得た。
900 g of the powder G and 900 g of water were charged into a magnetic ball mill and mixed and pulverized for 1 hour to obtain a slurry liquid. This slurry liquid was adhered to a cordierite type monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by air flow, dried at 130 ° C., baked at 400 ° C. for 1 hour, and coated. Layer weight 200g /
An L-carrier pre-catalyst was obtained. A catalyst device for purifying exhaust gas of the present invention was obtained in the latter stage using the catalyst arranged in the latter stage of Example 1.

【0094】実施例30 上記粉末Gの酢酸マグネシウムを酢酸ナトリウムとした
以外は実施例29と同様の方法で、排気ガス浄化用触媒
装置を得た。
Example 30 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 29 except that magnesium acetate of the powder G was changed to sodium acetate.

【0095】実施例31 上記粉末Gの酢酸マグネシウムを酢酸カルシウムとした
以外は実施例29と同様の方法で、排気ガス浄化用触媒
装置を得た。
Example 31 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 29 except that magnesium acetate of the powder G was changed to calcium acetate.

【0096】実施例32 上記粉末Gの酢酸マジネシウムを酢酸ストロンチウムと
した以外は実施例29と同様の方法で、排気ガス浄化用
触媒装置を得た。
Example 32 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 29 except that strontium acetate was used as the magnesium acetate of the powder G.

【0097】実施例33 上記粉末Gの酢酸マグネシウムを酢酸バリウムとした以
外は実施例29と同様の方法で、排気ガス浄化用触媒装
置を得た。
Example 33 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 29 except that barium acetate was used as the magnesium acetate for the powder G.

【0098】実施例34 上記粉末Gの酢酸マグネシウムを硝酸イットリウムとし
た以外は実施例29と同様の方法で、排気ガス浄化用触
媒装置を得た。
Example 34 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 29 except that the powder G was changed from magnesium acetate to yttrium nitrate.

【0099】実施例35 上記粉末Gの酢酸マグネシウムを硝酸ランタンとした以
外は実施例29と同様の方法で、排気ガス浄化用触媒装
置を得た。
Example 35 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 29, except that lanthanum nitrate was used as the magnesium acetate for the powder G.

【0100】実施例36 上記粉末Gの硝酸鉄を硝酸マンガンとした以外は実施例
29と同様の方法で、排気ガス浄化用触媒装置を得た。
Example 36 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 29 except that manganese nitrate was used as the iron nitrate of the powder G.

【0101】実施例37 上記粉末Gの硝酸鉄を硝酸コバルトとした以外は実施例
29と同様の方法で、排気ガス浄化用触媒装置を得た。
Example 37 A catalyst device for purifying exhaust gas was obtained in the same manner as in Example 29 except that the iron nitrate of the powder G was changed to cobalt nitrate.

【0102】実施例38 上記粉末Gの硝酸鉄を硝酸ニッケルとした以外は実施例
29と同様の方法で、排気ガス浄化用触媒装置を得た。
Example 38 An exhaust gas purifying catalyst device was obtained in the same manner as in Example 29 except that nickel nitrate was used as the iron nitrate of the powder G.

【0103】実施例39 実施例29で得られた粉末Gに硝酸パラジウム水溶液を
含浸して粉末Hを得た。この粉末HのPd濃度は5重量
%であった。上記粉末H900gと水900gとを磁性
ボ−ルミルに投入し、1時間混合粉砕してスラリー液を
得た。このスラリー液をコーディライト質モノリス担体
(1.3L、400セル)に付着させ、空気流にてセル
内の余剰のスラリを取り除いて130℃で乾燥した後、
400℃で1時間焼成し、コート層重量200g/L一
担体の前段触媒を得た。後段には実施例1の後段に配置
した触媒を用いて、本発明の排気ガス浄化用触媒装置を
得た。
Example 39 Powder H obtained by impregnating the powder G obtained in Example 29 with an aqueous solution of palladium nitrate. The Pd concentration of this powder H was 5% by weight. 900 g of the powder H and 900 g of water were charged into a magnetic ball mill and mixed and pulverized for 1 hour to obtain a slurry liquid. This slurry liquid was adhered to a cordierite type monolith carrier (1.3 L, 400 cells), excess slurry in the cells was removed by an air flow, and the cells were dried at 130 ° C.
It was calcined at 400 ° C. for 1 hour to obtain a pre-stage catalyst having a coat layer weight of 200 g / L and one carrier. A catalyst device for purifying exhaust gas of the present invention was obtained in the latter stage using the catalyst arranged in the latter stage of Example 1.

