JP2000012881A - Compound semiconductor light receiving device - Google Patents
Compound semiconductor light receiving deviceInfo
- Publication number
- JP2000012881A JP2000012881A JP10176925A JP17692598A JP2000012881A JP 2000012881 A JP2000012881 A JP 2000012881A JP 10176925 A JP10176925 A JP 10176925A JP 17692598 A JP17692598 A JP 17692598A JP 2000012881 A JP2000012881 A JP 2000012881A
- Authority
- JP
- Japan
- Prior art keywords
- light receiving
- compound semiconductor
- semiconductor light
- type
- receiving device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 52
- 150000001875 compounds Chemical class 0.000 title claims description 40
- 239000013078 crystal Substances 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 11
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 239000010936 titanium Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 10
- 230000007774 longterm Effects 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 6
- 238000004544 sputter deposition Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 4
- 230000008020 evaporation Effects 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 abstract 1
- 238000009413 insulation Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 27
- 230000001681 protective effect Effects 0.000 description 26
- 230000006866 deterioration Effects 0.000 description 12
- 238000012360 testing method Methods 0.000 description 10
- 229920001721 polyimide Polymers 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 239000009719 polyimide resin Substances 0.000 description 6
- 238000000151 deposition Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Drying Of Semiconductors (AREA)
- Photovoltaic Devices (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は化合物半導体素子の
結晶表面に保護膜を設けた化合物半導体受光素子に関
し、保護膜としてIVb族金属元素の酸化物からなる絶
縁膜を設けた化合物半導体受光装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor light receiving device having a protective film provided on a crystal surface of a compound semiconductor device, and more particularly to a compound semiconductor light receiving device having an insulating film made of an oxide of a Group IVb metal element as a protective film. .
【0002】[0002]
【従来の技術】化合物半導体受光素子の結晶表面を保護
するために、その表面に保護膜を設けることは、従来か
ら公知であり、特に、保護膜として酸化ケイ素または窒
化ケイ素を用いた場合の研究が盛んに行われている。こ
れらに関する研究の中で、pn接合を結晶表面に露出さ
せた構造を有する半導体受光素子においては、表面保護
膜の形成前又は形成後における結晶表面の酸化、又は表
面保護膜形成時における結晶表面へのダメージ(欠
陥)、もしくは表面保護膜自身の特性不良などに起因す
る素子特性の劣化が問題とされており、これらについて
の報告が数多くなされている。例えば、ヒューレット・
パッカード ジャーナル(HEWLETT-PACKARD JOURNAL.p6
9-75 OCTOBER 1989)のR.Sloanによる論文”Pro
cessing and Passivasion Techniques for Fabrication
of High-Speed InP/InGaAs/InP Mesa Photodetector
s”では、メサ型受光素子の結晶表面に対して、酸化ケ
イ素や窒化ケイ素などの絶縁膜を表面保護膜として被着
する試みがなされているが、これらの膜では被着後にお
ける素子暗電流の劣化がみられることを明らかにしてい
る。また、この報告では、上記結晶表面の保護膜として
ポリイミド樹脂膜を用いることにより、保護膜の被着に
ともなう素子暗電流の劣化を抑制できることが実験的に
示されている。これに関しては、結晶表面保護膜とし
て、ポリイミド樹脂膜を使った化合物半導体受光素子の
構造に関する発明が本発明者らによって特許出願されて
いる(特願平2−276237号)。2. Description of the Related Art In order to protect a crystal surface of a compound semiconductor light-receiving element, it has been known to provide a protective film on the surface of the compound semiconductor light-receiving element. In particular, studies have been made on the case where silicon oxide or silicon nitride is used as the protective film. Is being actively conducted. In studies on these, in semiconductor light-receiving devices having a structure in which a pn junction is exposed on the crystal surface, oxidation of the crystal surface before or after the formation of the surface protective film, or oxidation of the crystal surface during the formation of the surface protective film. There is a problem that the element characteristics are degraded due to damage (defect) of the surface protection film or defective characteristics of the surface protective film itself. Many reports have been made on these problems. For example, Hewlett
Packard Journal (HEWLETT-PACKARD JOURNAL.p6
9-75 OCTOBER 1989). Thesis by Sloan "Pro
cessing and Passivasion Techniques for Fabrication
of High-Speed InP / InGaAs / InP Mesa Photodetector
In s ”, attempts have been made to apply an insulating film such as silicon oxide or silicon nitride as a surface protective film to the crystal surface of the mesa-type light receiving element. In addition, this report shows that the use of a polyimide resin film as the protective film on the crystal surface can suppress the deterioration of the dark current of the device due to the deposition of the protective film. In this regard, the present inventors have filed a patent application for an invention relating to the structure of a compound semiconductor light receiving element using a polyimide resin film as a crystal surface protective film (Japanese Patent Application No. 2-276237). ).
