[go: up one dir, main page]

JP2000040511A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JP2000040511A
JP2000040511A JP10208943A JP20894398A JP2000040511A JP 2000040511 A JP2000040511 A JP 2000040511A JP 10208943 A JP10208943 A JP 10208943A JP 20894398 A JP20894398 A JP 20894398A JP 2000040511 A JP2000040511 A JP 2000040511A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
active material
electrolyte
primary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10208943A
Other languages
Japanese (ja)
Inventor
Sumitomo Yajima
住智 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP10208943A priority Critical patent/JP2000040511A/en
Publication of JP2000040511A publication Critical patent/JP2000040511A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the electrolyte retaining capacity of a positive electrode, and to suppress capacity drop in high temperature storage without dropping charge/discharge capacity at a room temperature by using the positive electrode containing an active material comprising a primary particle aggregate of LiMn2 O4 having pores between primary particles of a specified average size. SOLUTION: A positive electrode constituting a battery together with a negative electrode made of a carbonaceous material, a nonaqueous solvent electrolyte containing a lithium salt, and a separator is prepared by press molding a mixture of an active material of a primary particle aggregate of LiMn2O4 having a pore average size of 10 nm or less, a conductive auxiliary, and a binder. In charge/discharge, lithium ions are moved by solid diffusion within a crystal lattice of primary particles and liquid diffusion in an electrolyte retained between spaces of the aggregate. Permeation of the electrolyte into the active material caused by a capillary action is suppressed with increased in pore size, but not decreased in a pore size of 10 nm of less. The LiMn2O4 has a cubic system spinel single phase, and is obtained by mixing, baking and sieving powder of lithium hydroxide, lithium carbonate, and electrolytic manganese dioxide each having a given particle size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池に関し、特に正極の活物質を改良したリチウムイ
オン二次電池に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery, and more particularly, to a lithium ion secondary battery having an improved positive electrode active material.

【0002】[0002]

【従来の技術】電子機器の急激な小型化に伴ない、その
電源として小型で軽量かつ高エネルギー密度で、さらに
繰り返し充放電が可能な二次電池の開発の要求が高まっ
ている。これらの要求を満たす二次電池としては、リチ
ウム二次電池が注目されている。このリチウム二次電池
は、負極であるリチウムの電位が極めて卑であるため、
電池の電圧が高く、かつリチウムの体積、重量エネルギ
ー密度が高いことから、高エネルギー密度化が可能にな
る。
2. Description of the Related Art With the rapid miniaturization of electronic equipment, there is an increasing demand for the development of a secondary battery that is small, lightweight, has a high energy density and can be repeatedly charged and discharged as its power source. As a secondary battery satisfying these requirements, a lithium secondary battery has attracted attention. In this lithium secondary battery, the potential of lithium as the negative electrode is extremely low,
Since the battery voltage is high and the volume and weight energy density of lithium are high, high energy density can be achieved.

【0003】従来のリチウム二次電池としては、コバル
ト酸化物、ニッケル酸化物、マンガン酸化物等の活物質
を含有する正極を備えたものが知られている。特に、L
iMn2 4 で表わされるスピネル型結晶構造を持つリ
チウムマンガン酸化物は他の活物質に比べて環境的に無
害であり、資源的にも豊富かつ安価で、さらに過充電時
の安全性が高い等の優れた特性を有する。
As a conventional lithium secondary battery, a lithium secondary battery having a positive electrode containing an active material such as cobalt oxide, nickel oxide, and manganese oxide is known. In particular, L
Lithium manganese oxide having a spinel-type crystal structure represented by iMn 2 O 4 is environmentally harmless compared to other active materials, is abundant and inexpensive in terms of resources, and has high safety during overcharge. And other excellent properties.

【0004】しかしながら、LiMn2 4 で表わされ
るスピネル型結晶構造を持つリチウムマンガン酸化物を
活物質として含む正極を備えたリチウム二次電池は、携
帯電話やノートブック型パーソナルコンピュータへの適
用において、電池容量に加えて使用条件、保存環境上の
点から、容量劣化、つまりサイクル特性に問題があっ
た。
However, a lithium secondary battery having a positive electrode containing a lithium manganese oxide having a spinel type crystal structure represented by LiMn 2 O 4 as an active material has been used in mobile phones and notebook personal computers. In addition to the battery capacity, there is a problem in terms of capacity deterioration, that is, cycle characteristics, in terms of use conditions and storage environment.

