[go: up one dir, main page]

JP2000012666A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JP2000012666A
JP2000012666A JP18974598A JP18974598A JP2000012666A JP 2000012666 A JP2000012666 A JP 2000012666A JP 18974598 A JP18974598 A JP 18974598A JP 18974598 A JP18974598 A JP 18974598A JP 2000012666 A JP2000012666 A JP 2000012666A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
insulating layer
electrode
volume resistivity
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18974598A
Other languages
Japanese (ja)
Inventor
Mamoru Ishii
守 石井
Motohiro Umetsu
基宏 梅津
Hironori Ishida
弘徳 石田
Seiichi Tanji
清一 丹治
Keizo Tsukamoto
恵三 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP18974598A priority Critical patent/JP2000012666A/en
Publication of JP2000012666A publication Critical patent/JP2000012666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrostatic chuck with large electrostatic attraction and less contamination on an attracted body by forming an insulation layer mainly with zirconia with an oxygen defect and adjusting volume resistivity in a proper range. SOLUTION: In an electrostatic chuck 1, an electrode 2 is provided between upper and lower insulation layers 3 and the electrostatic chuck 1 is fixed on a substrate 4. A DC current 5 is connected to the electrode 2 and a semiconductor wafer W that is placed on an attraction surface 3a of the insulation layers 3 is electrostatically attracted by feeding power to the electrode 2. Then, the insulation layer 3 is formed mainly by zirconia with an oxygen loss, and the volume resistivity of the insulation layer 3 is adjusted to 108-1014 Ωcm. Then, the zirzonia has a high plasma resistance a higher generation free energy in a halogenation reaction than titanium, is stable against such plasma as CF4, and allows the volume resistivity to be adjusted, thus obtaining large attraction without poorly affecting a circuit formed by a semiconductor wafer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極上に絶縁層を
有し、電極に電極を印加することにより絶縁層上に半導
体ウエハ等の被吸着体を静電吸着する静電チャックに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck having an insulating layer on an electrode and applying an electrode to the electrode to electrostatically adsorb an object such as a semiconductor wafer on the insulating layer.

【0002】[0002]

【従来の技術】減圧雰囲気中で半導体ウエハ等の被吸着
体を固定するための治具として、電極上に絶縁層を有
し、該電極に電圧を印加することにより絶縁層上に被吸
着体を静電吸着する静電チャックが使用されており、こ
のような静電チャックとしては絶縁層をアルミナ等の絶
縁性の高いセラミックスにより形成したものが知られて
いる。
2. Description of the Related Art As a jig for fixing an object to be adsorbed such as a semiconductor wafer in a reduced-pressure atmosphere, an insulating layer is provided on an electrode, and a voltage is applied to the electrode to apply the object to the object on the insulating layer. An electrostatic chuck that electrostatically adsorbs the same is used, and as such an electrostatic chuck, one in which an insulating layer is formed of a highly insulating ceramic such as alumina is known.

【0003】静電チャックの絶縁層としてアルミナ等の
高絶縁性材料を用いる場合、電極および被吸着体に誘起
された電荷の間に発生する静電吸着力(クーロン力)を
用いるため、高い静電吸着力を得るには、絶縁層の厚さ
を0.1mm以下にしなければならず、加工中に破損す
る可能性が高い。
When a highly insulating material such as alumina is used as an insulating layer of an electrostatic chuck, an electrostatic attraction force (Coulomb force) generated between an electrode and an electric charge induced on an object to be attracted is used. In order to obtain an electroadhesive force, the thickness of the insulating layer must be 0.1 mm or less, and there is a high possibility that the insulating layer will be broken during processing.