【0003】[0003]
【発明が解決しようとする課題】上記公報に開示されて
いるように、化合物半導体受光素子の保護膜として、ポ
リイミド樹脂膜を用いた場合は、保護膜の被着にともな
う受光素子の暗電流の劣化がある程度抑制できる効果が
ある。しかしながら、ポリイミド樹脂膜を結晶保護膜に
用いた受光素子の高温加速劣化試験での長期安定性を考
慮した場合、ポリイミド樹脂膜は熱的安定性に乏しいた
め、長期高温雰囲気中でのポリイミド樹脂膜自身の経時
劣化等によって受光素子の暗電流特性に悪影響を及ぼす
恐れがある。そのため、化合物半導体受光素子の結晶表
面の保護膜として、さらに好適なものが望まれている。As disclosed in the above publication, when a polyimide resin film is used as a protective film for a compound semiconductor light receiving element, the dark current of the light receiving element due to the attachment of the protective film is reduced. There is an effect that deterioration can be suppressed to some extent. However, when considering the long-term stability of a photodetector using a polyimide resin film as a crystal protective film in a high-temperature accelerated deterioration test, the polyimide resin film has poor thermal stability, so the polyimide resin film in a long-term high-temperature atmosphere The dark current characteristics of the light receiving element may be adversely affected due to deterioration with time of the device itself. Therefore, a more suitable protective film on the crystal surface of the compound semiconductor light receiving element is desired.
【0004】本発明の目的は、化合物半導体受光素子特
性の長期安定性を確保することが可能な結晶表面保護膜
を有する化合物半導体受光装置を提供するものである。An object of the present invention is to provide a compound semiconductor light receiving device having a crystal surface protective film capable of securing long-term stability of compound semiconductor light receiving element characteristics.
【0005】[0005]
【課題を解決するための手段】本発明は、上記目的を達
成するために、少なくとも1つのpn接合を有する化合
物半導体受光装置において、化合物半導体受光装置を構
成する化合物半導体受光素子の結晶表面に、熱的安定性
に優れる保護膜としてチタン、ジルコニウム、ハフニウ
ムのIVb族金属元素の少なくとも1つの酸化物を有す
る絶縁膜を設けたことを特徴としている。(図1〜3参
照)。また、上記化合物半導体受光素子において、前記
化合物半導体の結晶表面にpn接合が露出している構造
を有することを特徴としている(図1〜3参照)。さら
に、前記化合物半導体受光素子は少なくともGaを含む
半導体で形成されていることを特徴としている(図1〜
3参照)。また、前記化合物半導体受光素子をメサ型構
造にしたことを特徴としている(図1及び図2参照)。
また、化合物半導体受光素子の結晶表面が(110)面
の結晶方位を有することを特徴としている(図3参
照)。In order to achieve the above object, the present invention provides a compound semiconductor light receiving device having at least one pn junction, wherein the compound semiconductor light receiving device comprises: As a protective film having excellent thermal stability, an insulating film having at least one oxide of a Group IVb metal element of titanium, zirconium, and hafnium is provided. (See FIGS. 1-3). Further, the compound semiconductor light receiving element has a structure in which a pn junction is exposed on a crystal surface of the compound semiconductor (see FIGS. 1 to 3). Further, the compound semiconductor light receiving element is characterized by being formed of a semiconductor containing at least Ga (FIG. 1).