【0005】このようなことから、スピネル型リチウム
マンガン酸化物の16dサイトの一部を他の遷移金属、
例えばCo,Ni,Feなどで置換したLiMn2-x
x4 (Me=Co,Ni,Fe)が開発されてい
る。
[0005] From this, a part of the 16d site of the spinel-type lithium manganese oxide is replaced with another transition metal,
For example, LiMn 2-x M substituted with Co, Ni, Fe, etc.
e x O 4 (Me = Co , Ni, Fe) have been developed.

【0006】[0006]

【発明が解決しようとする課題】前述したようにスピネ
ル中のマンガンの一部を他の遷移金属で置換した場合に
は、高温貯蔵によって生じるマンガンの溶出量が減少す
るものの、充電容量も減少する。
As described above, when part of manganese in the spinel is replaced by another transition metal, the amount of manganese eluted by high-temperature storage decreases, but the charge capacity also decreases. .

【0007】本発明は、電解液の保持性能が高いリチウ
ムマンガン酸化物を含む正極を備え、室温での充放電容
量の低下を伴わずに高温貯蔵による容量劣化を抑えたリ
チウムイオン二次電池を提供しようとするものである。
The present invention provides a lithium ion secondary battery comprising a positive electrode containing lithium manganese oxide having a high electrolytic solution retention performance and capable of suppressing capacity deterioration due to high-temperature storage without a decrease in charge / discharge capacity at room temperature. It is something to offer.

【0008】[0008]

【課題を解決するための手段】本発明に係わるリチウム
イオン二次電池は、LiMn2 4 の一次粒子の集合物
からなり、かつ前記一次粒子間に位置する細孔の平均径
が10nm以下である活物質を含む正極を備えたことを
特徴とするものである。
The lithium ion secondary battery according to the present invention is composed of an aggregate of primary particles of LiMn 2 O 4 and the average diameter of pores located between the primary particles is 10 nm or less. A positive electrode including a certain active material is provided.

【0009】[0009]

【発明の実施の形態】以下、本発明に係わるリチウムイ
オン二次電池を図1を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a lithium ion secondary battery according to the present invention will be described in detail with reference to FIG.

【0010】例えばステンレス鋼製の正極缶1内には、
正極2が収納されている。セパレ―タ3は、前記正極2
上配置されている。前記セパレータ3には、電解質を有
機溶媒で溶解した非水電解液が含浸保持されている。負
極4は、前記セパレータ3上に配置されている。前記正
極缶1の開口部には、絶縁ガスケット5を介して負極缶
6が設けられており、この負極缶6および前記正極缶1
のかしめ加工により前記正極缶1および前記負極缶6内
に前記正極2、セパレ―タ3および負極4が密閉されて
いる。
For example, in a positive electrode can 1 made of stainless steel,
The positive electrode 2 is housed. Separator 3 is the positive electrode 2
Is located above. The separator 3 is impregnated with a non-aqueous electrolyte in which an electrolyte is dissolved in an organic solvent. The negative electrode 4 is disposed on the separator 3. At the opening of the positive electrode can 1, a negative electrode can 6 is provided via an insulating gasket 5, and the negative electrode can 6 and the positive electrode can 1 are provided.
The positive electrode 2, the separator 3 and the negative electrode 4 are hermetically sealed in the positive electrode can 1 and the negative electrode can 6 by caulking.

【0011】次に、前記正極2、負極4およびセパレー
タ3および非水電解液について詳細に説明する。
Next, the positive electrode 2, the negative electrode 4, the separator 3, and the non-aqueous electrolyte will be described in detail.

【0012】(1)正極2 この正極2は、LiMn2 4 の一次粒子の集合物から
なり、かつ前記一次粒子間に位置する細孔の平均径が1
0nm以下である活物質と、黒鉛のような導電助剤と、
ポリテトラフルオロエチレンのような結着剤とを含む混
合物を加圧成形することにより作製される。
(1) Positive Electrode 2 The positive electrode 2 is composed of an aggregate of primary particles of LiMn 2 O 4 and the average diameter of pores located between the primary particles is 1
An active material having a thickness of 0 nm or less, a conductive additive such as graphite,
It is produced by pressure molding a mixture containing a binder such as polytetrafluoroethylene.