【0004】そこで、薄い絶縁層を形成しなくても高い
静電吸着力を得るため、アルミナ等の絶縁層にチタニア
を添加して、絶縁層の体積抵抗率を下げ、電荷の移動を
可能として静電吸着力を向上させるということが提案さ
れている(特開昭62−94953号、特開平2−20
6147号、特開平3−147843号、特開平3−2
04924号各公報参照)。すなわち、絶縁層の体積抵
抗率を下げることにより、電荷が絶縁層表面に誘起さ
れ、被吸着体に誘起された電荷との間に静電吸着力が働
くため、薄い絶縁層を形成しなくとも、高い静電吸着力
が得られる。
Therefore, in order to obtain a high electrostatic attraction force without forming a thin insulating layer, titania is added to an insulating layer such as alumina to lower the volume resistivity of the insulating layer and make it possible to transfer charges. It has been proposed to improve the electrostatic attraction force (JP-A-62-94953, JP-A-2-20).
6147, JP-A-3-147843, JP-A-3-2
No. 04924). That is, by lowering the volume resistivity of the insulating layer, electric charges are induced on the surface of the insulating layer, and an electrostatic attraction force acts between the electric charges induced on the object to be adsorbed. And a high electrostatic attraction force can be obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うなチタニアを添加した絶縁層を有する静電チャックを
プラズマ中で使用すると、絶縁層表面に露出したチタニ
アがプラズマにより侵食され、半導体ウエハを接触させ
た際に、半導体ウエハ裏面がパーティクルにより汚染さ
れ易いという問題があった。
However, when such an electrostatic chuck having an insulating layer to which titania is added is used in plasma, the titania exposed on the surface of the insulating layer is eroded by the plasma, causing the semiconductor wafer to come into contact. In this case, there is a problem that the back surface of the semiconductor wafer is easily contaminated by particles.

【0006】本発明は、上記のような事情に鑑みてなさ
れたものであり、高い静電吸着力を有し、吸着した被吸
着体の汚染が少ない静電チャックを提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide an electrostatic chuck having a high electrostatic attraction force and less contamination of the attracted object. .

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、絶縁層を酸素欠損を
有するジルコニアを主体とし、その体積抵抗率を適切な
範囲に調整することにより、被吸着体の汚染の問題を生
じることなくジョンセン・ラーベック力によって高い静
電吸着力を有する静電チャックが得られることを知見
し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have found that the insulating layer is mainly made of zirconia having oxygen deficiency and its volume resistivity is adjusted to an appropriate range. As a result, the present inventors have found that an electrostatic chuck having a high electrostatic attraction force can be obtained by the Johnsen-Rahbek force without causing the problem of contamination of the to-be-adsorbed body, and have completed the present invention.

【0008】すなわち、本発明は、電極と、その上に設
けられた絶縁層とを有し、電極に電圧を印加することに
より、絶縁層上に被吸着体を静電吸着する静電チャック
であって、前記絶縁層は、酸素欠損を有するジルコニア
を主体とし、絶縁層の体積抵抗率が108〜1014Ωc
mであることを特徴とする静電チャックを提供するもの
である。
That is, the present invention relates to an electrostatic chuck which has an electrode and an insulating layer provided thereon, and applies a voltage to the electrode to electrostatically adsorb the object to be attracted onto the insulating layer. The insulating layer is mainly made of zirconia having oxygen deficiency, and has a volume resistivity of 10 8 to 10 14 Ωc.
m is provided.

【0009】[0009]

【発明の実施の形態】以下、添付図面を参照して、本発
明の実施の形態について説明する。図1および図2は、
本発明の実施形態に係る静電チャックを示す断面図であ
り、図1は単極型のものを示し、図2は双極型ものを示
す。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 and FIG.
It is sectional drawing which shows the electrostatic chuck which concerns on embodiment of this invention, FIG. 1: shows a monopolar type | mold, FIG. 2: shows a bipolar type.

【0010】図1の単極型の静電チャック1は、上下の
絶縁層3の間に電極2が設けられて構成されており、基
台4の上に固定されている。電極2には直流電源5が接
続されており、この直流電源5から電極2に給電される
ことにより、上の絶縁層3の吸着面3aに載置されてい
る被吸着体である半導体ウエハWが静電吸着される。
The single-electrode type electrostatic chuck 1 of FIG. 1 has an electrode 2 provided between upper and lower insulating layers 3 and is fixed on a base 4. A DC power supply 5 is connected to the electrode 2. When power is supplied from the DC power supply 5 to the electrode 2, the semiconductor wafer W, which is an object to be sucked, is placed on the suction surface 3 a of the insulating layer 3 above. Is electrostatically attracted.

