ITUB20154631A1 - Vesicular systems formed by asymmetric bilayers with double structure for the transmission of genetic material - Google Patents
Vesicular systems formed by asymmetric bilayers with double structure for the transmission of genetic material Download PDFInfo
- Publication number
- ITUB20154631A1 ITUB20154631A1 ITUB2015A004631A ITUB20154631A ITUB20154631A1 IT UB20154631 A1 ITUB20154631 A1 IT UB20154631A1 IT UB2015A004631 A ITUB2015A004631 A IT UB2015A004631A IT UB20154631 A ITUB20154631 A IT UB20154631A IT UB20154631 A1 ITUB20154631 A1 IT UB20154631A1
- Authority
- IT
- Italy
- Prior art keywords
- glycero
- sodium salt
- phospho
- salt
- ammonium salt
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims description 52
- 102000004169 proteins and genes Human genes 0.000 title claims description 37
- 230000005540 biological transmission Effects 0.000 title 1
- 159000000000 sodium salts Chemical class 0.000 claims description 188
- 150000003863 ammonium salts Chemical class 0.000 claims description 158
- 229920001223 polyethylene glycol Polymers 0.000 claims description 88
- 239000002202 Polyethylene glycol Substances 0.000 claims description 83
- 239000002679 microRNA Substances 0.000 claims description 62
- 150000002632 lipids Chemical class 0.000 claims description 58
- 108091070501 miRNA Proteins 0.000 claims description 53
- 239000000203 mixture Substances 0.000 claims description 53
- 239000002502 liposome Substances 0.000 claims description 44
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol Substances OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 43
- 150000003904 phospholipids Chemical class 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 36
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 36
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 26
- 150000003841 chloride salts Chemical class 0.000 claims description 26
- -1 cationic phospholipids Chemical class 0.000 claims description 25
- 125000003696 stearoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 23
- 229910019142 PO4 Inorganic materials 0.000 claims description 20
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 19
- 239000010452 phosphate Substances 0.000 claims description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 18
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 18
- 239000001294 propane Substances 0.000 claims description 18
- 102000040650 (ribonucleotides)n+m Human genes 0.000 claims description 16
- 210000004556 brain Anatomy 0.000 claims description 16
- 230000007935 neutral effect Effects 0.000 claims description 16
- 108020004414 DNA Proteins 0.000 claims description 15
- 239000002904 solvent Substances 0.000 claims description 15
- 241000283690 Bos taurus Species 0.000 claims description 14
- 125000002091 cationic group Chemical group 0.000 claims description 14
- JLPULHDHAOZNQI-JLOPVYAASA-N [(2r)-3-hexadecanoyloxy-2-[(9e,12e)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC JLPULHDHAOZNQI-JLOPVYAASA-N 0.000 claims description 13
- 238000001125 extrusion Methods 0.000 claims description 13
- 238000011282 treatment Methods 0.000 claims description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 229960000367 inositol Drugs 0.000 claims description 12
- 241000287828 Gallus gallus Species 0.000 claims description 11
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 10
- 210000004185 liver Anatomy 0.000 claims description 10
- 230000007170 pathology Effects 0.000 claims description 10
- 235000012000 cholesterol Nutrition 0.000 claims description 9
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 8
- 125000004080 3-carboxypropanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C(O[H])=O 0.000 claims description 7
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- ISXSJGHXHUZXNF-LXZPIJOJSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] n-[2-(dimethylamino)ethyl]carbamate;hydrochloride Chemical compound Cl.C1C=C2C[C@@H](OC(=O)NCCN(C)C)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 ISXSJGHXHUZXNF-LXZPIJOJSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000013612 plasmid Substances 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 5
- 230000008901 benefit Effects 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- 108091034117 Oligonucleotide Proteins 0.000 claims description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 4
- 229940031098 ethanolamine Drugs 0.000 claims description 4
- 229940093476 ethylene glycol Drugs 0.000 claims description 4
- 229940014144 folate Drugs 0.000 claims description 4
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 claims description 4
- 235000019152 folic acid Nutrition 0.000 claims description 4
- 239000011724 folic acid Substances 0.000 claims description 4
- 125000003827 glycol group Chemical group 0.000 claims description 4
- 210000002216 heart Anatomy 0.000 claims description 4
- 125000003104 hexanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 235000013336 milk Nutrition 0.000 claims description 4
- 239000008267 milk Substances 0.000 claims description 4
- 210000004080 milk Anatomy 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 4
- 229920001451 polypropylene glycol Polymers 0.000 claims description 4
- 230000003381 solubilizing effect Effects 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 3
- 102000053602 DNA Human genes 0.000 claims description 3
- 108020004459 Small interfering RNA Proteins 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 230000002526 effect on cardiovascular system Effects 0.000 claims description 3
- 238000007918 intramuscular administration Methods 0.000 claims description 3
- 238000001990 intravenous administration Methods 0.000 claims description 3
- 239000012454 non-polar solvent Substances 0.000 claims description 3
- 230000000144 pharmacologic effect Effects 0.000 claims description 3
- 239000003880 polar aprotic solvent Substances 0.000 claims description 3
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 3
- YKIOPDIXYAUOFN-YACUFSJGSA-N (2-{[(2r)-2,3-bis(icosanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium Chemical compound CCCCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCCCC YKIOPDIXYAUOFN-YACUFSJGSA-N 0.000 claims description 2
- IEUYQYGLUKWZSR-LMOVPXPDSA-N (2s)-2-(hexadecanoylamino)-3-hydroxypropanoic acid;phosphoric acid Chemical compound OP(O)(O)=O.CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)C(O)=O IEUYQYGLUKWZSR-LMOVPXPDSA-N 0.000 claims description 2
- IIXIIBIZLZWEBO-VBDDYPLXSA-N (2s)-2-amino-3-[[(2r)-2,3-bis(3,7,11,15-tetramethylhexadecanoyloxy)propoxy]-hydroxyphosphoryl]oxypropanoic acid Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)CC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CC(C)CCCC(C)CCCC(C)CCCC(C)C IIXIIBIZLZWEBO-VBDDYPLXSA-N 0.000 claims description 2
- KHWUKFBQNNLWIV-KPNWGBFJSA-N (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol hydrochloride Chemical compound Cl.C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 KHWUKFBQNNLWIV-KPNWGBFJSA-N 0.000 claims description 2
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 claims description 2
- 229940083937 1,2-diarachidoyl-sn-glycero-3-phosphocholine Drugs 0.000 claims description 2
- SFZZRGHNPILUOD-CYBMUJFWSA-N 1,2-dihexanoyl-sn-glycero-3-phosphate Chemical compound CCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCC SFZZRGHNPILUOD-CYBMUJFWSA-N 0.000 claims description 2
- TWOCGGYLNFTSJO-MOPGFXCFSA-N 1,2-dioctanoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCC TWOCGGYLNFTSJO-MOPGFXCFSA-N 0.000 claims description 2
- MHUWZNTUIIFHAS-DSSVUWSHSA-N 1,2-dioleoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCC\C=C/CCCCCCCC MHUWZNTUIIFHAS-DSSVUWSHSA-N 0.000 claims description 2
- UKDDQGWMHWQMBI-UHFFFAOYSA-O 1,2-diphytanoyl-sn-glycero-3-phosphocholine Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)CC(=O)OCC(COP(O)(=O)OCC[N+](C)(C)C)OC(=O)CC(C)CCCC(C)CCCC(C)CCCC(C)C UKDDQGWMHWQMBI-UHFFFAOYSA-O 0.000 claims description 2
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 claims description 2
- WTJKGGKOPKCXLL-VYOBOKEXSA-N 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC WTJKGGKOPKCXLL-VYOBOKEXSA-N 0.000 claims description 2
- XLVRFPVHQPHXAA-LJQANCHMSA-N 1-hexadecyl-sn-glycerol 3-phosphate Chemical compound CCCCCCCCCCCCCCCCOC[C@@H](O)COP(O)(O)=O XLVRFPVHQPHXAA-LJQANCHMSA-N 0.000 claims description 2
- NXXSEGVRTTVEEI-QPKMWZFCSA-N 1-palmitoyl-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl]-sn-glycero-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CC NXXSEGVRTTVEEI-QPKMWZFCSA-N 0.000 claims description 2
- OPVZUEPSMJNLOM-QEJMHMKOSA-N 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCC\C=C/CCCCCCCC OPVZUEPSMJNLOM-QEJMHMKOSA-N 0.000 claims description 2
- 241000588724 Escherichia coli Species 0.000 claims description 2
- 241001465754 Metazoa Species 0.000 claims description 2
- RTWAYAIMWLNAJW-RRHRGVEJSA-N PC(17:0/17:0) Chemical compound CCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCC RTWAYAIMWLNAJW-RRHRGVEJSA-N 0.000 claims description 2
- CJXPNBSAXZBLEC-USYZEHPZSA-N PC(19:0/19:0) Chemical compound CCCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCCC CJXPNBSAXZBLEC-USYZEHPZSA-N 0.000 claims description 2
- LRIPXDCMGANCAE-PKTZIBPZSA-N PS(10:0/10:0) Chemical compound CCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCC LRIPXDCMGANCAE-PKTZIBPZSA-N 0.000 claims description 2
- ZGNVQERQNSXHHO-AOGDOVIASA-N PS(16:0/18:2(9Z,12Z)) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC ZGNVQERQNSXHHO-AOGDOVIASA-N 0.000 claims description 2
- MIQYPPGTNIFAPO-CABCVRRESA-N PS(6:0/6:0) Chemical compound CCCCCC(=O)OC[C@@H](OC(=O)CCCCC)COP(O)(=O)OC[C@H](N)C(O)=O MIQYPPGTNIFAPO-CABCVRRESA-N 0.000 claims description 2
- 240000006365 Vitis vinifera Species 0.000 claims description 2
- RLNYFMQMIIHWFV-JGCGQSQUSA-N [(2r)-2,3-di(tridecanoyloxy)propyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCC RLNYFMQMIIHWFV-JGCGQSQUSA-N 0.000 claims description 2
- XHZMTTZICDAOHN-HKBQPEDESA-N [(2s)-2-(octadec-9-enoylamino)-3-[4-(pyridin-2-ylmethoxy)phenyl]propyl] dihydrogen phosphate Chemical compound C1=CC(C[C@@H](COP(O)(O)=O)NC(=O)CCCCCCCC=CCCCCCCCC)=CC=C1OCC1=CC=CC=N1 XHZMTTZICDAOHN-HKBQPEDESA-N 0.000 claims description 2
- NYDLOCKCVISJKK-WRBBJXAJSA-N [3-(dimethylamino)-2-[(z)-octadec-9-enoyl]oxypropyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(CN(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC NYDLOCKCVISJKK-WRBBJXAJSA-N 0.000 claims description 2
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 claims description 2
- 150000003842 bromide salts Chemical class 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- 150000001841 cholesterols Chemical class 0.000 claims description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 2
- QPJBWNIQKHGLAU-IQZHVAEDSA-N ganglioside GM1 Chemical compound O[C@@H]1[C@@H](O)[C@H](OC[C@H](NC(=O)CCCCCCCCCCCCCCCCC)[C@H](O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 QPJBWNIQKHGLAU-IQZHVAEDSA-N 0.000 claims description 2
- 150000002270 gangliosides Chemical class 0.000 claims description 2
- 229920001477 hydrophilic polymer Polymers 0.000 claims description 2
