[go: up one dir, main page]

JP2000019759A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JP2000019759A
JP2000019759A JP18947198A JP18947198A JP2000019759A JP 2000019759 A JP2000019759 A JP 2000019759A JP 18947198 A JP18947198 A JP 18947198A JP 18947198 A JP18947198 A JP 18947198A JP 2000019759 A JP2000019759 A JP 2000019759A
Authority
JP
Japan
Prior art keywords
surface layer
layer
film
thickness
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18947198A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kondo
勝彦 近藤
Makoto Ogawa
真 小川
Toshiro Kobayashi
敏郎 小林
Masaki Kono
将樹 河野
Katsuyasu Hananaka
勝保 花中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18947198A priority Critical patent/JP2000019759A/en
Publication of JP2000019759A publication Critical patent/JP2000019759A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor having superior printing resistance force to maintain suprior image quality for a long period, while having a surface layer thickness of 0.6 μm or more. SOLUTION: In an electrophotographic photoreceptor composed of amorphous Si material films layered on a conductive base material, the amorphous Si material film containing C and/or N, and having 2.2-2.6 ev of optical band gap energy and 0.7-5.0 μm of film thickness is provided as a surface layer via a gradient composition layer, in this photoreceptor. Since the optical band gap energy of the surface layer containing C and/or N is 2.0-2.6 ev, photocharges are effectively generated inside a photoconductive layer without absorbing incident light while restraining deffects in the film to a low level, electric resistance of the film is maintain at a high value, and the photocharges reaches thereby effectively to a surface even when the thickness of the surface layer is increased upto 0.7-5.0 μm, so as to provide an excellent image free from an after-image and an image void.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐刷力に優れた電
子写真感光体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member having excellent printing durability.

【0002】[0002]

【従来の技術】電子写真感光体としては、現在有機感光
体(OPC)が一般に広く用いられているが、柔らかい
ため傷が付きやすく耐刷力に欠けるという問題がある。
このため硬度が大きく感度に優れたアモルファスSi
(以下、a−Siと記す)を電子写真感光体に応用する
試みがなされている。
2. Description of the Related Art As an electrophotographic photoreceptor, an organic photoreceptor (OPC) is generally and widely used at present. However, there is a problem that the photoreceptor is easily damaged due to its softness and lacks printing durability.
For this reason, amorphous Si with high hardness and excellent sensitivity
Attempts have been made to apply (hereinafter a-Si) to electrophotographic photoreceptors.

【0003】しかし、a−Siはアンドープであっても
暗抵抗率が10-11Ωcmと小さいため、帯電時の暗減衰
が大きく電荷保持機能が小さいので、この点の改善が必
要となる。高感度を維持しながら電荷保持能を稼ぐのに
有効な方法としては、図2のように導電性基材1とa−
Si光導電層3との間に、導電性基材1からの電荷の注
入を防ぐ電荷注入阻止層2、および表面からの電荷の漏
れを防ぐためにa−Si光導電層3の上に表面層4を設
ける方法が知られている。具体例としては、Al基材か
らなる導電性基材1とa−Si光導電層3との間に、B
やPをドープしたa−Si層、a−SiCx層等の電荷
注入阻止層2を挟み、a−Si光導電層の上にa−Si
x等の電気抵抗が高い物質で表面層4を形成すれば、
十分な電荷保持機能が得られる。また、表面層は印刷と
ともに摩耗するため、耐刷力を増すためには表面層はで
きるだけ厚くするのが望ましい。
However, even if a-Si is undoped, the dark resistivity is as small as 10 -11 Ωcm, so that the dark decay during charging is large and the charge holding function is small, so that this point needs to be improved. As an effective method for increasing the charge holding ability while maintaining high sensitivity, as shown in FIG.
A charge injection blocking layer 2 for preventing charge injection from the conductive substrate 1 between the Si photoconductive layer 3 and a surface layer on the a-Si photoconductive layer 3 for preventing charge leakage from the surface. 4 is known. As a specific example, between the conductive substrate 1 made of an Al substrate and the a-Si photoconductive layer 3, B
And a P-doped a-Si layer, an a-SiC x layer, etc., sandwiching the charge injection blocking layer 2, and a-Si
By forming the surface layer 4 electrical resistance such as C x is a high material,
A sufficient charge holding function can be obtained. In addition, since the surface layer wears with printing, it is desirable to make the surface layer as thick as possible in order to increase printing durability.