【0011】図2の双極型の静電チャック1’は、上下
の絶縁層3の間に一対の電極2a、2bが設けられてお
り、これらに電源5が接続されており、電源5からこれ
らの電極にそれぞれ逆極性の電荷が供給されて上の絶縁
層3の吸着面3aに載置されている半導体ウエハWが静
電吸着される。
In the bipolar electrostatic chuck 1 'shown in FIG. 2, a pair of electrodes 2a and 2b are provided between upper and lower insulating layers 3, and a power source 5 is connected to these electrodes. The electrodes having the opposite polarities are respectively supplied with the electrodes, and the semiconductor wafer W mounted on the suction surface 3a of the upper insulating layer 3 is electrostatically attracted.

【0012】絶縁層3は、酸素欠損を有するジルコニア
を主体とし、絶縁層3の体積抵抗率が108〜1014Ω
cmである。絶縁層3を構成する材料としてジルコニア
を用いるのは、ジルコニアが高い耐プラズマ性を有する
からである。ジルコニアは、チタニアよりハロゲン化反
応における生成自由エネルギーが高く、CF4等のブラ
ズマに対してより安定である。また、ジルコニアの体積
抵抗率は、結晶中に酸素欠損を形成することにより調整
することが可能である。
The insulating layer 3 is mainly made of zirconia having oxygen deficiency, and has a volume resistivity of 10 8 to 10 14 Ω.
cm. Zirconia is used as a material for forming the insulating layer 3 because zirconia has high plasma resistance. Zirconia has a higher free energy of formation in the halogenation reaction than titania and is more stable against plasma such as CF 4 . The volume resistivity of zirconia can be adjusted by forming oxygen vacancies in the crystal.

【0013】このように、絶縁層3は、酸素欠損を有す
るジルコニアを主体とし、その体積抵抗率が108〜1
14Ωcmに調整されるが、この範囲に体積抵抗率を調
整することにより、半導体ウエハに形成された回路に悪
影響を及ぼすことなく高い吸着力を得ることができる。
つまり、108Ωcm未満では吸着したウエハに大きな
リーク電流が流れて、ウエハに形成された回路が破壊さ
れるおそれがあり、また、1014Ωcmを超えるとジョ
ンセン・ラーベック力が有効に作用せず高い静電吸着力
が得られない。なお、このような範囲の体積抵抗率は少
なくとも−50〜200℃の範囲で得られていればよ
い。
As described above, the insulating layer 3 is mainly composed of zirconia having oxygen deficiency and has a volume resistivity of 10 8 to 1.
It is adjusted to 0 14 Ωcm, but by adjusting the volume resistivity within this range, a high suction force can be obtained without adversely affecting the circuits formed on the semiconductor wafer.
In other words, if it is less than 10 8 Ωcm, a large leak current may flow through the attracted wafer, and the circuit formed on the wafer may be broken. If it exceeds 10 14 Ωcm, the Johnsen-Rahbek force does not work effectively. High electrostatic attraction force cannot be obtained. The volume resistivity in such a range only needs to be obtained at least in the range of -50 to 200C.

【0014】ジルコニアの体積抵抗率は、本質的には高
抵抗であるジルコニア結晶中に酸素欠損を形成すること
により、108〜1014Ωcmの範囲とすることができ
る。また、ジルコニア結晶中への酸素欠損は、ジルコニ
アに酸素欠損形成剤を添加することにより形成すること
ができる。
The volume resistivity of zirconia can be in the range of 10 8 to 10 14 Ωcm by forming oxygen vacancies in zirconia crystals that are essentially high in resistance. The oxygen deficiency in the zirconia crystal can be formed by adding an oxygen deficiency forming agent to zirconia.