- 230000002503 metabolic effect Effects 0.000 claims description 2
- 239000000178 monomer Substances 0.000 claims description 2
- 230000001613 neoplastic effect Effects 0.000 claims description 2
- 230000000626 neurodegenerative effect Effects 0.000 claims description 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 2
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 claims description 2
- 229920000136 polysorbate Polymers 0.000 claims description 2
- 229940068965 polysorbates Drugs 0.000 claims description 2
- 239000003586 protic polar solvent Substances 0.000 claims description 2
- KPHZNDUWYZIXFY-YORIBCANSA-M sodium;(2s)-2-azaniumyl-3-[[(2r)-2,3-bis[[(z)-octadec-9-enoyl]oxy]propoxy]-oxidophosphoryl]oxypropanoate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OC[C@H]([NH3+])C([O-])=O)OC(=O)CCCCCCC\C=C/CCCCCCCC KPHZNDUWYZIXFY-YORIBCANSA-M 0.000 claims description 2
- YVHWEENUNNUSBE-ZMBIFBSDSA-M sodium;[(2r)-2,3-di(decanoyloxy)propyl] hydrogen phosphate Chemical compound [Na+].CCCCCCCCCC(=O)OC[C@H](COP(O)([O-])=O)OC(=O)CCCCCCCCC YVHWEENUNNUSBE-ZMBIFBSDSA-M 0.000 claims description 2
- BMBWFDPPCSTUSZ-MGDILKBHSA-M sodium;[(2r)-2,3-di(hexadecanoyloxy)propyl] hydrogen phosphate Chemical compound [Na+].CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)([O-])=O)OC(=O)CCCCCCCCCCCCCCC BMBWFDPPCSTUSZ-MGDILKBHSA-M 0.000 claims description 2
- 238000007920 subcutaneous administration Methods 0.000 claims description 2
- PORPENFLTBBHSG-UHFFFAOYSA-N dihexadecanoyl phosphatidic acid Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-UHFFFAOYSA-N 0.000 claims 2
- WWUZIQQURGPMPG-UHFFFAOYSA-N (-)-D-erythro-Sphingosine Natural products CCCCCCCCCCCCCC=CC(O)C(N)CO WWUZIQQURGPMPG-UHFFFAOYSA-N 0.000 claims 1
- YUDIFVLBAGUYSQ-LKFRDWELSA-N 1,2-di[(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl]-sn-glycero-3-phosphate Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CC YUDIFVLBAGUYSQ-LKFRDWELSA-N 0.000 claims 1
- RHODCGQMKYNKED-SXOMAYOGSA-N 1,2-dilauroyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCC RHODCGQMKYNKED-SXOMAYOGSA-N 0.000 claims 1
- YQMUIZXKIKXZHD-UMKNCJEQSA-N 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC YQMUIZXKIKXZHD-UMKNCJEQSA-N 0.000 claims 1
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 claims 1
- FAZBDRGXCKPVJU-MRXNPFEDSA-N 1-myristoyl-sn-glycerol 3-phosphate Chemical compound CCCCCCCCCCCCCC(=O)OC[C@@H](O)COP(O)(O)=O FAZBDRGXCKPVJU-MRXNPFEDSA-N 0.000 claims 1
- FAUYAENFVCNTAL-PFFNLMTBSA-N 1-octadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CC FAUYAENFVCNTAL-PFFNLMTBSA-N 0.000 claims 1
- AXJKOPKPNZMCIN-GSEBOFAUSA-N 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC AXJKOPKPNZMCIN-GSEBOFAUSA-N 0.000 claims 1
- QYYWMYCDFOLKKH-DAKWMOBOSA-N 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC QYYWMYCDFOLKKH-DAKWMOBOSA-N 0.000 claims 1
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 claims 1
- KSXTUUUQYQYKCR-LQDDAWAPSA-M 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KSXTUUUQYQYKCR-LQDDAWAPSA-M 0.000 claims 1
- GAJTUMASULCSDK-KTKRTIGZSA-N 2-[(Z)-octadec-9-enoxy]benzamide Chemical compound C(CCCCCCC\C=C/CCCCCCCC)OC1=C(C(=O)N)C=CC=C1 GAJTUMASULCSDK-KTKRTIGZSA-N 0.000 claims 1
- VDRZDTXJMRRVMF-UONOGXRCSA-N D-erythro-sphingosine Natural products CCCCCCCCCC=C[C@@H](O)[C@@H](N)CO VDRZDTXJMRRVMF-UONOGXRCSA-N 0.000 claims 1
- 101150063297 MYO1 gene Proteins 0.000 claims 1
- OKJIRPAQVSHGFK-UHFFFAOYSA-N N-acetylglycine Chemical compound CC(=O)NCC(O)=O OKJIRPAQVSHGFK-UHFFFAOYSA-N 0.000 claims 1
- 108020004682 Single-Stranded DNA Proteins 0.000 claims 1
- IDBJTPGHAMAEMV-OIVUAWODSA-N [(2r)-2,3-di(tricosa-10,12-diynoyloxy)propyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCC#CC#CCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCC#CC#CCCCCCCCCCC IDBJTPGHAMAEMV-OIVUAWODSA-N 0.000 claims 1
- ZBLCBXGAYXHPIY-ANFMRNGASA-N [(2r)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tricosa-10,12-diynoyloxypropyl] tricosa-10,12-diynoate Chemical compound CCCCCCCCCCC#CC#CCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCCCC#CC#CCCCCCCCCCC ZBLCBXGAYXHPIY-ANFMRNGASA-N 0.000 claims 1
- 125000000129 anionic group Chemical group 0.000 claims 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims 1
- 229920001427 mPEG Polymers 0.000 claims 1
- QSHQBWBFNCFHLO-MFABWLECSA-M sodium;(2s)-2-azaniumyl-3-[[(2r)-2,3-di(tetradecanoyloxy)propoxy]-oxidophosphoryl]oxypropanoate Chemical compound [Na+].CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OC[C@H]([NH3+])C([O-])=O)OC(=O)CCCCCCCCCCCCC QSHQBWBFNCFHLO-MFABWLECSA-M 0.000 claims 1
- 238000006467 substitution reaction Methods 0.000 claims 1
- OIWCYIUQAVBPGV-DAQGAKHBSA-N {1-O-hexadecanoyl-2-O-[(Z)-octadec-9-enoyl]-sn-glycero-3-phospho}serine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCC\C=C/CCCCCCCC OIWCYIUQAVBPGV-DAQGAKHBSA-N 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 91
- 238000009472 formulation Methods 0.000 description 33
- 238000011534 incubation Methods 0.000 description 25
- 238000002474 experimental method Methods 0.000 description 24
- 238000000338 in vitro Methods 0.000 description 20
- 238000001890 transfection Methods 0.000 description 19
- 238000002360 preparation method Methods 0.000 description 18
- 239000000725 suspension Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 11
- 238000004113 cell culture Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 230000003833 cell viability Effects 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 238000012384 transportation and delivery Methods 0.000 description 10
- 238000001218 confocal laser scanning microscopy Methods 0.000 description 9
- 238000002296 dynamic light scattering Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- KWVJHCQQUFDPLU-YEUCEMRASA-N 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KWVJHCQQUFDPLU-YEUCEMRASA-N 0.000 description 8
- 239000006143 cell culture medium Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 7
- 238000007910 systemic administration Methods 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000007515 enzymatic degradation Effects 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 239000012091 fetal bovine serum Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 5
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 5
- 229960000074 biopharmaceutical Drugs 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000010668 complexation reaction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 5
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108090001005 Interleukin-6 Proteins 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 238000003570 cell viability assay Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000000536 complexating effect Effects 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000012154 double-distilled water Substances 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 101150036617 fu gene Proteins 0.000 description 4
- 230000036571 hydration Effects 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 238000010907 mechanical stirring Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 238000013379 physicochemical characterization Methods 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000011877 solvent mixture Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 239000013603 viral vector Substances 0.000 description 4
- OSBLTNPMIGYQGY-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;boric acid Chemical compound OB(O)O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O OSBLTNPMIGYQGY-UHFFFAOYSA-N 0.000 description 3
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 238000008157 ELISA kit Methods 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 125000003435 aroyl group Chemical group 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000004624 confocal microscopy Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000002158 endotoxin Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000005090 green fluorescent protein Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 229920006008 lipopolysaccharide Polymers 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 125000003831 tetrazolyl group Chemical group 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 240000008881 Oenanthe javanica Species 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 230000006819 RNA synthesis Effects 0.000 description 2
- 108091030071 RNAI Proteins 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 210000003855 cell nucleus Anatomy 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 208000037516 chromosome inversion disease Diseases 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 238000002784 cytotoxicity assay Methods 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000000893 fibroproliferative effect Effects 0.000 description 2
- 230000009368 gene silencing by RNA Effects 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000006320 pegylation Effects 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 239000004017 serum-free culture medium Substances 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 230000001839 systemic circulation Effects 0.000 description 2
- 238000012385 systemic delivery Methods 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- XOAMGMFHUNHBEM-AXAMJWTMSA-N (2-{[(2r)-2,3-bis(tetracosanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCCCCCCCC XOAMGMFHUNHBEM-AXAMJWTMSA-N 0.000 description 1
- NWXMGUDVXFXRIG-NAOJVREFSA-N (4s,4as,5as,12ar)-4-(dimethylamino)-1,6,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide Chemical compound C1=CC=C2C(O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]4(O)C(=O)C3=C(O)C2=C1O NWXMGUDVXFXRIG-NAOJVREFSA-N 0.000 description 1
- GDYHKPCXCBYUMI-UUSMYCRBSA-N 1,2-diarachidonoyl-sn-glycero-3-phosphate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC GDYHKPCXCBYUMI-UUSMYCRBSA-N 0.000 description 1
- OKLASJZQBDJAPH-RUZDIDTESA-N 1,2-dilauroyl-sn-glycero-3-phosphate Chemical compound CCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCC OKLASJZQBDJAPH-RUZDIDTESA-N 0.000 description 1
- IJFVSSZAOYLHEE-SSEXGKCCSA-N 1,2-dilauroyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCC IJFVSSZAOYLHEE-SSEXGKCCSA-N 0.000 description 1
- 150000000180 1,2-diols Chemical class 0.000 description 1
- KIVAJCJTVPWSRJ-OQHNRNOKSA-N 1-[(9Z)-octadecenoyl]-2-tetradecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCC\C=C/CCCCCCCC KIVAJCJTVPWSRJ-OQHNRNOKSA-N 0.000 description 1
- XPAXRSJGGFVTFM-RUZDIDTESA-N 1-palmitoyl-2-acetyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(C)=O)COP([O-])(=O)OCC[N+](C)(C)C XPAXRSJGGFVTFM-RUZDIDTESA-N 0.000 description 1
- NYZTVPYNKWYMIW-WRBBJXAJSA-N 4-[[2,3-bis[[(Z)-octadec-9-enoyl]oxy]propyl-dimethylazaniumyl]methyl]benzoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)CC1=CC=C(C=C1)C([O-])=O)OC(=O)CCCCCCC\C=C/CCCCCCCC NYZTVPYNKWYMIW-WRBBJXAJSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- XHZMTTZICDAOHN-WJOKGBTCSA-N C(CCCCCCCC=CCCCCCCCC)(=O)N[C@@H](COP(O)(O)=O)CC1=CC=C(C=C1)OCC1=NC=CC=C1 Chemical compound C(CCCCCCCC=CCCCCCCCC)(=O)N[C@@H](COP(O)(O)=O)CC1=CC=C(C=C1)OCC1=NC=CC=C1 XHZMTTZICDAOHN-WJOKGBTCSA-N 0.000 description 1
