[go: up one dir, main page]

JP2000012019A - Method for producing positive electrode material for lithium secondary battery - Google Patents

Method for producing positive electrode material for lithium secondary battery

Info

Publication number
JP2000012019A
JP2000012019A JP10172826A JP17282698A JP2000012019A JP 2000012019 A JP2000012019 A JP 2000012019A JP 10172826 A JP10172826 A JP 10172826A JP 17282698 A JP17282698 A JP 17282698A JP 2000012019 A JP2000012019 A JP 2000012019A
Authority
JP
Japan
Prior art keywords
lithium
discharge capacity
nickel
dew point
nickelate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10172826A
Other languages
Japanese (ja)
Other versions
JP3976213B2 (en
Inventor
Toshihiko Funabashi
敏彦 船橋
Yoshiaki Hamano
嘉昭 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Mining Co Ltd filed Critical Kawatetsu Mining Co Ltd
Priority to JP17282698A priority Critical patent/JP3976213B2/en
Publication of JP2000012019A publication Critical patent/JP2000012019A/en
Application granted granted Critical
Publication of JP3976213B2 publication Critical patent/JP3976213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

(57)【要約】 【課題】 放電容量が高く、電池内の充填率が高いニッ
ケル酸リチウムの製造方法を提案する。 【解決手段】 ニッケル塩に対しリチウム塩を化学量論
的にニッケル酸リチウムを生成するのに十分な量を添加
して混合し、焼成してニッケル酸リチウムを製造するに
当たり、600〜800℃の区間について露点が0℃以下の酸
化性雰囲気下で焼成を行うこととする。
(57) [Problem] To provide a method for producing lithium nickel oxide having a high discharge capacity and a high filling rate in a battery. SOLUTION: A lithium salt is stoichiometrically added to a nickel salt in an amount sufficient to produce lithium nickelate, mixed and fired to produce lithium nickelate. Sintering is performed in an oxidizing atmosphere having a dew point of 0 ° C. or less for the section.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池用
正極材料の製造方法に関し、特に放電容量を向上させる
とともに、電池への充填密度が高いニッケル酸リチウム
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode material for a lithium secondary battery, and more particularly to a method for producing lithium nickel oxide having a high filling density in a battery while improving discharge capacity.

【0002】[0002]

【従来の技術】リチウム二次電池の正極材料としてはコ
バルト酸リチウム(LiCoO2)が高い電位を持つために多
く使用されるようになっている。しかしコバルトが高価
であることと、インターカレート、ディインターカレー
ト可能なリチウムの量が少なく、大きな放電容量が得ら
れないためより安価で放電容量が高い正極材料として層
状構造を有するニッケル酸リチウム(LiNiO2)が注目さ
れ検討されている。かかる正極材料あるいはその製造方
法に関する提案に提案として、特開平7-335215号公報、
特開平7-335220号公報、特開平8-153518号公報あるいは
特開平8-180863号公報などが見られる。
2. Description of the Related Art As a positive electrode material of a lithium secondary battery, lithium cobalt oxide (LiCoO 2 ) is widely used because of its high potential. However, since lithium is expensive, the amount of lithium that can be intercalated and deintercalated is small, and a large discharge capacity cannot be obtained, lithium nickelate having a layered structure as a cathode material that is cheaper and has a higher discharge capacity (LiNiO 2 ) has attracted attention and is being studied. As a proposal for such a positive electrode material or a method for producing the same, JP-A-7-335215,
JP-A-7-335220, JP-A-8-153518, JP-A-8-180863 and the like can be seen.

【0003】[0003]

【発明が解決しようとする課題】ところで二次電池用材
料については、まず、放電容量の高いことが望ましい
が、併せて電池の小型化の面から、電極容量密度を向上
させるために、電池容器への充填密度の高いことが好ま
しい。そのための手段として、正極材料の形状を球状と
していわゆるタップ密度を高くすることが考えられる。
かかる球状のニッケル酸リチウムの製造方法として、前
記特開平7-335220号公報に係る手段が提案されている。
It is desirable that the secondary battery material has a high discharge capacity. However, from the viewpoint of miniaturization of the battery, a battery container is required to improve the electrode capacity density. It is preferable that the packing density of the resin be high. As a means for achieving this, it is conceivable to increase the so-called tap density by making the shape of the positive electrode material spherical.
As a method for producing such a spherical lithium nickelate, a means according to the above-mentioned JP-A-7-335220 has been proposed.