【0015】このような酸素欠損形成剤としては、Y2
3、MgO、CaO、CeO2、Yb23等が挙げられ
るが、ジルコニア結晶に酸素欠損を導入することができ
れば特に限定されるものではない。これらの中では、体
積抵抗率108〜1014Ωcmとなる添加量範囲が広い
ことからY23が好ましい。このような酸素欠損形成剤
は、ジルコニア結晶中に固溶してジルコニア結晶中に酸
素欠損を導入し、体積抵抗率を低下させる。しかし、こ
のような酸素欠損形成剤は、ある一定量を超えると、酸
素欠損を形成せず、結晶格子中に侵入するため、かえっ
て体積抵抗率が上昇する。
As such an oxygen deficiency forming agent, Y 2
Examples include O 3 , MgO, CaO, CeO 2 , Yb 2 O 3, etc., but are not particularly limited as long as oxygen vacancies can be introduced into the zirconia crystal. Among these, Y 2 O 3 is preferable because the range of the addition amount that gives a volume resistivity of 10 8 to 10 14 Ωcm is wide. Such an oxygen deficiency forming agent forms a solid solution in the zirconia crystal to introduce oxygen vacancy into the zirconia crystal, thereby lowering the volume resistivity. However, when such an oxygen deficiency forming agent exceeds a certain amount, it does not form oxygen deficiency and penetrates into the crystal lattice, so that the volume resistivity is rather increased.

【0016】この場合に、体積抵抗率が108〜1014
Ωcmとなる添加範囲は、酸素欠損形成剤の種類によっ
て異なるため、使用する酸素欠損形成剤の種類に応じて
適宜添加量を調整すればよい。さらに、酸素欠損形成剤
はジルコニア焼結体中の立方晶の割合がより高くなるよ
うに添加することが望ましく、具体的には立方晶の割合
が60%以上となる添加量が望ましい。立方晶の割合が
60%以上であれば、200℃付近で長時間使用されて
も絶縁層表面にマイクロクラック等がほとんど発生しな
い。酸素欠損形成剤としてY23を添加する場合には、
立方晶の割合が60%となる添加量は約5mol%であ
る。
In this case, the volume resistivity is 10 8 to 10 14
Since the addition range of Ωcm varies depending on the type of oxygen deficiency forming agent, the addition amount may be appropriately adjusted according to the type of oxygen deficiency forming agent used. Furthermore, it is desirable to add the oxygen deficiency forming agent so that the ratio of cubic crystals in the zirconia sintered body becomes higher, and more specifically, the amount of the oxygen deficiency forming agent is desirably 60% or more. If the ratio of the cubic crystal is 60% or more, microcracks and the like hardly occur on the surface of the insulating layer even when used at about 200 ° C. for a long time. When Y 2 O 3 is added as an oxygen deficiency forming agent,
The addition amount at which the cubic crystal ratio becomes 60% is about 5 mol%.

【0017】このように、電極に電圧を印加して絶縁層
上に被吸着体を静電吸着する静電チャックの絶縁層を、
酸素欠損を含むジルコニアを主体とすることにより、そ
の体積抵抗率を108〜1014Ωcmに調整したので、
ジョンセン・ラーベック力に基づく高い静電吸着力を得
ることができる。しかも、ジルコニアはプラズマに対す
る耐性が高く、チタニアを添加した絶縁層を用いた場合
のように、チタニアがプラズマにより侵食されて被吸着
体の裏面をパーティクルにより汚染するといった問題が
生じない。
As described above, the insulating layer of the electrostatic chuck, which applies a voltage to the electrodes and electrostatically attracts the object to be attracted onto the insulating layer,
By mainly using zirconia containing oxygen deficiency, its volume resistivity was adjusted to 10 8 to 10 14 Ωcm,
A high electrostatic attraction force based on the Johnsen-Rahbek force can be obtained. In addition, zirconia has high resistance to plasma, and does not cause a problem that titania is eroded by plasma and contaminates the back surface of the object with particles as in the case of using an insulating layer to which titania is added.

