[go: up one dir, main page]

JP2000020684A - Fingerprint image input device - Google Patents

Fingerprint image input device

Info

Publication number
JP2000020684A
JP2000020684A JP10184303A JP18430398A JP2000020684A JP 2000020684 A JP2000020684 A JP 2000020684A JP 10184303 A JP10184303 A JP 10184303A JP 18430398 A JP18430398 A JP 18430398A JP 2000020684 A JP2000020684 A JP 2000020684A
Authority
JP
Japan
Prior art keywords
light
transmitted
finger
living body
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10184303A
Other languages
Japanese (ja)
Other versions
JP3788043B2 (en
Inventor
Masahiro Shikai
正博 鹿井
Toshiro Nakajima
利郎 中島
Teruo Usami
照夫 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18430398A priority Critical patent/JP3788043B2/en
Publication of JP2000020684A publication Critical patent/JP2000020684A/en
Application granted granted Critical
Publication of JP3788043B2 publication Critical patent/JP3788043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns
    • G06V40/145Sensors therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Collating Specific Patterns (AREA)
  • Image Input (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a fingerprint image input device which can surely perform living body identification in spite of no change in color information of the fingerprint image. SOLUTION: A finger F, which comes in contact with an inspection surface 12a of a transparent body 12, is irradiated with a probe light L1 having a wavelength of an area in which an absorption coefficient of oxidized hemoglobin is smaller than that of reduced hemoglobin, and a reference light L2 having a wavelength of an area in which the absorption coefficient of the oxidized hemoglobin and that of the reduced hemoglobin are almost identical from a living body identification light source 11. A transmitting light detection means 13 receives a transmission probe light L11 of the probe light L1 which transmits through inside the finger F and outputs an electric signal S2 in accordance with a light intensity of the light L11, and receives transmission reference light L12 transmitting the inside of the finger F and outputs an electrical signal, in accordance with the intensity of the light L12. Through both of the electrical signals S1 and S2 outputted from the transmission light detection means 13, a transmission light intensity ratio of the light intensity of the transmission probe light L11 and the light intensity of the transmission reference light L12 are obtained, and a living body identification means 15 identifies from this transmission light intensity ratio whether or not the finger F touching the inspection surface 12a is a living body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、指紋照合装置等に
対して指の指紋像を入力するための指紋像入力装置に関
するものである。
The present invention relates to a fingerprint image input device for inputting a fingerprint image of a finger to a fingerprint collating device or the like.

【0002】[0002]

【従来の技術】近年、コンピュータに保存した機密文書
へのアクセス、コンピュータネットワーク上での電子商
取引、重要施設への入退場などにおけるセキュリティ機
能を高めるために、個人識別技術の研究が盛んに行われ
ている。中でも指紋は、万人不同、終生不変の性質を持
ち、個人識別を実現する重要な特徴として利用され、指
紋照合装置等が開発されている。しかし、既に登録済み
の特定個人の指紋を複製した、いわゆるレプリカを用い
られると、セキュリティが確保されない。このため、人
間の指、即ち生体か否かを識別する必要が生じ、この種
の生体識別の方法が提案されている。
2. Description of the Related Art In recent years, research on personal identification technology has been actively conducted in order to enhance security functions such as access to confidential documents stored in a computer, electronic commerce on a computer network, and entrance / exit to important facilities. ing. Above all, fingerprints have the property of being the same for all and life-long, and are used as important features for realizing personal identification, and fingerprint collation devices and the like have been developed. However, if a so-called replica of a fingerprint of a specific individual who has already been registered is used, security is not ensured. For this reason, it is necessary to identify whether the finger is a human finger, that is, a living body, and this kind of living body identification method has been proposed.

【0003】例えば、図5は特開平3−87981号公
報に示された、従来の生体識別機能を備えた指紋像入力
装置の構成を示すブロック図である。図5において、1
は指Fに対して光Lを照射する光源、2は透明体で、一
端に絞り2aを介してレンズ2bを設け、他端に検出面
2cに接触した指Fからの光を、レンズ2bの方向へ反
射する鏡2dを設けている。3は例えば赤色(R)成
分、緑色(G)成分および青色(B)成分の色識別機能
を有するカラーCCD(電荷結合素子、charge−
coupled device)で構成されている画像
検出器で、指Fの指紋像を検出する。4はRGB分離回
路、5は指紋像入力処理手段で、画像検出器3で検出し
た指紋像を利用して指紋照合等の処理を行う。6は色ず
れ補正回路6aと色識別回路6bとで構成された生体識
別手段で、指Fの生体識別を行う。
[0005] For example, FIG. 5 is a block diagram showing a configuration of a conventional fingerprint image input device having a biometric identification function disclosed in Japanese Patent Application Laid-Open No. 3-87981. In FIG. 5, 1
Is a light source for irradiating the light F to the finger F, 2 is a transparent body, a lens 2b is provided at one end via a diaphragm 2a, and light from the finger F contacting the detection surface 2c is provided at the other end. A mirror 2d that reflects light in the direction is provided. Reference numeral 3 denotes a color CCD (charge-coupled device, charge-charge device) having a color discriminating function of, for example, a red (R) component, a green (G) component, and a blue (B) component.
An image detector composed of a coupled device detects a fingerprint image of the finger F. Reference numeral 4 denotes an RGB separation circuit, and reference numeral 5 denotes a fingerprint image input processing means, which performs processing such as fingerprint collation using a fingerprint image detected by the image detector 3. Reference numeral 6 denotes a living body identification unit that includes a color misregistration correction circuit 6a and a color identification circuit 6b, and identifies a living body of the finger F.

【0004】生体識別手段6においては、色ずれ補正回
路6aが、各色(R,G,B)の指紋像画像信号の色ず
れを補正し、色識別回路6bに、色ずれ補正された指紋
像信号を供給する。色識別回路6bでは、指Fが検査面
2cに接触した瞬間の指紋像と、指Fが検査面2cに押
し当てられた後の指紋像との色の変化を比較識別する。
指Fが生体のものであれば、指Fが検査面2cに接触し
た瞬間の指紋像は検査面2cに対する押圧力が小さいの
で、赤みを帯びている。しかし、指Fが検査面2cに押
し当てられた後の指紋像は検査面2cに対する押圧力が
大きいので、白っぽい肌色として検出される。このよう
にして、指紋像の色情報の変化から、生体か否かの識別
を行う。
In the living body identification means 6, a color misregistration correction circuit 6a corrects the color misregistration of the fingerprint image signal of each color (R, G, B), and the color discrimination circuit 6b provides the color misregistration corrected fingerprint image. Supply signal. The color identification circuit 6b compares and identifies the color change between the fingerprint image at the moment when the finger F contacts the inspection surface 2c and the fingerprint image after the finger F is pressed against the inspection surface 2c.
If the finger F is a living body, the fingerprint image at the moment when the finger F contacts the inspection surface 2c is reddish because the pressing force on the inspection surface 2c is small. However, since the fingerprint image after the finger F is pressed against the inspection surface 2c has a large pressing force on the inspection surface 2c, it is detected as a whitish flesh color. In this way, the change of the color information of the fingerprint image is used to determine whether the image is a living body.

【0005】[0005]

【発明が解決しようとする課題】従来の指紋像入力装置
は以上のように構成されているので、例えば低温の状況
によって冷えた指Fの表面の色が、検査面2cに接触す
る前から白っぽい肌色である場合、押圧力による色情報
の変化が起こらないため、生体であるにも拘わらず、生
体でないという誤った識別をするという問題点があっ
た。また、指Fを検査面2cに軽く接触する場合は、色
情報の変化が起こり難いため、生体であるにも関らず、
生体でないと誤った識別をするという問題点があった。
またさらに、指紋像の色情報の変化を生ずるに要するあ
る程度の時間を、継続してモニターする必要があり、生
体識別にある程度の時間を要するという問題点があっ
た。
Since the conventional fingerprint image input device is configured as described above, for example, the color of the surface of the finger F cooled by a low temperature condition becomes whitish before it comes into contact with the inspection surface 2c. In the case of a flesh color, there is no change in color information due to the pressing force, so that there is a problem in that, despite being a living body, it is erroneously identified as not a living body. In addition, when the finger F is lightly touched to the inspection surface 2c, the color information hardly changes.
There is a problem that the identification is incorrect if the body is not a living body.
Furthermore, it is necessary to continuously monitor a certain period of time required to cause a change in the color information of the fingerprint image, and there is a problem that a certain period of time is required for biometric identification.

【0006】本発明は上記のような問題点を解消するた
めになされたもので、指紋像の色情報の変化がなくて
も、確実に生体識別をすることができる指紋像入力装置
を得ることを目的とする。また、生体識別の時間を短縮
することができる指紋像入力装置を得ることを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a fingerprint image input device capable of reliably identifying a living body without changing the color information of the fingerprint image. With the goal. Another object of the present invention is to provide a fingerprint image input device capable of shortening the time for biometric identification.