【0004】しかしながら上記方法によるときは従来製
品に比べ充填密度の高いニッケル酸リチウムからなる正
極材料を製造することが可能になるが、なお、放電容量
は不十分であった。本発明はかかる現状に鑑みなされた
ものであって、まず、放電容量を従来技術に比べ画期的
に向上することを目的とし、さらに、製品ニッケル酸リ
チウムの形状をほぼ球状のものとしながら放電容量を19
0mAh/gのレベルまで向上させることができるニッケル酸
リチウムの製造方法を提案することを目的とする。
[0004] However, according to the above method, it is possible to produce a positive electrode material made of lithium nickel oxide having a higher packing density than conventional products, but the discharge capacity is insufficient. The present invention has been made in view of such a situation, and firstly, aims to remarkably improve the discharge capacity as compared with the prior art, and further, while making the product lithium nickelate almost spherical in shape. 19 capacity
An object of the present invention is to propose a method for producing lithium nickelate which can be improved to a level of 0 mAh / g.

【0005】[0005]

【課題を解決するための手段】本発明者等は上記課題の
解決のために鋭意研究を行った結果、ニッケル塩とリチ
ウム塩とを混合して焼成する段階において、焼成雰囲気
中に水分があるとニッケル酸リチウムの生成反応は速や
かに進行するが、生成したニッケル酸リチウムにはリチ
ウム欠損を含む欠陥が多く認められ、そのため放電容量
が低下することを発見し、本発明を完成したものであ
る。したがって、まず、放電容量の高いニッケル酸リチ
ウムを得るために、ニッケル塩に対しリチウム塩を化学
量論的にニッケル酸リチウムを生成するのに十分な量を
添加して混合し、焼成してニッケル酸リチウムを製造す
るに当たり、600〜800℃の区間について露点が0℃以下
の酸化性雰囲気下で焼成を行うこととするものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, at the stage of mixing and sintering a nickel salt and a lithium salt, there is water in the sintering atmosphere. The formation reaction of lithium nickel oxide and lithium nickel oxide proceeds quickly, but the generated lithium nickel oxide has many defects including lithium deficiency, and it has been found that the discharge capacity is reduced, thereby completing the present invention. . Therefore, first, in order to obtain lithium nickelate having a high discharge capacity, a lithium salt is added stoichiometrically to a nickel salt in an amount sufficient to produce lithium nickelate, mixed, and fired to obtain nickel nickelate. In producing lithium oxide, firing is performed in an oxidizing atmosphere having a dew point of 0 ° C. or less in a section of 600 to 800 ° C.

【0006】また、さらに電池への充電密度を向上し、
さらに充電密度を高めるために、湿式溶液析出合成法に
より球状の水酸化ニッケルを得、該水酸化ニッケルにリ
チウム塩を化学量論的にニッケル酸リチウムを生成する
のに十分な量を加え、得られた混合物を焼成してニッケ
ル酸リチウムを製造するに当たり、600〜800℃の区間に
ついて露点が0℃以下の酸化性雰囲気下で焼成を行うこ
ととするものである。
[0006] Further, the charging density of the battery is further improved,
In order to further increase the charge density, spherical nickel hydroxide is obtained by a wet solution precipitation synthesis method, and a lithium salt is added to the nickel hydroxide in an amount sufficient to stoichiometrically generate lithium nickelate, thereby obtaining In producing lithium nickel oxide by firing the obtained mixture, firing is performed in an oxidizing atmosphere having a dew point of 0 ° C. or less in a section of 600 to 800 ° C.

【0007】さらに、好適には上記焼成雰囲気を純酸素
雰囲気とすることとし、これによってさらに放電容量の
向上を図るものである。
Further, the firing atmosphere is preferably a pure oxygen atmosphere, thereby further improving the discharge capacity.