3). Further, the compound semiconductor light receiving element has a mesa structure (see FIGS. 1 and 2).
Further, the compound semiconductor light receiving element is characterized in that the crystal surface has a (110) crystal orientation (see FIG. 3).
【0006】[0006]
【発明の実施の形態】本発明の化合物半導体受光装置
は、pn接合が露出している面入射型または導波路型の
半導体受光素子部の結晶表面を、チタン、ジルコニウ
ム、ハフニウムのIVb族金属元素の少なくとも1つの
酸化物を有する絶縁膜で被覆する。この絶縁膜を採用す
ることによって、半導体受光素子特性の長期安定性を確
保できる。BEST MODE FOR CARRYING OUT THE INVENTION In the compound semiconductor light receiving device of the present invention, the crystal surface of a surface-incidence type or waveguide type semiconductor light receiving element portion where a pn junction is exposed is formed by using an IVb group metal element of titanium, zirconium or hafnium. Is covered with an insulating film having at least one oxide. By employing this insulating film, long-term stability of the characteristics of the semiconductor light receiving element can be ensured.
【0007】次に本発明の実施例を詳細に説明する。図
1は本発明の化合物半導体受光装置の第1の実施例を説
明するための図である。本実施例は、化合物半導体受光
装置を面入射型受光素子を用いて構成したものであり、
同図はその面入射型受光素子の断面構造を示している。
本実施例における面入射型受光素子は、同図に示されて
いるように、n型InP基板7上に分子線エピタキシ法で
成長されたp型InGaAs層9、p型InAlAs層1
1およびアンドープInGaAs/InAlAs超格子
層13およびn型InAlAs層15を有する結晶をケ
ミカルエッチングによりメサ型構造にし、その結晶表面
にTiO2膜3をスパッタ法により形成し、その上にT
i/Au電極1を蒸着によって形成することによって完
成される。なお、裏面にはAuGeNi/Pd/Au電
極17が形成される。本実施例では、p型InAlAs
層11〜n型InAlAs層15の間でpn接合が形成
され、その部分がTiO2からなる絶縁膜で被覆されて
いる。Next, embodiments of the present invention will be described in detail. FIG. 1 is a view for explaining a first embodiment of the compound semiconductor light receiving device of the present invention. In the present embodiment, the compound semiconductor light receiving device is configured by using a surface incident type light receiving element,
FIG. 1 shows a cross-sectional structure of the surface illuminated light receiving element.
As shown in the figure, the surface illuminated light receiving element in this embodiment includes a p-type InGaAs layer 9 and a p-type InAlAs layer 1 grown on a n-type InP substrate 7 by a molecular beam epitaxy method.
1 and an undoped InGaAs / InAlAs superlattice layer 13 and an n-type InAlAs layer 15 are formed into a mesa structure by chemical etching, and a TiO2 film 3 is formed on the crystal surface by a sputtering method.
It is completed by forming the i / Au electrode 1 by vapor deposition. Note that an AuGeNi / Pd / Au electrode 17 is formed on the back surface. In this embodiment, the p-type InAlAs
A pn junction is formed between the layers 11 to the n-type InAlAs layer 15, and the pn junction is covered with an insulating film made of TiO2.