【0004】ところが、表面層として用いられるa−S
iCx等は耐摩耗性が高い反面、膜中に局在順位と呼ば
れる欠陥が多く存在し、感光体の耐刷力を稼ぐため表面
層を厚くすると光導電層内で発生した光電荷が感光体表
面へ抜けきれず、残留電位が上昇し、残像や画像の白抜
けを引き起こすという問題がある。このため、良好な画
質を保つためには、表面層の厚さは0.5〜0.6μm
が限度とされている。
However, a-S used as a surface layer
iC x etc. although high abrasion resistance, there are many defects called localized rank in the film, the light charges the photosensitive generated in the photoconductive layer when the thickness of the surface layer to earn printing durability of the photosensitive member There is a problem in that the residual potential rises and the residual image rises and a white spot in the image occurs, because the residual potential cannot be removed to the body surface. Therefore, in order to maintain good image quality, the thickness of the surface layer is 0.5 to 0.6 μm.
Is the limit.

【0005】[0005]

【発明が解決しようとする課題】したがって、本発明
は、厚さ0.6μm以上の表面層を有しながらも、良好
な画質を長期間保ち得る耐刷力に優れた電子写真感光体
を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides an electrophotographic photosensitive member which has a surface layer having a thickness of 0.6 μm or more and which has excellent printing durability and can maintain good image quality for a long period of time. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討の結果、導電性基材上にアモル
ファスSi系物質膜からなる光導電層を積層してなる電
子写真感光体において、光学バンドギャップエネルギー
が2.0〜2.6ev、膜厚が0.7〜5.0μmのC
および/またはNを含むアモルファスSi系物質膜から
なる表面層を傾斜組成層を介して設けることにより、画
像の品質を損なうことなく、表面層の厚膜化が可能であ
る耐刷力に優れた電子写真感光体が得られることを見い
だした。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that an electrophotographic photosensitive member comprising an amorphous Si-based material film laminated on a conductive base material. In the body, C having an optical band gap energy of 2.0 to 2.6 ev and a film thickness of 0.7 to 5.0 μm
By providing a surface layer made of an amorphous Si-based material film containing N and / or N via a gradient composition layer, the surface layer can be made thicker without deteriorating the image quality, and the printing durability is excellent. It has been found that an electrophotographic photosensitive member can be obtained.

【0007】本発明において、Cおよび/またはNを含
む表面層の光学バンドギャップエネルギーを2.0〜
2.6evとすることにより、膜中の欠陥を低く抑えな
がら、入射光を吸収もせず光導電層内で効率よく光電荷
を発生させることができ、さらに膜の電気抵抗も高い値
に維持できる。したがって、表面層を0.7〜5.0μ
mと厚膜化しても、光電荷が効率よく表面に到達するの
で残像や画像の白抜けのない良好な画像が得られる。
In the present invention, the surface band containing C and / or N has an optical band gap energy of 2.0 to 2.0.
By setting it to 2.6 ev, it is possible to efficiently generate photocharges in the photoconductive layer without absorbing incident light while keeping defects in the film low, and it is possible to maintain a high electric resistance of the film. . Therefore, the surface layer has a thickness of 0.7 to 5.0 μm.
Even if the film thickness is increased to m, the photocharge efficiently reaches the surface, so that a good image free from afterimages and white spots in the image can be obtained.

【0008】表面層の光学バンドギャップエネルギーを
2.0〜2.6evと制御するには、表面層中に含まれ
るSiとCおよび/またはNの組成比を調整すればよ
い。
In order to control the optical band gap energy of the surface layer to 2.0 to 2.6 ev, the composition ratio of Si to C and / or N contained in the surface layer may be adjusted.

