JP2000012077A - Sodium / sulfur secondary battery - Google Patents
Sodium / sulfur secondary batteryInfo
- Publication number
- JP2000012077A JP2000012077A JP10178975A JP17897598A JP2000012077A JP 2000012077 A JP2000012077 A JP 2000012077A JP 10178975 A JP10178975 A JP 10178975A JP 17897598 A JP17897598 A JP 17897598A JP 2000012077 A JP2000012077 A JP 2000012077A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- sodium
- current collector
- layer
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229910052717 sulfur Inorganic materials 0.000 title claims abstract description 18
- 239000011593 sulfur Substances 0.000 title claims abstract description 18
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 title claims abstract description 11
- 229910052708 sodium Inorganic materials 0.000 title claims abstract description 11
- 239000011734 sodium Substances 0.000 title claims abstract description 11
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000010410 layer Substances 0.000 claims abstract description 28
- 230000007797 corrosion Effects 0.000 claims abstract description 21
- 238000005260 corrosion Methods 0.000 claims abstract description 21
- 239000007774 positive electrode material Substances 0.000 claims abstract description 18
- 239000002344 surface layer Substances 0.000 claims abstract description 17
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 15
- 239000007773 negative electrode material Substances 0.000 claims abstract description 7
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 6
- HYHCSLBZRBJJCH-UHFFFAOYSA-N sodium polysulfide Chemical compound [Na+].S HYHCSLBZRBJJCH-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 239000003575 carbonaceous material Substances 0.000 claims description 4
- 239000011149 active material Substances 0.000 claims 2
- 239000000126 substance Substances 0.000 abstract description 2
- 239000011651 chromium Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000007750 plasma spraying Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000005254 chromizing Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910019589 Cr—Fe Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Sealing Battery Cases Or Jackets (AREA)
- Secondary Cells (AREA)
Abstract
(57)【要約】
【課題】本発明の目的は、長寿命でかつ優れた充放電特
性を有するナトリウム・硫黄ニ次電池を提供することに
ある。
【解決手段】ナトリウムイオン導電性を有する固体電解
質により負極と正極に隔てられ、該負極は負極活物質で
あるナトリウムを有し、該正極は外側容器と該固体電解
質に囲まれた室内に正極活物質である硫黄又は多硫化ナ
トリウムを含浸した正極集電体を収容した構造を持つナ
トリウム・硫黄ニ次電池であって、前記正極の外側容器
が最外側表面層と前記正極集電材と接する層からなり、
前記集電材と接する層が正極活物質に対して耐食性に優
れており、かつ、前記最外側表面層と接合されていない
ことを特徴とするナトリウム・硫黄ニ次電池。また、前
記正極集電材と接する層が、前記正極容器の外側に変形
して、前記最外側表面層に電気的に接触していることを
特徴とするナトリウム・硫黄ニ次電池。
(57) Abstract: An object of the present invention is to provide a sodium-sulfur secondary battery having a long life and excellent charge / discharge characteristics. A negative electrode and a positive electrode are separated by a solid electrolyte having sodium ion conductivity, the negative electrode having sodium as a negative electrode active material, and the positive electrode is provided in a room surrounded by an outer container and the solid electrolyte. A sodium-sulfur secondary battery having a structure containing a positive electrode current collector impregnated with sulfur or sodium polysulfide as a substance, wherein the outer container of the positive electrode has an outermost surface layer and a layer in contact with the positive electrode current collector. Become
A sodium-sulfur secondary battery, wherein a layer in contact with the current collector has excellent corrosion resistance to a positive electrode active material and is not bonded to the outermost surface layer. A sodium-sulfur secondary battery, wherein a layer in contact with the positive electrode current collector is deformed to the outside of the positive electrode container and is in electrical contact with the outermost surface layer.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、正極活物質に対し
て耐食性の優れた正極容器の構造を有するナトリウム・
硫黄ニ次電池に関する[0001] The present invention relates to a sodium cathode having a structure of a positive electrode container having excellent corrosion resistance to a positive electrode active material.
Sulfur secondary battery
【0002】[0002]
【従来の技術】ナトリウム・硫黄ニ次電池は、図4に示
すように、ナトリウムイオン導電性を有する固体電解質
によって、負極活物質であるナトリウムを収容する負極
室と、正極活物質である硫黄を含浸した炭素繊維等の物
質(以下、正極集電材と呼ぶ)を収容する正極室によっ
て構成される。2. Description of the Related Art As shown in FIG. 4, a sodium-sulfur secondary battery uses a solid electrolyte having sodium ion conductivity to form a negative electrode chamber containing sodium as a negative electrode active material and a sulfur as a positive electrode active material. It is constituted by a positive electrode chamber for accommodating a substance such as impregnated carbon fiber (hereinafter referred to as a positive electrode current collector).
【0003】該ナトリウム・硫黄ニ次電池の正極容器
は、電池の動作温度である300ー350℃以下で、腐食作用
の強い溶融硫黄、及び溶融多硫化ナトリウムに常にさら
された状況下にある。[0003] The positive electrode container of the sodium-sulfur secondary battery is always exposed to molten sulfur having a strong corrosive action and molten sodium polysulfide at a battery operating temperature of 300 to 350 ° C or lower.
【0004】従来、該ナトリウム・硫黄ニ次電池の正極
容器は、円筒状の金属材料の内周面にクロマイジング処
理、メッキ処理、プラズマ溶射などの方法で耐食性皮膜
を形成したものが用いられてきた。Heretofore, a positive electrode container of the sodium-sulfur secondary battery has been used in which a corrosion-resistant film is formed on the inner peripheral surface of a cylindrical metal material by a method such as chromizing treatment, plating treatment, or plasma spraying. Was.