【0104】実施例40 上記粉末Hの硝酸パラジウム水溶液を硝酸パラジウムと
硝酸ロジウムの混合水溶液とし、この貴金属濃度を5重
量%(Pd:Rh=17:1)とした以外は実施例29
と同様の方法で、排気ガス浄化用触媒装置を得た。
Example 40 Example 29 was repeated except that the aqueous solution of powder H in palladium nitrate was a mixed aqueous solution of palladium nitrate and rhodium nitrate, and the concentration of the noble metal was 5% by weight (Pd: Rh = 17: 1).
An exhaust gas purifying catalyst device was obtained in the same manner as described above.

【0105】実施例41 上記粉末Hの硝酸パラジウム水溶液をジニトロジアミン
白金と硝酸ロジウムとの混合水溶液とし、この貴金属濃
度を5重量%(Pt:Rh=17:1)とした以外は実
施例29と同様の方法で触媒を得た。
Example 41 The same procedure as in Example 29 was carried out except that the aqueous solution of powder H in palladium nitrate was a mixed aqueous solution of dinitrodiamine platinum and rhodium nitrate, and the concentration of the noble metal was 5% by weight (Pt: Rh = 17: 1). A catalyst was obtained in a similar manner.

【0106】比較例1 排気流れに対して前段には何も置かず、実施例1の後段
の触媒のみ配置して、排気ガス浄化用触媒装置を得た。
Comparative Example 1 An exhaust gas purifying catalyst device was obtained by arranging nothing in the former stage of the exhaust gas flow and arranging only the latter stage catalyst in Example 1.

【0107】比較例2 ジニトロジアミン白金水溶液を活性アルミナに含浸し、
乾燥後、空気中400℃で1時間焼成して、白金担持活
性アルミナ粉末を得た。この粉末の白金濃度は5.0重
量%であった。この粉末900gと水900gとを磁性
ボ−ルミルに投入し、1時間混合粉砕してスラリー液を
得た。このスラリー液をコーディライト質モノリス担体
(1.3L、400セル)に付着させ、空気流にてセル
内の余剰のスラリーを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、コート層重量200g/
L一担体の後段触媒を得た。この後、この担体を酢酸バ
リウム水溶夜中で後含浸した。バリウムは酸化バリウム
として30g/Lであった。この触媒を後段に配置し、
前段には実施例1で得られた触媒を設置して、排気ガス
浄化用触媒装置を得た。
Comparative Example 2 Activated alumina was impregnated with an aqueous dinitrodiamine platinum solution.
After drying, the powder was calcined at 400 ° C. for 1 hour in the air to obtain a platinum-supported activated alumina powder. The platinum concentration of this powder was 5.0% by weight. 900 g of this powder and 900 g of water were charged into a magnetic ball mill and mixed and pulverized for 1 hour to obtain a slurry liquid. This slurry liquid was adhered to a cordierite type monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by air flow, dried at 130 ° C., baked at 400 ° C. for 1 hour, and coated. Layer weight 200g /
A post-stage catalyst of L-carrier was obtained. Thereafter, the carrier was post-impregnated in an aqueous solution of barium acetate. Barium was 30 g / L as barium oxide. This catalyst is placed in the latter stage,
In the former stage, the catalyst obtained in Example 1 was installed to obtain a catalyst device for purifying exhaust gas.