【0018】なお、酸素欠損を有するジルコニアを主体
とする絶縁層は、原料粉末を常法に従って成形、焼成す
ることにより得られる。また、静電チヤックの構造は特
に限定するものではなく、図1、図2に示す、ジルコニ
ア焼結体からなる絶縁層の内部に電極を配置した構造の
他、一方の面に電極が形成されたジルコニア焼結体をセ
ラミックス板あるいはAl台座に接着剤により貼り付け
た構造等、種々の構造を採用することができる。さら
に、電極構造は特に限定されず、上述のように単極型電
極でも双極型電極でもよく、その形状も特に限定される
ものではない。
The insulating layer mainly composed of zirconia having oxygen deficiency can be obtained by molding and firing a raw material powder according to a conventional method. The structure of the electrostatic chuck is not particularly limited. In addition to the structure shown in FIGS. 1 and 2 in which electrodes are arranged inside an insulating layer made of a zirconia sintered body, electrodes are formed on one surface. Various structures can be adopted, such as a structure in which the zirconia sintered body is attached to a ceramic plate or an Al pedestal with an adhesive. Further, the electrode structure is not particularly limited, and may be a monopolar electrode or a bipolar electrode as described above, and the shape thereof is not particularly limited.

【0019】[0019]

【実施例】以下、本発明の実施例について説明する。 (実施例1)酸素欠損形成剤としてのY23粉末3mo
1%と、ZrO2粉末97mol%とを混合し、Y23
粉末をZrO2粉末に均一に分散させた後、φ250×
tmmに成形した。次いで、空気中、温度1500℃
の条件で常圧焼結した後、加工してφ200×2tmm
のジルコニア焼結体を作製した。この焼結体の体積抵抗
率は、8.6×1012Ωcmであった。
Embodiments of the present invention will be described below. (Example 1) 3 mo of Y 2 O 3 powder as an oxygen deficiency forming agent
1% and 97 mol% of ZrO 2 powder are mixed, and Y 2 O 3
After uniformly dispersing the powder in ZrO 2 powder, φ250 ×
It was molded to 6 tmm . Then, in air, at a temperature of 1500 ° C.
After normal pressure sintering in conditions and processed to φ200 × 2 t mm
Was produced. The volume resistivity of this sintered body was 8.6 × 10 12 Ωcm.

【0020】次いで、ジルコニア焼結体の一方の面に双
極型電極を、Agペースト印刷・焼付けにより形成し、
他方の面(試科の吸着面)を研磨して表面粗さRa0.
54mとした。次いで、表面をアノーダイジング(陽極
酸化)したAl台座に、ジルコニア焼結体の電極を形成
した面を接着剤により貼り付けて静電チャックを完成さ
せた。
Next, a bipolar electrode is formed on one surface of the zirconia sintered body by printing and baking Ag paste.
The other surface (adsorption surface of the sample) was polished to obtain a surface roughness Ra0.
It was 54 m. Next, the surface on which the electrodes of the zirconia sintered body were formed was adhered to an Al pedestal whose surface was anodized (anodically oxidized) with an adhesive to complete the electrostatic chuck.

【0021】(実施例2〜6、比較例1〜3)実施例2
〜6および比較例1、2については、酸素欠損形成剤の
種類、添加量を変更し、他の条件に関しては、実施例1
と同様の条件で静電チャックを作製した。また、比較例
3は絶縁層としてTiO2添加Al23を用いた。これ
らの酸素欠損形成剤の種類および添加量、焼結体の体積
抵抗率、ならびに立方晶割合について実施例1も併せて
表1に示す。
(Examples 2 to 6, Comparative Examples 1 to 3) Example 2
In Examples 6 to 6 and Comparative Examples 1 and 2, the type and amount of the oxygen deficiency forming agent were changed.
An electrostatic chuck was manufactured under the same conditions as described above. Comparative Example 3 used TiO 2 added Al 2 O 3 as the insulating layer. Table 1 also shows Example 1 regarding the types and amounts of these oxygen deficiency forming agents, the volume resistivity of the sintered body, and the cubic crystal ratio.