【0008】図2は本発明の化合物半導体装置の第2の
実施例を説明するための図である。本実施例は、化合物
半導体装置を導波路型受光素子を用いて構成したもので
あり、同図はその導波路型受光素子の断面構造を示して
いる。本実施例における導波路型受光素子は、同図に示
されているように、p型InP基板21上に分子線エピタ
キシ成長されたn型InGaAs層29、n型InAlA
s層15、n型InAlGaAs層23、アンドープI
nAlGaAs層25及びp型InAlGaAs層27
及びp型InAlAs層11を有する結晶表面に、Zr
O2膜2をスパッタ法により被着させた後、Ti/Pt
/Au電極19を形成することによって完成される。な
お、裏面には、第1の実施例と同様に、AuGeNi/
Pd/Au電極17が形成される。FIG. 2 is a view for explaining a second embodiment of the compound semiconductor device of the present invention. In this embodiment, a compound semiconductor device is configured using a waveguide type light receiving element, and FIG. 2 shows a cross-sectional structure of the waveguide type light receiving element. As shown in the figure, an n-type InGaAs layer 29 grown by molecular beam epitaxy on a p-type InP substrate 21 and an n-type InAlA
s layer 15, n-type InAlGaAs layer 23, undoped I
nAlGaAs layer 25 and p-type InAlGaAs layer 27
And Zr on the crystal surface having the p-type InAlAs layer 11.
After depositing the O2 film 2 by sputtering, Ti / Pt
/ Au electrode 19 is formed. In addition, on the back surface, similarly to the first embodiment, AuGeNi /
A Pd / Au electrode 17 is formed.
【0009】図3は本発明の化合物半導体装置の第3の
実施例を説明するための図である。本実施例は、第2の
実施例と同様の構造(p型InP基板21、p型InAl
As層11、p型InAlGaAs層27、アンドープ
InAlGaAs層25、n型InAlGaAs層2
3、n型InAlAs層15、n型InGaAs層2
9)をもった導波路型受光素子を用いたものである。本
実施例では、導波路型受光素子の(110)面31の面
方位の結晶表面に、ZrO2膜2をスパッタ法により被
着させることによって完成される。FIG. 3 is a view for explaining a third embodiment of the compound semiconductor device of the present invention. This embodiment has the same structure as the second embodiment (p-type InP substrate 21, p-type InAl
As layer 11, p-type InAlGaAs layer 27, undoped InAlGaAs layer 25, n-type InAlGaAs layer 2
3, n-type InAlAs layer 15, n-type InGaAs layer 2
In this case, a waveguide type light receiving element having 9) is used. This embodiment is completed by depositing the ZrO2 film 2 on the crystal surface in the plane orientation of the (110) plane 31 of the waveguide type light receiving element by sputtering.
【0010】本発明では、受光素子の半導体にGaを含
ませているため、バンドギャップを変化させるなど設計
時の余裕度を向上させることができる。なお、上記第1
〜第3の実施例では、結晶表面保護膜としてのIVb族
金属元素の酸化物からなる絶縁膜をスパッタ法によって
接着しているが、CVD法或いはEB(Electron Bea
m)蒸着によってでも形成でき、同様の構成を形成でき
る。In the present invention, since Ga is included in the semiconductor of the light receiving element, the margin at the time of design can be improved by changing the band gap. In addition, the first
In the third to third embodiments, an insulating film made of an oxide of a Group IVb metal element as a crystal surface protective film is adhered by sputtering, but the CVD method or EB (Electron Bea
m) It can also be formed by vapor deposition, and a similar configuration can be formed.