【0108】比較例3 酢酸マグネシウム水溶液を活性アルミナに含浸し、乾燥
後、空気中400℃で1時間焼成して、マグネシウム担
持活性アルミナ粉末を得た。この粉末のマグネシウム濃
度は10.0重量%であった。この粉末900gと水9
00gとを磁性ボ−ルミルに投入し、1時間混合粉砕し
てスラリー液を得た。このスラリー液をコーディライト
質モノリス担体(1.3L、400セル)に付着させ、
空気流にてセル内の余剰のスラリーを取り除いて130
℃で乾燥した後、400℃で1時間焼成し、コート層重
量200g/L一担体の前段触媒を得た。後段には実施
例1の後段に配置した触媒を用いて、排気ガス浄化用触
媒装置を得た。
COMPARATIVE EXAMPLE 3 Activated alumina was impregnated with an aqueous solution of magnesium acetate, dried, and calcined at 400 ° C. for 1 hour in air to obtain a magnesium-supported activated alumina powder. The magnesium concentration of this powder was 10.0% by weight. 900 g of this powder and 9 parts of water
And the mixture was mixed and pulverized for 1 hour to obtain a slurry liquid. This slurry liquid was adhered to a cordierite monolithic carrier (1.3 L, 400 cells),
The excess slurry in the cell is removed by air flow to remove 130
After drying at ℃, it was baked at 400 ℃ for 1 hour to obtain a pre-stage catalyst having a coat layer weight of 200 g / L per carrier. An exhaust gas purifying catalyst device was obtained in the latter stage using the catalyst arranged in the latter stage of Example 1.

【0109】実施例1と比較例1との比較から、比較例
1のNOx転化率が実施例1に比べ悪いことがわかる。
これは、NOx吸収触媒の前段に本発明の触媒を配置し
ないと、NOx吸収触媒に排気ガス中の硫黄酸化物が直
接流入し、リーン域でNOx吸収材と結合し、脱離しな
くなって、NOx吸収能力が低下するためと考えられ
る。
From a comparison between Example 1 and Comparative Example 1, it is understood that the NOx conversion rate of Comparative Example 1 is worse than that of Example 1.
This is because, unless the catalyst of the present invention is arranged in front of the NOx absorption catalyst, the sulfur oxides in the exhaust gas directly flow into the NOx absorption catalyst, combine with the NOx absorbent in the lean region, do not desorb, and the NOx It is considered that the absorption capacity is reduced.

【0110】また、実施例1と比較例2との比較から、
後段に置く触媒が本発明で使用されるNOx吸収触媒で
ないと、NOx転化率が悪化することがわかる。これ
は、ストイキ時に前段の触媒から排出される硫黄酸化物
が後段の触媒に流入し、比較例2のような触媒では硫黄
酸化物が硫酸塩となってNOx吸収材と結合し、脱離し
なくなって、NOx吸収能力が低下するためと考えられ
る。このことから、本発明の前段に置く触媒と後段に置
くNOx吸収触媒との組合せとすることで、硫黄被毒に
対して、耐久性を有することがわかる。
Also, from the comparison between Example 1 and Comparative Example 2,
It can be seen that the NOx conversion rate deteriorates unless the catalyst placed in the latter stage is the NOx absorption catalyst used in the present invention. This is because the sulfur oxide discharged from the preceding catalyst at the time of stoichiometry flows into the latter catalyst, and in the catalyst as in Comparative Example 2, the sulfur oxide becomes sulfate and combines with the NOx absorbent, so that it is not desorbed. Therefore, it is considered that the NOx absorption capacity is reduced. From this, it can be seen that the combination of the catalyst placed in the first stage and the NOx absorption catalyst placed in the second stage of the present invention has durability against sulfur poisoning.

【0111】また、実施例1と比較例3との比較から、
前段に置く触媒もNa,Mg,Ca,Sr,Ba,Y及
びLaから成る群より選ばれる少なくとも一種がアルミ
ナと一部でも複合されていなければ良好な結果が得られ
ないことがわかる。これは、アルミナと複合化すること
によって、生成した硫黄塩の脱離能力が向上するためで
あると考えられる。
Also, from the comparison between Example 1 and Comparative Example 3,
It can be seen that good results cannot be obtained unless at least one of the catalysts placed in the former stage is selected from the group consisting of Na, Mg, Ca, Sr, Ba, Y and La, even if it is partly combined with alumina. This is considered to be due to the fact that the ability to desorb the generated sulfur salt is improved by complexing with alumina.