【0008】また、上記600〜800℃の温度範囲における
焼成に先立ち、250〜500℃の温度範囲において露点0℃
以下の酸化性雰囲気において保持し、混合物からの脱水
を実質的に完了させることを好適とするものである。
Further, prior to the calcination in the above temperature range of 600 to 800 ° C., the dew point is 0 ° C. in the temperature range of 250 to 500 ° C.
It is preferable to hold in the following oxidizing atmosphere to substantially complete the dehydration from the mixture.

【0009】[0009]

【発明の実施の形態】本件請求項1記載の発明を実施す
るに当たって重要なのは、ニッケル酸リチウム生成時の
雰囲気中水分である。図1は硝酸ニッケル(NiNO3)2・6
H2O 100gに対し硝酸リチウム(LiNO3)を52 g含む水溶液
を添加してスラリーとし、該スラリーを乾燥後、650℃
で空気中で焼成してニッケル酸リチウムを生成させる
際、上記焼成温度における露点を20〜−20℃の間で変化
させたときの製品の初期放電容量と露点との関係図であ
る。ここに示されるよう温度における露点が0℃以下と
なると製品ニッケル酸リチウムの放電容量が大きく向上
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In carrying out the invention of claim 1 of the present invention, what is important is the moisture in the atmosphere when lithium nickelate is produced. Figure 1 is nickel nitrate (NiNO 3) 2 · 6
An aqueous solution containing 52 g of lithium nitrate (LiNO 3 ) was added to 100 g of H 2 O to form a slurry.After drying the slurry, the slurry was heated at 650 ° C.
FIG. 4 is a diagram showing the relationship between the initial discharge capacity and the dew point of a product when the dew point at the above-mentioned firing temperature is changed between 20 and −20 ° C. when lithium nickel oxide is produced by firing in air. As shown here, when the dew point at the temperature is 0 ° C. or less, the discharge capacity of the product lithium nickelate is greatly improved.

【0010】なお、本発明においては上記焼成時におけ
る雰囲気中の露点を低下させることが重要であるが、そ
のための方法は特に限定されず、後述するように、焼成
過程に先だって予め脱水処理を行い、あるいは焼成過程
において乾燥ガスを流通させることあるいはこれらの組
み合わせを用いることができる。このような結果が得ら
れる原因については十分解明されていないが、焼成反応
時における水蒸気の存在はニッケル酸リチウムの結晶成
長を促進する反面、結晶内に多くの欠陥を含むものとす
るのに対し、露点を低下させた場合には結晶の成長の際
の構造欠陥が少なくなるためと推定される。なお、露点
と放電容量との関係は原材料の如何にかかわらず認めら
れるので、請求項1記載の発明の実施に当たっては、原
材料であるニッケル塩、リチウム塩について特に制限は
なくニッケル酸リチウムを好適に得られる組み合わせが
すべて用いうる。
In the present invention, it is important to lower the dew point in the atmosphere at the time of the above-mentioned firing, but the method for this is not particularly limited, and as described later, a dehydration treatment is carried out before the firing step. Alternatively, a dry gas can be circulated in the firing step, or a combination thereof can be used. Although the cause of such a result is not fully understood, the presence of water vapor during the firing reaction promotes the crystal growth of lithium nickelate, while the crystal contains many defects, whereas the dew point Is presumed to be due to a decrease in structural defects at the time of crystal growth when the value is decreased. Since the relationship between the dew point and the discharge capacity is recognized irrespective of the raw material, in the practice of the invention described in claim 1, there is no particular limitation on the nickel salt and lithium salt as raw materials, and lithium nickel oxide is preferably used. All of the resulting combinations can be used.