【0011】図4は、面入射型受光素子の逆バイアス電
圧変化率―高温加速劣化試験時間の特性を示す図であ
る。高温加速劣化試験は、温度200℃、窒素雰囲気中
で素子に100μAの一定電流を流す条件で行った。図
4において、実線で示された特性は、上記第1の実施例
で説明したIVb族金属元素との酸化物からなる絶縁膜
を結晶表面保護膜として有する構造の素子特性であり、
点線で示された特性は従来のポリイミド膜を結晶表面保
護膜として用いた構造の素子である。同図から明らかな
ように、第1の実施例の構造を有する面入射型受光素子
の特性が、従来構造の面入射型受光素子の特性に比較し
て高温加速劣化試験における逆バイアス電圧の変化が殆
ど生じないことがわかる。なお、実験の結果、結晶表面
保護膜としてTiO2、ZrO2に代わりHfO2を用い
ても同様の効果があることがわかった。FIG. 4 is a graph showing the relationship between the reverse bias voltage change rate and the high temperature accelerated deterioration test time of the surface illuminated light receiving element. The high-temperature accelerated deterioration test was performed under a condition in which a constant current of 100 μA was passed through the device in a nitrogen atmosphere at a temperature of 200 ° C. In FIG. 4, the characteristics shown by the solid line are the device characteristics of the structure having the insulating film made of the oxide with the Group IVb metal element as the crystal surface protective film described in the first embodiment,
The characteristic shown by the dotted line is an element having a structure using a conventional polyimide film as a crystal surface protective film. As can be seen from the drawing, the characteristics of the surface illuminated light receiving element having the structure of the first embodiment are different from the characteristics of the surface illuminated light receiving element of the conventional structure in the change of the reverse bias voltage in the high temperature accelerated deterioration test. It can be seen that almost no occurrence occurs. As a result of the experiment, it was found that the same effect was obtained by using HfO2 instead of TiO2 and ZrO2 as the crystal surface protective film.
【0012】図5は、導波路型受光素子の暗電流変化率
―高温加速劣化試験時間の特性を示す図である。高温加
速劣化試験は、温度200℃、窒素雰囲気中で素子に+
10Vの一定電圧を印可する条件で行った。図5におい
て、実線で示された特性は上記第2の実施例で説明した
IVb族金属元素との酸化物からなる絶縁膜を結晶表面
保護膜として有する構造の素子特性であり、点線で示さ
れた特性は従来のポリイミド膜を結晶表面保護膜として
用いた構造の素子である。同図から明らかなように、第
2の実施例の構造を有する導波路型受光素子の特性が、
従来構造の導波路型受光素子の特性に比較して高温加速
劣化試験における暗電流の変化が殆ど生じないことがわ
かる。FIG. 5 is a graph showing a characteristic of a dark current change rate-high temperature accelerated deterioration test time of a waveguide type light receiving element. The high-temperature accelerated deterioration test is performed by adding +
The test was performed under the condition that a constant voltage of 10 V was applied. In FIG. 5, the characteristic shown by the solid line is the element characteristic of the structure having the insulating film made of the oxide with the Group IVb metal element as the crystal surface protective film described in the second embodiment, and is shown by the dotted line. The characteristic is that of a device having a structure using a conventional polyimide film as a crystal surface protective film. As is clear from the figure, the characteristics of the waveguide type light receiving element having the structure of the second embodiment are as follows.
It can be seen that there is almost no change in the dark current in the high-temperature accelerated deterioration test as compared with the characteristics of the waveguide type light receiving element having the conventional structure.
【0013】また、本発明の第3の実施例で説明した構
造の導波路型受光素子の特性も、図5に示されたのと同
様の結果が得られた。これは、IVb族金属元素の酸化
物からなる絶縁膜は熱的安定性に優れるため、高温雰囲
気中での化合物半導体結晶表面もしくは膜自身の経時劣
化にともなう素子暗電流の増加を回避しているためと考
えられる。The characteristics of the waveguide type light receiving element having the structure described in the third embodiment of the present invention have the same results as those shown in FIG. This is because an insulating film made of an oxide of a Group IVb metal element has excellent thermal stability, and thus avoids an increase in element dark current due to the aging of the compound semiconductor crystal surface or the film itself in a high-temperature atmosphere. It is thought to be.