【0013】前記LiMn2 4 の一次粒子は、平均粒
径が10〜50μmであることが好ましい。
The primary particles of LiMn 2 O 4 preferably have an average particle size of 10 to 50 μm.

【0014】前記細孔の平均径が10nmを超えると、
前記LiMn2 4 の一次粒子の集合物である活物質の
電解液の浸透性が低下して容量の増大化を図ることが困
難になる。より好ましい前記細孔の平均径は、1〜5n
mである。
When the average diameter of the pores exceeds 10 nm,
The permeability of the electrolyte of the active material, which is an aggregate of the primary particles of LiMn 2 O 4 , is reduced, and it is difficult to increase the capacity. More preferably, the average diameter of the pores is 1 to 5 n.
m.

【0015】前記正極活物質と、導電助剤と、結着剤と
の混合割合は、90:7:3〜100:10:1にする
ことが好ましい。
It is preferable that the mixing ratio of the positive electrode active material, the conductive additive, and the binder is 90: 7: 3 to 100: 10: 1.

【0016】(2)負極4 この負極4は、炭素質材料、導電剤および結着剤からな
る混合物を加圧成形することにより作製される。
(2) Negative Electrode 4 The negative electrode 4 is produced by pressure-forming a mixture comprising a carbonaceous material, a conductive agent and a binder.

【0017】前記炭素質材料としては、例えば人造黒
鉛、天然黒鉛、熱分解炭素、コークス、樹脂焼成体、メ
ソフェーズ小球体、メソフェーズ系ピッチ等を用いるこ
とができる。
As the carbonaceous material, for example, artificial graphite, natural graphite, pyrolytic carbon, coke, resin fired body, mesophase small sphere, mesophase pitch and the like can be used.

【0018】前記導電材としては、例えばアセチレンブ
ラック、カーボンブラック等を用いることができる。
As the conductive material, for example, acetylene black, carbon black or the like can be used.

【0019】前記結着剤としては、例えばスチレン・ブ
タジエンラテックス(SBR)、カルボキシメチルセル
ロース(CMC)、ポリテトラフルオロエチレン(PT
FE)、ポリフッ化ビニリデン(PVDF)、エチレン
−プロピレン−ジエン共重合体(EPDM)、ニトリル
−ブタジエンゴム(NBR)、フッ化ビニリデン−ヘキ
サフルオロプロピレン共重合体、フッ化ビニリデン−ヘ
キサフルオロプロピレン−テトラフルオロエチレン3元
系共重合体、ポリトリフルオロエチレン(PTrF
E)、フッ化ビニリデン−トリフルオロエチレン共重合
体、フッ化ビニリデン−テトラフルオロエチレン共重合
体等を用いることができる。
Examples of the binder include styrene-butadiene latex (SBR), carboxymethyl cellulose (CMC), and polytetrafluoroethylene (PTC).
FE), polyvinylidene fluoride (PVDF), ethylene-propylene-diene copolymer (EPDM), nitrile-butadiene rubber (NBR), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene-tetra Fluoroethylene terpolymer, polytrifluoroethylene (PTrF
E), a vinylidene fluoride-trifluoroethylene copolymer, a vinylidene fluoride-tetrafluoroethylene copolymer, or the like can be used.

【0020】(3)セパレータ3 このセパレータ3は、例えばポリプロピレン不織布、微
孔性ポリエチレンフィルム等からなる。
(3) Separator 3 The separator 3 is made of, for example, a polypropylene nonwoven fabric, a microporous polyethylene film, or the like.

【0021】(4)非水電解液 この非水電解液は、電解質を非水溶媒で溶解した組成を
有する。
(4) Non-aqueous electrolyte This non-aqueous electrolyte has a composition in which an electrolyte is dissolved in a non-aqueous solvent.

【0022】前記電解質としては、例えばホウフッ化リ
チウム(LiBF4 )、六フッ化リン酸リチウム(Li
PF6 )、過塩素酸リチウム(LiClO4 )、六フッ
化砒素リチウム(LiAsF6 )、トリフルオロメタン
スルホン酸リチウム(LiCF3 SO3 )、塩化アルミ
ニウムリチウム(LiAlCl)から選ばれる1種また
は2種以上のリチウム塩を挙げることができる。
Examples of the electrolyte include lithium borofluoride (LiBF 4 ) and lithium hexafluorophosphate (Li
PF 6 ), lithium perchlorate (LiClO 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium aluminum chloride (LiAlCl) Can be mentioned.