【0022】[0022]

【表1】 [Table 1]

【0023】(静電チャックの評価)作製した静電チャ
ックをプラズマエッチング装置に組み込み、双極型静電
チャックの一方の電極に+500V、他方の電極に−5
00Vを印加して、シリコンウエハが吸着されるか否か
を調査した。さらに、シリコンウエハ上に形成された回
路が破損するか否かを調査した。次に、CF4+O2プラ
ズマに静電チヤックを24時間曝した(静電チャック表
面温度:170℃)。プラズマ処理した後、シリコンウ
エハを吸着させ、ウエハ裏面に付着したパーテイクル数
をパーティクルカウンターにより計測した。さらに絶縁
層表面状態を観察した。評価結果を表2に示す。表2に
おいて、吸着性の欄の○はウエハ吸着したことを示し、
×はウエハが吸着しなかったことを示す。また、回路の
破壊の有無の欄の○はウエハに形成された回路の破壊が
ないことを示し、×は破壊があったことを示す。さら
に、絶縁層表面状態の欄の○は表面状態が良好であった
ことを示し、△はマイクロクラックが発生したことを示
し、×は表面にパーティクル(TiF4)が多数認めら
れたことを示す。
(Evaluation of Electrostatic Chuck) The manufactured electrostatic chuck was incorporated in a plasma etching apparatus, and one electrode of the bipolar electrostatic chuck was +500 V, and the other electrode was −5 V.
00V was applied to investigate whether or not the silicon wafer was adsorbed. Furthermore, it was investigated whether or not the circuit formed on the silicon wafer was damaged. Next, the electrostatic chuck was exposed to CF 4 + O 2 plasma for 24 hours (electrostatic chuck surface temperature: 170 ° C.). After the plasma treatment, the silicon wafer was adsorbed, and the number of particles attached to the back surface of the wafer was measured by a particle counter. Further, the surface state of the insulating layer was observed. Table 2 shows the evaluation results. In Table 2, ○ in the column of adsorption indicates that the wafer was adsorbed,
X indicates that the wafer was not adsorbed. In the column of the presence / absence of the destruction of the circuit, ○ indicates that there is no destruction of the circuit formed on the wafer, and X indicates that the destruction has occurred. Further, in the column of the surface state of the insulating layer, ○ indicates that the surface state was good, △ indicates that microcracks occurred, and x indicates that a large number of particles (TiF 4 ) were observed on the surface. .

【0024】[0024]

【表2】 [Table 2]

【0025】表2より、実施例1〜6および比較例2、
3においてはシリコンウエハを吸着したが、比較例1に
おいてはシリコンウエハを吸着しなかった。これは、比
較例1では絶縁層の体積抵抗率が高いため、ジョンセン
・ラーベック力が得られなかったためと考えられる。比
較例1において体積抵抗率が高くなったのは、Y23
多すぎるため、剰余のY23が酸素欠損形成に寄与せず
に、結晶格子中に侵入したためと考えられる。
As shown in Table 2, Examples 1 to 6 and Comparative Example 2
In No. 3, the silicon wafer was adsorbed, but in Comparative Example 1, no silicon wafer was adsorbed. This is presumably because in Comparative Example 1, the Johnssen-Rahbek force was not obtained because the volume resistivity of the insulating layer was high. The volume resistivity was higher in Comparative Example 1, because the Y 2 O 3 too much, Y 2 O 3 of remainder without contributing to oxygen vacancies formation, presumably because penetrated into the crystal lattice.

【0026】また、実施例1〜6および比較例1、3に
おいては、シリコンウエハ上に形成された回路に破損は
認められなかったが、比較例2においては、破損した回
路が存在した。回路が破損された比較例2の静電チャッ
クは、ジルコニア絶縁層の体積抵抗率が3.2×107
Ωcmと低いため、多量のリーク電流が発生したためと
考えられる。
In Examples 1 to 6 and Comparative Examples 1 and 3, no damage was found in the circuit formed on the silicon wafer, but in Comparative Example 2, a damaged circuit was present. In the electrostatic chuck of Comparative Example 2 in which the circuit was broken, the volume resistivity of the zirconia insulating layer was 3.2 × 10 7.
It is considered that a large amount of leak current occurred because of the low Ωcm.