【0005】特開平2-142066号公報では、正極容器にク
ロムメッキ層を設ける方法、特開平4-349343号公報、
特開平6-231802号公報、特許第2,520,986号では耐食
性を有する合金よりなる粉末材を不活性ガス雰囲気下、
もしくは大気圧下においてプラズマ溶射して耐食皮膜を
形成する方法が開示されている。また、特開平8-78049
号公報では複数のCr-Fe合金からなる耐食被覆層のCr含
有率を表面から漸次低減させることにより、正極容器に
耐食性のある膜を欠陥なく形成する方法が開示されてい
る。[0005] JP-A-2-42066 discloses a method of providing a chromium plating layer on a positive electrode container, JP-A-4-349343,
JP-A-6-231802 and JP-A-2,520,986 disclose a powder material made of a corrosion-resistant alloy under an inert gas atmosphere.
Alternatively, a method of forming a corrosion resistant film by plasma spraying under atmospheric pressure is disclosed. Also, JP-A-8-78049
Japanese Patent Application Laid-Open Publication No. H11-157, discloses a method for forming a corrosion-resistant film on a positive electrode container without defects by gradually reducing the Cr content of a corrosion-resistant coating layer composed of a plurality of Cr-Fe alloys from the surface.
【0006】ところが、ナトリウム・硫黄ニ次電池は電
力負荷平準化等への適用を図るには、更に大電流化、高
出力・高密度化の達成が必須である。このような用途で
は、電池の動作時に発熱量が増加し、電池本体の高温化
や温度変化の振幅が増大する。このため従来のクロマイ
ジング処理、メッキ処理、プラズマ溶射などの方法によ
る耐食皮膜では、正極容器材料との熱膨張係数の違いか
ら剥離やクラックが発生し、これが電池内の抵抗増大や
容器の腐食のトリガーとなり、電池寿命の低下や電池性
能が低下ずる問題があった。However, in order to apply the sodium-sulfur secondary battery to power load leveling and the like, it is essential to achieve a higher current, a higher output, and a higher density. In such an application, the amount of heat generated during operation of the battery increases, and the temperature of the battery body increases and the amplitude of the temperature change increases. For this reason, corrosion-resistant coatings produced by conventional methods such as chromizing, plating, and plasma spraying cause peeling or cracking due to the difference in the coefficient of thermal expansion from the material of the positive electrode container, which increases the resistance inside the battery and causes corrosion of the container. There has been a problem that it becomes a trigger to shorten the battery life and the battery performance.
【0007】[0007]
【発明が解決しようとする課題】本発明は、電池の性能
が優れ、長期間に渡って安定した充放電特性を得ること
のできる長寿命で、かつ安全性の高いナトリウム・硫黄
ニ次電池を提供する。SUMMARY OF THE INVENTION The present invention relates to a sodium-sulfur secondary battery having a long service life and a high safety, which has excellent battery performance and can obtain stable charge / discharge characteristics over a long period of time. provide.
【0008】[0008]
【課題を解決するための手段】本発明の要旨は以下のと
おりである。The gist of the present invention is as follows.
【0009】(1) ナトリウムイオン導電性を有する
固体電解質により負極と正極に隔てられ、該負極は負極
活物質であるナトリウムを有し、該正極は外側容器と該
固体電解質により囲まれた室内に正極活物質である硫黄
または多硫化ナトリウムを含浸した正極集電材を収容し
た構造を持つナトリウム・硫黄ニ次電池であって、前記
正極外側容器が最外側表面層と正極集電材と接する層か
らなり、前記正極集電材と接する層は正極活物質に対し
て耐食性に優れており、かつ前記最外側表面層と接合さ
れていないことを特徴とするナトリウム・硫黄ニ次電
池。(1) A negative electrode and a positive electrode are separated by a solid electrolyte having sodium ion conductivity, and the negative electrode has sodium as a negative electrode active material, and the positive electrode is provided in a room surrounded by an outer container and the solid electrolyte. A sodium-sulfur secondary battery having a structure containing a positive electrode current collector impregnated with sulfur or sodium polysulfide as a positive electrode active material, wherein the positive electrode outer container is formed of an outermost surface layer and a layer in contact with the positive electrode current collector. And a layer in contact with the positive electrode current collector has excellent corrosion resistance to the positive electrode active material, and is not bonded to the outermost surface layer.
【0010】(2) ナトリウムイオン導電性を有する
固体電解質により負極と正極に隔てられ、該負極は負極
活物質であるナトリウムを有し、該正極は外側容器と該
固体電解質により囲まれた室内に正極活物質である硫黄
または多硫化ナトリウムを含浸した正極集電材を収容し
た構造を持つナトリウム・硫黄ニ次電池であって、前記
正極の外側容器が最外側表面層と正極集電材と接する層
からなり、 前記の正極集電材と接する層が、前記最外
側表面層に向かって外側に変形することにより、前記最
外側表面層と電気的に接触していることを特徴とするナ
トリウム・硫黄ニ次電池。(2) A negative electrode and a positive electrode are separated by a solid electrolyte having sodium ion conductivity, and the negative electrode has sodium as a negative electrode active material. The positive electrode is placed in a room surrounded by an outer container and the solid electrolyte. A sodium-sulfur secondary battery having a structure containing a positive electrode current collector impregnated with sulfur or sodium polysulfide as a positive electrode active material, wherein the outer container of the positive electrode has an outermost surface layer and a layer in contact with the positive electrode current collector. Wherein the layer in contact with the positive electrode current collector is deformed outward toward the outermost surface layer, so that the layer is in electrical contact with the outermost surface layer. battery.