【0007】[0007]

【課題を解決するための手段】この発明に係る指紋像入
力装置においては、検査面に接触された指に、プローブ
光と参照光とを照射する生体識別用光源と、プローブ光
が指の内部を透過した透過プローブ光を受光し、透過プ
ローブ光の光強度に応じた電気信号と、参照光が指の内
部を透過した透過参照光を受光し、透過参照光の光強度
に応じた電気信号とを出力する透過光検出手段と、透過
光検出手段から出力された両電気信号に応じた透過プロ
ーブ光の光強度と透過参照光の光強度とから検査面に接
触された指が生体であるか否かを識別する生体識別手段
とを備えたものである。
In a fingerprint image input device according to the present invention, a finger which comes into contact with a test surface is irradiated with probe light and reference light, and a living body identification light source is provided inside the finger. An electric signal corresponding to the light intensity of the transmitted probe light and an electric signal corresponding to the light intensity of the transmitted probe light and an electric signal corresponding to the light intensity of the transmitted reference light are received. A finger that is in contact with the inspection surface from the light intensity of the transmission probe light and the light intensity of the transmission reference light corresponding to the two electric signals output from the transmission light detection means And a biometric identification means for identifying whether or not the biometric identification is performed.

【0008】この発明に係る指紋像入力装置において
は、検査面を有する透明体と、検査面に接触された指
に、プローブ光と参照光とを照射する生体識別用光源
と、プローブ光が指の内部を透過した透過プローブ光を
受光し、透過プローブ光の光強度に応じた電気信号と、
参照光が指の内部を透過した透過参照光を受光し、透過
参照光の光強度に応じた電気信号とを出力する透過光検
出手段と、透過光検出手段から出力された両電気信号に
より透過プローブ光の光強度と透過参照光の光強度との
透過光強度比を求め、透過光強度比から検査面に接触さ
れた指が生体であるか否かを識別する生体識別手段とを
備えたものである。
In the fingerprint image input apparatus according to the present invention, a transparent body having an inspection surface, a living body identification light source for irradiating a finger contacting the inspection surface with probe light and reference light, and Receiving the transmitted probe light transmitted through the inside of the device, and an electric signal corresponding to the light intensity of the transmitted probe light,
Transmitted light detecting means for receiving the transmitted reference light transmitted through the inside of the finger as the reference light and outputting an electric signal corresponding to the light intensity of the transmitted reference light, and transmitting the electric signal according to both electric signals output from the transmitted light detecting means A living body identification means for determining a transmitted light intensity ratio between the light intensity of the probe light and the light intensity of the transmitted reference light, and identifying from the transmitted light intensity ratio whether the finger contacting the inspection surface is a living body or not. Things.

【0009】また、指の血液に含まれる還元ヘモグロビ
ンと酸化ヘモグロビンとのうち、プローブ光が酸化ヘモ
グロビンの吸光係数の方が還元ヘモグロビンの吸光係数
より小さい領域の波長であり、参照光が酸化ヘモグロビ
ンの吸光係数と還元ヘモグロビンの吸光係数とがほぼ同
じ領域の波長であるものである。
Further, of the reduced hemoglobin and the oxyhemoglobin contained in the blood of the finger, the probe light has a wavelength in a region where the extinction coefficient of oxyhemoglobin is smaller than the extinction coefficient of reduced hemoglobin, and the reference light is the oxyhemoglobin. The extinction coefficient and the extinction coefficient of reduced hemoglobin have wavelengths in substantially the same region.

【0010】また、プローブ光の波長は、660nm付
近のものである。
[0010] The wavelength of the probe light is around 660 nm.

【0011】また、透過光検出手段は、透過プローブ光
の波長の光のみを電気信号に変換し出力する手段と、透
過参照光の波長の光のみを電気信号に変換し出力する手
段とを有するものである。
The transmitted light detecting means includes means for converting only light having the wavelength of the transmitted probe light into an electric signal and outputting the same, and means for converting only light having the wavelength of the transmitted reference light into an electric signal and outputting the same. Things.

【0012】またさらに、透過光検出手段は、透過プロ
ーブ光の波長の光を電気信号に変換し出力する手段と、
透過参照光の波長の光を電気信号に変換し出力する手段
とを共通にしたものである。
Still further, the transmitted light detecting means converts the light having the wavelength of the transmitted probe light into an electric signal and outputs the electric signal;
It has a common means for converting light having the wavelength of the transmitted reference light into an electric signal and outputting the electric signal.

【0013】[0013]

【発明の実施の形態】実施の形態1.図1は、本発明の
実施の形態1である指紋像入力装置の構成を示すブロッ
ク図である。図1において、11は生体識別用光源であ
り、プローブ光L1と参照光L2とを、例えばガラス、
透明プラスチックなどの透明体12に設けられた検査面
12aに接触した指Fに照射する。生体識別用光源11
としては、例えば半導体レーザーを使用してもよいが、
必ずしもレーザーの出力光のようなコヒーレント光に近
い状態の光を必要とせず、600〜700nmの領域の
波長、例えば660nm付近の波長を有するプローブ光
L1と、800〜900nmの領域の波長、例えば80
0nm付近の波長を有する参照光L2とのインコヒーレ
ント光を照射する1個の発光ダイオード、あるいは白色
光源を使用する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a block diagram showing the configuration of the fingerprint image input device according to the first embodiment of the present invention. In FIG. 1, reference numeral 11 denotes a light source for identifying a living body, which converts probe light L1 and reference light L2 into, for example, glass,
Irradiation is performed on the finger F in contact with the inspection surface 12a provided on the transparent body 12 such as transparent plastic. Biological identification light source 11
As, for example, a semiconductor laser may be used,
It is not necessary to use light in a state close to coherent light such as laser output light, and the probe light L1 has a wavelength in the range of 600 to 700 nm, for example, about 660 nm, and a wavelength in the range of 800 to 900 nm, for example, 80.
One light emitting diode that irradiates incoherent light with the reference light L2 having a wavelength near 0 nm or a white light source is used.

【0014】13は透過光検出手段であり、生体識別用
光源11から照射され、指Fの内部を透過した透過プロ
ーブ光L11と透過参照光L12とが、レンズ14を介
して受光される。透過光検出手段13は、例えばバンド
パスフィルタ付きホトダイオードなどの透過プローブ光
用光電変換手段13aと、透過参照光用光電変換手段1
3bとを有し、透過プローブ光用光電変換手段13aで
透過プローブ光L11を光電変換して透過プローブ光L
11の光強度に応じた電気信号S1を出力し、透過参照
光用光電変換手段13bで透過参照光L12を光電変換
して透過参照光L12の光強度に応じた電気信号S2を
出力する。
Reference numeral 13 denotes a transmitted light detecting means. The transmitted probe light L11 and the transmitted reference light L12 emitted from the living body identification light source 11 and transmitted through the finger F are received via a lens 14. The transmitted light detecting means 13 includes, for example, a photoelectric conversion means 13a for transmission probe light such as a photodiode with a band-pass filter, and a photoelectric conversion means 1 for transmission reference light.
3b, and the transmission probe light L11 is photoelectrically converted by the transmission probe light photoelectric conversion unit 13a.
The transmitted reference light L12 is photoelectrically converted by the transmitted reference light photoelectric conversion means 13b to output an electric signal S2 corresponding to the light intensity of the transmitted reference light L12.

【0015】15は生体識別手段であり、割算回路15
aと比較回路15bとを有する。割算回路15aでは、
透過光検出手段13から出力された透過プローブ光L1
1の光強度に応じた電気信号S1を、透過参照光L12
の光強度に応じた電気信号S2で割って得られた透過光
強度比S3を比較回路15bに出力する。比較回路15
bでは、割算回路15aから出力された透過光強度比S
3を、予め設定した上限値および下限値で比較し、指F
が生体であるか否かの識別信号S4を出力する。
Reference numeral 15 denotes a living body identification means,
a and a comparison circuit 15b. In the division circuit 15a,
Transmitted probe light L1 output from transmitted light detection means 13
The electric signal S1 corresponding to the light intensity of the transmitted reference light L12
Then, the transmitted light intensity ratio S3 obtained by dividing by the electric signal S2 corresponding to the light intensity is output to the comparison circuit 15b. Comparison circuit 15
b, the transmitted light intensity ratio S output from the division circuit 15a
3 is compared with a preset upper limit value and lower limit value.
Outputs an identification signal S4 indicating whether or not is a living body.

【0016】16は例えば発光ダイオードなどの指紋像
用光源で、検査面12aに接触した指Fに光L3を照射
する。17はカラーCCDなどの2次元固体撮像素子か
らなる画像検出器であり、光L3が指Fで反射した光L
13を、レンズ18を介して受光し、指Fの指紋像を検
出する。この検出された指Fの指紋像は、画像取り込み
回路19に取り込まれる。20は指紋照合回路であり、
比較回路15bから出力される識別信号S4により、指
Fの指紋像を照合する。
Reference numeral 16 denotes a fingerprint image light source such as a light-emitting diode, which irradiates a finger F in contact with the inspection surface 12a with light L3. Reference numeral 17 denotes an image detector including a two-dimensional solid-state imaging device such as a color CCD, and the light L3 reflected by the finger F
13 is received via a lens 18 and a fingerprint image of the finger F is detected. The detected fingerprint image of the finger F is captured by the image capturing circuit 19. 20 is a fingerprint matching circuit,
The fingerprint image of the finger F is collated based on the identification signal S4 output from the comparison circuit 15b.

