[go: up one dir, main page]

JP2000011760A - Anisotropic conductive composition and manufacture of anisotropic conductive member using it - Google Patents

Anisotropic conductive composition and manufacture of anisotropic conductive member using it

Info

Publication number
JP2000011760A
JP2000011760A JP18244798A JP18244798A JP2000011760A JP 2000011760 A JP2000011760 A JP 2000011760A JP 18244798 A JP18244798 A JP 18244798A JP 18244798 A JP18244798 A JP 18244798A JP 2000011760 A JP2000011760 A JP 2000011760A
Authority
JP
Japan
Prior art keywords
particles
conductive particles
insulating
anisotropic conductive
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18244798A
Other languages
Japanese (ja)
Inventor
Kunihiro Fukumoto
邦宏 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Chemical and Co Ltd
Original Assignee
Kyoritsu Chemical and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Chemical and Co Ltd filed Critical Kyoritsu Chemical and Co Ltd
Priority to JP18244798A priority Critical patent/JP2000011760A/en
Publication of JP2000011760A publication Critical patent/JP2000011760A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate deficiency due to disconnection or a short circuit caused by the contact of conductive particles with one another even in the case of large gap dispersion or high-precision connection by uniformly diffusing the conductive particles and thermally fusible insulating particles in an insulating liquid adhesive. SOLUTION: Conductive particles are a metal particle such as Ni, Ag, Au or Pd, or a particle made by plating Au or the like on a plastic particle, and has a particle diameter of 3-10 μm. An epoxy resin, a polyester resin or the like is used for insulating particles. For the average particle diameter of the insulating particles in a diffused state, 25-150% of that of the conductive particles is suitable, and even if the conductive particles are included, they are deformed by fusing so that they do not hinder the gap adjusting capability of the conductive particles. An epoxy resin or an acrylic resin is included as an insulating adhesive. Even if there is gap dispersion around 2-7 μm in the height of bumps at the time of bonding, the insulating particles absorb it after fusing, so that the conduction of the conductive particles is not hindered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異方導電性接着組
成物及びそれを用いた異方導電部材の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to an anisotropic conductive adhesive composition and a method for producing an anisotropic conductive member using the same.

【0002】[0002]

【従来の技術】異方導電性接着組成物は、通常異方導電
性フィルム(ACF)として、液晶パネルとテープキャ
リアパッケージ(TCP)、TCPとプリント配線基板
(PWB)、又は液晶パネルとフリップチップ(FC)
の電気的接合等に使用されており、異種の電子部材の機
械的、電気的な同時接合に多用されている。ACFは通
常テープ状に加工されており、使いやすい面もあるが、
形状化されたテープを凹凸のある電極パターン上に熱圧
着するため、ボイドや接着欠損を起こしやすく、実装後
のハンダリフロー時に不具合が生じたり、信頼性を落と
す要因になることがある。
2. Description of the Related Art An anisotropic conductive adhesive composition is usually used as an anisotropic conductive film (ACF) as a liquid crystal panel and a tape carrier package (TCP), a TCP and a printed wiring board (PWB), or a liquid crystal panel and a flip chip. (FC)
Are used for the electrical and mechanical joining of different kinds of electronic members at the same time. ACF is usually processed in a tape shape, and it has an easy-to-use surface.
Since the shaped tape is thermocompression-bonded onto an electrode pattern having irregularities, voids and adhesive defects are likely to occur, which may cause a problem at the time of solder reflow after mounting or cause a reduction in reliability.

【0003】また最近では、液状接着剤中に導電性粒子
を均一に分散させた異方導電性ペースト(ACP)も開
発されている。ACPは液状であるため、ACFの上記
の問題は回避できるが、導電性粒子が液中に分散した状
態にあるため、保管中に導電性粒子が沈降する問題や、
接続時の熱と圧力によって導電性粒子が流動化して局部
的に粒子同士が凝集し、その結果として断線、ショート
等の接合不良がACFの場合よりも起こりやすい問題が
ある。
Recently, an anisotropic conductive paste (ACP) in which conductive particles are uniformly dispersed in a liquid adhesive has also been developed. Since the ACP is in a liquid state, the above-mentioned problems of the ACF can be avoided. However, since the conductive particles are in a state of being dispersed in the liquid, there is a problem that the conductive particles settle during storage,
There is a problem that the conductive particles are fluidized by the heat and pressure at the time of connection and the particles are locally aggregated, and as a result, bonding defects such as disconnection and short-circuit are more likely to occur than in the case of the ACF.