【0023】前記非水溶媒としては、例えばエチレンカ
ーボネート、2−メメチルテトラヒドロフラン、1,2
−ジメトキシエタン、ジエトキシエタン、1,3−ジオ
キソラン、1,3−ジメトキシプロパンから選ばれる1
種または2種以上の混合物を挙げることができる。
Examples of the nonaqueous solvent include ethylene carbonate, 2-methyltetrahydrofuran, 1,2
1 selected from dimethoxyethane, diethoxyethane, 1,3-dioxolan, and 1,3-dimethoxypropane
Species or mixtures of two or more can be mentioned.

【0024】前記電解質の非水溶媒に対する溶解量は、
0.5〜1.5モル/lとすることが望ましい。
The amount of the electrolyte dissolved in the non-aqueous solvent is as follows:
It is desirably 0.5 to 1.5 mol / l.

【0025】本発明者らは、LiMn2 4 の一次粒子
の集合物からなり、かつ前記一次粒子間に位置する細孔
の平均径が10nm以下である正極活物質が優れた電解
液保持性能を有することを究明し、この正極活物質を含
む正極を備えたリチウムイオン二次電池は室温での充放
電容量の低下を伴わずに高温貯蔵による容量劣化を抑制
できることを見出した。
The present inventors have found that a positive electrode active material composed of an aggregate of primary particles of LiMn 2 O 4 and having an average diameter of pores located between the primary particles of 10 nm or less has excellent electrolytic solution retention performance. And found that a lithium ion secondary battery provided with a positive electrode containing this positive electrode active material can suppress capacity deterioration due to high-temperature storage without a decrease in charge / discharge capacity at room temperature.

【0026】すなわち、LiMn2 4 の一次粒子の集
合物(二次粒子)は不完全であるが一個のLiMn2
4 結晶構造粒子としてあると考えられており、充放電に
伴ない一次粒子内のリチウムは結晶格子内の層間にイン
ターカレーションし、イオン状態で固体拡散により移動
する。この時、一次粒子間の空間は電解液や電解質液の
保持に関与し、これらの空間は電解液が満たされた空孔
と考えられる。充放電時のリチウムイオンの移動は、前
記集合物の空間での液体拡散を伴うが、物質移動の速度
は液体拡散の方が高く、かつ液体への抵抗が最高の径に
大きな影響を及ぼすことは容易に推定される。単純に考
えれば、細孔径が大きくなればなるほど、物質の移動は
促進される。
That is, the aggregate (secondary particles) of the primary particles of LiMn 2 O 4 is incomplete but one LiMn 2 O 4
It is thought to be a four- crystal structure particle, and lithium in the primary particle intercalates between layers in the crystal lattice due to charge and discharge, and moves by solid state diffusion in an ionic state. At this time, the space between the primary particles is involved in holding the electrolyte and the electrolyte solution, and these spaces are considered to be pores filled with the electrolyte. The movement of lithium ions during charge and discharge involves liquid diffusion in the space of the aggregate, but the speed of mass transfer is higher in liquid diffusion, and the resistance to the liquid has a large effect on the maximum diameter. Is easily estimated. Simply put, the larger the pore size, the faster the movement of the substance.

【0027】しかしながら、細孔径がより大きくなると
毛管現象による電解液の浸透が抑制されやすくなり、前
記二次粒子での電解液の保持量が低下して容量が低下す
る。
However, when the pore diameter is larger, the permeation of the electrolytic solution due to the capillary phenomenon is easily suppressed, and the amount of the electrolytic solution held by the secondary particles is reduced, so that the capacity is reduced.

【0028】このようなことから、本発明者らは前記L
iMn2 4 の一次粒子の集合物における細孔の平均径
10nm以下である活物質が高い電解液の保持性能を有
することを究明し、この活物質を含む正極を備えたリチ
ウムイオン二次電池が室温での充放電容量の低下を伴わ
ずに高温貯蔵による容量劣化を抑制し、高性能化が図れ
ることを見出した。
From these facts, the present inventors have determined that L
An active material having an average pore diameter of 10 nm or less in an aggregate of primary particles of iMn 2 O 4 was determined to have high electrolytic solution retention performance, and a lithium ion secondary battery provided with a positive electrode containing this active material Found that capacity degradation due to high-temperature storage was suppressed without lowering the charge / discharge capacity at room temperature, and high performance could be achieved.