【0011】上記により放電容量の大きい正極材料を得
ることができるが二次電池における充填密度を上げるた
めには、製品ニッケル酸リチウムの形状をほぼ球状と
し、かつその放電容量を向上させるのがよい。そのため
請求項2以下の発明においては、第1段階として球状の
水酸化ニッケルを製造し、これに対してリチウム塩を混
合して焼成する。具体的には、湿式溶液析出合成法を利
用し、硫酸ニッケル(NiSO4)水溶液中に錯化剤として
アンモニア水を加え、pHをほぼ11以上と高く保ちながら
水酸化ナトリウム(NaOH)を加えて水酸化ニッケルを球
状に析出させる。得られた水酸化ニッケルは遠心分離
し、水洗後乾燥する。
As described above, a positive electrode material having a large discharge capacity can be obtained. However, in order to increase the packing density in a secondary battery, it is preferable to make the product lithium nickelate substantially spherical and improve its discharge capacity. . Therefore, in the invention of claim 2 or the following, spherical nickel hydroxide is produced as a first step, and a lithium salt is mixed with the nickel hydroxide and fired. Specifically, ammonia water is added as a complexing agent to an aqueous solution of nickel sulfate (NiSO 4 ) using a wet solution precipitation synthesis method, and sodium hydroxide (NaOH) is added while maintaining the pH at about 11 or higher. Nickel hydroxide is deposited in a spherical shape. The obtained nickel hydroxide is centrifuged, washed with water and dried.

【0012】上記球状の水酸化ニッケルの製造にあた
り、平均粒径を2〜30μm程度とすること、結晶構造を
ニッケルの上下に酸素が配置された層状構造のβ型とす
ることおよび結晶粒子を密に配列するようにすることが
必要であり、そのため反応条件(pH、温度、反応速度
等)を適宜調節することが必要である。
In the production of the above-mentioned spherical nickel hydroxide, the average particle size is about 2 to 30 μm, the crystal structure is a β-type layered structure in which oxygen is arranged above and below nickel, and the crystal grains are dense. It is necessary to appropriately adjust the reaction conditions (pH, temperature, reaction rate, etc.).

【0013】上記により得られた水酸化ニッケルに対し
てリチウム塩を混じて焼成する。リチウム塩の混合量は
化学量論的にニッケル酸リチウムを生成する量でよい
が、リチウムサイトへのニッケル置換を防ぎリチウム欠
損のない層状構造のニッケル酸リチウムを得るために
は、やや過剰、例えばLi/Niのモル比が1.05〜1.2程度と
なるように、リチウム化合物を添加するのが好ましい。
The nickel hydroxide obtained as described above is mixed with a lithium salt and fired. The mixing amount of the lithium salt may be an amount that stoichiometrically generates lithium nickelate.However, in order to prevent nickel substitution on lithium sites and obtain lithium nickelate having a layered structure without lithium deficiency, a slight excess, for example, It is preferable to add a lithium compound so that the molar ratio of Li / Ni is about 1.05 to 1.2.

【0014】リチウム塩としては水酸化リチウム(LiOH
・H2O)、硫酸リチウム(Li2SO4)、硝酸リチウム(LiN
O3)、塩化リチウム(LiCl)あるいは炭酸リチウム(Li
2CO 3)などの水溶性の塩を単独またはこれらを2種以上
混合して用いることができるが、水酸化リチウムが反応
性、焼成温度などの点から最も望ましい。なお、混合を
十分行うためには上記リチウム塩は適量のエタノール等
の液体と混煉してペースト状とし、水酸化ニッケルと混
合するのが望ましい。
As the lithium salt, lithium hydroxide (LiOH
・ HTwoO), lithium sulfate (LiTwoSOFour), Lithium nitrate (LiN
OThree), Lithium chloride (LiCl) or lithium carbonate (Li
TwoCO Three)) Or two or more of them.
It can be used as a mixture, but lithium hydroxide reacts
It is most desirable from the viewpoint of properties and firing temperature. In addition, mixing
To perform well, the above lithium salt must be
Into a paste by mixing with the liquid in
It is desirable to combine.