【0017】図2は、人体の血液中の酸化ヘモグロビン
と還元ヘモグロビンの各波長における吸光係数を示す説
明図である。吸光係数とは、ある物質の一定濃度と一定
光路長に対する光吸収を表わす単位である。酸化ヘモグ
ロビンの濃度と還元ヘモグロビンの濃度の和が全ヘモグ
ロビンの濃度である。プローブ光L1の600〜700
nmの領域の波長、例えば660nm付近では、酸化ヘ
モグロビンの吸光係数は還元ヘモグロビンの吸光係数に
対して小さいため、酸化ヘモグロビンの濃度が高いほど
光の吸収が少なくなり、透過光である透過プローブ光L
11の光強度は大きくなることが顕著に現れる。
FIG. 2 is an explanatory diagram showing the extinction coefficient at each wavelength of oxyhemoglobin and reduced hemoglobin in human blood. The extinction coefficient is a unit representing light absorption for a certain concentration of a certain substance and a certain optical path length. The sum of the oxyhemoglobin concentration and the reduced hemoglobin concentration is the total hemoglobin concentration. 600 to 700 of probe light L1
At wavelengths in the nm range, for example, around 660 nm, the absorption coefficient of oxyhemoglobin is smaller than the absorption coefficient of reduced hemoglobin. Therefore, the higher the concentration of oxyhemoglobin, the lower the absorption of light, and the transmitted probe light L, which is transmitted light.
It is remarkable that the light intensity of No. 11 increases.

【0018】一方、参照光L2に対応する800〜90
0nmの領域の波長、例えば800nmの付近では、酸
化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係
数とが、ほぼ同じであるため、酸化ヘモグロビンの濃度
に拘わらず、透過光である透過参照光L12の光強度は
一定である。従って、指Fを透過した透過参照光L12
の光強度に対する透過プローブ光L11の光強度が大き
いほど、指F内の血液における酸化ヘモグロビンの濃度
が高いことがわかる。
On the other hand, 800 to 90 corresponding to the reference light L2
At a wavelength in the region of 0 nm, for example, near 800 nm, the extinction coefficient of oxyhemoglobin and the extinction coefficient of reduced hemoglobin are substantially the same, so that the light of the transmitted reference light L12, which is transmitted light, regardless of the concentration of oxidized hemoglobin. The intensity is constant. Therefore, the transmitted reference light L12 transmitted through the finger F
It can be seen that the greater the light intensity of the transmission probe light L11 with respect to the light intensity of, the higher the concentration of oxyhemoglobin in the blood in the finger F.

【0019】次に、動作について説明する。生体識別用
光源11から検査面12aに接触した指Fに照射され、
指Fから透過してきた透過プローブ光L11と透過参照
光L12とが、レンズ14を介して透過光検出手段13
に受光される。透過プローブ光L11は、透過プローブ
光用光電変換手段13aで光電変換され、透過プローブ
光L11の光強度に応じた電気信号S1を出力する。透
過参照光L12は、透過参照光用光電変換手段13bで
光電変換され、透過参照光L12の光強度に応じた電気
信号S2を出力する。
Next, the operation will be described. Irradiated from the living body identification light source 11 to the finger F in contact with the inspection surface 12a,
The transmitted probe light L11 and the transmitted reference light L12 transmitted from the finger F are transmitted through the lens 14 to the transmitted light detecting means 13
Received. The transmission probe light L11 is photoelectrically converted by the transmission probe light photoelectric conversion unit 13a, and outputs an electric signal S1 corresponding to the light intensity of the transmission probe light L11. The transmitted reference light L12 is photoelectrically converted by the transmitted reference light photoelectric conversion means 13b, and outputs an electric signal S2 corresponding to the light intensity of the transmitted reference light L12.

【0020】透過光検出手段13から出力された両電気
信号S1,S2は、割算回路15aで、電気信号S1を
電気信号S2で割って透過光強度比S3を求め、この透
過光強度比S3が比較回路15bに出力される。透過光
強度比S3が大きいほど、指Fに含まれる血液の酸化ヘ
モグロビンの濃度が高いことを示す。割算回路15aか
ら出力された透過光強度比S3は、比較回路15bで、
予め設定した上限値および下限値で比較される。透過光
強度比S3が上限値と下限値との間にある場合、指Fが
生体であると判定し、透過光強度比S3が上限値と下限
値との間にない場合、指Fが生体でないと判定し、その
判定結果を識別信号S4として出力する。
The electric signal S1 and the electric signal S2 output from the transmitted light detecting means 13 are divided by the dividing circuit 15a into the electric signal S1 and the electric signal S2 to obtain a transmitted light intensity ratio S3. Is output to the comparison circuit 15b. The higher the transmitted light intensity ratio S3, the higher the concentration of oxyhemoglobin in the blood contained in the finger F. The transmitted light intensity ratio S3 output from the division circuit 15a is calculated by a comparison circuit 15b.
The comparison is made with a preset upper limit value and lower limit value. When the transmitted light intensity ratio S3 is between the upper limit and the lower limit, it is determined that the finger F is a living body, and when the transmitted light intensity ratio S3 is not between the upper limit and the lower limit, the finger F is And outputs the determination result as the identification signal S4.

【0021】一方、指紋像用光源16から光L3が検査
面12aに接触した指Fに照射され、指Fで反射した光
L13が、レンズ18を介して画像検出器17に受光さ
れて指Fの指紋像を検出する。画像取り込み回路19に
取り込まれた指Fの指紋像は、比較回路15bで出力さ
れた識別信号S4が、指Fを生体であると判定されたも
のである場合に指紋照合回路20で照合されるが、指F
を生体でないと判定されたものである場合には指紋照合
回路20で照合されない。
On the other hand, the light L3 is radiated from the fingerprint image light source 16 to the finger F in contact with the inspection surface 12a, and the light L13 reflected by the finger F is received by the image detector 17 through the lens 18 so that the finger F The fingerprint image of is detected. The fingerprint image of the finger F captured by the image capturing circuit 19 is collated by the fingerprint collation circuit 20 when the identification signal S4 output by the comparison circuit 15b is a signal that determines that the finger F is a living body. But finger F
Is determined not to be a living body, the fingerprint matching circuit 20 does not perform matching.

【0022】このように、本発明の実施の形態1によれ
ば、生体識別用光源11で検査面12aに接触された指
Fにプローブ光L1と参照光L2とを照射し、透過光検
出手段13でプローブ光が指の内部を透過した透過プロ
ーブ光L11の光強度に応じた電気信号S1と、参照光
が指の内部を透過した透過参照光L12の光強度に応じ
た電気信号S2とを出力し、生体識別手段15で出力さ
れた両電気信号S1,S2により透過プローブ光の光強
度と透過参照光の光強度との透過光強度比S3を求め、
透過光強度比から検査面に接触された指が生体であるか
否かを識別しているので、指紋像の色情報の変化がなく
ても、レプリカか生体の指かを確実に生体識別をするこ
とができる。
As described above, according to the first embodiment of the present invention, the probe light L1 and the reference light L2 are applied to the finger F contacting the inspection surface 12a by the living body identification light source 11, and the transmitted light detecting means The electric signal S1 corresponding to the light intensity of the transmitted probe light L11 in which the probe light has passed through the inside of the finger and the electric signal S2 corresponding to the light intensity of the transmitted reference light L12 in which the reference light has passed through the inside of the finger at 13 The transmitted light intensity ratio S3 between the light intensity of the transmitted probe light and the light intensity of the transmitted reference light is obtained from the two electric signals S1 and S2 output by the living body identification means 15,
Whether the finger touching the test surface is a living body or not is identified based on the transmitted light intensity ratio, so even if there is no change in the color information of the fingerprint image, the living body can be reliably identified as a replica or a living body finger. can do.

【0023】また、指Fの血液に含まれる還元ヘモグロ
ビンと酸化ヘモグロビンとのうち、プローブ光L1が酸
化ヘモグロビンの吸光係数の方が還元ヘモグロビンの吸
光係数より小さい領域の波長であり、また参照光L2は
酸化ヘモグロビンの吸光係数と還元ヘモグロビンの吸光
係数とがほぼ同じ領域の波長であるので、透過プローブ
光L11の光強度と透過参照光L12の光強度との透過
光強度比が顕著になり、指紋像の色情報の変化がなくて
も、指Fがレプリカか生体の指かを確実に生体識別をす
ることができる。
Further, of the reduced hemoglobin and the oxyhemoglobin contained in the blood of the finger F, the probe light L1 has a wavelength in a region where the absorption coefficient of the oxyhemoglobin is smaller than that of the reduced hemoglobin, and the reference light L2 Since the extinction coefficient of oxyhemoglobin and the extinction coefficient of reduced hemoglobin are wavelengths in substantially the same region, the transmitted light intensity ratio between the transmitted probe light L11 and the transmitted reference light L12 becomes remarkable, and the fingerprint Even if there is no change in the color information of the image, the living body can be reliably identified whether the finger F is a replica or a living body finger.