【0029】[0029]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail.

【0030】(実施例1〜5および比較例1)まず、平
均粒径45μmの水酸化リチウム粉末と炭酸リチウム粉
末とを下記表1に示すように炭酸リチウム/全リチウム
の比が0,5,10,40,80になるように混合した
混合粉末と、平均粒径25μmの電解二酸化マンガン粉
末とをモル比がLi/Mn=1.05/2になるように
秤量し、ボールミルを用いて24時間混合して混合粉末
を調製した。つづいて、これらの混合粉末を大気雰囲気
中、800℃で48時間焼成し、冷却した。ひきつづ
き、各焼成粉末を篩い分けし、平均粒径30μmの焼成
粉末を得た。
(Examples 1 to 5 and Comparative Example 1) First, as shown in Table 1 below, a lithium hydroxide powder having an average particle diameter of 45 μm and a lithium carbonate powder were mixed at a lithium carbonate / total lithium ratio of 0,5. The mixed powder mixed to obtain 10, 40, and 80 and the electrolytic manganese dioxide powder having an average particle size of 25 μm were weighed so that the molar ratio became Li / Mn = 1.05 / 2, and the mixture was weighed using a ball mill. The mixed powder was prepared by mixing for hours. Subsequently, these mixed powders were fired in an air atmosphere at 800 ° C. for 48 hours and cooled. Subsequently, each fired powder was sieved to obtain a fired powder having an average particle size of 30 μm.

【0031】合成された焼成粉末の細孔径を測定した。
その結果を下記表1に示す。また、これら焼成粉末はX
DRにより立方晶スピネル単相であることが確認され
た。
The pore size of the synthesized fired powder was measured.
The results are shown in Table 1 below. These calcined powders are X
DR confirmed that it was a cubic spinel single phase.

【0032】次いで、前記各焼成粉末と、導電材として
のカーボンブラックと、結着剤としてのポリテトラフル
オロエチレンとを重量比で100:10:5の割合で均
一に混合した後、加圧成形して厚さ0.4mm,直径1
6.0mmの6種のペレット状正極合剤を作製した。
Next, the calcined powder, carbon black as a conductive material, and polytetrafluoroethylene as a binder were uniformly mixed at a weight ratio of 100: 10: 5, and then pressure-molded. 0.4mm thick, 1 diameter
Six types of 6.0 mm positive electrode pellets were prepared.

【0033】また、リチウム金属を打ち抜き加工するこ
とにより厚さ1.20mm,直径16.0mmの負極を
作製した。
A negative electrode having a thickness of 1.20 mm and a diameter of 16.0 mm was prepared by punching out lithium metal.

【0034】次いで、前記各正極合剤をステンレス鋼か
らなる正極缶に収納し、かつ前記負極をステンレス鋼か
らなる負極缶に収納し、前記正極合剤と負極の間にポリ
プロピレン不織布からなるセパレータを配置して前述し
た図1に示す構造を有する6種のコイン型リチウム二次
電池を組み立てた。
Next, each positive electrode mixture is accommodated in a positive electrode can made of stainless steel, and the negative electrode is accommodated in a negative electrode can made of stainless steel. A separator made of a nonwoven polypropylene fabric is placed between the positive electrode mixture and the negative electrode. Six coin-type lithium secondary batteries having the structure shown in FIG. 1 described above were arranged and assembled.

【0035】なお、電解液としては六フッ化リン酸リチ
ウム(LiPF6 )をエチレンカーボネートおよびメチ
ルエチルカーボネートの混合溶媒(混合体積比率2:
1)に1.0モル/l溶解した組成のものを使用した。
As an electrolytic solution, lithium hexafluorophosphate (LiPF 6 ) was mixed with a mixed solvent of ethylene carbonate and methyl ethyl carbonate (a mixed volume ratio of 2:
A composition having a composition of 1.0 mol / l dissolved in 1) was used.

【0036】得られた実施例1〜5および比較例1の二
次電池について、60℃の恒温槽で1週間貯蔵し、高温
保存後の残存容量(C)を次式に従って求めた。その結
果を下記表1に示す。
The obtained secondary batteries of Examples 1 to 5 and Comparative Example 1 were stored in a thermostat at 60 ° C. for one week, and the remaining capacity (C) after high-temperature storage was determined according to the following equation. The results are shown in Table 1 below.