【0011】(3) 正極集電材と接する層が、炭素材
料を含むことを特徴とする項1及び2に記載のナトリウ
ム・硫黄ニ次電池。(3) The sodium-sulfur secondary battery according to items 1 and 2, wherein the layer in contact with the positive electrode current collector contains a carbon material.
【0012】(4) 正極集電材と接する層が、少なく
ともCr又はCoを含む合金であることを特徴とする項1及
び2に記載のナトリウム・硫黄ニ次電池。(4) The sodium-sulfur secondary battery according to (1) or (2), wherein the layer in contact with the positive electrode current collector is an alloy containing at least Cr or Co.
【0013】本発明は、図1に示す構造のナトリウム・
硫黄二次電池である。正極容器14は、正極活物質(硫
黄)に対する耐食性を有する正極容器内側8と機械的強
度を担う金属もしくは合金を材料とする正極容器外側3
からなる二重構造とすることに特徴がある。[0013] The present invention relates to a sodium-containing material having the structure shown in FIG.
It is a sulfur secondary battery. The positive electrode container 14 has a positive electrode container inner side 8 having corrosion resistance to a positive electrode active material (sulfur) and a positive electrode container outer side 3 made of a metal or an alloy having mechanical strength.
It is characterized by having a double structure consisting of
【0014】本発明のナトリウム・硫黄ニ次電池は、正
極室内において円筒軸に平行な方向において均等に充放
電反応が起こるようにすることで、安定し、良好な特性
を持つ電池となる。よって、正極容器14は正極室内の
電子伝導抵抗に比べて無視できる程度に良好な電子伝導
材を使用し、正極集電材10を流れる電流は半径方向成
分のみを持つようにすることが必要である。したがって
図示したように正極容器14を最外側表面層(以下、正
極容器外側という)と、正極集電材と接する層(以下、
正極容器内側という)の二重構造とする場合、正極容器
内側と正極容器外側は共に良好な電子伝導材を使用し、
さらに互いにより多くの面で電気的な接続を持たせ、電
子抵抗を低くおさえるように設置される。[0014] The sodium-sulfur secondary battery of the present invention is a battery having stable and good characteristics by causing charge / discharge reactions to occur evenly in a direction parallel to the cylindrical axis in the positive electrode chamber. Therefore, it is necessary that the positive electrode container 14 uses an electron conductive material that is negligible compared to the electron conductive resistance in the positive electrode chamber, and that the current flowing through the positive electrode current collector 10 has only a radial component. . Therefore, as shown in the drawing, the positive electrode container 14 is provided with an outermost surface layer (hereinafter, referred to as the outside of the positive electrode container) and a layer in contact with the positive electrode current collector (hereinafter, referred to as a positive electrode current collector).
In the case of a double structure of the inside of the positive electrode container), both the inside of the positive electrode container and the outside of the positive electrode container use a good electron conductive material,
In addition, they are installed so as to have electrical connections with each other in more areas and to keep the electronic resistance low.
【0015】ところが、正極容器内側である正極集電材
と接する層と、正極容器外側である最外側表面層とを接
合して電気的な接続をとる構造にすると、室温から電池
の運転温度への昇温時や、電池からの発熱時に、正極容
器内側と正極容器外側の熱膨張率の違いから、正極容器
内側にクラックが生じ、その部分において腐食の進行や
抵抗の増大が起こる。それ故、本発明では、正極容器内
側と正極容器外側を接合しない構造にすることが好まし
い。However, when a structure in which the layer in contact with the positive electrode current collector inside the positive electrode container and the outermost surface layer outside the positive electrode container are joined to make an electrical connection, the temperature from room temperature to the operating temperature of the battery can be reduced. At the time of temperature rise or heat generation from the battery, cracks occur inside the positive electrode container due to the difference in the coefficient of thermal expansion between the inside of the positive electrode container and the outside of the positive electrode container. Therefore, in the present invention, it is preferable to adopt a structure in which the inside of the positive electrode container and the outside of the positive electrode container are not joined.
【0016】しかしながら、ナトリウム・硫黄二次電池
の性能を発揮するには、正極容器内側と正極容器外側を
電気的に接続する必要がある。この方法として、正極容
器内側と正極容器外側の間に、正極集電材10を圧縮し
た形で正極室内に形成しておき、正極集電材10からの
圧力により、正極容器内側を外側に変形させ、正極容器
外側と接触することが本発明の効果を得る上で有効であ
る。However, in order to exhibit the performance of the sodium-sulfur secondary battery, it is necessary to electrically connect the inside of the positive electrode container and the outside of the positive electrode container. As this method, the positive electrode current collector 10 is formed in the positive electrode chamber in a compressed form between the inside of the positive electrode container and the outside of the positive electrode container, and the inside of the positive electrode container is deformed outward by the pressure from the positive electrode current collector 10, Contact with the outside of the positive electrode container is effective in obtaining the effects of the present invention.
【0017】この正極容器内側の材質としては、耐腐食
性に優れ、かつ良好な電子伝導性を持つものであれば良
く、特に黒鉛等の炭素材料や、Cr及びCoを含む合金を用
いることが好ましい。また、抵抗の上昇を防ぐため、こ
の正極容器内側は正極活物質が透過せず、破れないとい
う条件を満たす限り、出来るだけ薄くし、伸縮性もしく
は図2に示すように単数又は複数からなる外側容器へ変
形・接触するための機構を持たせることが望ましい。As the material inside the positive electrode container, any material having excellent corrosion resistance and good electron conductivity may be used. In particular, a carbon material such as graphite or an alloy containing Cr and Co may be used. preferable. Further, in order to prevent a rise in resistance, the inside of the positive electrode container is made as thin as possible as long as it meets the condition that the positive electrode active material does not pass through and does not break, and has an elasticity or a single or plural outside as shown in FIG. It is desirable to have a mechanism for deforming and contacting the container.