【0112】試験例 前記実施例1〜41及び比較例1〜3で得られた排気ガ
ス浄化用触媒装置について、以下の条件で初期及び耐久
後の触媒活性評価を行った。活性評価には、自動車の排
気ガスを模したモデルガスを用いる自動評価装置を用い
た。
Test Examples The catalyst activities for exhaust gas purification obtained in Examples 1 to 41 and Comparative Examples 1 to 3 were evaluated under the following conditions for initial and endurance catalytic activities. For the activity evaluation, an automatic evaluation device using a model gas simulating the exhaust gas of an automobile was used.

【0113】耐久条件 エンジン4400ccの排気系に触媒を装着し、前段触
媒入口温度650℃で50時間運転し、その後、前段触
媒入口温度を350℃とし、5時間運転した。この時、
300ppmの硫黄を含んだガソリンを使用した。
Endurance conditions A catalyst was mounted on the exhaust system of a 4400 cc engine, and the system was operated at a pre-stage catalyst inlet temperature of 650 ° C. for 50 hours. Thereafter, the pre-stage catalyst inlet temperature was set at 350 ° C. and operated for 5 hours. At this time,
Gasoline containing 300 ppm sulfur was used.

【0114】評価条件 触媒活性評価は、排気量2000ccのエンジンの排気
系に各触媒を装着し、A/F=10(ストイキ状態)で
20秒間、その後A/F=22(リーン雰囲気)で30
秒間、その後A/F=50(リーン雰囲気)で30秒間
の運転を1サイクル行ない、各々平均転化率を測定し、
このA/F=14.6(ストイキ状態)の場合の平均転
化率とA/F=22(リーン雰囲気)の場合の平均転化
率とA/F=50(リーン雰囲気)の場合の平均転化率
とを平均してトータル転化率とした。この評価を初期及
び耐久後に各々行ない、触媒活性評価値を以下の式によ
り決定した。但しガソリン中に硫黄を300ppm含有
した。
Evaluation Conditions The catalyst activity was evaluated by mounting each catalyst in an exhaust system of an engine with a displacement of 2,000 cc, A / F = 10 (stoichiometric state) for 20 seconds, and then A / F = 22 (lean atmosphere).
For one second, then one cycle of A / F = 50 (lean atmosphere) for 30 seconds, measuring the average conversion,
The average conversion rate when A / F = 14.6 (stoichiometric state), the average conversion rate when A / F = 22 (lean atmosphere), and the average conversion rate when A / F = 50 (lean atmosphere) Were averaged to obtain a total conversion. This evaluation was performed at the initial stage and after the endurance test, and the catalytic activity evaluation value was determined by the following equation. However, gasoline contained 300 ppm of sulfur.

【0115】[0115]

【数4】 (Equation 4)

【0116】トータル転化率として得られた触媒活性評
価結果を表1に示す。比較例に比べて実施例は、触媒活
性が高く、後述する本発明の効果を確認することができ
た。
Table 1 shows the catalytic activity evaluation results obtained as the total conversion. The catalytic activity of the example was higher than that of the comparative example, and the effect of the present invention described later could be confirmed.

【0117】[0117]

【表1】 [Table 1]

【0118】[0118]