【0024】また、プローブ光L1の波長は、660n
m付近であるので、透過プローブ光L11の光強度が顕
著に大きくなり、透過プローブ光L11の光強度と透過
参照光L12の光強度との透過光強度比がより顕著にな
り、指紋像の色情報の変化がなくても、指Fがレプリカ
か生体の指かを確実に生体識別をすることができる。
The wavelength of the probe light L1 is 660n
m, the light intensity of the transmission probe light L11 becomes remarkably large, the transmission light intensity ratio between the light intensity of the transmission probe light L11 and the light intensity of the transmission reference light L12 becomes more conspicuous, and the color of the fingerprint image becomes higher. Even if there is no change in the information, the living body can be reliably identified whether the finger F is a replica or a living body finger.

【0025】またさらに、透過光検出手段13は、透過
プローブ光の波長の光のみを電気信号に変換し出力する
透過プローブ光用光電変換手段13aと、透過参照光の
波長の光のみを電気信号に変換し出力する透過参照光用
光電変換手段13bとを有するので、プローブ光L1と
参照光L2とを同時に指Fに照射できる。このため、従
来例のように指紋像の色情報の変化を生ずるに要するあ
る程度の時間を、継続してモニターすることが不要とな
り、生体識別の時間を短縮することができる。
Further, the transmitted light detecting means 13 includes a transmitting probe light photoelectric converting means 13a for converting only the light having the wavelength of the transmitted probe light into an electric signal and outputting the electric signal, and an electric signal converting only the light having the wavelength of the transmitted reference light. Since the transmission reference light conversion means 13b for converting the reference light and outputting the same, the finger F can be simultaneously irradiated with the probe light L1 and the reference light L2. For this reason, it is not necessary to continuously monitor a certain amount of time required to cause a change in the color information of the fingerprint image as in the conventional example, and the time for biometric identification can be reduced.

【0026】尚、参照光L2の波長は、800〜900
nmの領域の波長としたが、酸化ヘモグロビンの吸光係
数と還元ヘモグロビンの吸光係数とがほぼ同一であれば
よく、他の波長、例えば400〜530nmの領域の波
長としても上記と同様の効果を奏する。また、割算回路
15aでは、透過光検出手段13から出力された透過プ
ローブ光L11の光強度に応じた電気信号S1を、透過
参照光L12の光強度に応じた電気信号S2で割って得
られた透過光強度比S3を比較回路15bに出力してい
るが、電気信号S1と電気信号S2との差を求めて得ら
れた透過光強度差を比較回路15bに出力しても上記と
同様の効果を奏する。
The wavelength of the reference light L2 is 800 to 900.
Although the wavelength in the range of nm is used, the absorption coefficient of oxyhemoglobin and the absorption coefficient of reduced hemoglobin may be substantially the same, and the same effect as described above can be obtained even with other wavelengths, for example, wavelengths in the range of 400 to 530 nm. . The division circuit 15a is obtained by dividing the electric signal S1 corresponding to the light intensity of the transmission probe light L11 output from the transmitted light detection means 13 by the electric signal S2 corresponding to the light intensity of the transmission reference light L12. Although the transmitted light intensity ratio S3 is output to the comparison circuit 15b, the transmitted light intensity difference obtained by calculating the difference between the electric signal S1 and the electric signal S2 is output to the comparison circuit 15b. It works.

【0027】実施の形態2.図3は、本発明の実施の形
態2である指紋像入力装置の構成を示すブロック図であ
る。図3で使用した符号のうち、図1で使用した符号と
同一のものは、同一または相当品を示し、その説明を省
略する。図3において図1と異なるところは、プローブ
光L1を照射する生体識別用光源21と、参照光L2を
照射する生体識別用光源22とが個別になっている。生
体識別用光源としては、例えば半導体レーザーを使用し
てもよいが、必ずしもレーザーの出力光のようなコヒー
レント光に近い状態の光を必要とせず、例えば生体識別
用光源21では660nm付近の波長を有するプローブ
光L1、生体識別用光源22では800〜900nmの
うちのいずれかの波長を有する参照光L2のインコヒー
レント光を照射する発光ダイオード、あるいは白色光源
を使用する。また透過光検出手段23は、単一の例えば
バンドパスフィルタ付きホトダイオードなどの透過光用
光電変換手段23aで、透過プローブ光用光電変換手段
と透過参照光用光電変換手段とを共通にしている。
Embodiment 2 FIG. FIG. 3 is a block diagram showing a configuration of the fingerprint image input device according to the second embodiment of the present invention. 3, the same reference numerals as those used in FIG. 1 indicate the same or equivalent parts, and a description thereof will be omitted. FIG. 3 differs from FIG. 1 in that a living body identification light source 21 for irradiating probe light L1 and a living body identification light source 22 for irradiating reference light L2 are separate. As the living body identification light source, for example, a semiconductor laser may be used. However, light in a state close to coherent light, such as laser output light, is not necessarily required. For the probe light L1 and the living body identification light source 22, a light emitting diode that emits incoherent light of the reference light L2 having any wavelength of 800 to 900 nm, or a white light source is used. The transmitted light detection means 23 is a single transmitted light photoelectric conversion means 23a such as a photodiode with a band-pass filter, and shares the transmission probe light photoelectric conversion means and the transmitted reference light photoelectric conversion means.

【0028】次に、動作について説明する。まず、生体
識別用光源21によりプローブ光L1を検査面12aに
接触した指Fに照射する。このとき、生体識別用光源2
2は参照光L2を照射しない。生体識別用光源21から
指Fに照射され、指Fから透過してきた透過プローブ光
L11が、レンズ14を介して透過光用光電変換手段2
3aに受光されて光電変換され、透過プローブ光L11
の光強度に応じた電気信号S1を出力する。次に、生体
識別用光源22より参照光L2を検査面12aに接触し
た指Fに照射する。このとき、生体識別用光源21はプ
ローブ光L1を照射しない。つまり、生体識別用光源2
1と生体識別用光源22とは交互に照射することにな
る。生体識別用光源22から指Fに照射され、指Fから
透過してきた透過参照光L12が、レンズ14を介して
透過光用光電変換手段23aに受光されて光電変換さ
れ、透過参照光L12の光強度に応じた電気信号S2を
出力する。
Next, the operation will be described. First, the probe light L1 is emitted from the living body identification light source 21 to the finger F in contact with the inspection surface 12a. At this time, the biological identification light source 2
2 does not irradiate the reference light L2. The transmitted probe light L11 emitted from the living body identification light source 21 to the finger F and transmitted from the finger F is transmitted through the lens 14 to the transmitted light photoelectric conversion unit 2.
3a, the light is photoelectrically converted, and the transmitted probe light L11
And outputs an electric signal S1 corresponding to the light intensity. Next, the finger F that has come into contact with the inspection surface 12a is irradiated with the reference light L2 from the living body identification light source 22. At this time, the living body identification light source 21 does not emit the probe light L1. That is, the light source 2 for biometric identification
1 and the light source 22 for living body identification are irradiated alternately. The transmitted reference light L12 emitted from the living body identification light source 22 to the finger F and transmitted from the finger F is received by the transmitted light photoelectric conversion unit 23a via the lens 14 and photoelectrically converted, and the light of the transmitted reference light L12 is emitted. An electric signal S2 corresponding to the intensity is output.

【0029】透過光用光電変換手段23aから出力され
た各電気信号S1,S2は一旦記録され、割算回路15
aで、電気信号S1を電気信号S2で割って透過光強度
比S3を求め、この透過光強度比S3が比較回路15b
に出力される。透過光強度比S3が大きいほど、指Fに
含まれる血液の酸化ヘモグロビンの濃度が高いことを示
す。割算回路15aから出力された透過光強度比S3
は、比較回路15bで、予め設定した上限値および下限
値と比較される。透過光強度比S3が上限値と下限値と
の間にある場合、指Fが生体であると判定し、透過光強
度比S3が上限値と下限値との間にない場合、指Fが生
体でないと判定し、その判定結果を識別信号S4として
出力する。
The electric signals S1 and S2 output from the transmitted light photoelectric conversion means 23a are recorded once,
a, the transmitted light intensity ratio S3 is obtained by dividing the electric signal S1 by the electric signal S2, and this transmitted light intensity ratio S3 is compared with the comparison circuit 15b.
Is output to The higher the transmitted light intensity ratio S3, the higher the concentration of oxyhemoglobin in the blood contained in the finger F. Transmitted light intensity ratio S3 output from division circuit 15a
Is compared with a preset upper limit value and lower limit value in a comparison circuit 15b. When the transmitted light intensity ratio S3 is between the upper limit and the lower limit, it is determined that the finger F is a living body, and when the transmitted light intensity ratio S3 is not between the upper limit and the lower limit, the finger F is And outputs the determination result as the identification signal S4.