- 101100096979 Caenorhabditis elegans sto-1 gene Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- YDNKGFDKKRUKPY-TURZORIXSA-N N-hexadecanoylsphingosine Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)\C=C\CCCCCCCCCCCCC YDNKGFDKKRUKPY-TURZORIXSA-N 0.000 description 1
- VODZWWMEJITOND-NXCSZAMKSA-N N-octadecanoylsphingosine Chemical compound CCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)\C=C\CCCCCCCCCCCCC VODZWWMEJITOND-NXCSZAMKSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- SUHOOTKUPISOBE-UHFFFAOYSA-N O-phosphoethanolamine Chemical compound NCCOP(O)(O)=O SUHOOTKUPISOBE-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- ZTNFQEXYTMNFHG-SOFXVBFTSA-N PS(18:2(9Z,12Z)/18:2(9Z,12Z)) Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC ZTNFQEXYTMNFHG-SOFXVBFTSA-N 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- QTENRWWVYAAPBI-YZTFXSNBSA-N Streptomycin sulfate Chemical compound OS(O)(=O)=O.OS(O)(=O)=O.OS(O)(=O)=O.CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@H]1[C@H](N=C(N)N)[C@@H](O)[C@H](N=C(N)N)[C@@H](O)[C@@H]1O.CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@H]1[C@H](N=C(N)N)[C@@H](O)[C@H](N=C(N)N)[C@@H](O)[C@@H]1O QTENRWWVYAAPBI-YZTFXSNBSA-N 0.000 description 1
- 239000008051 TBE buffer Substances 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 101150049278 US20 gene Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- XGMMADXONKETMF-OIVUAWODSA-N [(2r)-2,3-di(tricosanoyloxy)propyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCCCCCCC XGMMADXONKETMF-OIVUAWODSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000012431 aqueous reaction media Substances 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 125000004057 biotinyl group Chemical group [H]N1C(=O)N([H])[C@]2([H])[C@@]([H])(SC([H])([H])[C@]12[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 101150051821 era gene Proteins 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012921 fluorescence analysis Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005918 in vitro anti-tumor Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000007154 intracellular accumulation Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- NWOPIWLNGYLZCJ-GMUIIQOCSA-M sodium [(2R)-3-hexadecanoyloxy-2-hydroxypropyl] hydrogen phosphate Chemical compound [Na+].CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP(O)([O-])=O NWOPIWLNGYLZCJ-GMUIIQOCSA-M 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000028016 temperature homeostasis Effects 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000006490 viral transcription Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 235000021119 whey protein Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
- A61K9/1272—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers comprising non-phosphatidyl surfactants as bilayer-forming substances, e.g. cationic lipids or non-phosphatidyl liposomes coated or grafted with polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Wood Science & Technology (AREA)
- Epidemiology (AREA)
- General Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Peptides Or Proteins (AREA)
Description
Descrizione della domanda di brevetto per Invenzione Industriale dal titolo: “Sistemi vescicolari formati da bilayer asimmetrici a struttura doppia per la veicolazione di materiale genetico” Description of the patent application for Industrial Invention entitled: "Vesicular systems formed by asymmetric bilayers with double structure for the conveyance of genetic material"
Campo tecnico deirinvenzione Technical field of the invention
La presente invenzione riguarda la produzione di strutture o sistemi vescicolari costituite da un doppio strato lipidico in grado di formare una doppia struttura costituita da un bilayer interno e da un bilayer esterno. Il bilayer interno è formato da fosfolipidi caricati positivamente ed in grado di formare complessi elettrostatici con il materiale genetico presente al suo interno. Il bilayer esterno è neutro o caricato negativamente ed è formato da fosfolipidi in grado di fondersi con le membrane biologiche, e/o da polimeri idrofili ci e/o amfipatici coniugati ai fosfolipidi. Tali sistemi vescicolari sono caratterizzati da stabilità e proprietà biofarmaceutiche migliorate rispetto ai sistemi vescicolari finora noti. Gli AVs dell’invenzione sono impiegabili nella veicolazione di materiale genetico ad attività farmacologica, come ad esempio geni, DNA ed RNA a doppio filamento, oligonucleotidi, miRNA, siRNA. The present invention relates to the production of vesicular structures or systems consisting of a double lipid layer capable of forming a double structure consisting of an internal bilayer and an external bilayer. The internal bilayer is made up of positively charged phospholipids capable of forming electrostatic complexes with the genetic material present inside. The external bilayer is neutral or negatively charged and is made up of phospholipids able to fuse with biological membranes, and / or hydrophilic and / or amphipathic polymers conjugated to phospholipids. Such vesicular systems are characterized by improved stability and biopharmaceutical properties with respect to the vesicular systems known up to now. The AVs of the invention can be used in the delivery of genetic material with pharmacological activity, such as genes, double-stranded DNA and RNA, oligonucleotides, miRNA, siRNA.
Aite nota Aite note
L'attività terapeutica del materiale genetico rappresenta un approccio sperimentale importante nella terapia anticancro e per il trattamento di numerose altre patologie. La recente scoperta dei mediatori della sintesi e trascrizione dell’RNA, in particolare, i micro RNA (miRNA) e gli small interference RNA (siRNA) ha rivoluzionato i protocolli terapeutici nella terapia genica. I mediatori della sintesi, trascrizione e traduzione dell'RNA possono infatti essere utilizzati per modulare l’attività dei geni e controllare i processi legati alla loro attivazione. Tuttavia, l'utilizzo in terapia degli RNAi, in particolare, miRNA ed siRNA, è fortemente limitata dalla loro perdita d’efficacia dopo somministrazione sistemica e dalla scarsa efficacia dei vettori di trascrizione generalmente utilizzati per la loro veicolazione. Sono state infatti sviluppate diverse formulazioni per il trattamento di malattie genetiche in cui la somministrazione di materiale genetico privo di vettori per la sua veicolazione o come composti singoli non produceva alcun effetto terapeutico (Tiramt et al., 2014; Ando et al., 2013; Molinaro et al., 2013; Zhang et al., 2013). The therapeutic activity of genetic material represents an important experimental approach in anti-cancer therapy and for the treatment of numerous other pathologies. The recent discovery of RNA synthesis and transcription mediators, in particular, micro RNA (miRNA) and small interference RNA (siRNA) has revolutionized therapeutic protocols in gene therapy. The mediators of RNA synthesis, transcription and translation can in fact be used to modulate the activity of genes and control the processes related to their activation. However, the use of RNAi in therapy, in particular, miRNA and siRNA, is severely limited by their loss of efficacy after systemic administration and by the poor efficacy of transcription vectors generally used for their delivery. In fact, several formulations have been developed for the treatment of genetic diseases in which the administration of genetic material devoid of vectors for its delivery or as single compounds did not produce any therapeutic effect (Tiramt et al., 2014; Ando et al., 2013; Molinaro et al., 2013; Zhang et al., 2013).
In campo farmaceutico, i problemi tecnici da superare sono, quindi, legati alla somministrazione in vivo di materiale nucleotidico quali, ma non solo, siRNA e miRNA. Detti problemi tecnici, in particolare, comprendono la loro rapida degradazione dopo somministrazione sistemica, l'uptake da parte dei macrofagi del sistema reticoloendoteliale e la scarsa internalizzazione cellulare. In the pharmaceutical field, the technical problems to be overcome are therefore linked to the in vivo administration of nucleotide material such as, but not limited to, siRNA and miRNA. Said technical problems, in particular, include their rapid degradation after systemic administration, the uptake by macrophages of the reticuloendothelial system and poor cellular internalization.
Per questo motivo, diverse strategie sono state sviluppate per superare queste problematiche. Tra le potenziali scelte, i vettori non virali sono stati ampiamente accettati ed utilizzati dalla comunità scientifica come nanovettori per la terapia genica poiché considerati non immunogenici rispetto ai vettori virali. Per questo motivo, l’utilizzo di liposomi e sistemi vescicolari in genere, in particolare nanosistemi formati da biomateriali lipidici e/o polimerici, per la veicol azione sistemica di miRNA e siRNA è stato ampiamente studiato. Il principale svantaggio nell'utilizzo in clinica di miRNA e siRNA è la loro scarsa capacità di trasfezione in vivo. For this reason, several strategies have been developed to overcome these issues. Among the potential choices, non-viral vectors have been widely accepted and used by the scientific community as nanocarriers for gene therapy as they are considered non-immunogenic with respect to viral vectors. For this reason, the use of liposomes and vesicular systems in general, in particular nanosystems formed by lipid and / or polymeric biomaterials, for the systemic delivery of miRNA and siRNA has been extensively studied. The main disadvantage of miRNA and siRNA in clinical use is their poor transfection capacity in vivo.
I liposomi sono sistemi per la veicolazione e il direzionamento del farmaco formati da un core acquoso ed un doppio strato fosfolipidico idrofobico in grado di incapsulare farmaci aventi diverse proprietà chimico -fisiche. Composti idrofili e liposolubili possono essere incapsulati nei liposomi singolarmente o in combinazione e la loro ine ap sul azione permette di ottenere diversi vantaggi terapeutici (Gentile et al., 2013; Cosco et al., 2012; Cosco et al., 2011; Torchilin, 2005). Infatti, i liposomi migliorano le proprietà biofarmaceutiche e farmacocinetiche dei composti incapsulati, la loro stabilità chimico -fisica e biologica sia in modelli sperimentali in vitro che in vivo (Biswas et al., 2012; Ratei et al., 2011; Celia et al., 2011; Paolino et al., 2010; Blume and Cevc, 1990). Liposomes are drug delivery and directing systems consisting of an aqueous core and a hydrophobic phospholipid bilayer capable of encapsulating drugs with different chemical-physical properties. Hydrophilic and liposoluble compounds can be encapsulated in liposomes individually or in combination and their ine ap sul action allows to obtain different therapeutic advantages (Gentile et al., 2013; Cosco et al., 2012; Cosco et al., 2011; Torchilin, 2005). Indeed, liposomes improve the biopharmaceutical and pharmacokinetic properties of encapsulated compounds, their chemical-physical and biological stability both in in vitro and in vivo experimental models (Biswas et al., 2012; Ratei et al., 2011; Celia et al. , 2011; Paolino et al., 2010; Blume and Cevc, 1990).