【0015】上記により得られた球状の水酸化ニッケル
とリチウム塩の混合物は乾燥後、焼成される。焼成はリ
チウム塩が分解し水酸化ニッケルと反応する温度で行う
が、水酸化リチウムの球状の形状を崩さず、かつニッケ
ル酸リチウムを生成されるためには600℃以上、800℃以
下の温度範囲で焼成する必要がある。800℃を超えると
生成したニッケル酸リチウムが相互に焼結して球状を維
持できず、一方600℃未満の温度ではニッケル酸リチウ
ムの結晶成長が不十分となるからである。
The resulting mixture of spherical nickel hydroxide and lithium salt is dried and then fired. The calcination is performed at a temperature at which the lithium salt is decomposed and reacts with nickel hydroxide, but the temperature range of 600 ° C or higher and 800 ° C or lower is required to maintain the spherical shape of lithium hydroxide and to produce lithium nickelate. Need to be fired. If the temperature exceeds 800 ° C., the formed lithium nickelate is mutually sintered and cannot maintain a spherical shape. On the other hand, if the temperature is lower than 600 ° C., the crystal growth of lithium nickelate becomes insufficient.

【0016】請求項2に係る発明においても、上記焼成
を行うための雰囲気は請求項1に係る発明と同様に露点
を低くして行う。図2は、平均粒径を10〜15μmのβ型
の球状の水酸化ニッケルに、Li/Niのモル比が1.1となる
ように水酸化リチウムを配合し、脱水後、750℃で空気
中で焼成する際の焼成温度750℃における雰囲気中露点
と製品水酸化リチウムの放電容量との関係を示したもの
である。ここに示すように、焼鈍雰囲気の露点を低下さ
せ、0℃以下とすると製品の初期放電容量が190mAh/gを
超える好結果が得られる。
Also in the second aspect of the invention, the atmosphere for performing the calcination is set at a low dew point as in the first aspect of the invention. FIG. 2 shows that β-type spherical nickel hydroxide having an average particle diameter of 10 to 15 μm was mixed with lithium hydroxide so that the molar ratio of Li / Ni was 1.1, and after dehydration, the mixture was air-dried at 750 ° C. It shows the relationship between the dew point in the atmosphere at a firing temperature of 750 ° C. during firing and the discharge capacity of the product lithium hydroxide. As shown here, when the dew point of the annealing atmosphere is lowered to 0 ° C. or less, good results are obtained in which the initial discharge capacity of the product exceeds 190 mAh / g.

【0017】表1は平均粒径を5〜10μmのβ型の球状
の水酸化ニッケルに、Li/Niのモル比が1.1となるように
水酸化リチウムを配合し、脱水後、750℃で焼成する際
の焼成雰囲気を種々変更した場合の製品水酸化リチウム
の放電容量と雰囲気との関係を示したものである。
Table 1 shows that β-type spherical nickel hydroxide having an average particle size of 5 to 10 μm was mixed with lithium hydroxide so that the molar ratio of Li / Ni was 1.1, dehydrated, and then calcined at 750 ° C. FIG. 4 shows the relationship between the discharge capacity of the product lithium hydroxide and the atmosphere when the firing atmosphere during the firing is changed in various ways.

【0018】ここに示すように雰囲気中の酸素ポテンシ
ャルが高いほど放電容量が高くなる。一般に酸素ポテン
シャルが低い場合にはNiの一部がNi2+となる傾向があ
り、容量が低下するが、酸素ポテンシャルを十分高くと
ればかかる問題も解決される。酸素分圧としては0.5atm
以上とするのが好ましく、特に純酸素雰囲気とすること
は非常に好結果を生ずる。
As shown here, the higher the oxygen potential in the atmosphere, the higher the discharge capacity. In general, when the oxygen potential is low, a part of Ni tends to be Ni 2+ and the capacity decreases. However, if the oxygen potential is sufficiently high, such a problem is solved. 0.5atm as oxygen partial pressure
It is preferable to set the above value, and particularly a pure oxygen atmosphere produces very good results.