【0037】C(%)=Cafter /Cbefore×100 ここで、Cbefore;高温保存前の室温での電池の放電容
量、Cafter ;高温保存後の室温での電池の放電容量を
示す。
C (%) = C after / C before × 100 where C before : the discharge capacity of the battery at room temperature before storage at high temperature, and C after : the discharge capacity of the battery at room temperature after storage at high temperature.

【0038】[0038]

【表1】 [Table 1]

【0039】前記表1から明らかなように細孔径が10
nm以下であるLiMn2 4 の一次粒子の集合物を活
物質として含む正極を備えた実施例1〜5の二次電池
は、細孔径が10nmを超えるLiMn2 4 の一次粒
子の集合物を活物質として含む正極を備えた比較例1に
比べて高温保存後の残存容量が70〜80%と高い値を
示すことがわかる。
As is clear from Table 1 above, the pore diameter was 10
The secondary batteries of Examples 1 to 5 provided with a positive electrode including, as an active material, an aggregate of primary particles of LiMn 2 O 4 having a diameter of not more than 10 nm is an aggregate of primary particles of LiMn 2 O 4 having a pore diameter exceeding 10 nm. It can be seen that the residual capacity after high-temperature storage shows a high value of 70 to 80% as compared with Comparative Example 1 provided with a positive electrode containing as an active material.

【0040】(実施例6〜9)まず、炭酸リチウム粉末
と平均粒径11μm,16μm,25μm,41μmの
電解二酸化マンガン粉末とをモル比がLi/Mn=1.
05/2になるように秤量し、ボールミルを用いて24
時間混合して混合粉末を調製した。つづいて、これらの
混合粉末を大気雰囲気中、800℃で48時間焼成し、
冷却した。ひきつづき、各焼成粉末を粉砕して平均粒径
10μmの焼成粉末を得た。
(Examples 6 to 9) First, lithium carbonate powder and electrolytic manganese dioxide powder having average particle diameters of 11 μm, 16 μm, 25 μm, and 41 μm were used in a molar ratio of Li / Mn = 1.
Weighed so as to become 05/2, and weighed 24 using a ball mill.
The mixed powder was prepared by mixing for hours. Subsequently, these mixed powders are fired in an air atmosphere at 800 ° C. for 48 hours,
Cool. Subsequently, each fired powder was pulverized to obtain a fired powder having an average particle size of 10 μm.

【0041】得られた各焼成粉末の細孔径を測定した。
その結果を下記表2に示す。また、これら焼成粉末はX
DRにより立方晶スピネル単相であることが確認され
た。
The pore size of each of the calcined powders was measured.
The results are shown in Table 2 below. These calcined powders are X
DR confirmed that it was a cubic spinel single phase.

【0042】前記各焼成粉末を用いて実施例1と同様に
作製した正極合剤を用いた以外、実施例1と同様な4種
のコイン型リチウム二次電池を組み立てた。
Four types of coin-type lithium secondary batteries were assembled in the same manner as in Example 1 except that the above-mentioned fired powder was used and the positive electrode mixture produced in the same manner as in Example 1 was used.

【0043】得られた実施例6〜9の二次電池につい
て、60℃の恒温槽で1週間貯蔵し、実施例1と同様に
高温保存後の残存容量(C)を求めた。その結果を下記
表2に示す。
The obtained secondary batteries of Examples 6 to 9 were stored in a thermostat at 60 ° C. for one week, and the remaining capacity (C) after high-temperature storage was determined in the same manner as in Example 1. The results are shown in Table 2 below.

【0044】[0044]

【表2】 [Table 2]

【0045】前記表2から明らかなように細孔径が10
nm以下であるLiMn2 4 の一次粒子の集合物を活
物質として含む正極を備えた実施例6〜9の二次電池
は、高温保存後の残存容量が70〜80%と高い値を示
すことがわかる。
As is apparent from Table 2, the pore diameter is 10
The secondary batteries of Examples 6 to 9 each including a positive electrode including, as an active material, an aggregate of primary particles of LiMn 2 O 4 having a size of 10 nm or less exhibit a high residual capacity after storage at high temperature of 70 to 80%. You can see that.