【0018】ナトリウム・硫黄ニ次電池において、図1
に示すように正極容器として正極活物質に対する耐腐食
性に優れた正極容器内側と機械的強度を担う正極容器外
側に分離した構造とすることにより、正極容器内側は耐
食性に非常に優れたものを用いることが出来るようにな
るため、正極活物質による腐食の心配は無くなる。In a sodium-sulfur secondary battery, FIG.
As shown in the figure, the inside of the positive electrode container has excellent corrosion resistance by having a structure separated into the inside of the positive electrode container, which has excellent corrosion resistance to the positive electrode active material, and the outside of the positive electrode container, which has mechanical strength. Since it can be used, there is no fear of corrosion due to the positive electrode active material.
【0019】また、正極容器外側は電池内部を保護でき
るだけの機械的強度を持つだけでよいため、安価な材料
を使用できる。さらに、正極容器に要求される役割を分
離させているため、材料選定の自由度が大幅に増える。Further, since the outside of the positive electrode container only needs to have enough mechanical strength to protect the inside of the battery, an inexpensive material can be used. Further, the roles required for the positive electrode container are separated, so that the degree of freedom in material selection is greatly increased.
【0020】また、正極集電材から生ずる圧力で正極容
器内側を正極容器外側へ向かって変形させることによ
り、正極容器外側に接触させる構造にすることにより、
電池の運転温度への昇温時や電池の発熱時において正極
容器内側と正極容器外側との熱膨張係数の違いから生じ
る歪みを緩和する事が可能となり、電気的接続が途絶え
ることはなくなる。よって、従来の正極表面を皮膜する
方法で問題となっていた剥離やクラックなどの劣化原因
を回避することが出来、寿命が向上する。Further, by deforming the inside of the positive electrode container toward the outside of the positive electrode container by the pressure generated from the positive electrode current collector, a structure is brought into contact with the outside of the positive electrode container,
When the temperature of the battery rises to the operating temperature or when the battery generates heat, distortion caused by a difference in the thermal expansion coefficient between the inside of the positive electrode container and the outside of the positive electrode container can be reduced, so that the electrical connection is not interrupted. Therefore, it is possible to avoid a cause of deterioration such as peeling or cracking which has been a problem in the conventional method of coating the surface of the positive electrode, and the life is improved.
【0021】さらに、正極活物質が溶融すると同時に、
正極容器内側と正極容器外側が接触するので、このニ次
電池を多数本直並列に並べたモジュールを昇温する際、
個々の電池の温度差によって各電池の起電力にばらつく
ために、モジュール内で電流が流れてしまう恐れがある
が(これを続流と呼ぶ)、本発明によれば正極活物質が
溶融するまで流れないという利点も合わせ持つ。Further, simultaneously with the melting of the positive electrode active material,
Since the inside of the positive electrode container and the outside of the positive electrode container are in contact, when raising the temperature of a module in which many secondary batteries are arranged in series and parallel,
Although there is a possibility that a current may flow in the module due to the variation in the electromotive force of each battery due to the temperature difference between the individual batteries (this is called a continuation flow), according to the present invention, until the positive electrode active material is melted. It also has the advantage of not flowing.
【0022】[0022]
【発明の実施の形態】以下に本発明の実施例を示す。こ
こに示す実施例は、本発明を適応した代表的な例を示し
たものであり、ここに示した実施例に限定されるもので
はない。Embodiments of the present invention will be described below. The embodiment shown here is a typical example to which the present invention is applied, and is not limited to the embodiment shown here.
【0023】[0023]
【実施例1】図1に示す構造のナトリウム・硫黄二次電
池を10本作製した。各部品の材質として、固体電解質
1はβ“ーアルミナ、負極容器4、負極キャップ7、正
極キャップ11はSUS304、安全管6、正極端子12、負
極端子13はAl金属とした。Example 1 Ten sodium-sulfur secondary batteries having the structure shown in FIG. 1 were manufactured. As the material of each part, the solid electrolyte 1 was β "-alumina, the negative electrode container 4, the negative electrode cap 7, the positive electrode cap 11 was SUS304, the safety tube 6, the positive electrode terminal 12, and the negative electrode terminal 13 were Al metal.
【0024】また、正極容器14の正極集電材と接触す
る層は厚さ約800μmの黒鉛箔、正極容器14の正極
容器外側(最外側表面層)3はSUS304を使用し、正極容
器14の正極容器外側(最外側表面層)3と負極容器4
との間の絶縁材として、αーアルミナリング2を用い
た。固体電解質1と正負極絶縁用αーアルミナ2はガラ
ス半田により接合し、さらにαーアルミナリング2と正
極容器14の正極容器外側3及び負極容器4は熱圧接に
より接合した。正極集電材10を構成するカーボンフェ
ルトを、復元力を持たせるために圧縮した状態で、正極
活物質である硫黄9を含浸し、固めることにより、モー
ルド品を作製する。このモールド品を正極容器内側8の
中に入れ、これを固体電解質1と正極容器外側3に挟ま
れた正極室に挿入し、正極キャップで蓋をすることでナ
トリウム・硫黄ニ次電池を作製した。なお、正極容器外
側3と正極容器内側8とのギャップは0.5mmとなるよう
に設計した。The layer in contact with the positive electrode current collector of the positive electrode container 14 is a graphite foil having a thickness of about 800 μm. Container outer (outermost surface layer) 3 and negative electrode container 4
The α-alumina ring 2 was used as an insulating material between these two. The solid electrolyte 1 and the α-alumina 2 for insulating the positive and negative electrodes were joined by glass solder, and the α-alumina ring 2 was joined to the outside of the positive electrode container 3 of the positive electrode container 14 and the negative electrode container 4 by hot pressing. A molded product is produced by impregnating and solidifying carbon 9 constituting the positive electrode current collector 10 with sulfur 9 serving as a positive electrode active material in a compressed state so as to have a restoring force. This molded product was put into the inside 8 of the positive electrode container, inserted into the positive electrode chamber sandwiched between the solid electrolyte 1 and the outside 3 of the positive electrode container, and covered with a positive electrode cap to produce a sodium-sulfur secondary battery. . The gap between the outside 3 of the positive electrode container and the inside 8 of the positive electrode container was designed to be 0.5 mm.