【0019】[0019]

【表1】 [Table 1]

【0020】なお、放電容量の測定のためには、上記の
ようにして製造したニッケル酸リチウム80重量部、アセ
チレンブラック15重量部、ポリふっ化ビニリデン5重量
部を混合して正極剤とした。これに2-メチル-N-ピロリ
ドンを添加して十分に混練し、合計 40 mgの正極材混合
物を直径14 mmのアルミ箔に塗布した後、真空乾燥して
正極板とし、負極には金属リチウムを用い、電解液には
炭酸プロピレンと炭酸エチレンの等容量混合溶媒にLiCl
O4を1 mol/lの割合で溶解したものを用いて簡易試験セ
ルを作成した。電流密度を0.5 mA/cm2とし、4.2 Vまで
充電し、2.5 Vまで放電したときの放電容量として測定
した。
For the measurement of the discharge capacity, 80 parts by weight of lithium nickelate, 15 parts by weight of acetylene black and 5 parts by weight of polyvinylidene fluoride were mixed to prepare a positive electrode. To this, 2-methyl-N-pyrrolidone was added and kneaded well.A total of 40 mg of the positive electrode material mixture was applied to an aluminum foil having a diameter of 14 mm, followed by vacuum drying to obtain a positive electrode plate. Using LiCl in an equal volume mixed solvent of propylene carbonate and ethylene carbonate
A simple test cell was prepared using O 4 dissolved at a rate of 1 mol / l. The current density was set to 0.5 mA / cm 2 , the battery was charged to 4.2 V, and the discharge capacity was measured when the battery was discharged to 2.5 V.

【0021】また、上記最終焼成に先立って、250〜500
℃の温度範囲において露点0℃以下の酸化性雰囲気に保
持し、原料中の結晶水を実質的に完全に除去することは
放電容量を一層高める。このような効果があるのは、水
酸化ニッケルあるいは水酸化リチウムなどの含水物の熱
分解をこの温度域で完全に行わせることによって、原料
中に残存して結晶水を駆逐し、続く高温焼成の際に熱分
解して雰囲気中に水分が持ち込まれるのを防止するため
と考えられる。したがって、水酸化ニッケルなどの熱分
解温度以上でかつ熱分解が十分行われる時間にわたり、
上記温度に保持するようにすべきである。
Prior to the final baking, 250-500
Maintaining an oxidizing atmosphere having a dew point of 0 ° C. or less in a temperature range of 0 ° C. and substantially completely removing water of crystallization in the raw material further increases the discharge capacity. This effect is achieved by completely decomposing hydrates such as nickel hydroxide or lithium hydroxide in this temperature range, thereby driving off water of crystallization remaining in the raw material and subsequent high-temperature firing. This is considered to prevent thermal decomposition at the time of the incorporation of moisture into the atmosphere. Therefore, over a period of time when the thermal decomposition is sufficiently performed at a temperature higher than the thermal decomposition temperature of nickel hydroxide or the like,
It should be kept at the above temperature.

【0022】具体的には、図3に示す時間−温度曲線に
従い、かつ露点を常に低く(例えば−10℃以下に)保ち
ながら予備焼成を行うのが好ましい。
Specifically, it is preferable to perform the pre-firing according to the time-temperature curve shown in FIG. 3 and keeping the dew point always low (for example, -10 ° C. or less).

【0023】上記焼成工程によって得られたニッケル酸
リチウムは通常に比して焼成温度が高いために部分的に
粒子相互が焼結している場合がある。また、一般に過剰
のリチウムを含有している。従って、生成したニッケル
酸リチウムは水洗し、過剰のリチウム塩を除去してもよ
い。乾燥後、解砕し、篩い分けして粒度調整を行うが、
その際球状の形状を崩すことのないよう過剰な外力を与
えないように注意する必要がある。
The lithium nickel oxide obtained by the above calcination step has a higher calcination temperature than usual, so that particles may be partially sintered to each other. It also generally contains an excess of lithium. Therefore, the generated lithium nickelate may be washed with water to remove excess lithium salt. After drying, crushed and sieved to adjust the particle size,
At that time, care must be taken not to apply excessive external force so as not to break the spherical shape.

【0024】なお、本発明に実施に当たり、原材料中に
製品の特性を改善させるための添加物、例えばCo、B、M
n、Mg、Sr等を適宜加えることを妨げるものではない。
In the practice of the present invention, additives for improving the properties of products, such as Co, B, M
It does not prevent adding n, Mg, Sr and the like as appropriate.