Neirultimo decennio, sono state proposte nuove formulazioni liposomiali per la veicolazione di materiale genetico (Endo-Takahashi et al., 2014; Hatakeyama et al., 2014; Takahashi et al., 2013; Rai et al., 2011; Kibria et al., 2011). In the last decade, new liposomal formulations have been proposed for the delivery of genetic material (Endo-Takahashi et al., 2014; Hatakeyama et al., 2014; Takahashi et al., 2013; Rai et al., 2011; Kibria et al. , 2011).
Recentemente, i lipoplessi sono stati sviluppati e suggeriti come potenziali vettori non virali per la veicolazione di materiale genetico. La complessazione del materiale genetico con i lipoplessi migliora la trasfezione sia in vitro che in vìvo. Tuttavia, il loro utilizzo è legato airinsorgenza di numerosi effetti collaterali. Infatti, i gruppi carichi positivamente favoriscono l’interazione aspecifica con la superficie dei tessuti in prossimità del sito di somministrazione, limitandone la distribuzione sistemica e di conseguenza, anche la veicolazione del materiale genetico incapsulato (Dan and Danino, 2014; Li et al., 2014; Pozzi et al., 2014; Sheng et al., 2014). Inoltre, i lipoplessi stimolano diverse vie ree etto ri ah, in particolare i Tolldike Receptors (TLRs) 4, generando una risposta infiammatoria mediata dalle citochine e dall’interferone (Hashimoto et al., 2014; Schworer et al., 2014; Yang et al., 2014). Recently, lipoplexes have been developed and suggested as potential non-viral vectors for the delivery of genetic material. Complexation of the genetic material with lipoplexes improves transfection both in vitro and in vivo. However, their use is linked to the onset of numerous side effects. In fact, the positively charged groups favor the non-specific interaction with the tissue surface near the administration site, limiting its systemic distribution and consequently, also the conveyance of the encapsulated genetic material (Dan and Danino, 2014; Li et al., 2014; Pozzi et al., 2014; Sheng et al., 2014). Furthermore, lipoplexes stimulate several ree ectory pathways, in particular Tolldike Receptors (TLRs) 4, generating an inflammatory response mediated by cytokines and interferon (Hashimoto et al., 2014; Schworer et al., 2014; Yang et al., 2014; al., 2014).
Un vettore non virale ideale, oltre a favorire un’elevata efficienza d’incapsulazione/complessazione del materiale genetico, permette di scegliere, per la loro formulazione, biomateriali altamente biocompatibili. An ideal non-viral vector, in addition to favoring a high encapsulation / complexation efficiency of the genetic material, allows you to choose highly biocompatible biomaterials for their formulation.
Biomateriali come ad esempio i fosfolipidi possono essere utilizzati per realizzare sistemi sopramolecolari per la veicolazione di materiale genetico. Le proprietà chimico -fisiche dei fosfolipidi, in particolare la possibilità di presentare una carica neutra, oppure positiva oppure negativa, possono influenzare la loro l’interazione con la superficie delle cellule ed il loro accumulo intracellulare. Il brevetto US 5,252,26.3 descrive sistemi vescicolari atti a modulare la distribuzione di lipidi caricati positivamente e molecole proteiche attraverso un bilayer fosfolipidico. Il brevetto descrive la velocità di migrazione delle proteine e dei lipidi caricati positivamente attraverso il doppio strato fosfolipidico delle vescicole in funzione della variazione di pH e del gradiente ionico prodotto da un mezzo acquoso aggiunto alla formulazione lipidica. In questo brevetto la distribuzione asimmetrica del doppio strato fosfolipidico delle vescicole è rappresentata da un singolo bilayer. Le vescicole così ottenute non garantiscono di incapsulare materiale genico e di ottenere, contemporaneamente le proprietà di lunga circolazione. Biomaterials such as phospholipids can be used to create supramolecular systems for the delivery of genetic material. The chemical-physical properties of phospholipids, in particular the possibility of having a neutral, positive or negative charge, can influence their interaction with the cell surface and their intracellular accumulation. US patent 5,252,26.3 describes vesicular systems adapted to modulate the distribution of positively charged lipids and protein molecules through a phospholipid bilayer. The patent describes the migration rate of positively charged proteins and lipids through the phospholipid bilayer of the vesicles as a function of the pH variation and the ionic gradient produced by an aqueous medium added to the lipid formulation. In this patent the asymmetric distribution of the phospholipid bilayer of the vesicles is represented by a single bilayer. The vesicles thus obtained do not guarantee to encapsulate gene material and to obtain, at the same time, the properties of long circulation.
Il brevetto US 7,005,140 descrive la procedura per preparare nanoparticelle lipidiche con struttura asimmetrica rimuovendo, in specifiche condizioni di reazione, fosfolipidi carichi dal bilayer esterno, ottenendo così particelle lipidiche asimmetriche, o liposomi, che presentano una struttura interna formata da almeno un lipide caricato positivamente, capace di complessare l’agente terapeutico, materiale genetico, proteine o peptidi, ed una struttura esterna formata da lipidi neutri o lipidi modificati con polimeri idrofili, come ad esempio il polietilen glicole (PEG), con e senza agenti targhettanti. Il processo descritto per la formazione del bilayer asimmetrico descritto in questo brevetto presenta lo svantaggio di rimuovere parte dell’agente terapeutico complessato nei liposomi cationici durante la fase d’incubazione con i liposomi neutri, negativi o peghilati nel mezzo acquoso di reazione, riducendo quindi l’attività della formulazione. Di conseguenza, il processo non permette di ottenere una resa adeguatamente elevata di doppi bilayer. US patent 7,005,140 describes the procedure for preparing lipid nanoparticles with asymmetric structure by removing, under specific reaction conditions, charged phospholipids from the external bilayer, thus obtaining asymmetric lipid particles, or liposomes, which have an internal structure formed by at least one positively charged lipid, capable of complexing the therapeutic agent, genetic material, proteins or peptides, and an external structure formed by neutral lipids or lipids modified with hydrophilic polymers, such as for example polyethylene glycol (PEG), with and without targeting agents. The process described for the formation of the asymmetric bilayer described in this patent has the disadvantage of removing part of the complexed therapeutic agent in the cationic liposomes during the incubation step with the neutral, negative or pegylated liposomes in the aqueous reaction medium, thus reducing the activity of the formulation. Consequently, the process does not allow to obtain an adequately high yield of double bilayers.
La domanda di brevetto US 2011/0117026 descrive una formulazione lipidica formata da una struttura interna (core) costituita da lipidi policationici complessati con il DNA ed una struttura esterna (bilayer) formata da lipidi /composti policationici/DNA (LPD-NPs) che riveste il nucleo centrale (core). La metodica di preparazione utilizzata per realizzare le vescicole asimmetriche prevede la miscelazione di una sospensione lipidica A, formata da liposomi (DOTAP /Colesterolo = 1/1 in frazione molare) alla concentrazione lipidica finale di 8.3 mM e 0.2 mg/ml di protamina solubilizzati in 150 pi di soluzione acquosa priva di nucleasi; ed una soluzione B, formata da 0.16 mg/ml di siRNA e 0.16 mg/ml di cali thymus DNA co-solubilizzati 150 pi di soluzione acquosa priva di nucleasi. La miscela ottenuta è stata successivamente mantenuta sotto continua agitazione a temperatura ambiente per 10 minuti. Gli LPD rivestiti con catene di PEG sono stati ottenuti co-incubando la sospensione di LPD (300 pi) con 37.8 pi di mie eli e ottenute utilizzando DSPE-PEG2000 or DSPE-PEG2000 coniugato con un composto in grado di favorire il targeting attivo (10 mg /mi). I sistemi PEGilati devono essere utilizzati entro 20 minuti dalla loro preparazione. Il processo descritto in US 2011/0117026 non permette di ottenere due bilayer asimmetrici organizzati in modo da avere un doppio strato fosfolipidico interno, carico positivamente ed in grado di complessare il materiale genetico, ed un doppio strato fosfolipidico esterno formato da fosfolipidi in grado di fondersi con le membrane cellulari oppure ricoperte da polietilen glicole (PEG) e quindi capaci di favorire l’ingresso degli AVs all’interno delle cellule e una lunga circolazione sistemica. Queste differenze strutturali implicano che gli LPD-NPs presentano una struttura simile a quelle dei lipopoliplessi sopra citati, piuttosto che una struttura formata da un bilayer fosfolipidico caratteristico dei liposomi. Inoltre, il rivestimento della superficie esterna con unità di polietilen glicole (PEG) li rendono di facile rimozione dopo somministrazione sistemica. US patent application 2011/0117026 describes a lipid formulation formed by an internal structure (core) consisting of polycationic lipids complexed with DNA and an external structure (bilayer) formed by lipids / polycationic compounds / DNA (LPD-NPs) which covers the central core (core). The preparation method used to create the asymmetric vesicles involves the mixing of a lipid suspension A, formed by liposomes (DOTAP / Cholesterol = 1/1 in a molar fraction) at the final lipid concentration of 8.3 mM and 0.2 mg / ml of solubilized protamine in 150 µl of nuclease-free aqueous solution; and a solution B, formed by 0.16 mg / ml of siRNA and 0.16 mg / ml of co-solubilized cali thymus DNA 150 µl of aqueous solution without nuclease. The obtained mixture was subsequently kept under continuous stirring at room temperature for 10 minutes. LPDs coated with PEG chains were obtained by co-incubating the suspension of LPD (300 µl) with 37.8 µl of my eli and obtained using DSPE-PEG2000 or DSPE-PEG2000 conjugated with a compound capable of promoting active targeting (10 mg / mi). PEGylated systems must be used within 20 minutes of their preparation. The process described in US 2011/0117026 does not allow to obtain two asymmetric bilayers organized in such a way as to have an internal phospholipid double layer, positively charged and capable of complexing the genetic material, and an external phospholipid bilayer formed by phospholipids capable of fusing with cell membranes or covered with polyethylene glycol (PEG) and therefore capable of favoring the entry of AVs into cells and a long systemic circulation. These structural differences imply that the LPD-NPs have a structure similar to those of the lipopoliplexes mentioned above, rather than a structure formed by a phospholipid bilayer characteristic of liposomes. Furthermore, the coating of the outer surface with polyethylene glycol (PEG) units make them easy to remove after systemic administration.
Nella domanda di brevetto US20 13/149374 gli autori descrivono liposomi asimmetrici, che non sono paragonabili ai liposomi asimmetrici della presente invenzione in quanto la preparazione prevede la miscelazione di micelle inverse preformate. Il metodo descritto in US 2013/149374 prevede uno stadio di inversione di fase che impedisce l’aggiunta diretta di materiale genico. Di conseguenza gli agenti terapeutici devono essere aggiunti dopo l’inversione di fase, l’evaporazione del solvente organico e la diluizione con tampone delle micelle inverse fuse. Questo comporta che solo una parte del materiale genico può essere complessata airinterno dei nano si sterni, riducendo così di molto la quantità complessabile e l'efficienza globale dei sistemi. In the patent application US20 13/149374 the authors describe asymmetric liposomes, which are not comparable to the asymmetric liposomes of the present invention since the preparation involves the mixing of preformed inverse micelles. The method described in US 2013/149374 provides for a phase inversion stage that prevents the direct addition of gene material. Consequently, the therapeutic agents must be added after the phase inversion, the evaporation of the organic solvent and the dilution of the fused inverse micelles with buffer. This implies that only a part of the gene material can be complexed inside the nano-cells, thus greatly reducing the complexable quantity and the overall efficiency of the systems.