【0030】本発明の実施の形態2によれば、生体識別
用光源21,22で検査面12aに接触された指Fにプ
ローブ光L1と参照光L2とを照射し、透過光検出手段
23でプローブ光が指の内部を透過した透過プローブ光
L11の光強度に応じた電気信号S1と、参照光が指の
内部を透過した透過参照光L12の光強度に応じた電気
信号S2とを出力し、生体識別手段15で出力された両
電気信号S1,S2により透過プローブ光の光強度と透
過参照光の光強度との透過光強度比S3を求め、透過光
強度比から検査面に接触された指が生体であるか否かを
識別しているので、指紋像の色情報の変化がなくても、
レプリカか生体の指かを確実に生体識別をすることがで
きる。
According to the second embodiment of the present invention, the probe light L1 and the reference light L2 are applied to the finger F contacting the inspection surface 12a by the living body identification light sources 21 and 22. An electric signal S1 corresponding to the light intensity of the transmitted probe light L11 having the probe light transmitted through the finger and an electric signal S2 corresponding to the light intensity of the transmitted reference light L12 having the reference light transmitted through the finger are output. The transmission light intensity ratio S3 between the light intensity of the transmission probe light and the light intensity of the transmission reference light is determined from the two electric signals S1 and S2 output from the living body identification means 15, and the inspection surface is contacted based on the transmission light intensity ratio. Since it is identified whether the finger is a living body or not, even if the color information of the fingerprint image does not change,
The living body can be reliably identified as a replica or a finger of a living body.

【0031】また、指Fの血液に含まれる還元ヘモグロ
ビンと酸化ヘモグロビンとのうち、プローブ光L1が酸
化ヘモグロビンの吸光係数の方が還元ヘモグロビンの吸
光係数より小さい領域の波長であり、参照光L2が酸化
ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数
とがほぼ同じ領域の波長であるので、透過プローブ光L
11の光強度と透過参照光L12の光強度との透過光強
度比が顕著になり、指紋像の色情報の変化がなくても、
指Fがレプリカか生体の指かを確実に生体識別をするこ
とができる。
Further, of the reduced hemoglobin and the oxyhemoglobin contained in the blood of the finger F, the probe light L1 is a wavelength in a region where the extinction coefficient of oxyhemoglobin is smaller than the extinction coefficient of reduced hemoglobin, and the reference light L2 is Since the extinction coefficient of oxyhemoglobin and the extinction coefficient of reduced hemoglobin have wavelengths in substantially the same region, the transmission probe light L
The transmitted light intensity ratio between the light intensity of the transmitted reference light L12 and the light intensity of the transmitted reference light L12 becomes remarkable, and even if the color information of the fingerprint image does not change,
The living body can be reliably identified whether the finger F is a replica or a living body finger.

【0032】また、プローブ光L1の波長は、660n
m付近であるので、透過プローブ光L11の光強度が顕
著に大きくなり、透過プローブ光L11の光強度と透過
参照光L12の光強度との透過光強度比がより顕著にな
り、指紋像の色情報の変化がなくても、指Fがレプリカ
か生体の指かを確実に生体識別をすることができる。
The wavelength of the probe light L1 is 660n
m, the light intensity of the transmission probe light L11 becomes remarkably large, the transmission light intensity ratio between the light intensity of the transmission probe light L11 and the light intensity of the transmission reference light L12 becomes more conspicuous, and the color of the fingerprint image becomes higher. Even if there is no change in the information, the living body can be reliably identified whether the finger F is a replica or a living body finger.

【0033】またさらに、単一の透過光用光電変換手段
23aで、透過プローブ光L11の波長の光を電気信号
に変換し出力する透過プローブ光用光電変換手段と、透
過参照光L12の波長の光を電気信号に変換し出力する
透過参照光用光電変換手段とを共通にしたので、透過プ
ローブ光用光電変換手段と透過参照光用光電変換手段と
が個別の場合に片方が劣化により感度が変化するとき、
割算回路15aの出力に誤差が生ずるが、単一の透過光
用光電変換手段23aの場合では劣化により感度が変化
するときでも、割算回路15aの出力に誤差が生じな
い。尚、生体識別用光源21と生体識別用光源22とを
交互に照射する時間間隔を短くすれば、生体識別の時間
を短縮できる。
Further, a single photoelectric conversion unit for transmitted light 23a converts the light of the wavelength of the transmission probe light L11 into an electric signal and outputs the electric signal, and a single photoelectric conversion unit for transmission light 23a. Since the transmission reference light photoelectric conversion means for converting light into an electric signal and outputting the same is shared, when the transmission probe light photoelectric conversion means and the transmission reference light photoelectric conversion means are separate, one of them deteriorates due to deterioration. When it changes,
Although an error occurs in the output of the division circuit 15a, in the case of the single transmitted light photoelectric conversion unit 23a, no error occurs in the output of the division circuit 15a even when the sensitivity changes due to deterioration. If the time interval for alternately irradiating the living body identification light source 21 and the living body identification light source 22 is shortened, the time for living body identification can be reduced.

【0034】実施の形態3.図4は、本発明の実施の形
態3である指紋像入力装置の構成を示すブロック図であ
る。図4で使用した符号のうち、図3で使用した符号と
同一のものは、同一または相当品を示し、その説明を省
略する。図4において図3と異なるところは、画像検出
器24により、光L3が指Fで反射した光L13を、レ
ンズ25を介して受光して指Fの指紋像を検出し、この
指紋像が画像取り込み回路19に取り込まれる。指紋像
を検出するときには、生体識別用光源21および生体識
別用光源22は、プローブ光L1および参照光L2を照
射しない。また、画像検出器24は、生体識別用光源2
1および生体識別用光源22から、検査面12aに接触
された指Fに、プローブ光L1および参照光L2を照射
されると、プローブ光L1および参照光L2が指Fを透
過した透過プローブ光L11および透過参照光L12
を、レンズ25を介して受光して光電変換し、透過プロ
ーブ光L11および透過参照光L12の光強度に応じた
電気信号を出力する透過光検出手段としての機能をも有
する。
Embodiment 3 FIG. 4 is a block diagram showing a configuration of a fingerprint image input device according to the third embodiment of the present invention. 4, the same reference numerals as those used in FIG. 3 indicate the same or equivalent parts, and a description thereof will be omitted. 4 differs from FIG. 3 in that the image detector 24 detects the fingerprint L of the finger F by receiving the light L13, which is the light L3 reflected by the finger F, through the lens 25. The data is captured by the capture circuit 19. When detecting a fingerprint image, the living body identification light source 21 and the living body identification light source 22 do not emit the probe light L1 and the reference light L2. Further, the image detector 24 is provided with the light source 2 for living body identification.
When the probe light L1 and the reference light L2 are irradiated on the finger F contacting the inspection surface 12a from the light source 1 and the living body identification light source 22, the probe light L1 and the reference light L2 are transmitted through the transmitted probe light L11 transmitted through the finger F. And transmitted reference light L12
Has a function as a transmitted light detection unit that receives light via the lens 25, performs photoelectric conversion, and outputs an electric signal corresponding to the light intensity of the transmitted probe light L11 and the transmitted reference light L12.

【0035】次に、動作について説明する。まず、生体
識別用光源21によりプローブ光L1を検査面12aに
接触した指Fに照射する。このとき、生体識別用光源2
2は参照光L2を照射しない。生体識別用光源21から
指Fに照射され、指Fから透過してきた透過プローブ光
L11が、レンズ25を介して画像検出器24に受光さ
れて光電変換され、透過プローブ光L11の光強度に応
じた電気信号S1を出力する。次に、生体識別用光源2
2より参照光L2を検査面12aに接触した指Fに照射
する。このとき、生体識別用光源21はプローブ光L1
を照射しない。つまり、生体識別用光源21と生体識別
用光源22とは交互に照射することになる。生体識別用
光源22から指Fに照射され、指Fから透過してきた透
過参照光L12が、レンズ25を介して画像検出器24
に受光されて光電変換され、透過参照光L12の光強度
に応じた電気信号S2を出力する。
Next, the operation will be described. First, the probe light L1 is emitted from the living body identification light source 21 to the finger F in contact with the inspection surface 12a. At this time, the biological identification light source 2
2 does not irradiate the reference light L2. The transmitted probe light L11 emitted from the living body identification light source 21 to the finger F and transmitted from the finger F is received by the image detector 24 via the lens 25 and photoelectrically converted, and is converted according to the light intensity of the transmitted probe light L11. And outputs the generated electric signal S1. Next, the biometric identification light source 2
2 irradiates the finger F in contact with the inspection surface 12a with the reference light L2. At this time, the light source 21 for living body identification is the probe light L1.
Do not irradiate. That is, the light source for living body identification 21 and the light source for living body identification 22 are irradiated alternately. The transmitted reference light L12 emitted from the living body identification light source 22 to the finger F and transmitted from the finger F is transmitted through the lens 25 to the image detector 24.
And outputs the electric signal S2 corresponding to the light intensity of the transmitted reference light L12.

【0036】画像検出器24から出力された両電気信号
S1,S2は一旦記録され、割算回路15aで、電気信
号S1を電気信号S2で割って透過光強度比S3を求
め、この透過光強度比S3が比較回路15bに出力され
る。透過光強度比S3が大きいほど、指Fに含まれる血
液の酸化ヘモグロビンの濃度が高いことを示す。割算回
路15aから出力された透過光強度比S3は、比較回路
15bで、予め設定した上限値および下限値で比較され
る。透過光強度比S3が上限値と下限値との間にある場
合、指Fが生体であると判定し、透過光強度比S3が上
限値と下限値との間にない場合、指Fが生体でないと判
定し、その判定結果を識別信号S4として出力する。
The electric signals S1 and S2 output from the image detector 24 are recorded once, and the electric signal S1 is divided by the electric signal S2 to obtain a transmitted light intensity ratio S3 by a dividing circuit 15a. The ratio S3 is output to the comparison circuit 15b. The higher the transmitted light intensity ratio S3, the higher the concentration of oxyhemoglobin in the blood contained in the finger F. The transmitted light intensity ratio S3 output from the division circuit 15a is compared by a comparison circuit 15b with a preset upper limit value and lower limit value. When the transmitted light intensity ratio S3 is between the upper limit and the lower limit, it is determined that the finger F is a living body, and when the transmitted light intensity ratio S3 is not between the upper limit and the lower limit, the finger F is And outputs the determination result as the identification signal S4.