【0025】[0025]

【発明の効果】本発明は上記のように構成したので、放
電容量の大きな正極材料を製造することができ、また形
状がほぼ完全に球状をなし充填密度の高く、かつ放電容
量が非常に高いリチウム二次電池用正極材料を得ること
ができるので、電池の小型化、軽量化に寄与するところ
大である。
According to the present invention, a positive electrode material having a large discharge capacity can be manufactured, the shape is almost completely spherical, the packing density is high, and the discharge capacity is very high. Since a positive electrode material for a lithium secondary battery can be obtained, it greatly contributes to miniaturization and weight reduction of the battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ニッケル酸リチウム焼成の際の焼成温度におけ
る露点と初期放電容量との関係図である。
FIG. 1 is a diagram showing a relationship between a dew point and an initial discharge capacity at a sintering temperature during lithium nickel oxide sintering.

【図2】焼成温度700℃における雰囲気とニッケル酸リ
チウムの初期放電容量との関係図である。
FIG. 2 is a relationship diagram between an atmosphere at a firing temperature of 700 ° C. and an initial discharge capacity of lithium nickel oxide.

【図3】本発明に従うニッケル酸リチウムの焼成のため
の時間−温度曲線の例を示す。
FIG. 3 shows an example of a time-temperature curve for the calcination of lithium nickelate according to the invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB05 AC06 AE05 5H003 AA00 AA02 AA07 BA00 BA01 BA03 BA07 BB05 BC01 BD01 5H014 AA02 BB00 BB01 BB03 BB06 BB11 EE10 HH01 HH08 5H029 AJ03 AK03 AL12 AM02 AM03 AM07 CJ02 CJ08 CJ12 CJ14 CJ28 HJ01 HJ14  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4G048 AA04 AB05 AC06 AE05 5H003 AA00 AA02 AA07 BA00 BA01 BA03 BA07 BB05 BC01 BD01 5H014 AA02 BB00 BB01 BB03 BB06 BB11 EE10 HH01 HH08 5H029 AJ03 C12 AM02 C02 AM02 HJ01 HJ14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル塩に対しリチウム塩を化学量論
的にニッケル酸リチウムを生成するのに十分な量を添加
して混合し、焼成してニッケル酸リチウムを製造するに
当たり、 600〜800℃の区間について露点が0℃以下の酸化性雰囲
気下で焼成を行うことを特徴とする充填密度が高く、か
つ放電容量の高いニッケル酸リチウムの製造方法。
1. A lithium salt is added to a nickel salt in a stoichiometric amount sufficient to stoichiometrically produce lithium nickelate, mixed, and calcined to produce a lithium nickelate at 600 to 800 ° C. Baking in an oxidizing atmosphere having a dew point of 0 ° C. or less in the section of (1), a method for producing lithium nickel oxide having a high packing density and a high discharge capacity.
【請求項2】 湿式溶液析出合成法により球状の水酸化
ニッケルを得、該水酸化ニッケルにリチウム塩を化学量
論的にニッケル酸リチウムを生成するのに十分な量を加
え、得られた混合物を焼成してニッケル酸リチウムを製
造するに当たり、 600〜800℃の区間について露点が0℃以下の酸化性雰囲
気下で焼成を行うことを特徴とする充填密度が高く、か
つ放電容量の高いニッケル酸リチウムの製造方法。
2. A spherical nickel hydroxide is obtained by a wet solution precipitation synthesis method, and a lithium salt is added to the nickel hydroxide in an amount sufficient to stoichiometrically produce lithium nickelate. Is fired in an oxidizing atmosphere having a dew point of 0 ° C. or less in the section of 600 to 800 ° C. to produce lithium nickel oxide.Nickel acid having a high packing density and a high discharge capacity Method for producing lithium.
【請求項3】 焼成雰囲気を純酸素雰囲気とすることを
特徴とする請求項2記載の充填密度が高く、かつ放電容
量の高いニッケル酸リチウムの製造方法。
3. The method for producing lithium nickel oxide having a high filling density and a high discharge capacity according to claim 2, wherein the firing atmosphere is a pure oxygen atmosphere.
【請求項4】 上記600〜800℃の温度範囲における焼成
に先立ち、250〜500℃の温度範囲において露点0℃以下
の酸化性雰囲気において保持し、混合物からの脱水を実
質的に完了させることを特徴とする請求項2または3記
載の充填密度が高く、かつ放電容量の高いニッケル酸リ
チウムの製造方法。
4. Prior to the calcination in the temperature range of 600 to 800 ° C., the dehydration from the mixture is substantially completed by maintaining the composition in an oxidizing atmosphere having a dew point of 0 ° C. or less in a temperature range of 250 to 500 ° C. The method for producing lithium nickelate according to claim 2 or 3, wherein the packing density is high and the discharge capacity is high.
【請求項5】 リチウム塩はLiOH・H2Oであることを特
徴とする請求項2ないし4の何れかに記載の充填密度が
高く、かつ放電容量の高いニッケル酸リチウムの製造方
法。
5. The method for producing lithium nickelate having a high packing density and a high discharge capacity according to claim 2 , wherein the lithium salt is LiOH.H 2 O.
JP17282698A 1998-06-19 1998-06-19 Method for producing positive electrode material for lithium secondary battery Expired - Lifetime JP3976213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17282698A JP3976213B2 (en) 1998-06-19 1998-06-19 Method for producing positive electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17282698A JP3976213B2 (en) 1998-06-19 1998-06-19 Method for producing positive electrode material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000012019A true JP2000012019A (en) 2000-01-14
JP3976213B2 JP3976213B2 (en) 2007-09-12