Era quindi sentita la necessità di avere a disposizione sistemi in grado di complessare una quantità elevata di materiale genetico all’interno del bilayer interno, formato da lipidi con carica positiva, in grado di permanere in circolo per un tempo elevato, cioè tale da permettere di esplicare la loro funzione farmacologica. Era inoltre sentita l'esigenza di ottenere tali risultati con una tecnologia di produzione di facile realizzazione con elevate rese. The need was therefore felt to have available systems capable of complexing a large amount of genetic material within the internal bilayer, formed by positively charged lipids, able to remain in circulation for a long time, i.e. such as to allow carry out their pharmacological function. The need was also felt to obtain these results with an easy-to-implement production technology with high yields.
Gli inventori hanno ora trovato un modo per ottenere dei liposomi a doppio bilayer che prevedono una metodica di preparazione semplice e danno una veicolazione efficiente tale da superare gli inconvenienti dell’arte nota. The inventors have now found a way to obtain double bilayer liposomes which provide a simple preparation method and give an efficient delivery such as to overcome the drawbacks of the known art.
Sommario dell'Invenzione Summary of the Invention
Costituisce oggetto della presente invenzione la realizzazione di sistemi vescicolari o liposomiali, denominati ÀVs, aventi non solo caratteristiche ottimali di biocompatibilità e biodegradabilità per la veicolazione di materiale genetico, per esempio frammenti di geni, siRNA, DNA e RNA a doppio filamento, oligonucleotidi, miRNA, ma, soprattutto, aventi caratteristiche notevolmente migliorative rispetto all'arte nota per quanto riguarda la protezione di DNA, RNA ed oligonucleotidi dalla degradazione enzimatica dopo somministrazione sistemica e la loro internalizzazione cellulare. The object of the present invention is the realization of vesicular or liposomal systems, called AVs, having not only optimal characteristics of biocompatibility and biodegradability for the conveyance of genetic material, for example fragments of genes, siRNA, DNA and double-stranded RNA, oligonucleotides, miRNA , but, above all, having considerably improved characteristics with respect to the known art as regards the protection of DNA, RNA and oligonucleotides from enzymatic degradation after systemic administration and their cellular internalization.
Gli AVs deirinvenzione presentano una struttura costituita da due bilayer asimmetrici concentrici fra loro, un bilayer interno ed un bilayer esterno, ciascuno di detti bilayer avendo a sua volta uno strato interno ed uno strato esterno, lo strato interno del bilayer interno essendo provvisto di una carica netta positiva; lo strato esterno del bilayer esterno essendo neutro o provvisto di una carica netta negativa (Figura 1). Il bilayer interno (anche detto IL) è caricato positivamente per la presenza di fosfolipidi cationici, come ad esempio DOTAP e DC -colesterolo, in grado di formare complessi elettrostatici con il materiale genetico ed aumentarne Fine ap sul azione. Il bilayer esterno (anche detto EL) è caricato negativamente e formato da fosfolipidi in grado di interagire con le membrane cellulari e di fondersi con esse, ad esempio DOPE, colesterolo, polimeri idrofilici e/o amfipatici coniugati ai fosfolipidi, quale il PEG, in grado di migliorare la stabilità e le proprietà biofarmaceutiche del sistema sopramolecolare. Una schematizzazione dei sistemi vescicolari dell’invenzione è illustrata in Fig. 1, dove si vede che ciascun sistema vescicolare è formato da due doppi strati (o bilayer) concentrici fra loro, lo strato più interno del bilayer interno mostrando una carica sostanzialmente positiva verso l’interno del sistema vescicolare, lo strato più esterno del bilayer esterno mostrando una carica sostanzialmente negativa o neutra verso l’esterno del sistema vescicolare. Gli strati intermedi rimangono liberi di avere una disposizione di cariche tale da assicurare la neutralità dell’intero sistema vescicolare. The AVs of the invention have a structure consisting of two concentric asymmetrical bilayers, an internal bilayer and an external bilayer, each of said bilayers having in turn an internal layer and an external layer, the internal layer of the internal bilayer being provided with a charge. net positive; the outer layer of the outer bilayer being neutral or having a net negative charge (Figure 1). The internal bilayer (also called IL) is positively charged due to the presence of cationic phospholipids, such as DOTAP and DC -cholesterol, capable of forming electrostatic complexes with the genetic material and increasing its action. The external bilayer (also called EL) is negatively charged and formed by phospholipids capable of interacting with cell membranes and merging with them, for example DOPE, cholesterol, hydrophilic and / or amphipathic polymers conjugated to phospholipids, such as PEG, in able to improve the stability and biopharmaceutical properties of the supramolecular system. A schematization of the vesicular systems of the invention is illustrated in Fig. 1, where it can be seen that each vesicular system is formed by two double layers (or bilayers) concentric with each other, the innermost layer of the internal bilayer showing a substantially positive charge towards the of the vesicular system, the outermost layer of the external bilayer showing a substantially negative or neutral charge towards the outside of the vesicular system. The intermediate layers remain free to have an arrangement of charges such as to ensure the neutrality of the entire vesicular system.
Altro oggetto dell’invenzione è il metodo per ottenere detti sistemi vescicolari. Secondo il metodo dell’invenzione, i due bilayer asimmetrici vengono preparati separatamente utilizzando utilizzando la metodica dell’evaporazione su strato sottile (Thin Layer Evaporation, TEE) dei fosfolipidi al fine di ottenere un film fosfolipidico sulle pareti del reattore. I due bilayer asimmetrici così ottenuti vengono poi utilizzati per la preparazione dei sistemi vescicolari dell'invenzione dopo idratazione in tampone acquoso. In particolare, il metodo di preparazione comprende gli stadi di realizzare: Another object of the invention is the method for obtaining said vesicular systems. According to the method of the invention, the two asymmetrical bilayers are prepared separately using the method of evaporation on a thin layer (Thin Layer Evaporation, TEE) of the phospholipids in order to obtain a phospholipid film on the reactor walls. The two asymmetric bilayers thus obtained are then used for the preparation of the vesicular systems of the invention after hydration in aqueous buffer. In particular, the preparation method includes the stages of carrying out:
<•>un bilayer interno o IL formato da liposomi cationici che complessano il materiale genetico; <•> an internal bilayer or IL formed by cationic liposomes which complex the genetic material;
<•>un bilayer esterno o EL caricato negativamente e formato da fosfolipidi in grado di fondersi attraverso le membrane biologiche, ad esempio DOPE, colesterolo, polimeri idrofilici e/o antipatici coniugati ai fosfolipidi, ad esempio il PEG, in grado di migliorare la stabilità e le proprietà biofarmaceutiche del sistema sopramolecolare; <•> an external bilayer or EL negatively charged and formed by phospholipids able to fuse across biological membranes, for example DOPE, cholesterol, hydrophilic and / or unpleasant polymers conjugated to phospholipids, for example PEG, able to improve stability and the biopharmaceutical properties of the supramolecular system;
IL ed EL vengono successivamente incubati tra di loro ed estrusi con un estrusore tramite filtri in policarbonato con cut-off (compreso fra 800 e 200 nm). IL and EL are subsequently incubated with each other and extruded with an extruder through polycarbonate filters with cut-off (between 800 and 200 nm).
Ulteriore oggetto sono le composizioni farmaceutiche comprendenti gli AVs dell’invenzione, unitamente ad eccipienti farmaceuticamente accettabili. Tali composizioni possono essere formulate per la somministrazione per via parenterale, in particolare per via intradermica, via sottocutanea, via intramuscolare, via endovenosa e sub-aracnoidea. A further object are the pharmaceutical compositions comprising the AVs of the invention, together with pharmaceutically acceptable excipients. Such compositions can be formulated for administration by parenteral route, in particular by intradermal route, subcutaneous route, intramuscular route, intravenous route and sub-arachnoid route.
Ancora, altro oggetto sono gli impieghi degli AVs o delle composizioni farmaceutiche che li contengono per il trattamento delle patologie che traggono beneficio dalla somministrazione di materiale genico. Still another object are the uses of AVs or pharmaceutical compositions containing them for the treatment of pathologies which benefit from the administration of gene material.
Ulteriori oggetti risulteranno evidenti dalla seguente descrizione dettagliata dell’invenzione. Further objects will become evident from the following detailed description of the invention.
La metodica di preparazione, la caratterizzazione, le applicazioni ed altre caratteristiche peculiari degli A\<7>s saranno descritte dettagliatamente nella descrizione dettagliata dell’invenzione di seguito riportata, dove sono anche riportati esempi applicativi e dati sperimentali, riassunti nelle Figure allegate. The method of preparation, characterization, applications and other peculiar characteristics of the A \ <7> s will be described in detail in the detailed description of the invention below, where application examples and experimental data are also reported, summarized in the attached Figures.
Breve descrizione delle Figure Brief description of the Figures
Figura 1. Descrizione schematica dei sistemi vescicolari formati da bilayer asimmetrici a struttura doppia (AVs). La struttura degli AVs è formata da un bilayer interno caricato positivamente, ed un bilayer esterno neutro e/o caricato negativamente e (in questa esemplificazione non limitativa) ricoperto da catene di polimero antipatico (polietilene glicol; PEG) in grado di migliorare le proprietà biofarmaceutiche degli AVs. Figure 1. Schematic description of vesicular systems formed by double-structured asymmetric bilayers (AVs). The structure of the AVs is formed by a positively charged internal bilayer, and a neutral and / or negatively charged external bilayer (in this non-limiting example) covered with unpleasant polymer chains (polyethylene glycol; PEG) able to improve the biopharmaceutical properties of the AVs.