【0027】さらに、実施例1〜6では、シリコンウエ
ハ裏面のパーテイクル数は50個/8inchウエハ以下で
あったのに対し、比較例3では、シリコンウエハ裏面の
パーテイクル数は、500個/8inchウエハ以上と極め
て多くなった。また、実施例1,5は実用上支障がない
ものの多少のマイクロクラックが認められたが、立方晶
割合が60%以上である実施例2〜4では絶縁層表面に
マイクロクラックは認められなかった。
Further, in Examples 1 to 6, the number of particles on the back surface of the silicon wafer was less than 50/8 inch wafer, whereas in Comparative Example 3, the number of particles on the back surface of the silicon wafer was 500/8 inch wafer. That was extremely large. In Examples 1 and 5, although there was no problem in practical use, some microcracks were recognized, but in Examples 2 to 4 in which the cubic crystal ratio was 60% or more, no microcracks were recognized on the insulating layer surface. .

【0028】[0028]

【発明の効果】本発明によれば、酸素欠損を有するジル
コニアを主体とし、その体積抵抗率が108〜1014Ω
cmである絶縁層を用いたので、被吸着体の汚染の問題
を生じることなくジョンセン・ラーベック力に基づく高
い静電吸着力を有する静電チャックを得ることができ
る。
According to the present invention, zirconia having oxygen deficiency is mainly contained and its volume resistivity is 10 8 to 10 14 Ω.
The use of the insulating layer having a thickness of 2 cm makes it possible to obtain an electrostatic chuck having a high electrostatic attraction force based on the Johnsen-Rahbek force without causing the problem of contamination of the object to be attracted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される単極型の静電チャックを示
す断面図。
FIG. 1 is a cross-sectional view showing a monopolar electrostatic chuck to which the present invention is applied.

【図2】本発明が適用される双極型の静電チャックを示
す断面図。
FIG. 2 is a cross-sectional view showing a bipolar electrostatic chuck to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1,1’……静電チャック 2,2a,2b……電極 3……絶縁層 4……基台 5……電源 1, 1 '... electrostatic chuck 2, 2a, 2b ... electrode 3 ... insulating layer 4 ... base 5 ... power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚本 恵三 千葉県船橋市習志野台1−32−22 Fターム(参考) 3C016 GA10 5F031 FF03 LL07  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Keizo Tsukamoto 1-32-22 Narashinodai, Funabashi-shi, Chiba F-term (reference) 3C016 GA10 5F031 FF03 LL07

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電極と、その上に設けられた絶縁層とを
有し、電極に電圧を印加することにより、絶縁層上に被
吸着体を静電吸着する静電チャックであって、前記絶縁
層は、結晶中に酸素欠損を有するジルコニアを主体と
し、絶縁層の体積抵抗率が108〜1014Ωcmである
ことを特徴とする静電チャック。
1. An electrostatic chuck having an electrode and an insulating layer provided thereon, wherein a voltage is applied to the electrode to electrostatically attract an object to be attracted onto the insulating layer, An electrostatic chuck characterized in that the insulating layer is mainly made of zirconia having oxygen vacancies in the crystal and the insulating layer has a volume resistivity of 10 8 to 10 14 Ωcm.
JP18974598A 1998-06-19 1998-06-19 Electrostatic chuck Pending JP2000012666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18974598A JP2000012666A (en) 1998-06-19 1998-06-19 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18974598A JP2000012666A (en) 1998-06-19 1998-06-19 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2000012666A true JP2000012666A (en) 2000-01-14