【0004】この対策として、導電性粒子の比重や粒径
をコントロールしたり、弾力性のある絶縁性粒子を併用
したり、分散しているバインダー樹脂の粘性を調整して
沈降を防止したり、導電性粒子の外側に絶縁層を設けて
ショートを防止する方法等が知られている。
As countermeasures against this, the specific gravity and particle size of the conductive particles are controlled, elastic insulating particles are used together, the viscosity of the dispersed binder resin is adjusted to prevent sedimentation, There is known a method of providing an insulating layer outside conductive particles to prevent a short circuit.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、接続が
高精細化するに伴い、導電性粒子の分散の偏りによる断
線、ショートを起こしやすくなり、接続抵抗を低減させ
るために導電性粒子に金属粒子を使用すると、保存中に
導電性粒子の分散性が悪くなるという問題があった。ま
たシリコーンやゴムのような弾力性のある絶縁性粒子は
線膨張力が高いため、電気的接続点にはさまれた場合、
高温時の接続抵抗値が不安定となり、また、接続時の圧
力が導電性粒子に効率よくかけられないという問題があ
った。
However, as the connection becomes finer, disconnection and short-circuit due to uneven distribution of the conductive particles are liable to occur, and metal particles are added to the conductive particles to reduce the connection resistance. When used, there was a problem that the dispersibility of the conductive particles deteriorated during storage. Also, elastic insulating particles such as silicone and rubber have a high linear expansion force.
There has been a problem that the connection resistance at high temperature becomes unstable and the pressure at the time of connection cannot be efficiently applied to the conductive particles.

【0006】またPWBの場合は、パッドの段差が5μ
mあり、バンプの高さバラツキを含めると、最大7μmの
大きいギャップバラツキがある。一方、最近の高精細化
に伴い導電性粒子は微小化の傾向にあり、導電性粒子の
ギャップ調節能を阻害する絶縁性粒子を併用することが
難しくなっている。そのため、接続時の導電性粒子同士
の接触によるショートを防止することが困難になってき
ている。
In the case of PWB, the step of the pad is 5 μm.
m, there is a large gap variation of up to 7 μm including the height variation of the bumps. On the other hand, with the recent increase in definition, conductive particles tend to be miniaturized, and it is difficult to use insulating particles that inhibit the gap adjusting ability of the conductive particles. Therefore, it has become difficult to prevent short-circuiting due to contact between the conductive particles during connection.

【0007】本発明はかかるギャップ調節能を有し、ギ
ャップバラツキが大きい場合でも、また高精細な接続の
場合において導電性粒子同士の接触による断線やショー
トによる不具合を生じない、異方導電性接着組成物を提
供することを目的とする。
The present invention has an anisotropic conductive adhesive which has such a gap adjusting ability and does not cause a problem such as disconnection or short circuit due to contact between conductive particles even in a case of a high-definition connection even in a case of a high-definition connection. It is intended to provide a composition.

【0008】[0008]

【課題を解決するための手段】本発明の異方導電性組成
物においては、導電性粒子と、熱溶融性の絶縁性粒子と
が絶縁性液状接着剤中に均一分散している。
In the anisotropic conductive composition of the present invention, conductive particles and heat-fusible insulating particles are uniformly dispersed in an insulating liquid adhesive.

【0009】導電性粒子は、Ni、Ag、Au、Pd等
の金属粒子、又はプラスチック粒子の表面にAu等で金
属メッキしたものであって、粒子径は3〜10μmのも
のが用いられる。
The conductive particles are metal particles of Ni, Ag, Au, Pd, or the like, or plastic particles obtained by plating a metal surface with Au or the like, and have a particle diameter of 3 to 10 μm.