【発明の効果】請求項1〜6記載の排気ガス浄化用触媒
装置は、排気ガス中の硫黄による被毒を防止し、従来の
触媒では十分な活性を示さなかったリーン雰囲気下にお
けるNOx浄化性能を向上させ、かつ三元触媒としての
機能を十分に発現することができ、更に熱耐久後におい
ても優れたNOx浄化性能を示すことができる。請求項
7記載の排気ガス浄化用触媒装置の使用方法は、上記本
発明の排気ガス浄化用触媒の有効なNOx吸収、放出サ
イクルを特に効率良く発現させることができる。
The exhaust gas purifying catalyst device according to any one of claims 1 to 6 prevents poisoning by sulfur in exhaust gas, and purifies NOx in a lean atmosphere, which does not show sufficient activity with a conventional catalyst. And a function as a three-way catalyst can be sufficiently exhibited, and excellent NOx purification performance can be exhibited even after heat durability. The method of using the exhaust gas purifying catalyst device according to claim 7 enables the effective NOx absorption / release cycle of the exhaust gas purifying catalyst of the present invention to be exhibited particularly efficiently.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/76 B01J 23/89 A 23/89 33/00 B 33/00 F01N 3/28 301E F01N 3/28 301 B01J 23/56 A Fターム(参考) 3G091 AA02 AA12 AA13 AB01 AB03 AB06 BA07 BA11 BA14 BA15 BA19 BA39 FB10 FB11 FB12 GA06 GA20 GB01W GB01X GB02W GB03W GB04W GB05W GB06W GB07W GB10W GB11W GB16W GB17X GB19W HA07 4D048 AA06 AA13 AA18 AB03 AB07 BA01X BA02X BA03X BA09X BA13X BA14X BA15X BA18X BA19Y BA28X BA30X BA31X BA33X BA36X BA37X BA38X BA41X BA42X BB02 BB17 BC01 CA01 CC32 CC46 CC51 DA01 DA06 DA11 EA04 4G069 AA01 AA03 AA08 AA12 BA01A BA01B BA06A BA06B BA13B BB02A BB02B BB04A BB04B BB06A BB06B BC02A BC02B BC03A BC06A BC09A BC09B BC12A BC12B BC13A BC13B BC40A BC40B BC42A BC42B BC43A BC44A BC62A BC62B BC66A BC66B BC67A BC67B BC68A BC68B BC69A BC71A BC71B BC72A BC72B BC75A BC75B CA03 CA09 DA05 EA01Y EA19 EB12Y EC02Y EC03Y EC28 ED06 ED07 EE09 FA02 FA06 FB09 FB14 FB15 FB30 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 23/76 B01J 23/89 A 23/89 33/00 B 33/00 F01N 3/28 301E F01N 3 / 28 301 B01J 23/56 A F-term (reference) 3G091 AA02 AA12 AA13 AB01 AB03 AB06 BA07 BA11 BA14 BA15 BA19 BA39 FB10 FB11 FB12 GA06 GA20 GB01W GB01X GB02W GB03W GB04W GB05W GB06W GB07W GB10W GB11W GB16A03 GB17 BA01X BA02X BA03X BA09X BA13X BA14X BA15X BA18X BA19Y BA28X BA30X BA31X BA33X BA36X BA37X BA38X BA41X BA42X BB02 BB17 BC01 CA01 CC32 CC46 CC51 DA01 DA06 DA11 EA04 4G069 AA01 AA03 AA08 AA12 BA01A BA01B BA06A BA06B BA13B BB02A BB02B BB04A BB04B BB06A BB06B BC02A BC02B BC03A BC06A BC09A BC09B BC12A BC12B BC13A BC13B BC40A BC40B BC42A BC42B BC43A BC44A BC62A BC62B BC66A B C66B BC67A BC67B BC68A BC68B BC69A BC71A BC71B BC72A BC72B BC75A BC75B CA03 CA09 DA05 EA01Y EA19 EB12Y EC02Y EC03Y EC28 ED06 ED07 EE09 FA02 FA06 FB09 FB14 FB15 FB30