【0009】表面層のCおよび/またはNの割合が減少
すると膜中の欠陥が減少するため光導電層で発生した光
電荷は効率よく表面に到達する。しかしながら、Cおよ
び/またはNの割合を減らし過ぎると光学バンドギャッ
プエネルギーが減少し、入射光を吸収するため、光導電
層内での光電荷発生効率が低下し、感光体の光感度を低
下させてしまう。また、表面層に含まれるCおよび/ま
たはNの割合が減り過ぎると電気抵抗が下がり、帯電電
位が低下し画像の地汚れやにじみが起こりやすくなる。
したがって、光学バンドギャップエネルギーが2.0e
v以上となるようにCおよび/またはNの割合を減少さ
せる。表面層に含まれるCおよび/またはNの割合が増
加すると、光学バンドギャップエネルギーは増大し、入
射光の吸収が減り、光導電層内で効率良く光電荷を発生
させることができる。しかし、表面層に含まれるCおよ
び/またはNの割合を増やしすぎ光学バンドギャップエ
ネルギーが2.6evを越えると、膜中の欠陥密度が増
加し、光電荷の表面への移動を妨げてしまうため、残留
電荷による、残像や、画像の白抜けが発生しやすくな
る。本発明において、表面層の光学バンドギャップエネ
ルギーを2.0〜2.6evとする理由は以上の通りで
ある。
When the proportion of C and / or N in the surface layer decreases, the number of defects in the film decreases, so that photocharges generated in the photoconductive layer efficiently reach the surface. However, if the proportion of C and / or N is excessively reduced, the optical band gap energy is reduced, and the incident light is absorbed, so that the efficiency of photocharge generation in the photoconductive layer is reduced and the photosensitivity of the photoconductor is reduced. Would. Further, if the proportion of C and / or N contained in the surface layer is too low, the electric resistance is lowered, the charged potential is lowered, and the image becomes liable to be stained or blurred.
Therefore, the optical band gap energy is 2.0 e
The ratio of C and / or N is decreased so as to be not less than v. As the proportion of C and / or N contained in the surface layer increases, the optical bandgap energy increases, the absorption of incident light decreases, and photocharges can be generated efficiently in the photoconductive layer. However, if the ratio of C and / or N contained in the surface layer is excessively increased and the optical bandgap energy exceeds 2.6 ev, the defect density in the film increases, which hinders the transfer of photocharge to the surface. In addition, afterimages and image white spots due to residual charges are likely to occur. In the present invention, the reason for setting the optical band gap energy of the surface layer to 2.0 to 2.6 ev is as described above.

【0010】また、本発明においては、光導電層と表面
層との間に傾斜組成層を設けることにより、光導電層と
表面層の組成の違いに起因するバンドエネルギーのとび
が無くなり、光電荷がより一層効率よく表面に到達し良
好な画像が得られる。傾斜組成層は、Cおよび/または
Nの組成が膜厚方向に変化するa−Si系物質膜層であ
り、光導電層と傾斜組成層の界面ではCおよび/または
Nを含まず、表面層と傾斜組成層との界面では表面層と
同量のCおよび/またはNを含むよう形成することが望
ましい。つまり、光導電層と傾斜組成層の界面から表面
層と傾斜組成層との界面にかけて、Cおよび/またはN
の量が増加する層ということができる。Cおよび/また
はN量の増加は、連続的に行われる場合に限らず、部分
的に増加しない部分が存在していても、その効果に本質
的な影響を与えない。
Further, in the present invention, by providing the gradient composition layer between the photoconductive layer and the surface layer, the band energy caused by the difference in composition between the photoconductive layer and the surface layer is eliminated, and the photo charge is reduced. Can reach the surface more efficiently and a good image can be obtained. The gradient composition layer is an a-Si-based material film layer in which the composition of C and / or N changes in the thickness direction. The interface between the photoconductive layer and the gradient composition layer does not contain C and / or N, and the surface layer It is desirable to form the interface between the surface layer and the gradient composition layer so as to contain the same amount of C and / or N as the surface layer. That is, from the interface between the photoconductive layer and the gradient composition layer to the interface between the surface layer and the gradient composition layer, C and / or N
Can be said to be a layer in which the amount of is increased. The increase in the amount of C and / or N is not limited to the case where the amount is continuously increased, and even if there is a portion that does not partially increase, the effect is not substantially affected.