【0010】絶縁性粒子としては、エポキシ樹脂、ポリ
エステル樹脂、エチレン−酢酸ビニル共重合体、スチレ
ン−ブタジエン共重合体及びその水素化物(SEB
S)、エチレン−アクリル酸エステル共重合体、特にエ
ポキシ樹脂が好適に用いられる。絶縁性粒子はスプレー
ドライ法や液中乾燥法のような公知の方法により製造さ
れる。この粒子は、接着時の加熱加圧により樹脂の融点
付近において溶融変形する。
As the insulating particles, epoxy resins, polyester resins, ethylene-vinyl acetate copolymers, styrene-butadiene copolymers and their hydrides (SEB
S), an ethylene-acrylate copolymer, particularly an epoxy resin is preferably used. The insulating particles are produced by a known method such as a spray drying method or a submerged drying method. These particles are melted and deformed in the vicinity of the melting point of the resin by heating and pressing during bonding.

【0011】分散状態の絶縁性粒子の平均粒径は、導電
性粒子の粒径の25〜150%が適当であり、導電性粒
子よりも大きい粒径の粒子を含んでいても、溶融変形す
るので導電性粒子のギャップ調節能を阻害しない。また
絶縁性粒子は、液の粘性をコントロールして、比重の大
きい導電性粒子の沈降を防止し、分散の均一性を保持し
ていると共に、粒子同士が凝集体を生成するのを防止し
ている。
The average particle size of the insulating particles in the dispersed state is suitably 25 to 150% of the particle size of the conductive particles. Even if particles having a particle size larger than the conductive particles are included, they are melted and deformed. Therefore, the gap adjusting ability of the conductive particles is not hindered. Insulating particles also control the viscosity of the liquid, prevent sedimentation of conductive particles with a large specific gravity, maintain uniformity of dispersion, and prevent particles from forming aggregates. I have.

【0012】絶縁性接着剤としては、エポキシ樹脂又は
アクリル樹脂を含み、アクリル樹脂としては、2官能又
は3官能以上の多官能(メタ)アクリレート化合物のベ
ース樹脂と単官能(メタ)アクリレート化合物の希釈
剤、熱重合開始剤及び熱重合触媒からなる組成物が用い
られる。ベース樹脂としては、エポキシ樹脂を変性した
エポキシアクリレート樹脂、ポリオールやポリエステル
ポリオールをウレタンアクリレート変性したウレタンア
クリレート樹脂等が知られているが、接着性と耐久性の
観点からエポキシアクリレート樹脂が適している。熱重
合開始剤と熱重合触媒は、硬化条件に合わせて種々の組
み合わせで用いられる。熱重合開始剤としては、クメン
ハイドロパーオキシドやt−ブチルパーオキシヘキサノ
エート等の有機過酸化物が、また熱重合触媒としては、
鉄、コバルト、銅等の遷移金属錯体が用いられる。
The insulating adhesive includes an epoxy resin or an acrylic resin, and the acrylic resin is a difunctional base resin of a bifunctional or trifunctional or higher polyfunctional (meth) acrylate compound and a dilution of a monofunctional (meth) acrylate compound. A composition comprising an agent, a thermal polymerization initiator and a thermal polymerization catalyst is used. As the base resin, an epoxy acrylate resin obtained by modifying an epoxy resin, a urethane acrylate resin obtained by modifying a polyol or a polyester polyol with urethane acrylate, and the like are known, and an epoxy acrylate resin is suitable from the viewpoint of adhesiveness and durability. The thermal polymerization initiator and the thermal polymerization catalyst are used in various combinations according to the curing conditions. As the thermal polymerization initiator, organic peroxides such as cumene hydroperoxide and t-butyl peroxyhexanoate, and as the thermal polymerization catalyst,
Transition metal complexes such as iron, cobalt, and copper are used.

【0013】本発明において、絶縁性接着剤として上記
のアクリル樹脂を用いた場合は、ICを実装後にリペア
する必要が生じた場合に、250℃程度ICチップを加
熱することで容易に基板からはがしてICを再搭載する
ことが可能であるので、基板をリサイクルできるメリッ
トがある。一方、従来の熱硬化型のACFの絶縁性接着
剤の場合は、エポキシ樹脂を用いており、耐熱性や耐湿
性等の耐久性は優れているが、リペアは困難であり、基
板のリサイクルができない。
In the present invention, when the above-mentioned acrylic resin is used as the insulating adhesive, when it is necessary to repair the IC after mounting, the IC chip is easily peeled off from the substrate by heating the IC chip at about 250 ° C. Therefore, there is an advantage that the substrate can be recycled because the IC can be mounted again. On the other hand, in the case of a conventional thermosetting ACF insulating adhesive, an epoxy resin is used, and the durability such as heat resistance and moisture resistance is excellent, but repair is difficult, and recycling of the substrate is difficult. Can not.

【0014】本発明の異方導電性組成物を混練して、導
電性粒子と絶縁性粒子が均一に分散したものを、電気的
接合個所に塗布して、接合個所を熱圧縮して異方導電部
材を製造した場合には、導電性粒子と絶縁性粒子は粒子
径レベルで接合個所に均一に配置され、圧力方向では導
電性粒子のみを介して電子部品間の導通を得るが、それ
以外の方向では絶縁性粒子は溶融して絶縁性を示すの
で、接合時に導電性粒子が流動化して移動したり、凝集
したりすることがない。さらにこの絶縁性粒子は、電気
的接合後、加熱温度で硬化し、硬化樹脂に変換し、応力
による信頼性の低下を防止する。
The anisotropically conductive composition of the present invention is kneaded, and a composition in which conductive particles and insulating particles are uniformly dispersed is applied to an electrical joint, and the joint is thermally compressed to anisotropically. When a conductive member is manufactured, the conductive particles and the insulating particles are uniformly arranged at the joining point at the particle diameter level, and in the pressure direction, conduction between the electronic components is obtained only through the conductive particles. In the direction, the insulating particles are melted and exhibit insulating properties, so that the conductive particles do not fluidize and move or aggregate at the time of joining. Further, the insulating particles are cured at a heating temperature after the electrical bonding, and are converted into a cured resin, thereby preventing a decrease in reliability due to stress.

【0015】また接合時にバンプの高さに2〜7μm程
度のギャップバラツキがあっても、絶縁性粒子が溶融し
てギャップバラツキが吸収されるので、導電性粒子の導
通が阻害されることがない。
In addition, even if there is a gap variation of about 2 to 7 μm in the height of the bump at the time of bonding, the insulating particles are melted and the gap variation is absorbed, so that conduction of the conductive particles is not hindered. .

【0016】[0016]

【実施例】以下の実施例において用いた、本発明の異方
導電性組成物の組成は次のとおりである。
EXAMPLES The composition of the anisotropic conductive composition of the present invention used in the following examples is as follows.

【0017】導電性粒子(1)としては、ミクロパール
AU−2065(積水ファインケミカル製)を6重量部
用いた。平均粒径6.5μmのジビニルベンゼン−スチ
レン架橋共重合体ビーズにAuメッキをしたもの
As the conductive particles (1), 6 parts by weight of Micropearl AU-2065 (manufactured by Sekisui Fine Chemical) was used. Au-plated divinylbenzene-styrene crosslinked copolymer beads with an average particle size of 6.5 μm

【0018】絶縁性粒子(2)としては、次の液中乾燥
法で製造したエポキシ樹脂粒子10重量部を用いた。エ
ピクロンNo.1050(エポキシ当量:480;大日本
インキ製)30重量部、エピクロンNo.850S(エポ
キシ当量:185;大日本インキ製)30重量部及びク
レゾールノボラック樹脂PS−6865(フェノール
価:122;群栄化学工業製)14重量部を、トルエ
ン:メチルエチルケトン(50:50)200mlに溶解
し、樹脂溶液を作成した。別に水300mlに保護コロイ
ドとしてポリビニルアルコールNo.500(和光純薬
製)15重量部、ノニオンNS−230(日本油脂製)
1.5重量部を溶解し、乳化媒体を調製した。この乳化
媒体を45℃に加温して、ホモジナイザーで8,000
回転で撹拌しながら、上記の樹脂溶液を45℃で少しず
つ加え、加え終わって後15分間撹拌を続けて、乳化分
散を完結した。この乳化分散液を減圧脱溶剤装置に入
れ、減圧下50℃で、乳化分散液中の溶剤を完全に除去
した。この後、無水ピペラジン11重量部を水500ml
に溶解したアミン硬化液を乳化分散液に加えて、60℃
で5時間反応させ、エポキシ樹脂を半硬化(エポキシ当
量で50〜60%)させ、粒子化を完結した。得られた
粒子は1〜20μmの粒度分布を有しており、これを水
での分級処理で、粒度分布を3〜10μmに揃えて、本
発明の絶縁性粒子とした。この絶縁性粒子の特性は次の
とおりである。 平均粒径:6.1μm、粒度分布:3〜10μmの間 融点:110℃(TMA法;測定荷重10gで測定) 反応性:150℃×1時間以内で完全に硬化する。
As the insulating particles (2), 10 parts by weight of epoxy resin particles produced by the following in-liquid drying method were used. 30 parts by weight of Epicron No. 1050 (epoxy equivalent: 480; manufactured by Dainippon Ink), 30 parts by weight of Epicron No. 850S (epoxy equivalent: 185; manufactured by Dainippon Ink) and cresol novolak resin PS-6865 (phenol number: 122; A resin solution was prepared by dissolving 14 parts by weight of Gunei Chemical Industry in 200 ml of toluene: methylethylketone (50:50). Separately, 15 parts by weight of polyvinyl alcohol No. 500 (manufactured by Wako Pure Chemical) as a protective colloid in 300 ml of water, Nonion NS-230 (manufactured by NOF Corporation)
1.5 parts by weight were dissolved to prepare an emulsifying medium. This emulsifying medium was heated to 45 ° C. and 8,000 with a homogenizer.
While stirring by rotation, the above resin solution was added little by little at 45 ° C., and after the addition was completed, stirring was continued for 15 minutes to complete emulsification and dispersion. The emulsified dispersion was placed in a vacuum desolvation apparatus, and the solvent in the emulsified dispersion was completely removed at 50 ° C. under reduced pressure. Thereafter, 11 parts by weight of anhydrous piperazine was added to 500 ml of water.
Add the amine curing liquid dissolved in
For 5 hours, and the epoxy resin was semi-cured (50 to 60% in epoxy equivalent) to complete the particle formation. The obtained particles had a particle size distribution of 1 to 20 μm, and this was subjected to classification treatment with water to adjust the particle size distribution to 3 to 10 μm, thereby obtaining insulating particles of the present invention. The characteristics of the insulating particles are as follows. Average particle size: 6.1 μm, particle size distribution: between 3 and 10 μm Melting point: 110 ° C. (TMA method; measured under a measurement load of 10 g) Reactivity: Completely cured within 150 ° C. × 1 hour.

【0019】絶縁性接着剤(3)としては、次の組成の
もの90重量部を用いた。 クレゾールノボラック樹脂‥‥‥30重量部 (フェノール価:122;群栄化学工業製) エポキシ樹脂A‥‥‥‥‥‥‥‥90重量部 (エピクロンNo.850S:No.830S=50:50;
大日本インキ製) エポキシ樹脂B‥‥‥‥‥‥‥‥10重量部 (エピクロンNo.520;大日本インキ製) 硬化促進剤(味の素製)‥‥‥‥‥8重量部 (アミキュアPN−23を粉砕分級して2μmに粒度調
整したもの) この接着剤のゲル化時間は180℃で15秒(熱板法)
であった。
As the insulating adhesive (3), 90 parts by weight having the following composition was used. Cresol novolak resin @ 30 parts by weight (phenol value: 122; manufactured by Gunei Chemical Industry) Epoxy resin A @ 90 parts by weight (Epiclone No. 850S: No. 830S = 50:50;
Epoxy resin B @ 10 parts by weight (Epiclon No. 520; manufactured by Dainippon Ink) Hardening accelerator (Ajinomoto) @ 8 parts by weight (Amicure PN-23) This adhesive is gelled for 15 seconds at 180 ° C. (hot plate method).
Met.

【0020】実施例1 図1に示すように、液晶パネル(4)とICチップ
(5)のチップオングラス(GOG)接続に、上記組成
の異方導電性組成物を用い、均一に混練したものを減圧
脱泡し、シリンジ等を用いて液晶パネルの回路端子上に
塗布した。塗布後の液晶パネルは80℃で10分間予備
加熱後、液晶パネルとICチップを170℃でチップ当
り10kgの圧力で60秒間圧着した。さらに必要により
これをオーブン中に保ち、完全に硬化させた。ICチッ
プのバンプの高さは2μm程度のギャップバラツキがあ
ったが、圧着時に絶縁性粒子の溶融によって導電性粒子
を介してバンプと基板が密着し、ギャップバラツキを吸
収した結果、導通抵抗を384点で試験し、その全部が
規格の導通抵抗200Ω(配線抵抗を含む)以下であっ
た。また絶縁抵抗を192点で試験し、その全部が規格
の絶縁抵抗108Ω以上であり、良好な導通性及び絶縁
性を示した。また液晶パネル越しにバンプ上の導電性粒
子を観察した結果、バンプ当り20個以上の導電性粒子
があり、本発明の目的が達せられていることを確認し
た。
Example 1 As shown in FIG. 1, an anisotropic conductive composition of the above composition was used to uniformly knead a chip-on-glass (GOG) connection between a liquid crystal panel (4) and an IC chip (5). The product was defoamed under reduced pressure, and was applied onto circuit terminals of a liquid crystal panel using a syringe or the like. The liquid crystal panel after application was preheated at 80 ° C. for 10 minutes, and then the liquid crystal panel and the IC chip were pressed at 170 ° C. at a pressure of 10 kg per chip for 60 seconds. If necessary, it was kept in an oven and completely cured. Although the height of the bump of the IC chip had a gap variation of about 2 μm, the bump and the substrate came into close contact with each other via the conductive particles due to the melting of the insulating particles at the time of pressure bonding, and the gap variation was absorbed. Tests were performed at all points, and all of them were less than the standard conduction resistance of 200Ω (including wiring resistance). In addition, the insulation resistance was tested at 192 points, all of which were at or above the standard insulation resistance of 10 8 Ω, showing good conductivity and insulation. In addition, as a result of observing the conductive particles on the bump through the liquid crystal panel, it was confirmed that there were 20 or more conductive particles per bump, and the object of the present invention was achieved.

【0021】実施例2 図2に示すように、ガラスエポキシ基板のPWBとIC
チップの接合においては、Cu/Auメッキ電極の段差
は5μm程度であり、バンプの高さバラツキを含めると
最大7μmの電極間のギャップバラツキがあることにな
る。前記組成の異方導電性組成物を、銅配線等が形成さ
れたプリント基板とICチップを接続するために用い、
170℃で10kg/チップ、60秒の条件で圧着した。
さらに必要によりこれをオーブン中に保ち、完全に硬化
させた。導通抵抗を384点で試験し、その全部が規格
の導通抵抗5Ω(配線抵抗を含む)以下であった。また
絶縁抵抗を192点で試験し、その全部が規格の絶縁抵
抗108Ω以上であった。導電性粒子が電極やバンプに
めり込んだり変形することで、ギャップバラツキを吸収
する働きを阻害することがなかった。
Embodiment 2 As shown in FIG. 2, PWB and IC of a glass epoxy substrate are used.
In bonding the chips, the level difference between the Cu / Au plated electrodes is about 5 μm, and there is a maximum gap variation between the electrodes of 7 μm including the variation in bump height. The anisotropic conductive composition having the above composition is used for connecting a printed circuit board on which a copper wiring or the like is formed and an IC chip,
Crimping was performed at 170 ° C. for 10 kg / chip for 60 seconds.
If necessary, it was kept in an oven and completely cured. The conduction resistance was tested at 384 points, all of which were less than the standard conduction resistance of 5Ω (including the wiring resistance). Further, the insulation resistance was tested at 192 points, and all of them were more than the standard insulation resistance of 10 8 Ω. The function of absorbing the gap variation was not hindered by the conductive particles sinking or deforming into the electrodes and bumps.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の異方導電性組成物を用いて、実施例1
の方法で液晶基板とICチップを接合した状況を示す。
FIG. 1 shows an example 1 using the anisotropic conductive composition of the present invention.
Shows a state in which the liquid crystal substrate and the IC chip are joined by the method described above.

【図2】本発明の異方導電性組成物を用いて、実施例2
の方法でプリント配線基板(PWB)とICチップを接
合した状況を示す。
FIG. 2 shows the results of Example 2 using the anisotropic conductive composition of the present invention.
Shows a state in which a printed wiring board (PWB) and an IC chip are joined by the method (1).

【符号の説明】[Explanation of symbols]

1:導電性粒子 2:絶縁性粒子 3:絶縁性接着剤 4:液晶パネル又はPWB 5:ICチップ 6:バンプ 7:ITO電極又は銅/金メッキ電極 1: conductive particles 2: insulating particles 3: insulating adhesive 4: liquid crystal panel or PWB 5: IC chip 6: bump 7: ITO electrode or copper / gold plated electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 13/00 501 H01B 13/00 501P H01R 11/01 H01R 11/01 A H Fターム(参考) 4J040 CA082 DA052 DA062 DB052 DE032 DF041 DF042 DM012 EC001 EC002 EC321 ED002 FA131 FA261 FA291 HA066 HB41 HD41 JA01 JB10 KA03 KA07 KA09 KA12 KA14 KA24 KA32 LA03 LA09 NA17 NA20 PA30 PA33 5G301 DA03 DA05 DA10 DA11 DA29 DA42 DD03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 13/00 501 H01B 13/00 501P H01R 11/01 H01R 11/01 AHF term (Reference) 4J040 CA082 DA052 DA062 DB052 DE032 DF041 DF042 DM012 EC001 EC002 EC321 ED002 FA131 FA261 FA291 HA066 HB41 HD41 JA01 JB10 KA03 KA07 KA09 KA12 KA14 KA24 KA32 LA03 LA09 NA17 NA20 PA30 PA33 5G301 DA03 DA05 DA10 DA11 DA42 DA42

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電性粒子と、熱溶融性の絶縁性粒子と
が、絶縁性液状接着剤中に均一分散している、異方導電
性組成物。
1. An anisotropic conductive composition in which conductive particles and thermally fusible insulating particles are uniformly dispersed in an insulating liquid adhesive.
【請求項2】 導電性粒子が、金属粒子又はプラスチッ
ク粒子に金属メッキしたものである、請求項1記載の組
成物。
2. The composition according to claim 1, wherein the conductive particles are metal particles or plastic particles metal-plated.
【請求項3】 絶縁性粒子が、さらに熱硬化性である、
請求項1記載の組成物。
3. The insulating particles are further thermosetting,
The composition of claim 1.
【請求項4】 絶縁性液状接着剤が、アクリル樹脂を含
有している、請求項1記載の組成物。
4. The composition according to claim 1, wherein the insulating liquid adhesive contains an acrylic resin.
【請求項5】 電気的接合個所に、請求項1記載の接着
組成物を供給して、接合個所を熱圧縮し、圧力方向では
導電性粒子を介して電子部品間の導通を得るが、絶縁性
粒子は溶融してそれ以外の方向では絶縁性を示す、異方
導電部材の製造方法。
5. An adhesive composition according to claim 1, which is supplied to the electrical joint to thermally compress the joint to obtain electrical continuity between the electronic components via conductive particles in the pressure direction. A method for producing an anisotropic conductive member, wherein conductive particles are melted and exhibit insulating properties in other directions.
JP18244798A 1998-06-29 1998-06-29 Anisotropic conductive composition and manufacture of anisotropic conductive member using it Pending JP2000011760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18244798A JP2000011760A (en) 1998-06-29 1998-06-29 Anisotropic conductive composition and manufacture of anisotropic conductive member using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18244798A JP2000011760A (en) 1998-06-29 1998-06-29 Anisotropic conductive composition and manufacture of anisotropic conductive member using it

Publications (1)

Publication Number Publication Date
JP2000011760A true JP2000011760A (en) 2000-01-14

Family

ID=16118432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18244798A Pending JP2000011760A (en) 1998-06-29 1998-06-29 Anisotropic conductive composition and manufacture of anisotropic conductive member using it

Country Status (1)

Country Link
JP (1) JP2000011760A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284005A (en) * 2000-03-28 2001-10-12 Hitachi Chem Co Ltd Anisotropic conductive material tape
JP2005320404A (en) * 2004-05-07 2005-11-17 Nagase Chemtex Corp Adhesive composition for sealing electronic component and manufacturing method of organic electroluminescence device
JP2009508290A (en) * 2005-08-19 2009-02-26 チェイル インダストリーズ インコーポレイテッド Anisotropic conductive film and electronic circuit and device using the same
WO2009051043A1 (en) * 2007-10-15 2009-04-23 Hitachi Chemical Company, Ltd. Circuit connecting adhesive film and circuit connecting structure
WO2012099171A1 (en) * 2011-01-18 2012-07-26 シャープ株式会社 Display panel with flat plate, method for manufacturing display panel with flat plate, and resin composition
JP2018076496A (en) * 2016-11-01 2018-05-17 協立化学産業株式会社 Compatible composition, adhesive composition, composite structure, method for producing and disassembling composite structure, chip surface processing method and method for producing composite body
WO2020079744A1 (en) * 2018-10-16 2020-04-23 株式会社Fuji Circuit formation method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284005A (en) * 2000-03-28 2001-10-12 Hitachi Chem Co Ltd Anisotropic conductive material tape
JP2005320404A (en) * 2004-05-07 2005-11-17 Nagase Chemtex Corp Adhesive composition for sealing electronic component and manufacturing method of organic electroluminescence device
JP2009508290A (en) * 2005-08-19 2009-02-26 チェイル インダストリーズ インコーポレイテッド Anisotropic conductive film and electronic circuit and device using the same
WO2009051043A1 (en) * 2007-10-15 2009-04-23 Hitachi Chemical Company, Ltd. Circuit connecting adhesive film and circuit connecting structure
WO2012099171A1 (en) * 2011-01-18 2012-07-26 シャープ株式会社 Display panel with flat plate, method for manufacturing display panel with flat plate, and resin composition
CN103314402A (en) * 2011-01-18 2013-09-18 夏普株式会社 Display panel with flat plate, method for manufacturing display panel with flat plate, and resin composition
CN103314402B (en) * 2011-01-18 2016-01-06 夏普株式会社 The manufacture method of the display panel of the display panel with surface plate, band surface plate
JP2018076496A (en) * 2016-11-01 2018-05-17 協立化学産業株式会社 Compatible composition, adhesive composition, composite structure, method for producing and disassembling composite structure, chip surface processing method and method for producing composite body
WO2020079744A1 (en) * 2018-10-16 2020-04-23 株式会社Fuji Circuit formation method
JPWO2020079744A1 (en) * 2018-10-16 2021-03-18 株式会社Fuji Circuit formation method
CN112868273A (en) * 2018-10-16 2021-05-28 株式会社富士 Circuit forming method
JP7083039B2 (en) 2018-10-16 2022-06-09 株式会社Fuji Circuit formation method
CN112868273B (en) * 2018-10-16 2023-08-29 株式会社富士 circuit forming method
US11849545B2 (en) 2018-10-16 2023-12-19 Fuji Corporation Circuit formation method

Similar Documents

Publication Publication Date Title
CN100392832C (en) Electrical device manufacturing method
TWI463575B (en) Manufacturing method of semiconductor device
US20080171182A1 (en) Connection Method of a Flexible Printed Circuit Board with Two Printed Circuit Boards, and Electric or Electronic Component with Parts Connected by the Connection Method
WO2013125388A1 (en) Anisotropic conductive connection material, connection structure, manufacturing method and connection method for connection structure
JP3624818B2 (en) Anisotropic conductive connection material, connection body, and manufacturing method thereof
WO2013129437A1 (en) Method for manufacturing connection element, and anisotropic electroconductive adhesive
KR101842855B1 (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
KR20190087365A (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
KR101988903B1 (en) self-assembled conductive bonding film and manufacturing method thereof
JP2024175135A (en) Connection structure, method for producing connection structure, connection material, and coated conductive particles
JP2000011760A (en) Anisotropic conductive composition and manufacture of anisotropic conductive member using it
KR20200020578A (en) manufacturing method of circuit member for self-assembled conductive bonding film
US20230070488A1 (en) Method for manufacturing connection body, and connection body
JP7592399B2 (en) Connection structure, method for producing connection structure, connection material, and coated conductive particles
JP6899599B2 (en) A method for producing an anisotropic conductive adhesive for fine pitches and an anisotropic conductive adhesive for fine pitches produced by the method.
JPH08148211A (en) Connection member and structure and method for connecting electrode using the same
JP4099878B2 (en) Circuit member mounting method
JPH087658A (en) Anisotropic conductive adhesive film
JPH09165435A (en) Anisotropic conductive film
JP3092118B2 (en) Conductive particle transfer type anisotropic conductive film and electrical connection method
JPH0575250A (en) Electrical connecting method
JP2003249287A (en) Anisotropically conductive adhesive, heat seal connector and connection structure
JP3148008B2 (en) Method of connecting substrate and chip using conductive adhesive
JP4032532B2 (en) Circuit member mounting method
JP2004220916A (en) Adhesive composition for circuit connection, and circuit terminal connection method and circuit terminal connection structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106