【0025】図3に、上記で作製した電池を330℃に
昇温し、充放電サイクル( 電流密度は、 充放電共に6
0/mA/cm2)を500サイクル、ヒートサイクル
(室温〜330℃を30℃/1時間で昇温 、 330℃
で3時間 保持、330℃〜室温 冷却を1サイクル)を
10サイクル、その後さらに500サイクルの充放電を
繰り返した場合における、電池10本の平均抵抗値のサ
イクル依存性を示す。図3は、3サイクル目における平
均抵抗値を1として、各サイクルにおける平均抵抗値を
相対値としてプロットしたものである。このグラフから
わかるように、1000サイクルの運転及びその間のヒ
ートサイクルに対して、本発明の電池はその抵抗の上昇
は初期と比べ、ほとんど劣化していない。FIG. 3 shows that the battery prepared above was heated to 330 ° C. and subjected to a charge / discharge cycle (current density was 6 for both charge and discharge).
0 / mA / cm 2 ), 500 cycles, heat cycle (room temperature to 330 ° C. at 30 ° C./1 hour, 330 ° C.)
The graph shows the cycle dependence of the average resistance value of 10 batteries when 10 cycles of holding for 3 hours and cooling at 330 ° C. to room temperature (1 cycle) were repeated for 10 cycles, and then further repeated for 500 cycles. FIG. 3 is a graph in which the average resistance value in the third cycle is set to 1 and the average resistance value in each cycle is plotted as a relative value. As can be seen from this graph, the resistance of the battery of the present invention is not deteriorated significantly after 1000 cycles of operation and during the heat cycle during the operation, compared to the initial stage.
【0026】このように、電池の運転温度である330
℃への昇温により硫黄が溶融することで、カーボンフェ
ルトの復元力が開放され、この復元により正極容器内側
は正極容器外側に向かって変形することにより、十分な
電気的接続がとれる。Thus, the battery operating temperature of 330
When the sulfur is melted by raising the temperature to ° C., the restoring force of the carbon felt is released, and by this restoration, the inside of the positive electrode container is deformed toward the outside of the positive electrode container, so that a sufficient electrical connection can be obtained.
【0027】[0027]
【比較例1】正極容器の正極容器内側(正極集電材と接
触した層)8は使用せず、正極容器外側(最外側表面
層)としてSUS304を用い、その内側に約300μmの厚
さのクロマイジング処理を施した耐食層を用いた以外
は、実施例1と同様のナトリウム・硫黄ニ次電池を10
本作製した。この電池は図4の構造であり、従来の電池
構造である。この場合、正極集電材10を構成するカー
ボンフェルトを圧縮した状態で硫黄を含浸したモールド
品を正極室に挿入し、このモールド品の外周と正極容器
外側3(この場合、単なる正極容器14)の内周とのギ
ャップが、0.5mmとなるように設計した。[Comparative Example 1] The inside of the positive electrode container (the layer in contact with the positive electrode current collector) 8 of the positive electrode container was not used, and SUS304 was used as the outside of the positive electrode container (outermost surface layer). The same sodium-sulfur secondary battery as in Example 1 was used except that a corrosion-resistant layer subjected to Ising treatment was used.
This was produced. This battery has the structure shown in FIG. 4, which is a conventional battery structure. In this case, a molded product impregnated with sulfur is inserted into the positive electrode chamber in a state where the carbon felt constituting the positive electrode current collector 10 is compressed, and the outer periphery of the molded product and the outside 3 of the positive electrode container (in this case, simply the positive electrode container 14) are removed. The design was such that the gap with the inner circumference was 0.5 mm.
【0028】このようにして作製した電池を330℃に
昇温し、実施例1と同様の条件で、充放電サイクルを5
00サイクル、ヒートサイクルを10サイクル、その後
500サイクルの充放電を繰り返した。図3に、電池1
0本の平均抵抗値のサイクル依存性を示す。1000サ
イクルの充放電の結果、腐食が原因と考えられる電池抵
抗の上昇が見られる。The battery thus manufactured was heated to 330 ° C., and the charge / discharge cycle was changed to 5 under the same conditions as in Example 1.
The charge and discharge of 00 cycles, 10 heat cycles, and then 500 cycles were repeated. FIG. 3 shows the battery 1
The cycle dependence of zero average resistance is shown. As a result of charge / discharge of 1000 cycles, an increase in battery resistance, which is considered to be caused by corrosion, is observed.