【0011】表面層がa−SiCx層から構成される場
合、傾斜組成層は、a−SiCxからなり、光導電層と
傾斜組成層の界面から傾斜組成層と表面層の界面にかけ
て、C量が連続的に増加する層とすればよい。また、
表面層がa−SiNx層から構成される場合、傾斜組成
層は、a−SiNxからなり、光導電層と傾斜組成層の
界面から傾斜組成層と表面層の界面にかけて、N量が連
続的に増加する層とすればよい。
When the surface layer is composed of an a-SiC x layer, the gradient composition layer is composed of a-SiC x , and the C composition extends from the interface between the photoconductive layer and the gradient composition layer to the interface between the gradient composition layer and the surface layer. What is necessary is just to make it the layer whose quantity increases continuously. Also,
If the surface layer is composed of a-SiN x layer, gradient composition layer is made of a-SiN x, toward the interface of the photoconductive layer and the graded composition layer from the interface of the graded composition layer and the surface layer, N amount is continuously What is necessary is just to make it the layer which increases gradually.

【0012】本発明では、耐刷性を確保するために表面
層の厚さを0.7μm以上とするが、5μmを超えると
光電荷の移動距離が長くなり、表面層中に含まれる欠陥
に捕らえられ、表面層内に残留する電荷が増加するた
め、残像や画像の白抜けが発生しやすくなる。このた
め、表面層の膜厚は0.7〜5.0μmとする。
In the present invention, the thickness of the surface layer is set to 0.7 μm or more in order to secure printing durability. However, if the thickness exceeds 5 μm, the moving distance of the photocharge becomes long, and defects contained in the surface layer are reduced. Since the amount of charges trapped and remaining in the surface layer increases, afterimages and white spots in images tend to occur. Therefore, the thickness of the surface layer is set to 0.7 to 5.0 μm.

【0013】本発明にかかる電子写真感光体は、導電性
基材上に、電荷注入阻止層、光導電層、傾斜組成層、表
面層の4層からなるa−Si系物質膜を積層することに
より得ることができる。導電性基材、電荷注入阻止層と
しては、従来公知の技術を適用すればよい。たとえば、
導電性基材としてはAlドラム、電荷注入阻止層として
はBやPをドープしたa−Si層、a−SiCx層とい
ったa−Si系物質膜を用いることができる。
In the electrophotographic photoreceptor according to the present invention, an a-Si-based material film comprising a charge injection blocking layer, a photoconductive layer, a gradient composition layer, and a surface layer is laminated on a conductive substrate. Can be obtained by A conventionally known technique may be applied to the conductive substrate and the charge injection blocking layer. For example,
An a-Si based material film such as an a-Si layer or an a-SiC x layer doped with B or P can be used as the conductive substrate, and an Al drum as the charge injection blocking layer.

【0014】[0014]

【発明の実施の形態】本発明を第1実施態様および第2
実施態様に基づき説明する。 (第1実施態様)導電性基材上に通常の高周波グロー放
電によるプラズマCVD法によりa−Si系物質膜を4
層積層して、図1に示す構造の電子写真感光体を作製し
た。図1において、1は脱脂洗浄したAlドラムからな
る導電性基材であり、この上に、表1及び表2に示した
条件により、Bをドープしたa−SiCx膜からなる電
荷注入阻止層2、a−Si膜からなる光導電層3、a−
SiCx膜からなる傾斜組成層5、a−SiCx膜から
なる表面層4を順次成膜した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a first embodiment and a second embodiment.
A description will be given based on an embodiment. (First Embodiment) An a-Si-based material film is formed on a conductive substrate by a plasma CVD method using ordinary high-frequency glow discharge.
The electrophotographic photosensitive member having the structure shown in FIG. 1 was produced by laminating the layers. In FIG. 1, reference numeral 1 denotes a conductive substrate composed of a degreased and cleaned Al drum, on which a charge injection blocking layer 2 composed of a B-doped a-SiCx film under the conditions shown in Tables 1 and 2. , An a-Si photoconductive layer 3, a-
A gradient composition layer 5 composed of a SiCx film and a surface layer 4 composed of an a-SiCx film were sequentially formed.