Figura 2. Saggi di cito tossicità in vitro degli AVs. Gli esperimenti di citotossicità sono stati eseguiti utilizzando cellule di carcinoma della cervice uterina (cellule HeLa) utilizzando la metodica MTT (saggio di vitalità cellulare). Come illustrato nelle Figure 2A, 2B e 2C, le cellule sono state trattate a diversi tempi d’incubazione (rispettivamente 24, 48 e 72 h), utilizzando concentrazioni scalari (30 - 120 pg/ml) delle differenti formili azioni lipidiche. AVs (·); liposomi cationici (o); FuGene® (À). I dati sperimentali ottenuti sono la media di sei diversi esperimenti ± la deviazione standard. Figura 3. Interazione tra AVs e cellule HeLa. Immagini realizzate utilizzando la tecnica della microscopia confocale (CLSM). Le cellule sono state trattate a differenti tempi d’incubazione (6 - 24 h) con AVs (panello compreso tra A - D) o liposomi cationici (panello compreso tra E - H) preparati utilizzando il lipide fluorescente DHPE-rhodamine. Le immagini CLSM sono state acquisite alla lunghezza d’onda d’eccitazione della rodamina (pannelli A ed E), del green fluorescent protein (GFP) (pannelli B ed F) e del 4', 6-diamidin-2-fenilindolo (DAPI) (pannelli C e G). Le immagini D ed H sono state ottenute per sovrapposizione della colorazione delle cellule ottenute utilizzando la rodamina ed il DAPI. Figure 2. In vitro cytotoxicity assays of AVs. Cytotoxicity experiments were performed using cervical cancer cells (HeLa cells) using the MTT (cell viability assay) method. As shown in Figures 2A, 2B and 2C, the cells were treated at different incubation times (respectively 24, 48 and 72 h), using scalar concentrations (30 - 120 pg / ml) of the different formyl lipid actions. AVs (·); cationic liposomes (o); FuGene® (À). The experimental data obtained are the mean of six different experiments ± the standard deviation. Figure 3. Interaction between AVs and HeLa cells. Images made using the confocal microscopy (CLSM) technique. The cells were treated at different incubation times (6 - 24 h) with AVs (panel between A - D) or cationic liposomes (panel between E - H) prepared using the fluorescent lipid DHPE-rhodamine. CLSM images were acquired at the excitation wavelength of rhodamine (panels A and E), green fluorescent protein (GFP) (panels B and F) and 4 ', 6-diamidine-2-phenylindole (DAPI ) (panels C and G). Images D and H were obtained by superimposing cell staining obtained using rhodamine and DAPI.
Figura 4. Studi di internalizzazione intracellulare degli Avs eseguiti mediante CLSM. Le cellule di carcinoma umano mammario MCF-7 sono state utilizzate come modello cellulare durante la sperimentazione. Dopo 24 h d’incubazione, le cellule sono state trattate con Pre-miRNA-FAM/FuGene® incapsulati in AVs o con il semplice complesso formato da Pre-miRNA-F AM/F u G e n e ® . Le cellule sono state successivamente raccolte a diversi tempi d’incubazione (0.5, 1, 3 e 6 h). L’internalizzazione in cellule MCF-7 di Pre -miRNA- FAM/FuGene® incapsulati in AVs è stata valutata misurando gli effetti della pre-incapsulazione degli miRNA con il FuGene®. Gli studi d’internalizz azione degli AVs sono stati eseguiti valutando la distribuzione dei sistemi carriers all’interno precoci degli organelli cellulari, secondo quanto riportato nel protocollo fornito dal produttore del kit di reazione. Figura 5. \<7>alutazione della stabilità in siero rispettivamente del complesso Pre-miRNA-FAM/FuGene®, dei liposomi cationici e degli AVs. Gli studi sono stati condotti valutando lo scattering dinamico di luce (DLS) delle diverse formulazioni (pannelli i, ii e iii) incubate in presenza di una soluzione costituita da siero fetale bovino e tampone fosfato (FBS/PBS, 70:30 v/v, pH 7.4) a 37 °C e per diversi tempi d’incubazione (1, 6, 12, 24 e 48 h) (pannelli A, B e C). E' stata valutando la variazione delle loro dimensioni medie in funzione del tempo (1, 6, 12, 24 e 48 h). Le dimensioni delle diverse formulazioni ottenute al tempo zero (prima dell’incubazione) sono state utilizzate come controllo. Figure 4. Intracellular internalization studies of AVS performed using CLSM. MCF-7 human breast cancer cells were used as a cell model during the experiment. After 24 h of incubation, the cells were treated with Pre-miRNA-FAM / FuGene® encapsulated in AVs or with the simple complex formed by Pre-miRNA-F AM / F u G and n e ®. The cells were subsequently collected at different incubation times (0.5, 1, 3 and 6 h). The internalization in MCF-7 cells of Pre -miRNA- FAM / FuGene® encapsulated in AVs was evaluated by measuring the effects of the pre-encapsulation of miRNAs with FuGene®. The internalization studies of the AVs were performed by evaluating the distribution of the carrier systems within the early cell organelles, as reported in the protocol provided by the manufacturer of the reaction kit. Figure 5. \ <7> evaluation of the stability in serum of the Pre-miRNA-FAM / FuGene® complex, cationic liposomes and AVs, respectively. The studies were conducted by evaluating the dynamic light scattering (DLS) of the different formulations (panels i, ii and iii) incubated in the presence of a solution consisting of fetal bovine serum and phosphate buffer (FBS / PBS, 70:30 v / v , pH 7.4) at 37 ° C and for different incubation times (1, 6, 12, 24 and 48 h) (panels A, B and C). It was evaluating the variation of their mean size as a function of time (1, 6, 12, 24 and 48 h). The dimensions of the different formulations obtained at time zero (before incubation) were used as a control.
Figura 6. Saggi di degradazione enzimatica in presenza di RNAseA. La capacità degli A\<7>s di proteggere dalla degradazione enzimatica gli miRNA incapsulati è stata valutata mediante analisi elettrof or etica. Gli miRNA incapsulati in AVs o gli miRNA nudi (scramble) sono stati incubati per 1 h a 37 °C in presenza di RNAse A e successivamente trattati per 10 minuti con una miscela di EDTA, sodio dodecil solfato ed idrossido di sodio. I campioni sono stati successivamente incubati per un' ora e l’analisi elettrofor etica è stata eseguita su un gel d’agarosio all’l % p/v, in tampone Trisborato-EDTA (TBE) per 45 minuti a 100 Λ<7>. miRNA nudo (scramble (seri); linea 1) ed il complesso scrl/FuGene® sono stati usati come controlli durante gli esperimenti. Figure 6. Enzymatic degradation assays in the presence of RNAseA. The ability of A \ <7> s to protect encapsulated miRNAs from enzymatic degradation was evaluated by electrophorethical analysis. The miRNAs encapsulated in AVs or the bare miRNAs (scramble) were incubated for 1 h at 37 ° C in the presence of RNAse A and subsequently treated for 10 minutes with a mixture of EDTA, sodium dodecyl sulfate and sodium hydroxide. The samples were then incubated for one hour and the electrophorethical analysis was performed on a 1% w / v agarose gel, in Trisborate-EDTA (TBE) buffer for 45 minutes at 100 Λ <7> . bare miRNA (scramble (serious); line 1) and the scrl / FuGene® complex were used as controls during the experiments.
Figura 7. Valutazione dell’ efficienza di trasfezione in vitro degli AVs. Gli esperimenti sono stati eseguiti in vitro utilizzando FAM-miRNA. La quantità di F AM -miRNA transfettata in cellule He La, utilizzata come modello cellulare, è stata valutata misurando l’intensità di fluorescenza, utilizzando un FACSCaliburTM flow cytometer (BD Biosci ences, San Hose, CA, LISA), in funzione del numero di cellule seminate durante la sperimentazione. Il complesso Fu Gene® /F AM- miRNA è stato usato come controllo positivo durante gli esperimenti. L’efficienza di trasfezione del FAM-miRNA/FuGene® incapsulato in AVs (pannello C) è paragonata a quella di FuGene®/FAM-miRNA (pannello B) e del controllo (cellule non trattate) (pannello A). Lo spostamento di fluorescenza misurato mediante FACSCaliburTM flow cytometer è stato misurato su cellule HeLa dopo 24 h d’incubazione. Figure 7. Evaluation of the in vitro transfection efficiency of AVs. The experiments were performed in vitro using FAM-miRNA. The amount of F AM -miRNA transfected in He La cells, used as a cell model, was evaluated by measuring the fluorescence intensity, using a FACSCaliburTM flow cytometer (BD Biosci ences, San Hose, CA, LISA), as a function of the number of cells seeded during the experiment. The Fu Gene® / F AMmiRNA complex was used as a positive control during the experiments. The transfection efficiency of FAM-miRNA / FuGene® encapsulated in AVs (panel C) is compared to that of FuGene® / FAM-miRNA (panel B) and control (untreated cells) (panel A). The fluorescence shift measured by FACSCaliburTM flow cytometer was measured on HeLa cells after 24 h of incubation.
Figura 8. Efficacia terapeutica in vitro di miRNA incapsulati in AVs. L'anticorpo anti - miRNA- 18a (anti-18a) è stato incapsulato in AVs e l’attività antitumorale è stata valutata in vitro utilizzando cellule MCF-7. Il complesso anti-18a/FuGene® è stato utilizzato come controllo negli esperimenti di citotossicità.. La tossicità cellulare è stata misurata utilizzando la metodica MTT (saggio di vitalità cellulare) sulle cellule trattate a differenti tempi d’incubazione (24, 48 e 72 h). L’ anti -miRNA- 18a è stato utilizzato ad una concentrazione finale pari a 10 nM. L’attività antitumorale in vitro è stata determinata come una riduzione della vitalità cellulare delle cellule MCF-7 trattate con le diverse formulazioni ai tempi d’incubazione indicati. Figure 8. In vitro therapeutic efficacy of miRNAs encapsulated in AVs. The anti-miRNA-18a antibody (anti-18a) was encapsulated in AVs and the antitumor activity was evaluated in vitro using MCF-7 cells. The anti-18a / FuGene® complex was used as a control in cytotoxicity experiments. Cell toxicity was measured using the MTT method (cell viability assay) on treated cells at different incubation times (24, 48 and 72 h). The anti -miRNA-18a was used at a final concentration equal to 10 nM. The in vitro antitumor activity was determined as a reduction in the cell viability of MCF-7 cells treated with the different formulations at the indicated incubation times.
Figura 9. Analisi mediante western blotting dell’efficacia di miRNA complessati con AVs. Le formulazioni utilizzate per eseguire gli esperimenti illustrati in Figura 8, sono stati utilizzati per gli esperimenti di western blotting. Dopo trattamento per 72 h con il complesso anti-18a/FuGene® e con anti-miRNA-18a incapsulato in AVs, le cellule MCF-7 sono state raccolte dalle piastre per colture cellulari, centrifugate, lisate e la quantità di proteine presenti in ciascun campione è stata misurata. 50 ug di proteine sono stati successivamente separati utilizzando la metodica SDS-PAGE. L’analisi mediante western blotting è stata effettuata utilizzando gli anticorpi anti Estrogen Receptor-α (anti-Era) ed anti gliceraldeide-3-fosfato deidrogenasi (anti-GAPDH) nel corso degli esperimenti. I livelli d’espressione di ERa e GAPDH (controllo) nelle cellule MCF-7 sono stati valutati confrontando i livelli d’espressione di entrambi gli anticorpi, sopra riportati, per cellule non trattate (controllo) (linea 1); anti -miRNA- 18a/FuGene® (linea 2); anti -miRNA- 18a/FuGene® incapsulato in AVs (linea 3); scramble anti -miRNA- 18a/FuGene® (linea 4), scramble antimiRNA-18a/FuGene® incapsulato in AVs (linea 5) ed AVs vuoti (linea 6). Figure 9. Western blotting analysis of the efficacy of miRNA complexed with AVs. The formulations used to perform the experiments illustrated in Figure 8 were used for the western blotting experiments. After treatment for 72 h with anti-18a / FuGene® complex and with anti-miRNA-18a encapsulated in AVs, MCF-7 cells were harvested from cell culture plates, centrifuged, lysed and the amount of protein present in each sample was measured. 50 µg of proteins were subsequently separated using the SDS-PAGE method. The analysis by western blotting was carried out using anti-Estrogen Receptor-α (anti-Era) and anti-glyceraldehyde-3-phosphate dehydrogenase (anti-GAPDH) antibodies during the experiments. The expression levels of ERa and GAPDH (control) in MCF-7 cells were assessed by comparing the expression levels of both antibodies, reported above, for untreated cells (control) (line 1); anti -miRNA- 18a / FuGene® (line 2); anti -miRNA- 18a / FuGene® encapsulated in AVs (line 3); anti -miRNA-18a / FuGene® scramble (line 4), anti-miRNA-18a / FuGene® scramble encapsulated in AVs (line 5) and empty AVs (line 6).