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Na,Mg,Ca,Sr,Ba,Y及び
Laから成る群より選ばれる少なくとも1種の元素と、
アルミナと、Fe,Mn,Co及びNiから成る群より
選ばれる少なくとも1種の元素とを含む触媒を排気流れ
に対して前段に配置し、白金、パラジウム及びロジウム
から成る群より選ばれた少なくとも1種の貴金属を多孔
質体に担持した粉末と、次の一般式 【数1】 (式中、LnはLa,Ce,Nd及びSmから成る群よ
り選ばれた少なくとも1種の元素、AはMg,Ca,S
r,Ba,Na,K及びCsから成る群より選ばれた少
なくとも1種の元素、Bは鉄、コバルト、ニッケル及び
マンガンから成る群より選ばれた少なくとも1種の元
素、0≦α≦1,0<β<1,δは各元素の原子価を満
足する酸素量を示す)で表される複合酸化物粉末とを含
有する触媒を排気流れに対して後段に配置して成ること
を特徴とする排気ガス浄化用触媒装置。
1. At least one element selected from the group consisting of Na, Mg, Ca, Sr, Ba, Y and La;
A catalyst comprising alumina and at least one element selected from the group consisting of Fe, Mn, Co and Ni is disposed upstream of the exhaust stream, and comprises at least one catalyst selected from the group consisting of platinum, palladium and rhodium. A powder in which a kind of noble metal is supported on a porous body, and the following general formula: (Where Ln is at least one element selected from the group consisting of La, Ce, Nd and Sm, and A is Mg, Ca, S
at least one element selected from the group consisting of r, Ba, Na, K and Cs, B is at least one element selected from the group consisting of iron, cobalt, nickel and manganese; 0 ≦ α ≦ 1, 0 <β <1, δ indicates the amount of oxygen that satisfies the valence of each element), and a catalyst containing a composite oxide powder represented by the following formula: Exhaust gas purification catalyst device.
【請求項2】 請求項1記載の排気ガス浄化用触媒にお
いて、前段に配置する触媒は、Na,Mg,Ca,S
r,Ba,Y及びLaから成る群より選ばれる少なくと
も1種の元素と、Fe,Mn,Co及びNiから成る群
より選ばれる少なくとも1種の元素との複合酸化物を、
アルミナに担持してなることを特徴とする排気ガス浄化
用触媒装置。
2. The exhaust gas purifying catalyst according to claim 1, wherein the catalyst disposed at the preceding stage comprises Na, Mg, Ca, S
a composite oxide of at least one element selected from the group consisting of r, Ba, Y and La and at least one element selected from the group consisting of Fe, Mn, Co and Ni;
A catalyst device for purifying exhaust gas, which is supported on alumina.
【請求項3】 請求項1記載の排気ガス浄化用触媒にお
いて、前段に配置する触媒は、Na,Mg,Ca,S
r,Ba,Y及びLaから成る群より選ばれる少なくと
も1種の元素とアルミナとの複合酸化物に、Fe,M
n,Co及びNiから成る群より選ばれる少なくとも1
種の元素を担持してなることを特徴とする排気ガス浄化
用触媒装置。
3. The exhaust gas purifying catalyst according to claim 1, wherein the catalyst disposed at the preceding stage comprises Na, Mg, Ca, S
A composite oxide of alumina and at least one element selected from the group consisting of r, Ba, Y, and La, Fe, M
at least one selected from the group consisting of n, Co and Ni
A catalyst device for purifying exhaust gas, wherein the catalyst device carries a kind of element.
【請求項4】 請求項1記載の排気ガス浄化用触媒にお
いて、前段に配置する触媒は、Fe,Mn,Co及びN
iから成る群より選ばれる少なくとも1種の元素とアル
ミナとの複合酸化物に、Na,Mg,Ca,Sr,B
a,Y及びLaから成る群より選ばれる少なくとも1種
の元素を担持してなることを特徴とする排気ガス浄化用
触媒装置。
4. The exhaust gas purifying catalyst according to claim 1, wherein the catalyst disposed at the preceding stage comprises Fe, Mn, Co and N.
i, a composite oxide of at least one element selected from the group consisting of i and alumina, Na, Mg, Ca, Sr, B
A catalyst device for purifying exhaust gas, comprising at least one element selected from the group consisting of a, Y and La.
【請求項5】 請求項1記載の排気ガス浄化用触媒にお
いて、前段に配置する触媒は、Na,Mg,Ca,S
r,Ba,Y及びLaから成る群より選ばれる少なくと
も1種の元素と、Fe,Mn,Co及びNiから成る群
より選ばれる少なくとも1種の元素とアルミナとの複合
酸化物からなることを特徴とする排気ガス浄化用触媒装
置。
5. The exhaust gas purifying catalyst according to claim 1, wherein the catalyst disposed at the preceding stage comprises Na, Mg, Ca, S
It is characterized by comprising a composite oxide of alumina with at least one element selected from the group consisting of r, Ba, Y and La, and at least one element selected from the group consisting of Fe, Mn, Co and Ni, and alumina. Exhaust gas purification catalyst device.
【請求項6】 請求項1〜5いずれかの項記載の排気ガ
ス浄化用触媒において、前段に配置する触媒は、更に貴
金属を含有することを特徴とする排気ガス浄化用触媒装
置。
6. The exhaust gas purifying catalyst device according to claim 1, wherein the catalyst disposed in the preceding stage further contains a noble metal.
【請求項7】 請求項1〜6いずれかの項記載の排気ガ
ス浄化用装置を、空燃比が10〜14.8の範囲と、1
5〜50の範囲とを繰り返すリーンバーンエンジン車に
使用することを特徴とする排気ガス浄化用触媒装置の使
用方法。
7. The exhaust gas purifying apparatus according to claim 1, wherein the air-fuel ratio is in the range of 10 to 14.8,
A method for using an exhaust gas purifying catalyst device, which is used for a lean burn engine vehicle that repeats a range of 5 to 50.
JP10215343A 1998-03-09 1998-07-30 Catalyst device for purifying exhaust gas and its using method Withdrawn JP2000042370A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10215343A JP2000042370A (en) 1998-07-30 1998-07-30 Catalyst device for purifying exhaust gas and its using method
KR1019990007403A KR100326747B1 (en) 1998-03-09 1999-03-06 Device for Purifying Oxygen Rich Exhaust Gas
DE69931417T DE69931417T2 (en) 1998-03-09 1999-03-08 Apparatus for purifying oxygen-rich exhaust gas
US09/263,836 US6395675B1 (en) 1998-03-09 1999-03-08 Catalyst system for purifying oxygen rich exhaust gas
EP99104579A EP0941757B1 (en) 1998-03-09 1999-03-08 Device for purifying oxygen rich exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10215343A JP2000042370A (en) 1998-07-30 1998-07-30 Catalyst device for purifying exhaust gas and its using method