【0015】ここで、傾斜組成層5は、C24の流量を
成膜開始時(光導電層3との界面)には零とし、その
後、成膜終了時(表面層4との界面)においてSiH4
およびC24の流量比が表面層4の成膜条件と同じにな
るようにC24の流量を一定の割合で増加することによ
り成膜した。なお、作製した電子写真感光体の傾斜組成
層5をオージェ電子分光法(以下、AES)により分析
したところ、光導電層3との界面ではCを含まないが、
表面層4との界面に向かってCが連続的に増加し、表面
層4との界面では表面層と同等のCを含む傾斜組成分布
を有していることが確認できた。
Here, the flow rate of C 2 H 4 of the gradient composition layer 5 is set to zero at the start of film formation (the interface with the photoconductive layer 3), and thereafter, at the end of film formation (the interface with the surface layer 4). ) In SiH 4
And it was deposited by flow rate ratio of C 2 H 4 increases the flow rate of C 2 H 4 to be the same as the conditions for forming the surface layer 4 at a constant rate. When the gradient composition layer 5 of the produced electrophotographic photoreceptor was analyzed by Auger electron spectroscopy (hereinafter, AES), C was not contained at the interface with the photoconductive layer 3.
It was confirmed that C continuously increased toward the interface with the surface layer 4 and that the interface with the surface layer 4 had a gradient composition distribution including C equivalent to that of the surface layer.

【0016】表1は、表面層の光学バンドギャップエネ
ルギーを変えるための成膜条件であり、これにより得た
試料を本発明例1〜3、比較例1〜2とする。表面層の
光学バンドギャップエネルギーを変化させるため、原料
ガスであるSiH4およびC24の流量を調整しSiと
Cの組成比を制御した。表2は、表面層の厚さを変える
ための成膜条件であり、これにより得た試料を本発明例
4〜6、比較例3とする。
Table 1 shows film forming conditions for changing the optical band gap energy of the surface layer. Samples obtained by these conditions are referred to as Examples 1 to 3 of the present invention and Comparative Examples 1 and 2. In order to change the optical band gap energy of the surface layer, the flow rates of the source gases SiH 4 and C 2 H 4 were adjusted to control the composition ratio of Si and C. Table 2 shows the film forming conditions for changing the thickness of the surface layer, and the samples obtained thereby are referred to as Examples 4 to 6 of the present invention and Comparative Example 3.

【0017】表1および表2において、表面層4に含ま
れるSiおよびCの組成比は、AES法により計測し
た。計測データの例として、本発明例1の測定チャート
を図3に示す。同図より表面から深さ0.7μmまで
は、C及びSiの組成比C/Siの値が0.8で一定で
あり、深さ0.7μm〜1.0μmの傾斜組成層に相当
する領域では、C及びSiの組成比C/Siの値が0.
8からほぼ0まで連続的に変化し、深さ1.0μmより
深い光導電層に相当する領域ではほぼSiである様子が
観察できる。また、表面層4の光学バンドギャップはあ
らかじめ表面層と同条件で作製した単膜を透過分光法に
より評価した。
In Tables 1 and 2, the composition ratio of Si and C contained in the surface layer 4 was measured by the AES method. FIG. 3 shows a measurement chart of Example 1 of the present invention as an example of the measurement data. As can be seen from the figure, from the surface to the depth of 0.7 μm, the area where the value of the composition ratio C / Si of C and Si is constant at 0.8 and corresponds to the gradient composition layer having a depth of 0.7 μm to 1.0 μm. In the above, the value of the composition ratio C / Si of C and Si is 0.1.
It changes continuously from 8 to almost 0, and in a region corresponding to the photoconductive layer deeper than 1.0 μm in depth, it can be observed that it is almost Si. In addition, the optical band gap of the surface layer 4 was evaluated by a transmission spectroscopy of a single film prepared in advance under the same conditions as the surface layer.