【0014】上記実施例では表面保護膜としてIVb族
金属元素の酸化物からなる絶縁膜を単層にした例を示し
たが、さらにその上を別の絶縁膜で被覆することによっ
て表面保護膜を二層以上にする構成を採用してもよい。In the above embodiment, an example is shown in which an insulating film made of an oxide of a Group IVb metal element is formed as a single layer as the surface protective film. However, the surface protective film is further covered with another insulating film to form the surface protective film. A configuration having two or more layers may be adopted.
【0015】[0015]
【発明の効果】本発明の実施例によれば、pn接合を有
する化合物半導体受光装置において、化合物半導体結晶
表面を、チタン、ジルコニウム、ハフニウムのIVb族
金属元素の少なくとも1つの酸化物を有する絶縁膜で被
覆して結晶表面を保護することによって、素子特性の長
期安定性を確保することが可能である。According to the embodiment of the present invention, in a compound semiconductor light receiving device having a pn junction, an insulating film having at least one oxide of a group IVb metal element of titanium, zirconium and hafnium in a compound semiconductor crystal surface. Protecting the crystal surface by coating with, it is possible to ensure long-term stability of device characteristics.
【図1】本発明による半導体装置の面入射型受光素子の
断面図を示す。FIG. 1 is a sectional view of a surface-illuminated light-receiving element of a semiconductor device according to the present invention.
【図2】本発明による半導体装置の導波路型受光素子の
断面図を示す。FIG. 2 is a sectional view of a waveguide type light receiving element of the semiconductor device according to the present invention.
【図3】本発明による半導体装置の導波路型受光素子の
斜視図を示す。FIG. 3 is a perspective view of a waveguide type light receiving element of the semiconductor device according to the present invention.
【図4】本発明による半導体装置の面入射型受光素子の
逆バイアス電圧変化率―高温加速劣化試験時間の特性を
示すグラフ図。FIG. 4 is a graph showing characteristics of a reverse bias voltage change rate-high-temperature accelerated deterioration test time of a surface-illuminated light-receiving element of a semiconductor device according to the present invention.
【図5】本発明による半導体装置の導波路型受光素子の
暗電流変化率―高温加速劣化試験時間の特性を示すグラ
フ図。FIG. 5 is a graph showing characteristics of a dark current change rate-high-temperature accelerated deterioration test time of a waveguide type light receiving element of a semiconductor device according to the present invention.
1…Ti/Au電極、2…ZrO2膜、3…TiO2膜、
7…n型InP基板、9…p型InGaAs層、11…
p型InAlAs層、13…アンドープInAlAs/
InGaAs超格子層、15…n型InAlAs層、1
7…AuGeNi/Pd/Au電極、19…Ti/Pt
/Au電極、21…p型InP基板、23…n型InA
lGaAs層、25…アンドープInAlGaAs層、
27…p型InAlGaAs層,29…n型InGaA
s層、31…(110)面。1 ... Ti / Au electrode, 2 ... ZrO2 film, 3 ... TiO2 film,
7 ... n-type InP substrate, 9 ... p-type InGaAs layer, 11 ...
p-type InAlAs layer, 13 ... undoped InAlAs /
InGaAs superlattice layer, 15 ... n-type InAlAs layer, 1
7 ... AuGeNi / Pd / Au electrode, 19 ... Ti / Pt
/ Au electrode, 21 ... p-type InP substrate, 23 ... n-type InA
lGaAs layer, 25 undoped InAlGaAs layer,
27 ... p-type InAlGaAs layer, 29 ... n-type InGaAs
s layer, 31 ... (110) plane.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 均 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5F004 DB19 DB32 EA10 EB08 FA08 5F051 AA08 BA18 DA01 DA03 DA20 EA18 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hitoshi Nakamura 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 5F004 DB19 DB32 EA10 EB08 FA08 5F051 AA08 BA18 DA01 DA03 DA20 EA18
Claims (5)
半導体受光装置において、該化合物半導装体受光装置を
構成する化合物半導体結晶表面をチタン、ジルコニウ
ム、ハフニウムのIVb族金属元素の少なくとも1つの
酸化物を有する絶縁膜で被覆したことを特徴とする化合
物半導体受光装置。1. A compound semiconductor light receiving device having at least one pn junction, wherein the compound semiconductor crystal surface constituting the compound semiconductor light receiving device has at least one oxide of an IVb group metal element of titanium, zirconium and hafnium. A compound semiconductor light receiving device covered with an insulating film having:
いて、前記化合物半導体受光装置の結晶表面にpn接合
が露出している構造を有することを特徴とする化合物半
導体受光装置。2. The compound semiconductor light receiving device according to claim 1, wherein said compound semiconductor light receiving device has a structure in which a pn junction is exposed on a crystal surface of said compound semiconductor light receiving device.