Family

ID=16246478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18974598A Pending JP2000012666A (en) 1998-06-19 1998-06-19 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP2000012666A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249864A (en) * 2000-04-18 2002-09-06 Ngk Insulators Ltd Halogen gas plasma resistant member and production method therefor
EP1387392A3 (en) * 2002-07-15 2005-09-07 Integrated Dynamics Engineering Electrostatic gripper and method of producing the same
JP2009035469A (en) * 2007-08-02 2009-02-19 Applied Materials Inc Plasma-resistant ceramic with controlled electrical resistivity
KR100885060B1 (en) * 2001-11-08 2009-02-25 스미토모 오사카 세멘토 가부시키가이샤 Electrode-embedded susceptor for plasma generation and its manufacturing method
US8623527B2 (en) 2007-04-27 2014-01-07 Applied Materials, Inc. Semiconductor processing apparatus comprising a coating formed from a solid solution of yttrium oxide and zirconium oxide
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
CN119108330A (en) * 2024-11-08 2024-12-10 荣芯半导体(宁波)有限公司 Electrostatic adsorption chuck, workpiece table and machine table

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249864A (en) * 2000-04-18 2002-09-06 Ngk Insulators Ltd Halogen gas plasma resistant member and production method therefor
KR100885060B1 (en) * 2001-11-08 2009-02-25 스미토모 오사카 세멘토 가부시키가이샤 Electrode-embedded susceptor for plasma generation and its manufacturing method
EP1387392A3 (en) * 2002-07-15 2005-09-07 Integrated Dynamics Engineering Electrostatic gripper and method of producing the same
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US8623527B2 (en) 2007-04-27 2014-01-07 Applied Materials, Inc. Semiconductor processing apparatus comprising a coating formed from a solid solution of yttrium oxide and zirconium oxide
US9051219B2 (en) 2007-04-27 2015-06-09 Applied Materials, Inc. Semiconductor processing apparatus comprising a solid solution ceramic formed from yttrium oxide, zirconium oxide, and aluminum oxide
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US10840113B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Method of forming a coated article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US10840112B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US10847386B2 (en) 2007-04-27 2020-11-24 Applied Materials, Inc. Method of forming a bulk article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US11373882B2 (en) 2007-04-27 2022-06-28 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US8367227B2 (en) 2007-08-02 2013-02-05 Applied Materials, Inc. Plasma-resistant ceramics with controlled electrical resistivity
US8871312B2 (en) 2007-08-02 2014-10-28 Applied Materials, Inc. Method of reducing plasma arcing on surfaces of semiconductor processing apparatus components in a plasma processing chamber
JP2009035469A (en) * 2007-08-02 2009-02-19 Applied Materials Inc Plasma-resistant ceramic with controlled electrical resistivity
CN119108330A (en) * 2024-11-08 2024-12-10 荣芯半导体(宁波)有限公司 Electrostatic adsorption chuck, workpiece table and machine table

Similar Documents

Publication Publication Date Title
JP2938679B2 (en) Ceramic electrostatic chuck
EP2024108B1 (en) Cleaning of electrostatic chucks using ultrasonic agitation and applied electric fields
JPH05235152A (en) Electrostatic chuck
JP2021141141A (en) Electrostatic chuck
JP2003282688A (en) Electrostatic chuck
JP2000012666A (en) Electrostatic chuck
JPH0719831B2 (en) Electrostatic check
JP4312372B2 (en) Electrostatic chuck and manufacturing method thereof
JP3447305B2 (en) Electrostatic chuck
JP3426845B2 (en) Electrostatic chuck
JP3348140B2 (en) Electrostatic chuck
JPH10242256A (en) Electrostatic chuck
JP4043219B2 (en) Electrostatic chuck
JP3287996B2 (en) Electrostatic chuck device
KR101789916B1 (en) Large size electrostatic manufacturing method
JPH09283606A (en) Electrostatic chuck
JP3369505B2 (en) Electrostatic chuck
JP3602901B2 (en) Wafer holding member and method of manufacturing the same
JP2003188247A (en) Electrostatic chuck and manufacturing method thereof
JP2000183143A (en) Electrostatic chuck
JPWO2021049342A1 (en) Detachable device
JP2005116686A (en) Bipolar electrostatic chuck
JP2002319614A (en) Electrostatic chuck
JP2004022585A (en) Electrostatic chuck
JPH04133443U (en) Ceramic electrostatic chuck