【0018】得られた本発明例1〜6、比較例1〜3の
試料を電子写真印刷試験装置に搭載し、表3の条件にて
連続印刷試験を行い、印刷開始時およびA4版上質紙5
00万枚印刷後の印刷物について残像および画像の白抜
けの有無を目視により評価し、その結果を表4に示す。
表4に示すとおり、本発明例1〜6の試料では、残像や
画像の白抜けが全く見られなかった。これに対して、比
較例1では、表面層の電気抵抗お低下が原因と見られる
画像の地汚れが印刷開始時より見られた。また比較例2
及び比較例3では膜中の残留電荷が原因とみられる、残
像や画像の白抜けが印刷開始時より見られた。
The obtained samples of Examples 1 to 6 and Comparative Examples 1 to 3 were mounted on an electrophotographic printing test apparatus and subjected to a continuous printing test under the conditions shown in Table 3. 5
The printed matter after printing 100,000 sheets was visually evaluated for the presence of afterimages and white spots in the images. The results are shown in Table 4.
As shown in Table 4, the samples of Examples 1 to 6 of the present invention did not show any afterimages or white spots in the images. On the other hand, in Comparative Example 1, background smearing of an image, which is considered to be caused by a decrease in the electric resistance of the surface layer, was observed from the start of printing. Comparative Example 2
In Comparative Example 3, afterimages and white spots in images, which are considered to be caused by residual charges in the film, were observed from the start of printing.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】(第2実施態様)傾斜組成層5および表面
層4をa−SiNx膜とした以外は第1実施態様と同様
に図1に示す電子写真感光体を表5および表6に示す条
件で作製した。
(Second Embodiment) The electrophotographic photosensitive member shown in FIG. 1 was subjected to the conditions shown in Tables 5 and 6 in the same manner as in the first embodiment except that the gradient composition layer 5 and the surface layer 4 were a-SiNx films. Prepared.

【0024】ここで、傾斜組成層5は、NH3の流量を
成膜開始時(光導電層3との界面)には零とし、その
後、成膜終了時(表面層4との界面)においてSiH4
およびNH3の流量比が表面層4の成膜条件と同じにな
るようにNH3の流量を一定の割合で増加することによ
り成膜した。なお、作製した電子写真感光体の傾斜組成
層5をオージェ電子分光法(以下、AES)により分析
したところ、傾斜組成層5は、光導電層3との界面では
Nを含まないが、表面層4との界面に向かってNが連続
的に増加し、表面層4との界面では表面層と同等のCを
含む傾斜組成分布を有していることが確認できた。
Here, the flow rate of NH 3 of the gradient composition layer 5 is set to zero at the start of film formation (interface with the photoconductive layer 3), and thereafter, at the end of film formation (interface with the surface layer 4). SiH 4
And a flow rate ratio of NH 3 was formed by increasing the flow rate of NH 3 to be the same as the conditions for forming the surface layer 4 at a constant rate. When the gradient composition layer 5 of the produced electrophotographic photoreceptor was analyzed by Auger electron spectroscopy (AES), the gradient composition layer 5 did not contain N at the interface with the photoconductive layer 3, but the surface layer did not contain N. N continuously increased toward the interface with the surface layer 4, and it was confirmed that the interface with the surface layer 4 had a gradient composition distribution including C equivalent to that of the surface layer.

【0025】表5は、表面層の光学バンドギャップエネ
ルギーを変えるための成膜条件であり、これにより得た
試料を本発明例7〜9とする。表面層の光学バンドギャ
ップエネルギーを変化させるため、原料ガスであるSi
4およびNH3の流量を調整することでSiとNの組成
比を制御した。表6は、表面層の厚さを変えるための成
膜条件であり、これにより得た試料を本発明例10〜1
2とする。
Table 5 shows the film forming conditions for changing the optical band gap energy of the surface layer. Samples obtained thereby are referred to as Examples 7 to 9 of the present invention. In order to change the optical band gap energy of the surface layer, the raw material gas Si
The composition ratio of Si and N was controlled by adjusting the flow rates of H 4 and NH 3 . Table 6 shows the film forming conditions for changing the thickness of the surface layer.
Let it be 2.

【0026】表5および表6において、表面層4に含ま
れるSiおよびNの組成比は、AES法により計測し、
表面層4の光学バンドギャップは第1実施態様と同様の
方法により評価した。
In Tables 5 and 6, the composition ratio of Si and N contained in the surface layer 4 was measured by the AES method.
The optical band gap of the surface layer 4 was evaluated by the same method as in the first embodiment.