Figura 10. Valutazione della risposta immunitaria in vitro per gli AVs in modelli cellulari specifici. La potenziale risposta immunitaria in vitro degli AVs è stata valutata utilizzando una linea di cellule macrofagiche d’origine murina (cellule Raw 264.7). Le cellule sono state trattate per 24 h con lipopolisaccaride (LPS) (1 Lig/inl), AVs vuoti ed anti-miRNA-18a (100 nM) incapsulato in AVs. La produzione di citochine prò-infiammatorie, come ad esempio TNF-α, IL-6 ed IL-Ιβ, è stata valutata utilizzando un kit ELISA secondo le istruzioni del produttore. Tutti gli esperimenti sono stati realizzati in triplicato. Figure 10. Evaluation of the in vitro immune response for AVs in specific cell models. The potential in vitro immune response of the AVs was evaluated using a macrophage cell line of murine origin (Raw 264.7 cells). Cells were treated for 24 h with lipopolysaccharide (LPS) (1 Lig / inl), empty AVs and anti-miRNA-18a (100 nM) encapsulated in AVs. The production of pro-inflammatory cytokines, such as TNF-α, IL-6 and IL-Ιβ, was evaluated using an ELISA kit according to the manufacturer's instructions. All experiments were performed in triplicate.
Descrizione dettagliata deirinvenzione Nell’ambito della presente invenzione i termini "strutture", "sistemi lipidici", "sistemi vescicolari" e "sistemi liposomiali" sono da considerare sinonimi, e sono raccolti sotto il termine AVs (Asimmetrie Vesicles; vescicole asimmetriche) e si riferiscono a strutture costituite da due doppi strati o bilayer. Come schematizzato in Figura 1, negli AVs dell’invenzione lo strato più interno carico positivamente è in grado di complessare in modo quantitativo il materiale genico, carico negativamente, inserito al suo interno; mentre lo strato più esterno, che reca complessivamente una carica neutra o negativa è in grado di interagire con le membrane biologiche, consentendo di ottenere una veicolazione del materiale genico molto efficace. con buone caratteristiche di sicurezza e biocompatibilità.. Detailed description of the invention Within the scope of the present invention, the terms "structures", "lipid systems", "vesicular systems" and "liposomal systems" are to be considered synonyms, and are collected under the term AVs (Asymmetries Vesicles; asymmetrical vesicles) and refer to structures consisting of two double layers or bilayers. As schematized in Figure 1, in the AVs of the invention the innermost positively charged layer is able to quantitatively complex the negatively charged gene material inserted inside it; while the outermost layer, which overall carries a neutral or negative charge, is able to interact with the biological membranes, allowing to obtain a very effective conveyance of the gene material. with good safety and biocompatibility features ..
Gli AVs dell'invenzione rappresentano un promettente approccio per la veicol azione sistemica di RNAi, grazie alla loro biocompatibilità, efficienza di trasfezione e possibilità di produzione su larga scala. La struttura asimmetrica del doppio strato fosfolipidico presenta una notevole versatilità poiché può essere preparato utilizzando diversi materiali biocompatibili e può avere diverse dimensioni. Il bilayer interno caricato positivamente favorisce la complessazione con il materiale genico come ad esempio miRNA ed siRNA; mentre il bilayer esterno, grazie alla sua composizione che conferisce una carica negativa o neutra, favorisce una prolungata circolazione sistemica degli AVs delfinvenzione, migliorando la stabilità nei fluidi biologici e regola l’interazione degli AVs con le cellule ed i tessuti bersaglio, e quindi la loro efficacia terapeutica nelle patologie che traggono giovamento dalla somministrazione di materiale genico. Infatti, la struttura a doppio bilayer dei sistemi vescicolari dell’invenzione è tale che, grazie ai lipidi che costituiscono il bilayer esterno EL, altamente compatibili con le membrane cellulari, viene favorita l’internalizzazione delle vescicole e facilitato l’ingresso del materiale genico incapsulato all’interno del bilay er interno IL. Il rivestimento della superficie esterna degli AVs, ad esempio con catene di PEG, può essere eseguito dopo pre-complessazione del materiale genetico da veicolare con un agente di trasfezione commerciale, per esempio FuGene®. Infatti, la peghilazione di sospensioni liposomiali impedisce la complessazione del materiale genetico all’interno del sistema colloidale, per questo motivo la peghilazione viene effettuata dopo aver ottenuto il doppio bilayer. Il processo per la prepararazione gli AVs secondo l’invenzione comprende gli stadi seguenti: The AVs of the invention represent a promising approach for the systemic delivery of RNAi, thanks to their biocompatibility, transfection efficiency and the possibility of large-scale production. The asymmetrical structure of the phospholipid bilayer presents considerable versatility since it can be prepared using different biocompatible materials and can have different dimensions. The positively charged internal bilayer favors complexation with gene material such as miRNA and siRNA; while the external bilayer, thanks to its composition which confers a negative or neutral charge, favors a prolonged systemic circulation of the AVs of the invention, improving the stability in biological fluids and regulates the interaction of the AVs with the target cells and tissues, and therefore the their therapeutic efficacy in diseases that benefit from the administration of gene material. In fact, the double bilayer structure of the vesicular systems of the invention is such that, thanks to the lipids that constitute the external bilayer EL, highly compatible with the cell membranes, the internalization of the vesicles is favored and the entry of the encapsulated gene material is facilitated. inside the internal bilay er IL. The coating of the external surface of the AVs, for example with PEG chains, can be performed after pre-complexation of the genetic material to be conveyed with a commercial transfection agent, for example FuGene®. In fact, the pegylation of liposomal suspensions prevents the complexation of the genetic material within the colloidal system, for this reason the pegylation is carried out after obtaining the double bilayer. The process for preparing the AVs according to the invention includes the following stages:
(i) preparare un bilayer interno (IL) carico positivamente. La preparazione può essere effettuata solubilizzando uno o più fosfolipidi cationici, ad esempio scelti nel gruppo dell’elenco II di seguito riportato, da soli o in associazione ad altri fosfolipidi cationici e/o neutri, ad esempio scelti nel gruppo dell’elenco I, in solventi o miscele di solventi apolari, polari aprotici o polari p rotici. La miscela viene poi portata a secco eliminando il solvente, ad esempio utilizzando la metodica TLE (Thin Layer Evaporation) e successivamente si idrata con acqua o soluzioni acquose. Lo stadio (i) può essere condotto in condizioni di agitazione meccanica, ad esempio con velocità compresa tra 10 e 1000 rpm, preferibilmente tra 10 e 700 rpm, più preferibilmente tra 10 e 300 rpm. (i) prepare a positively charged internal bilayer (IL). The preparation can be carried out by solubilizing one or more cationic phospholipids, for example selected from the group of list II below, alone or in association with other cationic and / or neutral phospholipids, for example selected from the group of list I, in solvents or mixtures of apolar, polar aprotic or polar p rotic solvents. The mixture is then dried by eliminating the solvent, for example using the TLE (Thin Layer Evaporation) method and subsequently it is hydrated with water or aqueous solutions. Step (i) can be carried out under mechanical stirring conditions, for example with a speed comprised between 10 and 1000 rpm, preferably between 10 and 700 rpm, more preferably between 10 and 300 rpm.
LTn metodo preferito per preparare la fase IL degli AVs è il seguente. Si utilizzano i lipidi cationici, riportati nell’elenco II a diverse frazioni molari (variabili fra 1:9 e 9:1). La miscela di fosfolipidi utilizzati, viene solubilizzata in solvente o miscela di solventi come sopra detto. La miscela di solventi viene in seguito rimossa, ad esempio per mezzo di un evaporatore sotto vuoto (ad esempio pressione compresa tra 100 e 700 mBar) ad una temperatura compresa tra 30 ed 80 °C. La rimozione delle tracce residue della miscela di solventi dal film lipidico ottenuto può essere in seguito effettuata utilizzando un essiccatore, programmato ad un intervallo di temperatura compreso tra 30 ed 80 °C e collegato ad una pompa da vuoto programmata ad un intervallo di pressione compreso tra 100 e 700 mBar. The preferred method for preparing the IL phase of the AVs is the following. Cationic lipids are used, listed in list II at different molar fractions (varying between 1: 9 and 9: 1). The mixture of phospholipids used is solubilized in a solvent or mixture of solvents as mentioned above. The solvent mixture is then removed, for example by means of a vacuum evaporator (for example pressure between 100 and 700 mBar) at a temperature between 30 and 80 ° C. The removal of the residual traces of the solvent mixture from the obtained lipid film can then be carried out using a dryer, programmed at a temperature range between 30 and 80 ° C and connected to a vacuum pump programmed at a pressure range between 100 and 700 mBar.
Il film lipidico così ottenuto viene successivamente idratato con una soluzione acquosa e la sospensione lipidica così ottenuta è sottoposta ad un numero di cicli alternati di agitazione continua, compreso tra 3 e 20, e di riscaldamento in bagno d'acqua termostatato, ad una temperatura compresa tra 30 ed 80 °C, per un numero di cicli compreso tra 3 e 20. The lipid film thus obtained is subsequently hydrated with an aqueous solution and the lipid suspension thus obtained is subjected to a number of alternating cycles of continuous stirring, between 3 and 20, and heating in a thermostated water bath, at a temperature between between 30 and 80 ° C, for a number of cycles between 3 and 20.
La concentrazione finale di lipidi ottenuta per i liposomi IL è compresa tra 1 e 13.8 mM. I liposomi IL vengono in seguito diluiti utilizzando la stessa soluzione acquosa impiegata per la loro preparazione. The final lipid concentration obtained for the IL liposomes is between 1 and 13.8 mM. The IL liposomes are then diluted using the same aqueous solution used for their preparation.
Per temperatura di transizione, Tm, si intende una temperatura, caratteristica per ogni fosfolipide, al di sotto della quale il bilayer risultante si trova in fase gel (struttura rigida) ed al di sopra della quale il bilayer risultante si trova in fase liquido -cristallina (struttura più fluida). La Tm è misurata utilizzando il metodo della calorimetria a scansione differenziale (DSC). La Tm degli AVs presenta un valore compreso in un intervallo costituito dai valori di Tm dei fosfolipidi che costituiscono IL ed EL. Il valore di Tm per gli AVs è compreso tra - 10 e 65 °C. By transition temperature, Tm, we mean a temperature, characteristic for each phospholipid, below which the resulting bilayer is in the gel phase (rigid structure) and above which the resulting bilayer is in the liquid-crystalline phase (more fluid structure). Tm is measured using the differential scanning calorimetry (DSC) method. The Tm of the AVs has a value included in an interval consisting of the Tm values of the phospholipids that make up IL and EL. The value of Tm for AVs is between - 10 and 65 ° C.