【0046】(実施例10および比較例2〜4)まず、
炭酸リチウム粉末と平均粒径30μmの電解二酸化マン
ガン粉末とをモル比がLi/Mn=1.05/2になる
ように秤量し、ボールミルを用いて24時間混合して混
合粉末を調製した。つづいて、これらの混合粉末を大気
雰囲気中、600℃,650℃,700℃,750℃で
48時間焼成し、冷却した。ひきつづき、各焼成粉末を
粉砕して平均粒径10μmの焼成粉末を得た。
(Example 10 and Comparative Examples 2 to 4)
Lithium carbonate powder and electrolytic manganese dioxide powder having an average particle diameter of 30 μm were weighed so that the molar ratio became Li / Mn = 1.05 / 2, and mixed using a ball mill for 24 hours to prepare a mixed powder. Subsequently, these mixed powders were fired in an air atmosphere at 600 ° C., 650 ° C., 700 ° C., and 750 ° C. for 48 hours and cooled. Subsequently, each fired powder was pulverized to obtain a fired powder having an average particle size of 10 μm.

【0047】得られた各焼成粉末の細孔径を測定した。
その結果を下記表3に示す。また、これら焼成粉末はX
DRにより立方晶スピネル単相であることが確認され
た。
The pore size of each of the obtained calcined powders was measured.
The results are shown in Table 3 below. These calcined powders are X
DR confirmed that it was a cubic spinel single phase.

【0048】前記各焼成粉末を用いて実施例1と同様に
作製した正極合剤を用いた以外、実施例1と同様な4種
のコイン型リチウム二次電池を組み立てた。
Four types of coin-type lithium secondary batteries were assembled in the same manner as in Example 1, except that the above-described fired powders were used and the positive electrode mixture produced in the same manner as in Example 1 was used.

【0049】得られた実施例10および比較例2〜4の
二次電池について、60℃の恒温槽で1週間貯蔵し、実
施例1と同様に高温保存後の残存容量(C)を求めた。
その結果を下記表3に示す。
The obtained secondary batteries of Example 10 and Comparative Examples 2 to 4 were stored in a thermostat at 60 ° C. for one week, and the remaining capacity (C) after high-temperature storage was determined as in Example 1. .
The results are shown in Table 3 below.

【0050】[0050]

【表3】 [Table 3]

【0051】前記表3から明らかなように細孔径が10
nm以下であるLiMn2 4 の一次粒子の集合物を活
物質として含む正極を備えた実施例10の二次電池は、
細孔径が10nmを超えるLiMn2 4 の一次粒子の
集合物を活物質として含む正極を備えた比較例2〜4に
比べて高温保存後の残存容量が高い値を示すことがわか
る。ただし、実施例10では焼成粉末の合成時の温度
(焼成温度)が実施例1〜9に比べて低いために、残存
容量がそれらの実施例の二次電池に比べて低い値になっ
た。
As is clear from Table 3, the pore diameter is 10
The secondary battery of Example 10 provided with a positive electrode including, as an active material, an aggregate of primary particles of LiMn 2 O 4 having a particle size of 0.1 nm or less,
It can be seen that the residual capacity after high-temperature storage shows a higher value than Comparative Examples 2 to 4 each having a positive electrode containing an aggregate of primary particles of LiMn 2 O 4 having a pore diameter exceeding 10 nm as an active material. However, in Example 10, since the temperature (sintering temperature) at the time of synthesizing the fired powder was lower than in Examples 1 to 9, the remaining capacity was lower than in the secondary batteries of those examples.

【0052】[0052]

【発明の効果】以上詳述した如く、本発明によれば電解
液の保持性能が高いリチウムマンガン酸化物を含む正極
を備え、室温での充放電容量の低下を伴わずに高温貯蔵
による容量劣化を抑えた高性能のリチウムイオン二次電
池を提供できる。
As described above in detail, according to the present invention, a positive electrode containing a lithium manganese oxide having a high electrolyte retention performance is provided, and the capacity deterioration due to high-temperature storage without lowering the charge / discharge capacity at room temperature. It is possible to provide a high-performance lithium-ion secondary battery with reduced power consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるボタン型リチウムイオン二次電
池を示す断面図。
FIG. 1 is a sectional view showing a button-type lithium ion secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…正極缶、 2…正極、 3…セパレータ、 4…負極、 6…負極缶、 DESCRIPTION OF SYMBOLS 1 ... Positive electrode can, 2 ... Positive electrode, 3 ... Separator, 4 ... Negative electrode, 6 ... Negative electrode can,