【0027】得られた本発明例7〜12の試料について
第1実施態様と同様の評価を行い、その結果を表7に示
す。表7に示すとおり、本発明例7〜12の試料では、
残像や画像の白抜けが全く見られなかった。
The same evaluation as in the first embodiment was performed on the obtained samples of Examples 7 to 12 of the present invention, and the results are shown in Table 7. As shown in Table 7, in the samples of Invention Examples 7 to 12,
No afterimages or white spots on the images were observed.

【0028】また、比較のため、傾斜組成層を作製しな
い以外、本発明例8と同一の条件で電子写真感光体を作
製し同様に評価したところ、光導電層と表面層の組成の
違いに起因するバンドエネルギーのとびにより、層界面
の残留電荷が原因とみられる残像が印刷開始時より見ら
れた。
For comparison, an electrophotographic photoreceptor was prepared under the same conditions as in Example 8 of the present invention except that a gradient composition layer was not prepared, and was evaluated in the same manner. Due to the resulting band energy jump, an afterimage, which is considered to be caused by the residual charge at the layer interface, was observed from the start of printing.

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【表7】 [Table 7]

【0032】[0032]

【発明の効果】本発明においては、Cおよび/またはN
を含む表面層の光学バンドギャップエネルギーを2.0
〜2.6evとすることにより、膜中の欠陥を低く抑え
ながら、入射光を吸収もせず光導電層内で効率よく光電
荷を発生させることができ、さらに膜の電気抵抗も高い
値に維持できるので、表面層を0.7〜5.0μmと厚
膜化しても、光電荷が効率よく表面に到達して残像や画
像の白抜けのない良好な画像が得られる。また、本発明
においては、光導電層と表面層との間に傾斜組成層を設
けることにより、光導電層と表面層の組成の違いに起因
するバンドエネルギーのとびが無くなるので、光電荷が
より一層効率よく表面に到達し良好な画像が得られる。
したがって、本発明によれば、厚さ0.7〜5.0μm
の表面層を有しながらも、良好な画質を長期間保ち得る
耐刷力に優れた電子写真感光体が得られる。
According to the present invention, C and / or N
The optical band gap energy of the surface layer containing
By setting the value to ~ 2.6 ev, it is possible to efficiently generate photocharges in the photoconductive layer without absorbing incident light while keeping defects in the film low, and to maintain a high electric resistance of the film. Therefore, even if the thickness of the surface layer is increased to 0.7 to 5.0 [mu] m, the photocharge efficiently reaches the surface, and a good image with no afterimages or white spots on the image can be obtained. Further, in the present invention, the provision of the gradient composition layer between the photoconductive layer and the surface layer eliminates the band energy jump caused by the difference in the composition between the photoconductive layer and the surface layer, so that the photocharge is more increased. The surface can be more efficiently reached and a good image can be obtained.
Therefore, according to the present invention, a thickness of 0.7 to 5.0 μm
An electrophotographic photoreceptor having excellent printing durability and capable of maintaining good image quality for a long period of time while having a surface layer of (1) is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかる電子写真感光体の実施態様の
構造を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a structure of an embodiment of an electrophotographic photosensitive member according to the present invention.

【図2】 従来の電子写真感光体の構造を示す断面図で
ある。
FIG. 2 is a cross-sectional view illustrating a structure of a conventional electrophotographic photosensitive member.

【図3】 本発明にかかる電子写真感光体断面の組成分
布をAESにより測定したチャートである。
FIG. 3 is a chart showing the composition distribution of the cross section of the electrophotographic photosensitive member according to the present invention measured by AES.

【符号の説明】[Explanation of symbols]

1 導電性基材 2 電荷注入阻止層(a−Si系物質膜) 3 光導電層(a−Si系物質膜) 4 表面層(a−Si系物質膜) 5 傾斜組成層(a−Si系物質膜) REFERENCE SIGNS LIST 1 conductive substrate 2 charge injection blocking layer (a-Si based material film) 3 photoconductive layer (a-Si based material film) 4 surface layer (a-Si based material film) 5 gradient composition layer (a-Si based film) Material film)