【0037】本発明の実施の形態3によれば、生体識別
用光源21,22で検査面12aに接触された指Fにプ
ローブ光L1と参照光L2とを照射し、透過光検出手段
としての画像検出器24でプローブ光が指の内部を透過
した透過プローブ光L11の光強度に応じた電気信号S
1と、参照光が指の内部を透過した透過参照光L12の
光強度に応じた電気信号S2とを出力し、生体識別手段
15で出力された両電気信号S1,S2により透過プロ
ーブ光の光強度と透過参照光の光強度との透過光強度比
S3を求め、透過光強度比から検査面に接触された指が
生体であるか否かを識別しているので、指紋像の色情報
の変化がなくても、レプリカか生体の指かを確実に生体
識別をすることができる。
According to the third embodiment of the present invention, the probe light L1 and the reference light L2 are applied to the finger F contacting the inspection surface 12a with the living body identification light sources 21 and 22, and the transmitted light detection means is used. The electric signal S corresponding to the light intensity of the transmitted probe light L11 in which the probe light has passed through the inside of the finger by the image detector 24.
1 and an electric signal S2 corresponding to the light intensity of the transmitted reference light L12 in which the reference light has passed through the inside of the finger, and the two probed electric signals S1 and S2 output by the living body identification means 15 emit light of the transmitted probe light. The transmitted light intensity ratio S3 between the intensity and the transmitted reference light intensity is determined, and it is determined whether or not the finger touching the inspection surface is a living body based on the transmitted light intensity ratio. Even if there is no change, the living body can be reliably identified as a replica or a living finger.

【0038】また、指Fの血液に含まれる還元ヘモグロ
ビンと酸化ヘモグロビンとのうち、プローブ光L1が酸
化ヘモグロビンの吸光係数の方が還元ヘモグロビンの吸
光係数より小さい領域の波長であり、参照光L2が酸化
ヘモグロビンの吸光係数と還元ヘモグロビンの吸光係数
とがほぼ同じ領域の波長であるので、透過プローブ光L
11の光強度と透過参照光L12の光強度との透過光強
度比が顕著になり、指紋像の色情報の変化がなくても、
指Fがレプリカか生体の指かを確実に生体識別をするこ
とができる。
Further, of the reduced hemoglobin and the oxyhemoglobin contained in the blood of the finger F, the probe light L1 is a wavelength in a region where the extinction coefficient of oxyhemoglobin is smaller than that of the reduced hemoglobin, and the reference light L2 is Since the extinction coefficient of oxyhemoglobin and the extinction coefficient of reduced hemoglobin have wavelengths in substantially the same region, the transmission probe light L
The transmitted light intensity ratio between the light intensity of the transmitted reference light L12 and the light intensity of the transmitted reference light L12 becomes remarkable, and even if the color information of the fingerprint image does not change,
The living body can be reliably identified whether the finger F is a replica or a living body finger.

【0039】また、プローブ光L1の波長は、660n
m付近のものであるので、透過プローブ光L11の光強
度が顕著に大きくなり、透過プローブ光L11の光強度
と透過参照光L12の光強度との透過光強度比がより顕
著になり、指紋像の色情報の変化がなくても、指Fがレ
プリカか生体の指かを確実に生体識別をすることができ
る。
The wavelength of the probe light L1 is 660n
m, the light intensity of the transmission probe light L11 becomes remarkably large, the transmission light intensity ratio between the light intensity of the transmission probe light L11 and the light intensity of the transmission reference light L12 becomes more remarkable, and the fingerprint image Even if the color information does not change, the living body can be reliably identified whether the finger F is a replica or a living body finger.

【0040】またさらに、単一の透過光検出手段として
の画像検出器24で、透過プローブ光L11の波長の光
を電気信号に変換し出力する透過プローブ光検出手段
と、透過参照光L12の波長の光を電気信号に変換し出
力する透過参照光検出手段とを共通にしたので、透過プ
ローブ光検出手段と透過参照光検出手段とが個別の場合
に片方が劣化により感度が変化するとき、割算回路15
aの出力に誤差が生ずるが、単一の画像検出器24の場
合では劣化により感度が変化するときでも、割算回路1
5aの出力に誤差が生じない。尚、生体識別用光源21
と生体識別用光源22とを交互に照射する時間間隔を短
くすれば、生体識別の時間を短縮できる。また、単一の
画像検出器24は、透過光検出手段も有するので、装置
を小型化できる。
Further, the image detector 24 as a single transmitted light detecting means converts the light having the wavelength of the transmitted probe light L11 into an electric signal and outputs the electric signal, and the wavelength of the transmitted reference light L12. The transmission reference light detection means for converting the light into an electric signal and outputting the same is shared, so that when the transmission probe light detection means and the transmission reference light detection means are separate and one of them changes sensitivity due to deterioration, Arithmetic circuit 15
Although an error occurs in the output of a, the division circuit 1 does not operate even when the sensitivity changes due to deterioration in the case of the single image detector 24.
No error occurs in the output of 5a. In addition, the living body identification light source 21
By shortening the time interval for alternately irradiating the living body identification light source 22 with the living body identification light source 22, the living body identification time can be reduced. Further, since the single image detector 24 also has the transmitted light detecting means, the size of the apparatus can be reduced.

【0041】[0041]

【発明の効果】以上のように、本発明の指紋像入力装置
によれば、生体識別用光源で検査面に接触された指にプ
ローブ光と参照光とを照射し、透過光検出手段でプロー
ブ光が指の内部を透過した透過プローブ光の光強度に応
じた電気信号と、参照光が指の内部を透過した透過参照
光の光強度に応じた電気信号とを出力し、生体識別手段
で透過光検出手段から出力された両電気信号に応じた透
過プローブ光の光強度と透過参照光の光強度とから、検
査面に接触された指が生体であるか否かを識別している
ので、指紋像の色情報の変化がなくても、レプリカか生
体の指かを確実に生体識別をすることができる。
As described above, according to the fingerprint image input device of the present invention, the finger contacting the inspection surface with the living body identification light source is irradiated with the probe light and the reference light, and the probe is detected by the transmitted light detection means. An electric signal corresponding to the light intensity of the transmitted probe light whose light has passed through the inside of the finger and an electric signal corresponding to the light intensity of the transmitted reference light whose reference light has passed through the inside of the finger are output by the living body identification means. Since the light intensity of the transmission probe light and the light intensity of the transmission reference light according to the two electric signals output from the transmitted light detection means are used to determine whether or not the finger touching the inspection surface is a living body. Even if there is no change in the color information of the fingerprint image, the living body can be reliably identified as a replica or a living finger.

【0042】また、生体識別用光源で検査面に接触され
た指にプローブ光と参照光とを照射し、透過光検出手段
でプローブ光が指の内部を透過した透過プローブ光の光
強度に応じた電気信号と、参照光が指の内部を透過した
透過参照光の光強度に応じた電気信号とを出力し、生体
識別手段で透過光検出手段から出力された両電気信号に
応じた透過プローブ光の光強度と透過参照光の光強度と
の透過光強度比を求め、透過光強度比から検査面に接触
された指が生体であるか否かを識別しているので、指紋
像の色情報の変化がなくても、レプリカか生体の指かを
確実に生体識別をすることができる。
Further, probe light and reference light are applied to the finger contacting the inspection surface with the living body identification light source, and the transmitted light detecting means changes the probe light according to the light intensity of the transmitted probe light transmitted through the inside of the finger. A transmission probe that outputs an electric signal corresponding to the light intensity of the transmitted reference light transmitted through the inside of the finger and the reference light transmitted through the inside of the finger, and outputs the electric signal according to both electric signals output from the transmitted light detection unit by the living body identification unit. The transmitted light intensity ratio between the light intensity of the transmitted light and that of the transmitted reference light is determined, and it is determined from the transmitted light intensity ratio whether or not the finger touching the inspection surface is a living body. Even if there is no change in information, the living body can be reliably identified as a replica or a finger of a living body.

【0043】また、指の血液に含まれる還元ヘモグロビ
ンと酸化ヘモグロビンとのうち、プローブ光が酸化ヘモ
グロビンの吸光係数の方が還元ヘモグロビンの吸光係数
より小さい領域の波長であり、参照光が酸化ヘモグロビ
ンの吸光係数と還元ヘモグロビンの吸光係数とがほぼ同
じ領域の波長であるので、透過プローブ光の光強度と透
過参照光の光強度との透過光強度比が顕著になり、指紋
像の色情報の変化がなくても、指がレプリカか生体の指
かを確実に生体識別をすることができる。
Also, of the reduced hemoglobin and oxyhemoglobin contained in the blood of the finger, the probe light has a wavelength in a region where the extinction coefficient of oxyhemoglobin is smaller than that of reduced hemoglobin, and the reference light is oxyhemoglobin. Since the extinction coefficient and the extinction coefficient of reduced hemoglobin are wavelengths in substantially the same region, the transmitted light intensity ratio between the transmitted probe light intensity and the transmitted reference light intensity becomes remarkable, and the color information of the fingerprint image changes. Even if there is no finger, the living body can be reliably identified as a replica or a living finger.