Publications (1)

Publication Number Publication Date
JP2000042370A true JP2000042370A (en) 2000-02-15

Family

ID=16670740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10215343A Withdrawn JP2000042370A (en) 1998-03-09 1998-07-30 Catalyst device for purifying exhaust gas and its using method

Country Status (1)

Country Link
JP (1) JP2000042370A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100494543B1 (en) * 2002-06-14 2005-06-10 현대자동차주식회사 Method for manufacturing low precious metal loaded Pt-Pd-Rh three way catalyst
KR100622027B1 (en) 2004-08-11 2006-09-28 한국화학연구원 Highly Dispersed Precious Metal Supported Mixed Metal Oxide Denitrification Catalyst and Manufacturing Method Thereof
WO2008091004A1 (en) * 2007-01-24 2008-07-31 Nippon Steel Materials Co., Ltd. Exhaust gas purification catalyst, and catalytic honey-comb structure for exhaust gas purification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100494543B1 (en) * 2002-06-14 2005-06-10 현대자동차주식회사 Method for manufacturing low precious metal loaded Pt-Pd-Rh three way catalyst
KR100622027B1 (en) 2004-08-11 2006-09-28 한국화학연구원 Highly Dispersed Precious Metal Supported Mixed Metal Oxide Denitrification Catalyst and Manufacturing Method Thereof
WO2008091004A1 (en) * 2007-01-24 2008-07-31 Nippon Steel Materials Co., Ltd. Exhaust gas purification catalyst, and catalytic honey-comb structure for exhaust gas purification
JPWO2008091004A1 (en) * 2007-01-24 2010-05-20 新日鉄マテリアルズ株式会社 Exhaust gas purification catalyst and exhaust gas purification honeycomb catalyst structure

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
US10260395B2 (en) Nitrous oxide removal catalysts for exhaust systems
US20010012502A1 (en) Catalyst for purifying exhaust gas and a process for purifying exhaust gas
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
US20120214665A1 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JP2003245523A (en) Exhaust gas cleaning system
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP2000042370A (en) Catalyst device for purifying exhaust gas and its using method
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JP2002168117A (en) Exhaust emission control system
JPH09225264A (en) Catalyst for purifying exhaust gas
JP4852793B2 (en) Exhaust gas purification device and exhaust gas purification catalyst for internal combustion engine
JP2004230241A (en) Exhaust gas cleaning catalyst and manufacturing method therefor
JP3885339B2 (en) Exhaust gas purification catalyst, method for producing the same, and method for using the same
JPH08281111A (en) Catalyst for purifying exhaust gas and its production
JP3477982B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3477974B2 (en) Exhaust gas purification catalyst
JPH1099687A (en) Catalyst for cleaning exhaust gas
JP2001246259A (en) Catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004