フロントページの続き (72)発明者 小林 敏郎 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 河野 将樹 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 花中 勝保 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 2H068 DA05 DA07 DA15 DA17 DA20 DA23 FA03 Continued on the front page (72) Inventor Toshiro Kobayashi 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Inside Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Masaki Kono 4-6-kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture 22 Mitsubishi Heavy Industries, Ltd. Hiroshima Laboratory (72) Katsuho Hananaka 4-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Laboratory F-term (reference) 2H068 DA05 DA07 DA15 DA17 DA20 DA23 FA03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性基材上にアモルファスSi系物質
膜からなる光導電層を積層してなる電子写真感光体にお
いて、 光学バンドギャップエネルギーが2.0〜2.6ev、
膜厚が0.7〜5.0μmのCおよび/またはNを含む
アモルファスSi系物質膜からなる表面層を傾斜組成層
を介して設けたことを特徴とする電子写真感光体。
1. An electrophotographic photoreceptor comprising a photoconductive layer comprising an amorphous Si-based material film laminated on a conductive substrate, wherein the optical band gap energy is 2.0 to 2.6 ev.
An electrophotographic photoreceptor characterized in that a surface layer made of an amorphous Si-based material film containing C and / or N having a thickness of 0.7 to 5.0 μm is provided via a gradient composition layer.
JP18947198A 1998-07-03 1998-07-03 Electrophotographic photoreceptor Withdrawn JP2000019759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18947198A JP2000019759A (en) 1998-07-03 1998-07-03 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18947198A JP2000019759A (en) 1998-07-03 1998-07-03 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2000019759A true JP2000019759A (en) 2000-01-21

Family

ID=16241826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18947198A Withdrawn JP2000019759A (en) 1998-07-03 1998-07-03 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2000019759A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049327A1 (en) * 2004-11-05 2006-05-11 Canon Kabushiki Kaisha Electrophotographic photoreceptor and electrophotographic apparatus utilizing the same
JP2006154805A (en) * 2004-11-05 2006-06-15 Canon Inc Electrophotographic photoreceptor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049327A1 (en) * 2004-11-05 2006-05-11 Canon Kabushiki Kaisha Electrophotographic photoreceptor and electrophotographic apparatus utilizing the same
JP2006154805A (en) * 2004-11-05 2006-06-15 Canon Inc Electrophotographic photoreceptor
JP4683637B2 (en) * 2004-11-05 2011-05-18 キヤノン株式会社 Electrophotographic photosensitive member and electrophotographic apparatus

Similar Documents

Publication Publication Date Title
US4659639A (en) Photosensitive member with an amorphous silicon-containing insulating layer
US7229731B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus using the electrophotographic photosensitive member
WO2006062260A1 (en) Electrophotographic photoreceptor
EP1014226B1 (en) Electrophotographic method and apparatus
US6272301B1 (en) Image forming apparatus featuring a rotatable electroconductive foam member
US20050026057A1 (en) Electrophotographic photosensitive member
JPH0711706B2 (en) Electrophotographic photoreceptor
JP2000019759A (en) Electrophotographic photoreceptor
JPH06250425A (en) Electrophotographic sensitive body
DE69613875T2 (en) Electrophotographic light-receiving element, electrophotographic apparatus comprising this electrophotographic element and electrophotographic method using this electrophotographic element
EP2422239B1 (en) Electrophotographic photosensitive member and electrophotographic apparatus
US4677044A (en) Multi-layered electrophotographic photosensitive member having amorphous silicon
JP3733246B2 (en) Electrophotographic apparatus and electrophotographic method
JP4683637B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
US20070231005A1 (en) Electrophotographic Photosensitive Member and Image Forming Apparatus Using Same
US6110631A (en) Photoconductor for electrophotography and method of manufacturing and using a photoconductor
JP2001318516A (en) Electrophotographic method, device and photoreceptor
US6771389B1 (en) Electrophotographic image formation apparatus
JP2006189822A (en) Electrophotographic photoreceptor
JP2006189823A (en) Electrophotographic photoreceptor
JP2001142356A (en) Image forming device
JP2006133522A (en) Electrophotographic photoreceptor
JP2009288804A (en) Image forming method
JP4500878B2 (en) Method for producing electrophotographic photosensitive member
JP2002031905A (en) Light receiving member for electrophotography, method for evaluating the same and electrophotographic device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906