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA03 AA04 BB05 BC01 BC04 BD00 5H014 AA01 BB05 BB06 CC07 EE10 HH02 5H029 AJ04 AK03 AL06 AL07 AM03 AM04 AM07 DJ13 DJ16 HJ06 HJ09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA03 AA04 BB05 BC01 BC04 BD00 5H014 AA01 BB05 BB06 CC07 EE10 HH02 5H029 AJ04 AK03 AL06 AL07 AM03 AM04 AM07 DJ13 DJ16 HJ06 HJ09

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 LiMn2 4 の一次粒子の集合物から
なり、かつ前記一次粒子間に位置する細孔の平均径が1
0nm以下である活物質を含む正極を備えたことを特徴
とするリチウムイオン二次電池。
2. The method according to claim 1, wherein the primary particles are composed of an aggregate of primary particles of LiMn 2 O 4 , and the average diameter of pores located between the primary particles is 1
A lithium ion secondary battery including a positive electrode including an active material having a thickness of 0 nm or less.
JP10208943A 1998-07-24 1998-07-24 Lithium ion secondary battery Pending JP2000040511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10208943A JP2000040511A (en) 1998-07-24 1998-07-24 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10208943A JP2000040511A (en) 1998-07-24 1998-07-24 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2000040511A true JP2000040511A (en) 2000-02-08

Family

ID=16564716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10208943A Pending JP2000040511A (en) 1998-07-24 1998-07-24 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2000040511A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324973A (en) * 2004-05-12 2005-11-24 Mitsubishi Chemicals Corp Lithium transition metal composite oxide and production method thereof, positive electrode for lithium secondary battery and lithium secondary battery
CN102856543A (en) * 2012-09-14 2013-01-02 深圳先进技术研究院 Lithium manganate material and preparation method thereof
JP2016018656A (en) * 2014-07-08 2016-02-01 住友化学株式会社 Method for producing lithium-containing composite metal oxide, positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
CN112993381A (en) * 2021-02-06 2021-06-18 苏州精诚智造智能科技有限公司 Preparation method of high-rate lithium ion battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324973A (en) * 2004-05-12 2005-11-24 Mitsubishi Chemicals Corp Lithium transition metal composite oxide and production method thereof, positive electrode for lithium secondary battery and lithium secondary battery
CN102856543A (en) * 2012-09-14 2013-01-02 深圳先进技术研究院 Lithium manganate material and preparation method thereof
CN102856543B (en) * 2012-09-14 2014-07-02 深圳先进技术研究院 Lithium manganate material and preparation method thereof
JP2016018656A (en) * 2014-07-08 2016-02-01 住友化学株式会社 Method for producing lithium-containing composite metal oxide, positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
CN112993381A (en) * 2021-02-06 2021-06-18 苏州精诚智造智能科技有限公司 Preparation method of high-rate lithium ion battery

Similar Documents

Publication Publication Date Title
JP3195175B2 (en) Non-aqueous solvent secondary battery
JPH1083817A (en) Anode material and non-aqueous electrolytic secondary battery using the material
JP2001243949A (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
CN1140006C (en) Lithium secondary battery
JP3296204B2 (en) Lithium secondary battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP2008159543A (en) Positive electrode active material for non-aqueous type electrolyte secondary battery, and method for manufacturing the material, and non-aqueous type electrolyte secondary battery using the material
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP2002128526A (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2006244991A (en) Negative electrode for non-aqueous secondary battery
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JP2003282147A (en) Lithium ion secondary battery
JP2001160418A (en) Lithium ion rechargeable battery
JP2001135317A (en) Nonaqueous electrolytic secondary battery
JP2002100344A (en) Positive electrode and battery
JP2000040511A (en) Lithium ion secondary battery
JPH07183047A (en) Nonaqueous electrolyte secondary battery
JPH10312825A (en) Nonaqueous solvent secondary battery
JP2000106188A (en) Nonaqueous electrolyte secondary battery
JP2000106187A (en) Nonaqueous electrolytic secondary battery
JPH10214626A (en) Lithium secondary battery and positive electrode active material for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819