【0044】また、プローブ光の波長は、660nm付
近のものであるので、透過プローブ光の光強度が顕著に
大きくなり、透過プローブ光の光強度と透過参照光の光
強度との透過光強度比がより顕著になり、指紋像の色情
報の変化がなくても、指がレプリカか生体の指かを確実
に生体識別をすることができる。
Since the wavelength of the probe light is around 660 nm, the light intensity of the transmitted probe light is significantly increased, and the transmitted light intensity ratio of the transmitted probe light to the transmitted reference light is increased. Becomes more conspicuous, and even if there is no change in the color information of the fingerprint image, the living body can be reliably identified as a replica or a living finger.

【0045】また、透過光検出手段は、透過プローブ光
の波長の光のみを電気信号に変換し出力する透過プロー
ブ光用光電変換手段と、透過参照光の波長の光のみを電
気信号に変換し出力する透過参照光用光電変換手段とを
有するものであるので、プローブ光と参照光とを同時に
指に照射できる。このため、従来例のように指紋像の色
情報の変化を生ずるに要するある程度の時間を、継続し
てモニターすることが不要となり、生体識別の時間を短
縮することができる。
The transmitted light detecting means converts the light of the wavelength of the transmitted probe light into an electric signal and outputs the electric signal. The photoelectric conversion means for the transmitted probe light converts the light of the transmitted reference light only into the electric signal. Since it has the photoelectric conversion means for transmitted reference light to output, the finger can be irradiated with the probe light and the reference light simultaneously. For this reason, it is not necessary to continuously monitor a certain amount of time required to cause a change in the color information of the fingerprint image as in the conventional example, and the time for biometric identification can be reduced.

【0046】またさらに、単一の透過光検出手段で、透
過プローブ光の波長の光を電気信号に変換し出力する透
過プローブ光用光電変換手段と、透過参照光の波長の光
を電気信号に変換し出力する透過参照光用光電変換手段
とを共通にするものであるので、透過プローブ光用光電
変換手段と透過参照光用光電変換手段とが個別の場合に
片方が劣化により感度が変化するとき、割算回路の出力
に誤差が生ずるが、単一の透過光検出手段の場合では劣
化により感度が変化するときでも、割算回路の出力に誤
差が生じない。
Still further, a single transmitted light detecting means converts the light having the wavelength of the transmitted probe light into an electric signal and outputs the electric signal, and the light having the wavelength of the transmitted reference light is converted into an electric signal. Since the transmission reference light photoelectric conversion means for converting and outputting is made common, when the transmission probe light photoelectric conversion means and the transmission reference light photoelectric conversion means are separate, one of them changes sensitivity due to deterioration. At this time, an error occurs in the output of the division circuit. However, in the case of a single transmitted light detection unit, no error occurs in the output of the division circuit even when the sensitivity changes due to deterioration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例による指紋像入力装置の構
成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a fingerprint image input device according to an embodiment of the present invention.

【図2】 人体の血液中の酸化ヘモグロビンと還元ヘモ
グロビンの各波長における吸光係数を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing extinction coefficients at respective wavelengths of oxyhemoglobin and reduced hemoglobin in human blood.

【図3】 本発明の他の実施例による指紋像入力装置の
構成を示すブロック図である。
FIG. 3 is a block diagram showing a configuration of a fingerprint image input device according to another embodiment of the present invention.

【図4】 本発明の他の実施例による指紋像入力装置の
構成を示すブロック図である。
FIG. 4 is a block diagram showing a configuration of a fingerprint image input device according to another embodiment of the present invention.

【図5】 従来の指紋像入力装置の構成を示すブロック
図ある。
FIG. 5 is a block diagram showing a configuration of a conventional fingerprint image input device.

【符号の説明】[Explanation of symbols]

11,21,22 生体識別用光源 12 透明体 12a 検査面 13,23,24 透過光検出手段 15 生体識別手段 F 指 L1 プローブ光 L2 参照光 L11 透過プローブ光 L12 透過参照光 11, 21, 22 Light source for biometric identification 12 Transparent body 12a Inspection surface 13, 23, 24 Transmitted light detection means 15 Biometric identification means F Finger L1 Probe light L2 Reference light L11 Transmitted probe light L12 Transmitted reference light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇佐美 照夫 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5B043 BA02 5B047 AA25 AA30 BA02 BC04 BC05 BC11  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teruo Usami 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 5B043 BA02 5B047 AA25 AA30 BA02 BC04 BC05 BC11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 検査面に接触された指に、プローブ光と
参照光とを照射する生体識別用光源、 上記プローブ光が上記指の内部を透過した透過プローブ
光を受光し、上記透過プローブ光の光強度に応じた電気
信号と、上記参照光が上記指の内部を透過した透過参照
光を受光し、上記透過参照光の光強度に応じた電気信号
とを出力する透過光検出手段、および上記透過光検出手
段から出力された上記両電気信号に応じた上記透過プロ
ーブ光の光強度と上記透過参照光の光強度とから上記検
査面に接触された指が生体であるか否かを識別する生体
識別手段を備えた指紋像入力装置。
A living body identification light source for irradiating a probe light and a reference light to a finger in contact with an inspection surface; a probe light transmitted through the inside of the finger to receive a transmitted probe light; An electric signal corresponding to the light intensity of the transmitted light, and a transmitted light detecting unit that receives the transmitted reference light, in which the reference light has passed through the inside of the finger, and outputs an electric signal corresponding to the light intensity of the transmitted reference light, and From the light intensity of the transmission probe light and the light intensity of the transmission reference light according to the two electric signals output from the transmitted light detection means, it is determined whether or not the finger touching the inspection surface is a living body. Fingerprint image input device provided with a biometric identification unit that performs the identification.
【請求項2】 検査面を有する透明体、 上記検査面に接触された指に、プローブ光と参照光とを
照射する生体識別用光源、 上記プローブ光が上記指の内部を透過した透過プローブ
光を受光し、上記透過プローブ光の光強度に応じた電気
信号と、上記参照光が上記指の内部を透過した透過参照
光を受光し、上記透過参照光の光強度に応じた電気信号
とを出力する透過光検出手段、および上記透過光検出手
段から出力された上記両電気信号により上記透過プロー
ブ光の光強度と上記透過参照光の光強度との透過光強度
比を求め、上記透過光強度比から上記検査面に接触され
た指が生体であるか否かを識別する生体識別手段を備え
た指紋像入力装置。
2. A transparent body having an inspection surface, a living body identification light source for irradiating a finger in contact with the inspection surface with probe light and reference light, and a transmitted probe light in which the probe light has passed through the inside of the finger. And an electric signal corresponding to the light intensity of the transmission probe light, and an electric signal corresponding to the light intensity of the transmission reference light, wherein the reference light receives the transmission reference light transmitted through the inside of the finger. The transmitted light detecting means for outputting, and the transmitted light intensity ratio between the light intensity of the transmitted probe light and the light intensity of the transmitted reference light is obtained from the two electric signals output from the transmitted light detecting means, A fingerprint image input device including a living body identification unit that determines whether a finger contacting the inspection surface is a living body based on the ratio.
【請求項3】 指の血液に含まれる還元ヘモグロビンと
酸化ヘモグロビンとのうち、プローブ光が上記酸化ヘモ
グロビンの吸光係数の方が上記還元ヘモグロビンの吸光
係数より小さい領域の波長であり、参照光が上記酸化ヘ
モグロビンの吸光係数と上記還元ヘモグロビンの吸光係
数とがほぼ同じ領域の波長であることを特徴とする請求
項1または2記載の指紋像入力装置。
3. The probe light of the reduced hemoglobin and the oxyhemoglobin contained in the blood of the finger has a wavelength in a region where the absorption coefficient of the oxyhemoglobin is smaller than the absorption coefficient of the reduced hemoglobin, and the reference light is the reference light. 3. The fingerprint image input device according to claim 1, wherein the extinction coefficient of the oxyhemoglobin and the extinction coefficient of the reduced hemoglobin are substantially the same.
【請求項4】 プローブ光の波長は、660nm付近で
あることを特徴とする請求項1ないし3のいずれか1項
に記載の指紋像入力装置。
4. The fingerprint image input device according to claim 1, wherein a wavelength of the probe light is around 660 nm.
【請求項5】 透過光検出手段は、透過プローブ光の波
長の光のみを電気信号に変換し出力する手段と、透過参
照光の波長の光のみを電気信号に変換し出力する手段と
を有することを特徴とする請求項1ないし3のいずれか
1項に記載の指紋像入力装置。
5. The transmitted light detecting means has means for converting only light having the wavelength of the transmitted probe light into an electric signal and outputting the same, and means for converting only light having the wavelength of the transmitted reference light into an electric signal and outputting the same. The fingerprint image input device according to any one of claims 1 to 3, wherein:
【請求項6】 透過光検出手段は、透過プローブ光の波
長の光を電気信号に変換し出力する手段と、透過参照光
の波長の光を電気信号に変換し出力する手段とを共通に
したことを特徴とする請求項1ないし3のいずれか1項
に記載の指紋像入力装置。
6. The transmitted light detecting means has a common means for converting light having a wavelength of the transmitted probe light into an electric signal and outputting the same, and a means for converting light having a wavelength of the transmitted reference light into an electric signal and outputting the same. The fingerprint image input device according to any one of claims 1 to 3, wherein:
JP18430398A 1998-06-30 1998-06-30 Fingerprint image input device Expired - Fee Related JP3788043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18430398A JP3788043B2 (en) 1998-06-30 1998-06-30 Fingerprint image input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18430398A JP3788043B2 (en) 1998-06-30 1998-06-30 Fingerprint image input device