Family

ID=15949086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17282698A Expired - Lifetime JP3976213B2 (en) 1998-06-19 1998-06-19 Method for producing positive electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3976213B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207637A (en) * 2006-02-03 2007-08-16 Gs Yuasa Corporation:Kk Lithium iron phosphate compound for non-aqueous electrolyte battery, and its manufacturing method
JP2011093753A (en) * 2009-10-30 2011-05-12 Murata Mfg Co Ltd Method for manufacturing lithium transition metal complex oxide
WO2025061478A1 (en) * 2023-09-22 2025-03-27 Basf Se Process for making a cathode active material, and cathode active material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207637A (en) * 2006-02-03 2007-08-16 Gs Yuasa Corporation:Kk Lithium iron phosphate compound for non-aqueous electrolyte battery, and its manufacturing method
JP2011093753A (en) * 2009-10-30 2011-05-12 Murata Mfg Co Ltd Method for manufacturing lithium transition metal complex oxide
WO2025061478A1 (en) * 2023-09-22 2025-03-27 Basf Se Process for making a cathode active material, and cathode active material

Also Published As

Publication number Publication date
JP3976213B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
US11742479B2 (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof and positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof
US6048643A (en) Process for preparing lithium intercalation compounds
JP2010135285A (en) Positive electrode active material for lithium secondary battery and method for manufacturing the same
JP2000281354A (en) Layer rock salt type oxide particulate powder and its production
WO2017090378A1 (en) Positive electrode material for non-aqueous electrolyte secondary battery and method for manufacturing same, positive electrode composite paste, and non-aqueous electrolyte secondary battery
JP7276324B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
KR20110044936A (en) Method for producing lithium manganese composite oxide for lithium ion battery, lithium manganese composite oxide for lithium ion battery manufactured by the method, and lithium ion secondary battery comprising same
JP4124522B2 (en) Lithium / manganese composite oxide, production method and use thereof
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2007214118A (en) Manufacturing method of lithium/transition metal composite oxide
JP6536658B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
WO2001047814A1 (en) Method for producing lithium manganate and lithium cell using said lithium manganate
JP2001114521A (en) Manganese oxide and its production method
KR20040049811A (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2017010842A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP7207323B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery
JP3976213B2 (en) Method for producing positive electrode material for lithium secondary battery
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2001328814A (en) Lithium manganese-based composite oxide, its production method and secondary battery
JP7167939B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery
JPH082921A (en) Lithium manganese composite oxide, method for producing the same, and use thereof
KR100668050B1 (en) Manganese Composite Oxide, Lithium Secondary Battery Spinel Type Cathode Active Material Using the Same and Method for Manufacturing the Same
JP4519959B2 (en) Positive electrode material for lithium secondary battery
JP2002313338A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term