【0029】実施例1と比較例1から、正極容器を、正
極容器外側3と正極容器内側(正極集電材に接触した
層)8との2重構造とし、該2つの層を接合しないで、
前記正極容器内側8に耐腐食性をもつ炭素材料を用いた
本発明の電池は、従来の電池より長寿命化を達成でき
る。From Example 1 and Comparative Example 1, the positive electrode container was made to have a double structure of the positive electrode container outer part 3 and the positive electrode container inner part (the layer in contact with the positive electrode current collector) 8 without joining the two layers.
The battery of the present invention using a carbon material having corrosion resistance for the inside 8 of the positive electrode container can achieve a longer life than a conventional battery.
【0030】[0030]
【実施例2】正極容器の正極集電材に接触した層(正極
容器内側8)は、厚さ約300μm、層の材料が組成比
で、Co: 64%、Cr :29%、Al :6%、Y :1%で構成され
る合金を使用して、実施例1と同様の条件でナトリウム
・硫黄二次電池を5本作製した。この場合、正極活物質
である硫黄を含浸したモールド品を正極容器の正極集電
材に接触した層の内側の正極室に入れたときに、ギャッ
プが生じないよう注意してこの電池を組み立てた。Example 2 The layer (the inside 8 of the positive electrode container) in contact with the positive electrode current collector of the positive electrode container was about 300 μm thick, and the material of the layer was 64% Co, 29% Cr, and 6% Al in composition ratio. , Y: 1%, and five sodium-sulfur secondary batteries were manufactured under the same conditions as in Example 1. In this case, the battery was assembled in such a manner that no gap was formed when the molded product impregnated with sulfur as the positive electrode active material was placed in the positive electrode chamber inside the layer in contact with the positive electrode current collector of the positive electrode container.
【0031】図3に、上記により得られたナトリウム・
硫黄二次電池を330℃に昇温し、実施例1と同様の条
件で充放電サイクルを500サイクル、ヒートサイクル
を10サイクル、その後500サイクルの充放電を繰り
返した場合の、電池5本の平均抵抗値のサイクル依存性
を示す。実施例1と同様に3サイクル目における平均抵
抗値を1として、各サイクルにおける抵抗値を相対値と
してプロットした。本発明のナトリウム・硫黄二次電池
の1000サイクル及びその間のヒートサイクルは、従
来の方法と比べて電池抵抗の上昇を抑えることが出来て
いる。FIG. 3 shows the amount of sodium obtained above.
The temperature of the sulfur secondary battery was raised to 330 ° C., and under the same conditions as in Example 1, 500 charge / discharge cycles, 10 heat cycles, and 500 charge / discharge cycles were repeated. This shows the cycle dependence of the resistance value. Similar to Example 1, the average resistance value in the third cycle was set to 1, and the resistance value in each cycle was plotted as a relative value. The 1000 cycles of the sodium-sulfur secondary battery of the present invention and the heat cycle therebetween can suppress an increase in battery resistance as compared with the conventional method.
【0032】実施例2と比較例1を比較することによ
り、内側正極容器材に耐食性に優れたCr及びCoを含んだ
合金を選んだ場合においても、従来より寿命の長いナト
リウム・硫黄二次電池を実現できる。By comparing Example 2 with Comparative Example 1, even when an alloy containing Cr and Co having excellent corrosion resistance was selected for the inner positive electrode container material, a sodium-sulfur secondary battery having a longer life than the conventional one was obtained. Can be realized.
【0033】[0033]
【実施例3】正極容器内側は厚さ約300μm、組成比C
o 64%、Cr 29%、Al 6%、Y 1%で構成される合金で、図2
のような外側へ変形するための機構を持たせたものを使
用して、実施例1と同様のナトリウム・硫黄二次電池を
10本作製した。なお、正極容器外側と正極容器内側と
のギャップは0.5mmとなるように設計した。Example 3 The thickness of the inside of the positive electrode container was about 300 μm, and the composition ratio was C
o An alloy composed of 64%, Cr 29%, Al 6% and Y 1%.
Using a battery having a mechanism for outward deformation as described above, ten sodium-sulfur secondary batteries similar to those in Example 1 were produced. The gap between the outside of the positive electrode container and the inside of the positive electrode container was designed to be 0.5 mm.
【0034】このようにして作製したナトリウム・硫黄
二次電池を330℃に昇温し、充放電サイクルを500
サイクル、ヒートサイクルを10サイクル、その後さら
に500サイクルの充放電を繰り返した場合における、
電池10本の平均抵抗値のサイクル依存性を図3に示
す。この場合においても、実施例1と同様に3サイクル
目における平均抵抗値を1として、各サイクルにおける
抵抗値を相対値としてプロットした。このグラフからわ
かるように、1000サイクルの運転及びその間のヒー
トサイクルに対して、本発明の電池抵抗は初期と比べ若
干の増加が認められるが、従来の方法と比べて電池抵抗
の上昇を抑えることが出来ている。また、正極容器内側
が正極容器外側に向かって変形する機構とすることによ
り、電池の昇温時にモールドの復元力により正極容器内
側が正極容器外側に向かって変形することが可能とな
り、電池組立時に設けた正極容器内側と正極容器外側と
のギャップを埋めることができる。The sodium-sulfur secondary battery thus produced was heated to 330 ° C.
Cycle, 10 cycles of heat cycle, and then repeat 500 cycles of charge and discharge,
FIG. 3 shows the cycle dependence of the average resistance value of 10 batteries. Also in this case, as in Example 1, the average resistance value in the third cycle was set to 1, and the resistance value in each cycle was plotted as a relative value. As can be seen from this graph, the battery resistance of the present invention slightly increased compared to the initial stage for 1000 cycles of operation and a heat cycle during the operation, but the increase in battery resistance was suppressed as compared with the conventional method. Is made. In addition, with the mechanism in which the inside of the positive electrode container is deformed toward the outside of the positive electrode container, the inside of the positive electrode container can be deformed toward the outside of the positive electrode container by the restoring force of the mold when the temperature of the battery rises. The gap between the inside of the provided positive electrode container and the outside of the provided positive electrode container can be filled.
【0035】実施例3と比較例1を比較することによ
り、耐食性に優れているが伸縮性のほとんどないCr及び
Coを含んだ合金を内側正極容器として選んだ場合には、
正極容器内側に正極容器外側に向かって変形するための
機構を持たせることにより、電池組立時に設けた正極容
器内側と正極容器外側とのギャップはモールド品の復元
により埋めることが出来、十分な電気的接続を確保でき
る。By comparing Example 3 with Comparative Example 1, it was found that Cr and Cr, which have excellent corrosion resistance but little
If an alloy containing Co is selected as the inner cathode vessel,
By providing a mechanism for deforming the inside of the positive electrode container toward the outside of the positive electrode container, the gap between the inside of the positive electrode container and the outside of the positive electrode container provided at the time of battery assembly can be filled by restoring the molded product, and sufficient electricity Connection can be secured.
【0036】[0036]
【発明の効果】本発明は、正極容器が正極容器内側と正
極容器外側からなる二重構造であり、それぞれは接合さ
れず、正極集電材からの圧力により両者を電気的に接触
するようにしたことにある。これにより、従来のナトリ
ウム・硫黄二次電池の課題であった正極電極の剥離やク
ラックなどの劣化原因を回避でき、電池の寿命が向上す
る。さらに、正極活物質が溶融すると同時に、正極容器
内側と正極容器外側が電気的に接触するので、このニ次
電池を多数本直並列に並べたモジュールを昇温する際、
個々の二次電池の温度差によって各二次電池の起電力が
ばらつくために生じる続流は、正極活物質が溶融するま
で流れない利点も有する。According to the present invention, the positive electrode container has a double structure consisting of the inside of the positive electrode container and the outside of the positive electrode container, which are not joined to each other, and are electrically connected to each other by the pressure from the positive electrode current collector. It is in. As a result, it is possible to avoid the causes of deterioration of the positive electrode, such as peeling and cracking of the positive electrode, which are problems of the conventional sodium-sulfur secondary battery, and to improve the life of the battery. Furthermore, since the inside of the positive electrode container and the outside of the positive electrode container come into electrical contact at the same time as the positive electrode active material is melted, when heating a module in which many secondary batteries are arranged in series and parallel,
Subsequent flow that occurs due to variations in the electromotive force of each secondary battery due to the temperature difference between the individual secondary batteries also has the advantage that it does not flow until the positive electrode active material is melted.
【0037】さらに、本発明における正極容器は、接合
工程を省略でき、従来のナトリウム・硫黄ニ次電池の製
造方法に比べて容易に製造することが出来る。Further, the positive electrode container according to the present invention can omit the bonding step and can be manufactured more easily than the conventional method for manufacturing a sodium-sulfur secondary battery.
【図面の簡単な説明】[Brief description of the drawings]
【図1】 本発明にかかわるナトリウム・硫黄電池の縦
断面図である。FIG. 1 is a longitudinal sectional view of a sodium-sulfur battery according to the present invention.
【図2】 内側正極容器に外側へ変形するための機構を
2カ所設けた場合における、電池組立時及び電池作動時
の内側正極容器の概略図である。FIG. 2 is a schematic diagram of the inner positive electrode container at the time of battery assembly and at the time of operation of the battery when two mechanisms for deforming the inner positive electrode container to the outside are provided.
【図3】 電池抵抗の充放電サイクル依存性を表すグラ
フである。FIG. 3 is a graph showing the charge / discharge cycle dependency of battery resistance.
【図4】 従来のナトリウム・硫黄電池の縦断面図であ
る。FIG. 4 is a longitudinal sectional view of a conventional sodium-sulfur battery.
1…固体電解質管、 2…正負極絶縁用α-アルミナリン
グ、 3…正極容器外側、 4…負極容器、 5…負極
活物質(ナトリウム)、 6…安全管、 7…負極キャ
ップ、8…正極容器内側、 9…正極活物質(硫黄)、
10…正極集電材、 11…正極キャップ、12…正極端
子、 13…負極端子、 14…正極容器1 ... Solid electrolyte tube, 2 ... α-alumina ring for positive and negative electrode insulation, 3 ... Outside the positive electrode container, 4 ... Negative electrode container, 5 ... Negative electrode active material (sodium), 6 ... Safety tube, 7 ... Negative electrode cap, 8 ... Positive electrode Inside of container, 9 ... Positive electrode active material (sulfur),
10 ... Positive current collector, 11 ... Positive cap, 12 ... Positive terminal, 13 ... Negative terminal, 14 ... Positive container
───────────────────────────────────────────────────── フロントページの続き (72)発明者 加茂 友一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 西村 成興 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小池 清二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 坂元 耕三 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 河野 一重 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H011 AA02 AA03 AA13 CC06 5H029 AJ02 AJ05 AJ12 AJ13 AK05 AL13 AM15 BJ02 DJ02 DJ07 EJ01 EJ04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Kamo 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Nariko Nishimura Omikamachi, Hitachi City, Ibaraki Prefecture Hitachi 1-1, Hitachi, Ltd. (72) Inventor Seiji Koike 7-1-1, Omika-cho, Hitachi, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd. (72) Kozo Sakamoto Hitachi, Ibaraki, Japan 7-1-1, Omikamachi, Hitachi City Hitachi, Ltd. Hitachi Research Laboratory, Ltd. (72) Inventor Kazue Kawano 7-1-1, Omikamachi, Hitachi City, Ibaraki Prefecture F-term, Hitachi Research Laboratory, Hitachi Ltd. 5H011 AA02 AA03 AA13 CC06 5H029 AJ02 AJ05 AJ12 AJ13 AK05 AL13 AM15 BJ02 DJ02 DJ07 EJ01 EJ04
Claims (4)
質により負極と正極に隔てられ、該負極は負極活物質で
あるナトリウムを有し、該正極は外側容器と該固体電解
質により囲まれた室内に正極活物質である硫黄または多
硫化ナトリウムを含浸した正極集電材を収容した構造を
持つナトリウム・硫黄ニ次電池であって、前記正極の外
側容器が最外側表面層と正極集電材と接する層からな
り、前記正極集電材と接する層が正極活物質に対して耐
食性に優れており、かつ、前記最外側表面層と接合され
ていないことを特徴とするナトリウム・硫黄ニ次電池。A negative electrode and a positive electrode are separated from each other by a solid electrolyte having sodium ion conductivity. The negative electrode has sodium as a negative electrode active material, and the positive electrode is contained in a room surrounded by an outer container and the solid electrolyte. A sodium-sulfur secondary battery having a structure containing a positive electrode current collector impregnated with sulfur or sodium polysulfide as an active material, wherein the outer container of the positive electrode includes an outermost surface layer and a layer in contact with the positive electrode current collector. And a layer in contact with the positive electrode current collector has excellent corrosion resistance to the positive electrode active material, and is not bonded to the outermost surface layer.
質により負極と正極に隔てられ、該負極は負極活物質で
あるナトリウムを有し、該正極は外側容器と該固体電解
質により囲まれた室内に正極活物質である硫黄または多
硫化ナトリウムを含浸した正極集電材を収容した構造を
持つナトリウム・硫黄ニ次電池であって、前記正極の外
側容器が最外側表面層と正極集電材と接する層からな
り、 前記の正極集電材と接する層が、前記最外側表面
層に向かって変形することにより、前記最外側表面層と
電気的に接触していることを特徴とするナトリウム・硫
黄ニ次電池。2. A negative electrode and a positive electrode are separated by a solid electrolyte having sodium ion conductivity. The negative electrode has sodium as a negative electrode active material, and the positive electrode is contained in a room surrounded by an outer container and the solid electrolyte. A sodium-sulfur secondary battery having a structure containing a positive electrode current collector impregnated with sulfur or sodium polysulfide as an active material, wherein the outer container of the positive electrode includes an outermost surface layer and a layer in contact with the positive electrode current collector. A sodium-sulfur secondary battery, wherein a layer in contact with the positive electrode current collector is deformed toward the outermost surface layer to make electrical contact with the outermost surface layer.
ことを特徴とする請求項1及び2に記載のナトリウム・
硫黄ニ次電池。3. The layer according to claim 1, wherein the layer in contact with the positive electrode current collector contains a carbon material.
Sulfur secondary battery.
はCoを含む合金であることを特徴とする請求項1及び2
に記載のナトリウム・硫黄ニ次電池。4. A layer in contact with the positive electrode current collector is an alloy containing at least Cr or Co.
2. A sodium-sulfur secondary battery according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10178975A JP2000012077A (en) | 1998-06-25 | 1998-06-25 | Sodium / sulfur secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10178975A JP2000012077A (en) | 1998-06-25 | 1998-06-25 | Sodium / sulfur secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000012077A true JP2000012077A (en) | 2000-01-14 |
Family
ID=16057936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10178975A Pending JP2000012077A (en) | 1998-06-25 | 1998-06-25 | Sodium / sulfur secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000012077A (en) |
-
1998
- 1998-06-25 JP JP10178975A patent/JP2000012077A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5077889A (en) | Process for fabricating a positive-temperature-coefficient heating device | |
CN100352098C (en) | Secondary battery and its producing method | |
US4530151A (en) | Manufacture method of a sodium-sulfur storage battery | |
JPS6343310A (en) | Long life capacitor and manufacture of the same | |
EP0164963A2 (en) | Insulating seal for electrochemical cells | |
JPS62276767A (en) | Electrochemical battery | |
US3891460A (en) | Thermal battery and molten metal anode therefore | |
JP4738598B2 (en) | Conductive ceramic | |
US3534230A (en) | Electrolytic capacitor having two seals with one having reaction inhibiting surface | |
JP2002527612A (en) | Method of coating support plate and fuel cell provided with such support plate | |
US3201278A (en) | Hermetically sealed fused-electrolyte cell | |
JP2000012077A (en) | Sodium / sulfur secondary battery | |
US4590136A (en) | Electrochemical storage cell of the alkali metal and chalcogen type | |
US5118574A (en) | Alkali metal energy conversion device and method of construction | |
JPH0620294Y2 (en) | Solid electrolyte fuel cell | |
GB1563683A (en) | Composite body | |
JPS61171065A (en) | Thermal cell | |
CN100573985C (en) | Alkaline battery and production method thereof | |
US3184342A (en) | Gas-tight casings for power sources or other types of electrochemical cells | |
JPH0582030B2 (en) | ||
JP3084492B2 (en) | Sodium-sulfur battery and method of manufacturing the same | |
JP2969050B2 (en) | Sodium-sulfur battery | |
CN221651659U (en) | A kind of copper electrode protection sheet for battery core | |
JPH0243096Y2 (en) | ||
JPH05505904A (en) | Alkali metal energy conversion device |