体受光装置において、前記化合物半導体素子は少なくと
もGaを含む半導体からなっていることを特徴とする化
合物半導体受光素子。3. The compound semiconductor light receiving device according to claim 1, wherein said compound semiconductor element is made of a semiconductor containing at least Ga.
化合物半導体受光装置において、前記化合物半導体素子
をメサ型構造にしたことを特徴とする化合物半導体受光
素子。4. The compound semiconductor light receiving device according to claim 1, wherein said compound semiconductor device has a mesa structure.
化合物半導体受光装置において、前記化合物半導体素子
の結晶表面が(110)面の結晶方位を有することを特
徴とする化合物半導体受光素子。5. The compound semiconductor light receiving device according to claim 1, wherein a crystal surface of said compound semiconductor device has a crystal orientation of a (110) plane. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10176925A JP2000012881A (en) | 1998-06-24 | 1998-06-24 | Compound semiconductor light receiving device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10176925A JP2000012881A (en) | 1998-06-24 | 1998-06-24 | Compound semiconductor light receiving device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000012881A true JP2000012881A (en) | 2000-01-14 |
Family
ID=16022161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10176925A Pending JP2000012881A (en) | 1998-06-24 | 1998-06-24 | Compound semiconductor light receiving device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000012881A (en) |
-
1998
- 1998-06-24 JP JP10176925A patent/JP2000012881A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4220688B2 (en) | Avalanche photodiode | |
JP2762939B2 (en) | Superlattice avalanche photodiode | |
US4692207A (en) | Process for the production of an integrated laser-photodetector structure | |
US8659053B2 (en) | Semiconductor light detecting element | |
US20040248334A1 (en) | Method for fabricating at least one mesa or ridge structure or at least one electrically pumped region in a layer or layer sequence | |
US20030089958A1 (en) | Low dark current photodiode | |
JP2002164622A (en) | Semiconductor optical element | |
JP5501814B2 (en) | Avalanche photodiode | |
US20110303949A1 (en) | Semiconductor light-receiving element | |
US20070057299A1 (en) | Systems and methods having a metal-semiconductor-metal (msm) photodetector with buried oxide layer | |
JP3093774B2 (en) | Electrode structure | |
JP4861388B2 (en) | Avalanche photodiode | |
US20050056862A1 (en) | Photo-diode and method for fabricating the same | |
JPH0582829A (en) | Semiconductor light receiving element | |
JP2000012881A (en) | Compound semiconductor light receiving device | |
JP2937166B2 (en) | Avalanche photodiode | |
JP3670740B2 (en) | Compound semiconductor photo detector | |
US11749773B2 (en) | Avalanche photodiode and method for manufacturing same | |
JPS5848479A (en) | Semiconductor light detector | |
JPH0542837B2 (en) | ||
JPH02196474A (en) | Semiconductor photodetector | |
JPH03297173A (en) | Semiconductor optical detector device | |
JP2776228B2 (en) | Manufacturing method of semiconductor light receiving element | |
US7687874B2 (en) | Surface illuminated photodiode and optical receiver module | |
JP3238823B2 (en) | Light receiving element |