Publications (2)

Publication Number Publication Date
JP2000020684A true JP2000020684A (en) 2000-01-21
JP3788043B2 JP3788043B2 (en) 2006-06-21

Family

ID=16150984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18430398A Expired - Fee Related JP3788043B2 (en) 1998-06-30 1998-06-30 Fingerprint image input device

Country Status (1)

Country Link
JP (1) JP3788043B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020042588A (en) * 2002-05-11 2002-06-05 조기영 Fingerprint sensor using blood flow to recognize living bodies
KR20030014111A (en) * 2001-08-06 2003-02-15 오므론 가부시키가이샤 Fingerprint reading method and fingerprint reading apparatus
KR20030095726A (en) * 2002-06-14 2003-12-24 씨큐트로닉스 (주) Apparatus and method for sensing a hematocele of finger for fingerprint input device
KR100442583B1 (en) * 2002-01-02 2004-08-02 (주)니트 젠 Method and apparatus for distinguishing forged fingerprint
KR100471645B1 (en) * 2002-07-09 2005-03-10 씨큐트로닉스 (주) Apparatus and method for detecting a forged fingerprint for fingerprint input device
US7181052B2 (en) 2001-08-31 2007-02-20 Nec Corporation Fingerprint image input device and living body identification method using fingerprint image
WO2007053450A1 (en) * 2005-10-31 2007-05-10 Honeywell International Inc. Skin detection sensor
JP2007133656A (en) * 2005-11-10 2007-05-31 Mitsubishi Electric Corp Fingerprint matching device
EP1835438A1 (en) * 2006-03-13 2007-09-19 Fujitsu Ltd. Fingerprint authenticating system
KR100816553B1 (en) * 2006-09-15 2008-03-25 (주)니트 젠 Counterfeit fingerprint identification method considering fingerprint periodicity and orientation
JP2008067727A (en) * 2006-09-12 2008-03-27 Hitachi Information & Control Solutions Ltd Personal authentication device
JP2008518316A (en) * 2004-10-22 2008-05-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for identification based on biometrics
US7548636B2 (en) 2003-08-15 2009-06-16 Nippon Telegraph And Telephone Corporation Organism recognition system
JP2012009076A (en) * 2011-10-03 2012-01-12 Sony Corp Biological information detection device, biological information detection method and biological information detection program
JP2012128868A (en) * 2012-02-16 2012-07-05 Hitachi Ltd Feature image photographing device and personal identification device
US8670596B2 (en) 2000-09-06 2014-03-11 Hitachi, Ltd. Personal identification device and method
US8811680B2 (en) 2002-05-09 2014-08-19 Sony Corporation Compact biometric authentication device and associated methodology of imaging and detecting living-tissue patterns
CN109061946A (en) * 2018-08-31 2018-12-21 Oppo广东移动通信有限公司 Display screen assembly and electronic equipment
WO2021199768A1 (en) * 2020-03-30 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 Electronic device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8670596B2 (en) 2000-09-06 2014-03-11 Hitachi, Ltd. Personal identification device and method
KR20030014111A (en) * 2001-08-06 2003-02-15 오므론 가부시키가이샤 Fingerprint reading method and fingerprint reading apparatus
US7084415B2 (en) 2001-08-06 2006-08-01 Omron Corporation Fingerprint reading method using compared monochromatic images and fingerprint reading apparatus
US7181052B2 (en) 2001-08-31 2007-02-20 Nec Corporation Fingerprint image input device and living body identification method using fingerprint image
KR100442583B1 (en) * 2002-01-02 2004-08-02 (주)니트 젠 Method and apparatus for distinguishing forged fingerprint
US10371629B2 (en) 2002-05-09 2019-08-06 Sony Corporation Compact biometric authentication device and associated methodology of imaging and detecting living-tissue patterns
US8811680B2 (en) 2002-05-09 2014-08-19 Sony Corporation Compact biometric authentication device and associated methodology of imaging and detecting living-tissue patterns
US9234842B2 (en) 2002-05-09 2016-01-12 Sony Corporation Compact biometric authentication device and associated methodology of imaging and detecting living-tissue patterns
KR20020042588A (en) * 2002-05-11 2002-06-05 조기영 Fingerprint sensor using blood flow to recognize living bodies
KR20030095726A (en) * 2002-06-14 2003-12-24 씨큐트로닉스 (주) Apparatus and method for sensing a hematocele of finger for fingerprint input device
KR100471645B1 (en) * 2002-07-09 2005-03-10 씨큐트로닉스 (주) Apparatus and method for detecting a forged fingerprint for fingerprint input device
US7548636B2 (en) 2003-08-15 2009-06-16 Nippon Telegraph And Telephone Corporation Organism recognition system
JP2008518316A (en) * 2004-10-22 2008-05-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for identification based on biometrics
US7446316B2 (en) 2005-10-31 2008-11-04 Honeywell International Inc. Skin detection sensor
WO2007053450A1 (en) * 2005-10-31 2007-05-10 Honeywell International Inc. Skin detection sensor
JP2007133656A (en) * 2005-11-10 2007-05-31 Mitsubishi Electric Corp Fingerprint matching device
JP2007249296A (en) * 2006-03-13 2007-09-27 Fujitsu Ltd Fingerprint authentication device, biometric finger determination device, and biometric finger determination method
EP1835438A1 (en) * 2006-03-13 2007-09-19 Fujitsu Ltd. Fingerprint authenticating system
US7783088B2 (en) 2006-03-13 2010-08-24 Fujitsu Limited Fingerprint authenticating apparatus, live-finger determining apparatus, and live-finger determining method
JP2008067727A (en) * 2006-09-12 2008-03-27 Hitachi Information & Control Solutions Ltd Personal authentication device
KR100816553B1 (en) * 2006-09-15 2008-03-25 (주)니트 젠 Counterfeit fingerprint identification method considering fingerprint periodicity and orientation
JP2012009076A (en) * 2011-10-03 2012-01-12 Sony Corp Biological information detection device, biological information detection method and biological information detection program
JP2012128868A (en) * 2012-02-16 2012-07-05 Hitachi Ltd Feature image photographing device and personal identification device
CN109061946A (en) * 2018-08-31 2018-12-21 Oppo广东移动通信有限公司 Display screen assembly and electronic equipment
WO2021199768A1 (en) * 2020-03-30 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 Electronic device
US11948397B2 (en) 2020-03-30 2024-04-02 Sony Semiconductor Solutions Corporation Electronic device

Also Published As

Publication number Publication date
JP3788043B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP3788043B2 (en) Fingerprint image input device
KR930002346B1 (en) Biological object detection apparatus
USRE50114E1 (en) Device, fingerprint input device and machine-readable medium
US20210264598A1 (en) Human detection device equipped with light source projecting at least one dot onto living body
US10121051B2 (en) Optical apparatus and a method for identifying an object
JP4258393B2 (en) Personal identification device, fingerprint image pickup device, and fingerprint image acquisition method
KR101872753B1 (en) Fingerprint recognition method and fingerprint recognition apparatus
KR101159142B1 (en) Information processing device
KR101080643B1 (en) Apparatus for Distinguishing Living Body Fingerprint and Method therof
US8058616B2 (en) Apparatus for authenticating a person of at least one biometric parameter
US20080146952A1 (en) Optical Speckle Pattern Investigation
JP2003085538A (en) Individual identifying device
JP2003075135A (en) Fingerprint image input device and organism discrimination method by fingerprint image
JP2003085538A5 (en)
JP5534288B2 (en) Signal processing apparatus, method of operating signal processing apparatus, and program
JPWO2006030781A1 (en) Method and apparatus for extracting biological information from fingertip
JP2008009821A (en) Fingerprint authentication method and device thereof
JP2708051B2 (en) Fingerprint image input device
JP3138694B2 (en) Fingerprint detection method
JPH03188574A (en) Organism identification device
KR100471645B1 (en) Apparatus and method for detecting a forged fingerprint for fingerprint input device
JPH02144685A (en) biometric identification device
KR20030095726A (en) Apparatus and method for sensing a hematocele of finger for fingerprint input device
Fujieda et al. Signatures of live fingers extracted from a series of fingerprint images
CN219997594U (en) Biological feature recognition device and electronic equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees