[go: up one dir, main page]

JP2000008130A - Member for heat exchanger made of aluminum alloy excellent in corrosion resistance - Google Patents

Member for heat exchanger made of aluminum alloy excellent in corrosion resistance

Info

Publication number
JP2000008130A
JP2000008130A JP10173040A JP17304098A JP2000008130A JP 2000008130 A JP2000008130 A JP 2000008130A JP 10173040 A JP10173040 A JP 10173040A JP 17304098 A JP17304098 A JP 17304098A JP 2000008130 A JP2000008130 A JP 2000008130A
Authority
JP
Japan
Prior art keywords
corrosion resistance
heat exchanger
brazing
fin
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10173040A
Other languages
Japanese (ja)
Inventor
Shu Kuroda
周 黒田
Ken Toma
建 当摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP10173040A priority Critical patent/JP2000008130A/en
Publication of JP2000008130A publication Critical patent/JP2000008130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the corrosion resistance of a heat exchanger by a method other than a corrosion preventing method by using a Zn-contg. fin. SOLUTION: A fin material obtd. by cladding one side or both sides of an aluminum or aluminum alloy core material with an Al-Si series brazing filler metal, and in which the Zn content in the core material and the brazing filler metal is adjusted to <=0.3% and an extruded tube material contg. 0.3 to 1.2% Mn, 0.1 to 1.1% Si, and the balance Al with inevitable impurities are assembled. They are subjected to brazing to obtain a heat exchanger excellent in corrosion resistance. The corrosion resistance of the heat exchanger can be secured without damaging the extrudability of the tube material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カークーラなどの
自動車用熱交換器のように耐食性が要求される用途に好
適な、アルミニウム合金製熱交換器用の部材に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member for an aluminum alloy heat exchanger suitable for applications requiring corrosion resistance, such as a heat exchanger for a car such as a car cooler.

【0002】[0002]

【従来の技術】カークーラー等の熱交換器に用いられる
押出チューブ材は複数孔を有するホロー形状等のよう
に、断面形状が非常に複雑で細かいことから押出性(押
出力が小さく、押出速度が速いものほど押出性が良い)
を重視してAA1050合金や強度を高めるために、こ
れにMnやCuなどを少量(0.2%程度)添加した材
料が用いられている。このため、これまでの押出チュー
ブ材は添加元素の少ない、いわゆる純Alに近い組成の
ものであった。このようなチューブではそれ自身の電位
が比較的卑であるために腐食しやすいという問題があ
り、従来は、Znを1%以上含有させることにより相対
的に卑とした犠牲陽極フィンを使用することによってチ
ューブの外部耐食性を向上させて防食を図っていた。
2. Description of the Related Art Extruded tubing used in heat exchangers such as car coolers has a very complicated and fine cross-sectional shape, such as a hollow shape having a plurality of holes, so that the extrudability (the pushing force is small, the extrusion speed is small). The faster, the better the extrudability)
In order to enhance the strength of the AA1050 alloy and to increase the strength, a material in which Mn, Cu, or the like is added in a small amount (about 0.2%) is used. For this reason, the extruded tube material so far has a composition close to what is called pure Al with few added elements. In such a tube, there is a problem that the tube is susceptible to corrosion because its own potential is relatively low. Conventionally, a sacrificial anode fin that is relatively low by containing Zn at 1% or more is used. Thus, the external corrosion resistance of the tube is improved to prevent corrosion.

【0003】[0003]

【発明が解決しようとする課題】しかし、Znを含有し
たフィン材を使用するとフィンの自己腐食速度が速くな
って、フィン自体が早期に腐食し、フィンが失われる等
の問題がある。さらにZnはろう付時にろうの共晶相に
濃縮するが、この相はろう付後にフィンとチューブとの
接合部(フィレット)を形成する。このためフィレット
部は相対的に電位が卑になり、この部分がフィン、チュ
ーブに比べて最も腐食されやすくなる。すると、フィレ
ット部が早期に腐食して失われる等してフィンがチュー
ブからはく離し、その結果、チューブに対するフィンの
犠牲陽極効果が作用しなくなり、チューブが早期に腐食
するという問題がある。
However, when a fin material containing Zn is used, there is a problem that the self-corrosion rate of the fin is increased, the fin itself is corroded early, and the fin is lost. Further, Zn concentrates in the eutectic phase of the brazing during brazing, which forms a joint (fillet) between the fin and the tube after brazing. For this reason, the electric potential of the fillet portion becomes relatively low, and this portion is most likely to be corroded as compared with the fin and the tube. Then, the fins are separated from the tube, for example, because the fillet portion is corroded and lost at an early stage. As a result, the sacrificial anode effect of the fin on the tube does not work, and the tube is corroded at an early stage.

【0004】本発明は、上記事情を背景としてなされた
ものであり、フィン材にZnを含有させることなくチュ
ーブの耐食性を改善したアルミニウム合金製熱交換器用
の部材を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a member for an aluminum alloy heat exchanger which has improved corrosion resistance of a tube without containing Zn in a fin material.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明の耐食性に優れたアルミニウム合金製熱交換
器用部材のうち第1の発明は、アルミニウムまたはアル
ミニウム合金芯材の片面又は両面にAl−Si系ろう材
をクラッドしたフィン材であって、上記芯材およびろう
材のZn含有量がそれぞれ0.3%以下に規制されたフ
ィン材と、Mn:0.3〜1.2%、Si:0.1〜
1.1%を含み残部Alと不可避不純物からなる押出チ
ューブ材とを組み合わせたことを特徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, the first invention of the aluminum alloy heat exchanger member having excellent corrosion resistance according to the present invention is an aluminum or aluminum alloy core material having one or both surfaces of Al. A fin material clad with a Si-based brazing material, wherein the Zn content of each of the core material and the brazing material is regulated to 0.3% or less, and Mn: 0.3 to 1.2%; Si: 0.1-
It is characterized by a combination of 1.1% and a balance of Al and an extruded tube material composed of unavoidable impurities.

【0006】第2の発明の耐食性に優れたアルミニウム
合金製熱交換器用部材は、第1の発明において、チュー
ブ材には、さらにCu:0.1〜0.6% Fe:0.
1〜1.1%のうち1種又は2種を含むことを特徴とす
る。
According to a second aspect of the present invention, there is provided a member for a heat exchanger made of an aluminum alloy having excellent corrosion resistance, wherein the tube material according to the first aspect further comprises Cu: 0.1 to 0.6% Fe: 0.
It is characterized by containing one or two of 1 to 1.1%.

【0007】第3の発明の耐食性に優れたアルミニウム
合金製熱交換器用部材は、第1または第2の発明におい
て、チューブ材の成分中のMnとSiの含有量(重量
%)の比が、Mn/Si=1.1〜4.5であることを
特徴とする。
A third aspect of the present invention is a heat exchanger member made of an aluminum alloy having excellent corrosion resistance, wherein the ratio of the content (% by weight) of Mn and Si in the components of the tube material according to the first or second aspect is as follows. Mn / Si = 1.1-4.5.

【0008】第4の発明の耐食性に優れたアルミニウム
合金製熱交換器用部材は、第1〜第3の発明において、
チューブ材に、さらにMg:0.05〜0.5%を含む
ことを特徴とする。
According to a fourth aspect of the present invention, there is provided an aluminum alloy heat exchanger member having excellent corrosion resistance.
The tube material is characterized by further containing 0.05 to 0.5% of Mg.

【0009】第5の発明の耐食性に優れたアルミニウム
合金製熱交換器用部材は、第1〜第4の発明において、
フィンの芯材の組成が、Mn:0.05〜1.5%、S
i:0.1〜1.0%を含有しさらにCu:0.05〜
0.3%、Fe:0.1〜1.0%、Zr:0.01〜
0.20%、Ti:0.01〜0.20%、Cr:0.
01〜0.20%、V:0.01〜0.20%のうち1
種または2種以上を含有し残部Alと不可避不純物から
なることを特徴とする。
According to a fifth aspect of the present invention, there is provided a heat exchanger member made of an aluminum alloy having excellent corrosion resistance.
The composition of the core material of the fin is as follows: Mn: 0.05 to 1.5%, S
i: 0.1 to 1.0%, and Cu: 0.05 to
0.3%, Fe: 0.1 to 1.0%, Zr: 0.01 to
0.20%, Ti: 0.01 to 0.20%, Cr: 0.
01 to 0.20%, V: 1 out of 0.01 to 0.20%
It is characterized in that it contains one or more species and the balance consists of Al and inevitable impurities.

【0010】以下に、本発明における成分限定理由につ
いて説明する。 (チューブ材) Mn:0.3〜1.2% Mnは、金属間化合物として晶出または析出してろう付
後の強度を向上させるとともに、チューブの電位を貴に
してフィンに対しチューブを相対的に貴にし、その結
果、チューブの耐食性を向上させる。また、Mnは、S
iとAl−Mn−Si系の化合物を形成して強度を向上
させる作用もある。これら作用を得るためには0.3%
以上の含有が必要であり、さらには0.45%以上含有
させるのが望ましく、0.6%以上含有させるのが一層
望ましい。 なお、Mnの含有により生成される上記金
属間化合物は、チューブ材を製造する際に材料の押出性
を低下させるという問題がある。押出性の低下は、生産
性の低下を招くだけではなく、目的の形状が得られなか
ったり、押出金型の損傷が起こりやすくなるなどの問題
を引き起こす。この問題に関してはSiを含有させてA
l−Mn−Si系の化合物を形成することにより回避す
る。ただし、過剰のMn含有は、Siの含有によっても
押出性が低下することを回避できない。この観点からM
nの上限は1.2%とする。また、同様の理由でさらに
上限を1.0%とするのが望ましい。
Hereinafter, the reasons for limiting the components in the present invention will be described. (Tube material) Mn: 0.3 to 1.2% Mn crystallizes or precipitates as an intermetallic compound to improve the strength after brazing, and also makes the potential of the tube noble to move the tube relative to the fin. To increase the corrosion resistance of the tube. Mn is S
There is also an action of forming an Al-Mn-Si-based compound with i to improve the strength. To obtain these effects, 0.3%
The above content is necessary, more preferably 0.45% or more, more preferably 0.6% or more. In addition, the said intermetallic compound produced | generated by containing Mn has a problem that the extrudability of a material falls when manufacturing a tube material. A decrease in extrudability not only causes a decrease in productivity, but also causes problems such as an inability to obtain a desired shape and damage to an extrusion die. To solve this problem, the Si
This is avoided by forming an l-Mn-Si-based compound. However, the excessive Mn content cannot prevent the extrudability from being lowered even by the Si content. From this perspective, M
The upper limit of n is 1.2%. Further, for the same reason, it is desirable to further set the upper limit to 1.0%.

【0011】Si:0.1〜1.1% Siは、Mnとの間でAl−Mn−Si系化合物を形成
して押出性を著しく向上させる作用がある。また、マト
リックスに固溶したり、Al−Mn−Si系化合物を形
成することにより、ろう付後の強度を向上させる作用も
ある。これらの作用を得るためには0.1%以上の含有
が必要である。さらには、特に押出性を向上させるとい
う点で0.2%以上含有させるのが望ましく、0.3%
以上含有させるのが一層望ましい。一方、過剰のSi含
有は、合金の融点を低下させてろう付け時に材料の溶融
を招き、また晶出物の存在により押出性を低下させるの
で、上限を1.1%とする。なお、同様の理由で上限を
0.9%とするのが望ましい。
Si: 0.1 to 1.1% Si has an effect of forming an Al-Mn-Si-based compound with Mn to significantly improve extrudability. In addition, by forming a solid solution in the matrix or forming an Al-Mn-Si-based compound, it also has an effect of improving the strength after brazing. To obtain these effects, the content of 0.1% or more is required. Further, it is desirable that the content is 0.2% or more, particularly in view of improving the extrudability, and 0.3%
More desirably, it is contained. On the other hand, an excessive Si content lowers the melting point of the alloy to cause melting of the material at the time of brazing, and lowers the extrudability due to the presence of crystallized substances. Therefore, the upper limit is set to 1.1%. For the same reason, it is desirable to set the upper limit to 0.9%.

【0012】また、Siの含有によって押出性を改善す
るためには、成分中のMnとSiの含有量(重量%)の
比が、Mn/Si=1.1〜4.5の範囲内になるよう
に、それぞれの含有量を定めるのが望ましい。ここで、
上記比が1.1未満であると、Mnに比べてSi量が相
対的に多くなり、晶出Siによる押出性の低下を招くと
いう問題がある。一方、上記比が4.5を越えると、M
n量に比べてSi量が相対的に少なく、Mn含有による
押出性の低下をSi含有によって十分に補完して良好な
押出性を確保することが難しくなる。なお、上記と同様
の理由によりMn/Si比を1.5以上、または3.5
以下とするのが望ましい。
Further, in order to improve the extrudability by containing Si, the ratio of the content (% by weight) of Mn to Si in the component must be within the range of Mn / Si = 1.1 to 4.5. Therefore, it is desirable to determine the respective contents. here,
When the above ratio is less than 1.1, the amount of Si becomes relatively large as compared with Mn, and there is a problem that the extrudability is reduced by crystallized Si. On the other hand, when the above ratio exceeds 4.5, M
The amount of Si is relatively small compared to the amount of n, and it becomes difficult to sufficiently compensate for the decrease in extrudability due to the Mn content and to ensure good extrudability by the Si content. The Mn / Si ratio is set to 1.5 or more or 3.5 for the same reason as described above.
It is desirable to do the following.

【0013】Cu:0.1〜0.6% Fe:0.1〜
1.1% Cuは固溶してろう付後の強度を向上させ、Feは金属
間化合物として晶出または析出してろう付後の強度を向
上させる。さらに、Cuは電位を貴にするためフィンと
の電位差が大きくとれ、外部耐食性が向上する。また、
Feは、Al−Mn−Fe系あるいはAl−Mn−Fe
−Si系の化合物を形成して押出性を向上させる。これ
らの作用を得るため、所望によりCu、Feの1種また
は2種を含有させるが、十分な作用を得るためには、個
々に0.1%以上の含有が必要であり、さらにCuで
0.2%以上、Feで0.3%以上含有させるのが望ま
しい。一方、過剰のCu、Feの含有は、これら成分が
表面に晶出して腐食速度を速め、また、押出性を低下さ
せるので、Cuで0.6%、Feで1.1%を上限とす
る。さらには、Cuで0.5%、Feで0.7%を上限
とするのが望ましい。
Cu: 0.1-0.6% Fe: 0.1-
1.1% Cu forms a solid solution to improve the strength after brazing, and Fe crystallizes or precipitates as an intermetallic compound to improve the strength after brazing. Further, since Cu makes the potential noble, a large potential difference from the fin can be obtained, and external corrosion resistance is improved. Also,
Fe is an Al-Mn-Fe-based or Al-Mn-Fe
-Forming a Si-based compound to improve extrudability. In order to obtain these effects, one or two of Cu and Fe may be contained as desired. However, in order to obtain a sufficient effect, the content of each of them must be 0.1% or more. 0.2% or more, and preferably 0.3% or more of Fe. On the other hand, excessive Cu and Fe contents cause crystallization on the surface to increase the corrosion rate and reduce the extrudability, so that the upper limit is 0.6% for Cu and 1.1% for Fe. . Further, it is desirable that the upper limit is 0.5% for Cu and 0.7% for Fe.

【0014】Mg:0.05〜0.5% Mgは、真空ろう付けの際に、表面酸化被膜を破壊して
ろう付け性を向上させる作用があるので、所望により含
有させる。この作用を十分に得るためには0.05%以
上の含有が必要である。一方、過剰の含有は押出性を低
下させるので、0.5%を上限とする。なお、真空ろう
付けではなく、雰囲気ろう付けを行う際には、Mgを含
有していると、このMgとフラックス(特にフッ化物
系)とが反応して高融点被膜を形成してろう付け性を低
下させるので、雰囲気ろう付けにおいてはMgを含有さ
せないのが望ましい。
Mg: 0.05-0.5% Mg has an effect of improving the brazing property by breaking a surface oxide film at the time of vacuum brazing. In order to obtain this effect sufficiently, the content must be 0.05% or more. On the other hand, an excessive content lowers the extrudability, so the upper limit is 0.5%. When atmosphere brazing is performed instead of vacuum brazing, if Mg is contained, this Mg reacts with a flux (particularly, a fluoride-based material) to form a high-melting-point coating and form a brazing film. In atmosphere brazing, it is desirable not to include Mg.

【0015】(フィン材における芯材) Zn:0.3%以下 フィン材におけるZnは、フィンの電位を卑にしてフィ
ンの腐食を早めるので、できるだけ含有量を少なくする
のが望ましく、不可避不純物のZn量を0.3%に規制
する。なお、同様の理由でさらに0.2%以下とするの
が望ましい。
(Core material in fin material) Zn: 0.3% or less Zn in the fin material makes the potential of the fin low and accelerates the corrosion of the fin. Therefore, it is desirable to reduce the content of Zn as much as possible. The Zn content is regulated to 0.3%. For the same reason, it is desirable to further reduce the content to 0.2% or less.

【0016】Mn:0.05〜1.5% フィン材には、通常は純アルミニウムまたはAl−Mn
系合金が使用されるが、Al−Mn系合金では、Mnを
0.05〜1.5%含有するものを例示することができ
る。該Mnの含有によって金属間化合物が晶出または析
出し、ろう付け後のフィンの強度を向上させる。そのた
めには、0.05%以上の含有が必要である。一方、過
剰にMnを含有すると電位が貴になってチューブの外部
耐食性を低下させるので、Mn含有量の上限を1.5と
する。なお、上記と同様の理由で下限を0.2%、上限
を1.2%とするのが望ましい。
Mn: 0.05 to 1.5% Usually, pure aluminum or Al-Mn is used for the fin material.
Although a system alloy is used, an Al-Mn system alloy containing 0.05 to 1.5% of Mn can be exemplified. The inclusion of Mn causes the intermetallic compound to crystallize or precipitate out, thereby improving the strength of the fin after brazing. For that purpose, the content must be 0.05% or more. On the other hand, if Mn is excessively contained, the potential becomes noble and the external corrosion resistance of the tube is reduced. Therefore, the upper limit of the Mn content is set to 1.5. For the same reason as above, it is desirable to set the lower limit to 0.2% and the upper limit to 1.2%.

【0017】Si:0.1〜1.0% Mnとの間でAl−Mn−Si系化合物を形成するとと
もに、マトリックスに固溶して強度を向上させるので、
所望によりMnとともに含有させる。これら作用を得る
ためには0.1%以上の含有が必要である。一方、過剰
に含有すると、融点が低下してろうによる侵食を受けや
すくなるとともに、電位が貴になってチューブの外部耐
食性が低下するので、上限を1.0%とする。なお、同
様の理由で下限を0.3%、上限を0.8%とするのが
望ましい。
Si: 0.1-1.0% Since Mn forms an Al-Mn-Si compound between 0.1% and 1.0% Mn, and solid-dissolves in a matrix to improve the strength.
If necessary, it is contained together with Mn. In order to obtain these effects, a content of 0.1% or more is required. On the other hand, if the content is excessive, the melting point is reduced and the material is susceptible to erosion by brazing, and the potential becomes noble to reduce the external corrosion resistance of the tube. Therefore, the upper limit is made 1.0%. For the same reason, it is desirable to set the lower limit to 0.3% and the upper limit to 0.8%.

【0018】Cu:0.05〜0.3%、Fe:0.1
〜1.0%、Zr:0.01〜0.20%、Ti:0.
01〜0.20%、Cr:0.01〜0.20%、V:
0.01〜0.20% さらに、Al−Mn系合金のフィン材には、上記成分か
ら選択される1種または2種以上を含有させることがで
きる。これら成分のうち、Cuは、固溶してろう付後の
強度を向上させるので、所望により0.05%以上含有
させる。一方、過剰の含有は電位を貴にしてチューブの
外部耐食性を低下させるので、上限を0.3%とする。
なお、同様の理由で、下限を0.1%、上限を0.2%
とするのが望ましい。また、これら成分のうち、Fe
は、金属間化合物として晶出又は析出し、ろう付後の強
度を向上させるので、0.1%以上含有させる。一方、
過剰にFeを含有させると、自己腐食速度が早くなりす
ぎるので、上限を1.0%とする。なお、同様の理由で
下限を0.2%、上限を0.8%とするのが望ましい。
さらに、Zr、Ti、Cr、Vは、ろう付後に微細な金
属間化合物として分散し、強度を向上させる作用がある
ので、これらの1種以上を所望により含有させる。この
作用を十分に得るためには、各成分において上記下限以
上の含有が必要である。一方、各成分を過剰に含有する
と、加工性が低下するので、それぞれ上限を設けてい
る。なお、フィン材における芯材では、チューブとの関
係でチューブ側が貴となるように成分調整を行うのが望
ましい。すなわち、Mn、Cu、Siは材料を貴にする
性質があり、それぞれの貢献度を考慮すれば、Mn+2
Cu+Si(重量%)の計算式において、チューブの計
算値≧フィンの芯材の計算値となるのが望ましい。
Cu: 0.05-0.3%, Fe: 0.1
~ 1.0%, Zr: 0.01 ~ 0.20%, Ti: 0.
01 to 0.20%, Cr: 0.01 to 0.20%, V:
0.01 to 0.20% Further, the fin material of the Al-Mn alloy may contain one or more selected from the above components. Among these components, Cu is included as a solid solution to improve the strength after brazing. On the other hand, an excessive content lowers the external corrosion resistance of the tube by making the potential noble, so the upper limit is made 0.3%.
For the same reason, the lower limit is 0.1% and the upper limit is 0.2%
It is desirable that Among these components, Fe
Is crystallized or precipitated as an intermetallic compound and improves the strength after brazing. on the other hand,
If an excessive amount of Fe is contained, the rate of self-corrosion becomes too high, so the upper limit is made 1.0%. For the same reason, it is desirable to set the lower limit to 0.2% and the upper limit to 0.8%.
Further, Zr, Ti, Cr, and V are dispersed as fine intermetallic compounds after brazing and have an effect of improving the strength. Therefore, one or more of these elements are optionally contained. In order to obtain this effect sufficiently, the content of each component must be equal to or more than the above lower limit. On the other hand, if each component is contained excessively, the processability is reduced. In the core material of the fin material, it is desirable to adjust the components so that the tube side becomes noble in relation to the tube. That is, Mn, Cu, and Si have the property of making the material noble, and considering their respective contributions, Mn + 2
In the calculation formula of Cu + Si (% by weight), it is preferable that the calculation value of the tube ≧ the calculation value of the core material of the fin.

【0019】(フィン材におけるろう材) Zn:0.3%以下 ろう材におけるZnは、ろう付時にフィレット部に濃縮
してフィレット部の腐食を早めるので、極力含有量を低
減するのが望ましく、その観点から不純物としてのZn
含有量を0.3%以下とする。なお、同様の理由で0.
2%以下とするのが望ましい。
(Brazing material in fin material) Zn: 0.3% or less Zn in the brazing material is concentrated in the fillet portion at the time of brazing to accelerate the corrosion of the fillet portion, so it is desirable to reduce the content as much as possible. From that viewpoint, Zn as an impurity
The content is set to 0.3% or less. In addition, for the same reason, 0.
It is desirable to set it to 2% or less.

【0020】Si:5〜13% ブレージングシートとして用いられるろう材には、適量
のSiを含有するAl−Si系合金が用いられており、
望ましいSi含有量として5〜13%が挙げられる。こ
の含有量範囲においては、ろう付時に良好にろうが溶
融、流動して部材同士を確実に接合することができる。
Si: 5 to 13% An Al-Si alloy containing an appropriate amount of Si is used as a brazing material used as a brazing sheet.
A desirable Si content is 5 to 13%. In this content range, the brazing material can be melted and flowed well during brazing, and the members can be reliably joined to each other.

【0021】[0021]

【発明の実施の形態】本発明のフィン材には、上記した
ように主として純アルミニウムまたはAl−Mn系合金
を芯材として、この片面または両面にAl−Si系ろう
材をクラッドしたブレージングシートが用いられてお
り、各材料のZn含有量は0.3%以下に規制する。こ
のZn含有量の規制については、上記材料を溶製する際
に原料を精選する等によって達成することができる。ま
た、上記におけるクラッドの方法や各材料の板厚比につ
いては本発明では特に限定されるものではない。このブ
レージングシートは、必要に応じて波形形状等、フィン
として要求される形状に加工されるが、その形状、加工
方法についても本発明では特に限定されるものではな
い。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the fin material of the present invention includes a brazing sheet in which pure aluminum or an Al--Mn alloy is used as a core material and one or both surfaces of which are clad with an Al--Si brazing material. The Zn content of each material is restricted to 0.3% or less. The regulation of the Zn content can be achieved by carefully selecting raw materials when the above-mentioned materials are melted. Further, the cladding method and the thickness ratio of each material in the above are not particularly limited in the present invention. This brazing sheet is processed into a shape required as a fin, such as a corrugated shape, if necessary, but the shape and processing method are not particularly limited in the present invention.

【0022】一方、チューブ材には上記した成分(Al
−Mn−Si系合金)を目標として常法により溶製した
アルミニウム合金を用いることができる。この合金を用
いて押出材を製造する際には、溶製された合金に、53
0℃〜600℃で3〜15時間加熱する均質化処理を行
い、その後、450℃〜550℃で0.1〜2時間加熱
する均熱処理を行ってから押出を行うのが望ましい。上
記均質化処理および均熱処理では、Al−Mn−Si系
合金が確実に形成され、その結果チューブ材の押出性を
確実に向上させることができる。この観点から、上記条
件内においてさらに、均質化処理の加熱温度を550〜
570℃、加熱時間を6〜10時間に限定するのが望ま
しく、また、均熱化処理の加熱温度を480〜540
℃、加熱時間を0.5〜1時間に限定するのが望まし
い。なお、上記均質化処理および均熱化処理における加
熱方法や加熱炉の構造等については特に限定されない。
上記押出においてはチューブ材として適宜の形状に押し
出される、この押出に際しては、材料の押出性が良好で
あるので、ホロー形状のものを多孔ダイを用いて押し出
すような場合にも効率的かつ良好に押出することも可能
である。また、押出に際しての押出方法(方式)も特に
限定されるものではなく、押出形状等に合わせて適宜の
方法を採用することができる。
On the other hand, the above-mentioned components (Al
-Mn-Si alloy), and an aluminum alloy melted by a conventional method can be used. When an extruded material is manufactured using this alloy, 53.
It is preferable to perform a homogenization treatment by heating at 0 ° C. to 600 ° C. for 3 to 15 hours, and then to perform a soaking heat treatment at 450 ° C. to 550 ° C. for 0.1 to 2 hours before extruding. In the homogenization treatment and the soaking treatment, the Al-Mn-Si-based alloy is reliably formed, and as a result, the extrudability of the tube material can be reliably improved. From this viewpoint, the heating temperature of the homogenization treatment is further increased to 550 to
570 ° C., the heating time is preferably limited to 6 to 10 hours, and the heating temperature for the soaking treatment is 480 to 540.
It is desirable to limit the heating time to 0.5 to 1 hour. The heating method and the structure of the heating furnace in the homogenization treatment and the soaking treatment are not particularly limited.
In the above extrusion, it is extruded into an appropriate shape as a tube material.In this extrusion, since the extrudability of the material is good, even when extruding a hollow shape using a porous die, it is efficient and good. Extrusion is also possible. Also, the extrusion method (system) at the time of extrusion is not particularly limited, and an appropriate method can be adopted according to the extrusion shape and the like.

【0023】上記したフィン材と押出チューブ材とはそ
れぞれ熱交換機用の部材として組み合わされる。なお、
熱交換器である限りは、その使用場所や使用用途が特に
限定されるものではないが、特に耐食性が必要とされる
自動車用熱交換器に好適であり、熱交換器としてコンデ
ンサ、エバポレータ、インタークーラー等を例示するこ
とができる。上記熱交換器用部材は、両者のみまたはこ
れにヘッダー等の他部材を加えたものを組み付けて、ろ
う付により接合する。なお、ろう付に際にしての雰囲気
や加熱温度、時間については本発明としては特に限定さ
れるものではない。ろう付に際しては、フィン材におけ
るろう材が溶融してチューブ材表面に流動し、これを凝
固させることによりフィン材とチューブ材とを接合す
る。なお、フィン材における芯材およびろう材ではZn
含有量が規制されているので、ろうにおいてもZnの含
有は殆どなく、ろう付により形成されるフィレット部に
高い濃度のZnが含有されることもない。上記により得
られる熱交換器は、良好な押出性により効率的に製造が
なされるとともに、良好な耐食性を有しており、厳しい
腐食環境にある自動車用の熱交換器として使用される場
合にも良好な耐久性を発揮する。
The fin material and the extruded tube material are combined as members for a heat exchanger. In addition,
As long as it is a heat exchanger, its use place and use purpose are not particularly limited, but it is particularly suitable for a heat exchanger for automobiles requiring corrosion resistance, and as a heat exchanger, a condenser, an evaporator, an intercooler And the like. The above-mentioned heat exchanger member is assembled by brazing by attaching both members or a member obtained by adding other members such as a header thereto. The atmosphere, heating temperature, and time for brazing are not particularly limited in the present invention. At the time of brazing, the brazing material in the fin material melts and flows on the surface of the tube material, and is solidified to join the fin material and the tube material. The core material and brazing material in the fin material are Zn
Since the content is regulated, Zn is hardly contained even in the brazing, and a high concentration of Zn is not contained in the fillet formed by brazing. The heat exchanger obtained as described above is efficiently manufactured with good extrudability, has good corrosion resistance, and can be used as a heat exchanger for automobiles in a severely corrosive environment. Demonstrate good durability.

【0024】[0024]

【実施例】表1に示す組成のアルミニウム合金につい
て、常法に基づき溶解・鋳造を行って直径15cmのビ
レットを製作し、このビレットに、560℃で12時間
加熱する均質化処理を施した。さらに500℃で0.8
時間加熱する均熱化処理を行った後、直ちに図1に示す
ように、複数の媒体通路用穴2を有する断面形状で、肉
厚0.5mmの押出チューブ材1を得るべく押出を行
い、その際に押出性の評価を行った。押出性は押し出す
際の押出力と押出速度および十分な形状が得られている
かどうかを総合的に評価し、◎(非常に良好)、○(良
好)、△(やや不良)、×(不良)で評価した。
EXAMPLE An aluminum alloy having the composition shown in Table 1 was melted and cast according to a conventional method to produce a billet having a diameter of 15 cm, and the billet was subjected to a homogenization treatment of heating at 560 ° C. for 12 hours. 0.8 at 500 ° C
Immediately after performing the soaking process for heating for a time, as shown in FIG. 1, immediately extruded to obtain an extruded tube material 1 having a cross-sectional shape having a plurality of medium passage holes 2 and a thickness of 0.5 mm, At that time, the extrudability was evaluated. The extrudability was evaluated comprehensively based on the extrusion force during extrusion, the extrusion speed, and whether a sufficient shape was obtained. ◎ (very good), ○ (good), Δ (somewhat poor), × (poor) Was evaluated.

【0025】また、表2に示す組成の芯材用アルミニウ
ム合金およびろう材用アルミニウム合金を常法により溶
解鋳造し、続いて面策、均質化熱処理を行い、熱間と冷
間圧延により芯材用合金は80mm厚、ろう材用合金は
10mm厚の板材とした。これらを、芯材用合金の両面
にろう材用合金を重ねるようにして熱間にてクラッド圧
延し、適宜中間焼鈍を行いながら冷間圧延を行って、調
質H14(最終圧延率30%)で0.1mm厚のフィン
材3を作製した。このフィン材3にフィン高さ10mm
でフィンピッチが5mmとなるようにコルゲート加工を
施した。
Further, an aluminum alloy for a core material and an aluminum alloy for a brazing material having the composition shown in Table 2 are melted and cast by a conventional method, followed by a facing, a homogenizing heat treatment, and hot and cold rolling. The alloy for the brazing was 80 mm thick, and the alloy for the brazing material was a 10 mm thick plate. These are hot-clad rolled so that the brazing alloy is superimposed on both sides of the core alloy, and cold-rolled while appropriately performing intermediate annealing, and temper H14 (final rolling ratio 30%). Thus, a fin material 3 having a thickness of 0.1 mm was produced. This fin material 3 has a fin height of 10 mm
And corrugated so that the fin pitch becomes 5 mm.

【0026】上記した押出チューブ材1とフィン材3と
を表3に示す組合せにより図1に示すように組み付け
て、フッ化物系のフラックスを塗布した後、高純度窒素
ガス雰囲気中で600℃×3分保持して押出チューブ材
1とフィン材3とをろう付接合して、耐食性と強度調査
用の熱交換器(ミニコア)を作製した。上記熱交換の耐
圧強度は、イオン交換水によって密閉した押出チューブ
材内部に圧力をかけ、チューブ材本体から漏れが生じ始
める圧力を測定することによって評価した。また、押出
チューブ材の強度を測定するため、上記熱処理を経た押
出チューブ材について、別途、引張試験を行った。ま
た、耐食性は塩水噴霧試験を行った後のチューブ表面の
孔食深さを測定することによって評価した。なお、塩水
噴霧試験条件(連続噴霧)は、〔試験液〕:3.5%N
aCl、〔温度〕:40℃×20日間連続にて行った。
上記した各評価ならびに測定結果は表3に示した。
The extruded tube material 1 and the fin material 3 are assembled as shown in FIG. 1 by a combination shown in Table 3, and a fluoride-based flux is applied. The extruded tube material 1 and the fin material 3 were brazed and joined for 3 minutes to prepare a heat exchanger (mini-core) for corrosion resistance and strength investigation. The pressure resistance of the heat exchange was evaluated by applying pressure to the inside of the extruded tube material sealed with ion-exchanged water and measuring the pressure at which the tube material began to leak. Further, in order to measure the strength of the extruded tube material, a tensile test was separately performed on the extruded tube material subjected to the heat treatment. The corrosion resistance was evaluated by measuring the pit depth on the tube surface after performing the salt spray test. The salt spray test conditions (continuous spray) were as follows: [test liquid]: 3.5% N
aCl, [Temperature]: Performed continuously at 40 ° C. × 20 days.
Table 3 shows the results of the above evaluations and measurements.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】表3に示すように、本発明のチューブ材と
フィン材との組合せにより得られた熱交換器材は、各部
材の製造(特に押出)において効率的な製造が可能であ
り、しかも得られた熱交換器は、優れた耐食性と耐圧特
性とを有しており、耐久性に優れていた。一方、比較用
熱交換器は、本発明の組合せから逸脱しているため、上
記押出性、耐食性のいずれかで劣っていた。
As shown in Table 3, the heat exchanger material obtained by combining the tube material and the fin material of the present invention can be efficiently manufactured in the production (particularly, extrusion) of each member. The obtained heat exchanger had excellent corrosion resistance and pressure resistance, and was excellent in durability. On the other hand, the comparative heat exchanger was inferior in either of the above-mentioned extrudability and corrosion resistance because it deviated from the combination of the present invention.

【0031】[0031]

【発明の効果】以上説明したように、本発明の耐食性に
優れたアルミニウム合金製熱交換器用部材は、アルミニ
ウムまたはアルミニウム合金芯材の片面又は両面にAl
−Si系ろう材をクラッドしたフィン材であって、上記
芯材およびろう材のZn含有量がそれぞれ0.3%以下
に規制されたフィン材と、Mn:0.3〜1.2%、S
i:0.1〜1.1%を含み残部Alと不可避不純物か
らなる押出チューブ材とを組み合わせたので、フィン
材、チューブ材ともに良好な耐食性を示し、耐久性に優
れた熱交換器が得られる。また、チューブ材の押出性も
良好であり、製造時に、効率的に、かつ良好に押出加工
を行うことができる。
As described above, the aluminum alloy heat exchanger member having excellent corrosion resistance according to the present invention is made of aluminum or aluminum alloy core material having one or both surfaces of Al.
A fin material clad with a Si-based brazing material, wherein the Zn content of each of the core material and the brazing material is regulated to 0.3% or less, and Mn: 0.3 to 1.2%; S
i: Since the extruded tube material containing 0.1 to 1.1% and the balance Al and inevitable impurities was combined, both the fin material and the tube material exhibited good corrosion resistance, and a heat exchanger excellent in durability was obtained. Can be Further, the extrudability of the tube material is good, and the extrusion can be efficiently and favorably performed during the production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態を示す一部斜視図であ
る。
FIG. 1 is a partial perspective view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 押出チューブ材 3 フィン材 1 Extruded tube material 3 Fin material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 35/28 310 B23K 35/28 310B F28F 19/06 F28F 19/06 B 21/08 21/08 D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 35/28 310 B23K 35/28 310B F28F 19/06 F28F 19/06 B 21/08 21/08 D

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムまたはアルミニウム合金芯
材の片面又は両面にAl−Si系ろう材をクラッドした
フィン材であって、上記芯材およびろう材のZn含有量
がそれぞれ0.3%以下に規制されたフィン材と、M
n:0.3〜1.2%、Si:0.1〜1.1%を含み
残部Alと不可避不純物からなる押出チューブ材とを組
み合わせたことを特徴とする耐食性に優れたアルミニウ
ム合金製熱交換器用部材
1. A fin material in which an aluminum or aluminum alloy core material is clad on one or both surfaces with an Al-Si brazing material, wherein the core material and the brazing material each have a Zn content of 0.3% or less. Fin material and M
Heat made of an aluminum alloy excellent in corrosion resistance, characterized by combining n: 0.3 to 1.2% and Si: 0.1 to 1.1%, with the balance being Al and an extruded tube material composed of unavoidable impurities. Exchanger components
【請求項2】 チューブ材には、さらにCu:0.1〜
0.6% Fe:0.1〜1.1%のうち1種又は2種
を含むことを特徴とする請求項1に記載の耐食性に優れ
たアルミニウム合金製熱交換器用部材
2. The tube material further comprises Cu: 0.1 to
The member for a heat exchanger made of an aluminum alloy having excellent corrosion resistance according to claim 1, wherein one or two of 0.6% Fe: 0.1 to 1.1% are contained.
【請求項3】 チューブ材の成分中のMnとSiの含有
量(重量%)の比が、Mn/Si=1.1〜4.5であ
ることを特徴とする請求項1または2に記載の耐食性に
優れたアルミニウム合金製熱交換器用部材
3. The method according to claim 1, wherein the ratio of the content (% by weight) of Mn and Si in the components of the tube material is Mn / Si = 1.1 to 4.5. Aluminum alloy heat exchanger components with excellent corrosion resistance
【請求項4】 チューブ材に、さらにMg:0.05〜
0.5%を含むことを特徴とする請求項1〜3のいずれ
かに記載の耐食性に優れたアルミニウム合金製熱交換器
用部材
4. The tube material may further contain Mg: 0.05-.
The member for a heat exchanger made of an aluminum alloy excellent in corrosion resistance according to any one of claims 1 to 3, which contains 0.5%.
【請求項5】 フィンの芯材の組成が、Mn:0.05
〜1.5%、Si:0.1〜1.0%を含有しさらにC
u:0.05〜0.3%、Fe:0.1〜1.0%、Z
r:0.01〜0.20%、Ti:0.01〜0.20
%、Cr:0.01〜0.20%、V:0.01〜0.
20%のうち1種または2種以上を含有し、残部Alと
不可避不純物からなることを特徴とする請求項1〜4の
いずれかに記載の耐食性に優れたアルミニウム合金製熱
交換器用部材
5. The composition of the fin core material is Mn: 0.05.
~ 1.5%, Si: 0.1 ~ 1.0% and further C
u: 0.05-0.3%, Fe: 0.1-1.0%, Z
r: 0.01 to 0.20%, Ti: 0.01 to 0.20
%, Cr: 0.01-0.20%, V: 0.01-0.
The member for a heat exchanger made of an aluminum alloy having excellent corrosion resistance according to any one of claims 1 to 4, wherein the member comprises one or more of 20% and the balance is Al and inevitable impurities.
JP10173040A 1998-06-19 1998-06-19 Member for heat exchanger made of aluminum alloy excellent in corrosion resistance Pending JP2000008130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10173040A JP2000008130A (en) 1998-06-19 1998-06-19 Member for heat exchanger made of aluminum alloy excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10173040A JP2000008130A (en) 1998-06-19 1998-06-19 Member for heat exchanger made of aluminum alloy excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JP2000008130A true JP2000008130A (en) 2000-01-11

Family

ID=15953097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10173040A Pending JP2000008130A (en) 1998-06-19 1998-06-19 Member for heat exchanger made of aluminum alloy excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JP2000008130A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156108A (en) * 2002-11-07 2004-06-03 Denso Corp Aluminum clad material for brazing
JP2006289489A (en) * 2004-08-06 2006-10-26 Showa Denko Kk Laminate material for heat exchanger, tube material for heat exchanger, header material for heat exchanger, method for producing heat exchanger, and heat exchanger
JP2007031730A (en) * 2005-07-22 2007-02-08 Denso Corp Aluminum alloy extruded material with excellent surface properties and method for producing the same, porous tube for heat exchanger, and method for producing heat exchanger incorporating the porous tube
JP2009249727A (en) * 2008-04-10 2009-10-29 Mitsubishi Alum Co Ltd Extruded flat perforated pipe superior in corrosion resistance used for heat exchanger, and heat exchanger
JP2009291840A (en) * 2009-06-12 2009-12-17 Sumitomo Light Metal Ind Ltd Aluminum brazing method and flat tube for aluminum heat exchanger manufactured by the brazing method
KR20110043221A (en) * 2009-10-21 2011-04-27 엘에스전선 주식회사 High corrosion resistance aluminum alloy for heat exchanger tube and manufacturing method of heat exchanger tube using same
JP2013177655A (en) * 2012-02-28 2013-09-09 Mitsubishi Alum Co Ltd Aluminum alloy tube material for heat exchanger
WO2013146686A1 (en) * 2012-03-27 2013-10-03 三菱アルミニウム株式会社 Heat transfer tube and method for producing same
CN105734368A (en) * 2014-12-24 2016-07-06 三菱铝株式会社 Aluminum alloy fin material, method for manufacturing aluminum alloy fin material and heat exchanger comprising aluminum alloy fin material
JP2019210494A (en) * 2018-05-31 2019-12-12 三菱アルミニウム株式会社 Fin material for heat exchanger, and heat exchanger
WO2022231148A1 (en) * 2021-04-27 2022-11-03 성균관대학교산학협력단 Method for manufacturing aluminum alloy for heat exchanger
EP4137597A4 (en) * 2020-06-11 2024-04-17 UACJ Corporation EXTRUDED PERFORATED ALUMINUM ALLOY TUBE FOR HEAT EXCHANGERS AND METHOD FOR MANUFACTURING SAME

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156108A (en) * 2002-11-07 2004-06-03 Denso Corp Aluminum clad material for brazing
JP2006289489A (en) * 2004-08-06 2006-10-26 Showa Denko Kk Laminate material for heat exchanger, tube material for heat exchanger, header material for heat exchanger, method for producing heat exchanger, and heat exchanger
JP2007031730A (en) * 2005-07-22 2007-02-08 Denso Corp Aluminum alloy extruded material with excellent surface properties and method for producing the same, porous tube for heat exchanger, and method for producing heat exchanger incorporating the porous tube
JP2009249727A (en) * 2008-04-10 2009-10-29 Mitsubishi Alum Co Ltd Extruded flat perforated pipe superior in corrosion resistance used for heat exchanger, and heat exchanger
JP2009291840A (en) * 2009-06-12 2009-12-17 Sumitomo Light Metal Ind Ltd Aluminum brazing method and flat tube for aluminum heat exchanger manufactured by the brazing method
KR20110043221A (en) * 2009-10-21 2011-04-27 엘에스전선 주식회사 High corrosion resistance aluminum alloy for heat exchanger tube and manufacturing method of heat exchanger tube using same
KR101594625B1 (en) 2009-10-21 2016-02-16 엘에스전선 주식회사 Aluminum alloy with high corrosion resistance for heat exchanger tube and Method for manufactured of heat exchanger tube using thereof
JP2013177655A (en) * 2012-02-28 2013-09-09 Mitsubishi Alum Co Ltd Aluminum alloy tube material for heat exchanger
JP2013204070A (en) * 2012-03-27 2013-10-07 Mitsubishi Alum Co Ltd Extruded heat-conducting tube for heat-exchanger and manufacturing method therefor
WO2013146686A1 (en) * 2012-03-27 2013-10-03 三菱アルミニウム株式会社 Heat transfer tube and method for producing same
US9857128B2 (en) 2012-03-27 2018-01-02 Mitsubishi Aluminum Co., Ltd. Heat transfer tube and method for producing same
US10386134B2 (en) 2012-03-27 2019-08-20 Mitsubishi Aluminum Co., Ltd. Heat transfer tube and method for producing same
CN105734368A (en) * 2014-12-24 2016-07-06 三菱铝株式会社 Aluminum alloy fin material, method for manufacturing aluminum alloy fin material and heat exchanger comprising aluminum alloy fin material
CN105734368B (en) * 2014-12-24 2020-03-17 三菱铝株式会社 Aluminum alloy fin material, method for producing same, and heat exchanger provided with same
JP2019210494A (en) * 2018-05-31 2019-12-12 三菱アルミニウム株式会社 Fin material for heat exchanger, and heat exchanger
JP7179493B2 (en) 2018-05-31 2022-11-29 Maアルミニウム株式会社 Fin material for heat exchangers and heat exchangers
EP4137597A4 (en) * 2020-06-11 2024-04-17 UACJ Corporation EXTRUDED PERFORATED ALUMINUM ALLOY TUBE FOR HEAT EXCHANGERS AND METHOD FOR MANUFACTURING SAME
WO2022231148A1 (en) * 2021-04-27 2022-11-03 성균관대학교산학협력단 Method for manufacturing aluminum alloy for heat exchanger

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP4825507B2 (en) Aluminum alloy brazing sheet
US20110240280A1 (en) Aluminum alloy brazing sheet and heat exchanger
WO2017141921A1 (en) Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet
JP4023760B2 (en) Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance
WO2019150822A1 (en) Aluminum alloy fin material for heat exchangers having excellent strength, conductivity, corrosion resistance and brazability, and heat exchanger
EP4524274A1 (en) Single-layer aluminum alloy material for brazing, method for producing same, aluminum structure, and heat exchanger
JP2000204427A (en) Aluminum alloy clad material for heat exchanger with excellent brazing and corrosion resistance
JP2000008130A (en) Member for heat exchanger made of aluminum alloy excellent in corrosion resistance
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JPH11335764A (en) Manufacture of high strength aluminum extruding alloy for heat exchanger, excellent in extrudability, and high strength aluminum alloy extruded material for heat exchanger
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP2002066786A (en) Manufacturing method of high corrosion resistant aluminum alloy matching material
JP3189517B2 (en) Manufacturing method of heat exchanger tube material for non-corrosive flux brazing
JP5952995B2 (en) Aluminum alloy fin material for heat exchanger
JP2000212668A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JPH11315335A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP2002256402A (en) Method of producing fin material for use in heat exchanger
JP2006037135A (en) High corrosion resistance aluminum clad material for heat exchanger
JPH0770685A (en) High strength al alloy fin material and production thereof
JP4190295B2 (en) Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material
JP3859781B2 (en) Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material
JP2002256364A (en) Aluminum alloy for fin material of fin for heat exchanger and its production method
JP2006176850A (en) High-strength aluminum alloy fin material for heat exchanger having excellent erosion resistance, and heat exchanger
JPH11256259A (en) Al alloy fin material for heat exchanger excellent in erosion resistance and having high strength and high thermal conductivity