Gli miRNA, i pre-miRNA e gli siRNA vengono complessati con i liposomi IL durante la fase d’idratazione del film lipidico. Questa procedura può essere eseguita come descritto in letteratura (Maccarrone et al., 1992; Annesini et al., 1994). The miRNAs, pre-miRNAs and siRNAs are complexed with IL liposomes during the hydration phase of the lipid film. This procedure can be performed as described in the literature (Maccarrone et al., 1992; Annesini et al., 1994).
(ii) preparare un bilayer esterno (EL), carico negativamente. La preparazione può essere effettuata solubilizzando uno o più fosfolipidi carichi negativamente, ad esempio scelti nel gruppo dell’elenco III di seguito riportato, e/o scelti nel gruppo dei fosfolipidi coniugati con il polietilene glicole a diverso peso molecolare, come riportato in elenco IV e/o polietilene glicole a diverso peso molecolare, da soli o in combinazione, in solventi o miscele di solventi apolari, polari aprotici o polari protici, come da elenco di seguito riportato. La miscela viene poi portata a secco eliminando il solvente organico mediante la metodica TLE (Thin Layer Evaporation). Segue poi il successivo stadio di idratazione con acqua bidistillata o soluzioni acquose. Lo stadio (ii) può essere condotto in condizioni di agitazione meccanica. (ii) prepare a negatively charged external bilayer (EL). The preparation can be carried out by solubilizing one or more negatively charged phospholipids, for example selected from the group of list III below, and / or selected from the group of phospholipids conjugated with polyethylene glycol of different molecular weight, as reported in list IV and / or polyethylene glycol of different molecular weight, alone or in combination, in solvents or mixtures of apolar, polar aprotic or polar protic solvents, as listed below. The mixture is then dried by eliminating the organic solvent by means of the TLE (Thin Layer Evaporation) method. Then follows the subsequent hydration step with double distilled water or aqueous solutions. Step (ii) can be carried out under conditions of mechanical stirring.
Il bilayer ottenibile, o fase EL, grazie alla carica negativa o neutra è in grado di interagire con le membrane cellulari, fondendosi con esse. The obtainable bilayer, or EL phase, thanks to the negative or neutral charge is able to interact with cell membranes, merging with them.
ELENCO I - Fosfolipidi neutri: cholesterol e derivati del colesterolo; L-a-phosphatidylcholine (Egg, Chicken); L-aphosphatidylcholine, hydrogenated (Egg, Chicken); L-aphosphatidylcholine (95%) (Egg, Chicken); L-a-Phosphatidylcholine (Egg, Chicken -60%) (Total Egg Phosphatide Extract); L-alysophosphatidylcholine (Egg, Chicken); L-a-phosphatidylcholine (Soy); L-a-phosphatidylcholine, hydrogenated (Soy); L-aphosphatidylcholine (95%) (Soy); L-a-Phosphatidylcholine (Soy-40%); L-a-Phosphatidylcholine, 20% (Soy); L-alysophosphatidylcholine (Soy); L-α -phosphatidylcholine (Heart, Bovine); L-a-phosphatidylcholine (Brain, Porcine); L-aphosphatidylcholine (Liver, Bovine); l,2-dilauroyl-sn-glycero-3-phosphocholine; l,2-ditridecanoyl-sn-glycero-3-phosphocholine; 1,2-dimyristoyl-sn-glycero-3-phosphocholine; 1,2-dipentadecanoyl-snglycero-3-phosphocholine; l,2-dipalmitoyl-sn-glycero-3-phosphocholine; l,2-diphytanoyl-sn-glycero-3-phosphocholine; 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine; 1,2-distearoyl-snglycero-3-phosphocholine; l,2-dinonadecanoyl-sn-glycero-3-phosphocholine; l,2-diarachidoyl-sn-glycero-3-phosphocholine; 1,2-dihenarachidoyl-sn-glycero-3-phosphocholine; 1,2-dibehenoyl-snglycero-3-phosphocholine; l,2-ditricosanoyl-sn-glycero-3-phosphocholine; l,2-dilignoceroyl-sn-glycero-3-phosphocholine; Cisl,2-dinervonoyl-sn-glycero-3-phosphocholine; l-myristoyl-2-pahnitoyl-sn-glycero-3-phosphocholine; l-myristoyl-2-stearoyl-snglycero-3-phosphocholine; l-palmitoyl-2-acetyl-sn-glycero-3-phosphocholine; l-palinitoyl-2-stearoyl-sn-glycero-3-phosphocholine; l-palinitoyl-2-linoleoyl-sn-gl3'Cero-3-phosphocholine; l-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; l-stearoyl-2-palinitoyl-sn-glycero-3-phosphocholine; l-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine; l-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; 1-stearoyl-2-docosahexaenoyl-sn-gl3<r>cero-3-phosphocholine; l-oleoyl-2myristoyl-sn-glycero-3-phosphocholine; l,2-bis(10, 12-tr ì c o s ad iy noy 1 ) - s n - g h'c ero - 3 - p ho sp h oc h ol ι n e ; l,2-bis(10, 12-tricosadiynoyl)-sn-glyceiO-3-phosphoethanolamine; l-palmitoyl-2-( 10, 12 - tri co s a diy noy 1 ) - s n - g ly c e ro - 3 - p ho sp ho c hol ι n e ; l-palmitoyl-2-( 10, 12- tri c o s a diy noy 1) - s n - g ly c e ro - 3 - p ho sp ho eth ano 1 a mi n e . LIST I - Neutral phospholipids: cholesterol and cholesterol derivatives; L-a-phosphatidylcholine (Egg, Chicken); L-aphosphatidylcholine, hydrogenated (Egg, Chicken); L-aphosphatidylcholine (95%) (Egg, Chicken); L-a-Phosphatidylcholine (Egg, Chicken -60%) (Total Egg Phosphatide Extract); L-alysophosphatidylcholine (Egg, Chicken); L-a-phosphatidylcholine (Soy); L-a-phosphatidylcholine, hydrogenated (Soy); L-aphosphatidylcholine (95%) (Soy); L-a-Phosphatidylcholine (Soy-40%); L-a-Phosphatidylcholine, 20% (Soy); L-alysophosphatidylcholine (Soy); L-α -phosphatidylcholine (Heart, Bovine); L-a-phosphatidylcholine (Brain, Porcine); L-aphosphatidylcholine (Liver, Bovine); 1,2-dilauroyl-sn-glycero-3-phosphocholine; 1,2-ditridecanoyl-sn-glycero-3-phosphocholine; 1,2-dimyristoyl-sn-glycero-3-phosphocholine; 1,2-dipentadecanoyl-snglycero-3-phosphocholine; 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; 1,2-diphytanoyl-sn-glycero-3-phosphocholine; 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine; 1,2-distearoyl-snglycero-3-phosphocholine; 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine; 1,2-diarachidoyl-sn-glycero-3-phosphocholine; 1,2-dihenarachidoyl-sn-glycero-3-phosphocholine; 1,2-dibehenoyl-snglycero-3-phosphocholine; 1,2-ditricosanoyl-sn-glycero-3-phosphocholine; 1,2-dilignoceroyl-sn-glycero-3-phosphocholine; Cisl, 2-dinervonoyl-sn-glycero-3-phosphocholine; l-myristoyl-2-pahnitoyl-sn-glycero-3-phosphocholine; l-myristoyl-2-stearoyl-snglycero-3-phosphocholine; 1-palmitoyl-2-acetyl-sn-glycero-3-phosphocholine; l-palinitoyl-2-stearoyl-sn-glycero-3-phosphocholine; 1-palinitoyl-2-linoleoyl-sn-gl3'Cero-3-phosphocholine; l-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; l-stearoyl-2-palinitoyl-sn-glycero-3-phosphocholine; l-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine; l-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; 1-stearoyl-2-docosahexaenoyl-sn-gl3 <r> cero-3-phosphocholine; 1-oleoyl-2myristoyl-sn-glycero-3-phosphocholine; l, 2-bis (10, 12-tr ì c o s ad iy noy 1) - s n - g h'c ero - 3 - p ho sp h oc h ol ι n e; 1,2-bis (10, 12-tricosadiynoyl) -sn-glyceiO-3-phosphoethanolamine; l-palmitoyl-2- (10, 12 - tri co s a diy noy 1) - s n - g ly c e ro - 3 - p ho sp ho c hol ι n e; l-palmitoyl-2- (10, 12- tri c o s a diy noy 1) - s n - g ly c e ro - 3 - p ho sp ho eth ano 1 a mi n e.
ELENCO II - Fosfolipidi cationici: l,2-dioleoyl-3-trimethylammonium-propane (chloride salt); 3β- [Ν-(Ν',Ν’-dimethylaminoethane)-carbamoyl]cholesteiOl hydrochloride (DC-Cholesterol-HCl); 1,2- diteti' a dee anoyl - 3 -trimethy 1 ammonmmpropane (chloride salt) (DMTAP); l,2-dioleoyl-3-trimethylammonium-piOpane (methyl sulfate salt); 1,2-dihexadecanoyl-3-trimethylaminonium-propane (chloride salt); 1,2-dioctadecanoyl-3-trimethylamnionium-propane (chloride salt); 1-oleoyl-2-[6-[(7-nitro-2- lJ3-benzoxadiazol-4-yl)amino]hexanoyl]-3-trimethylammonium propane (chloride salt); Fluorescent 1 -oleoyl-2-[6- [(7-nitiO-2-l;3-benzoxadiazol-4-yl)amino]hexanoyl]-3-trimethylammonium propane (chloride salt); N-(4-carboxybenzyl)-N, N - di methyl - 2, 3 - bi s (ol eoyloxy) prop an - 1 - ammmm (DOBAQ); 1,2-dioleoyl-3-dimethylainmonium-propane (DODAP); 1,2-dimyristoyl-3 -dimethylaminonium -propane; 1,2- di p al mi to\d - 3 -dimethyl ammoni uni -prop ane ; 1,2- di stearoyl - 3 -dimethyl ammoni um -propane, dimethyl dioctadecyl animo ni uni (bromide salt) (DDA); l,2-dilauroyl-sn-glycero-3-ethylphosphocholine (chloride salt); l,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (chloride salt); 1, 2 - di my r i sto 1 e oy 1 - s n - g ly c e r o 3-ethylphosphocholine (Tf salt); 1, 2 - d 1 p al mi toy 1 - sn - gly c ero - 3 -ethylphosphocholine (chloride salt); 1,2- di ste aroy 1 - sn - gly c ero - 3 -ethylphosphocholine (chloride salt); 1,2- diol eoy 1 - sn - gly c ero - 3 -ethylphosphocholine (chloride salt); l -palmitoyl-2-oleoyl-snglycero-3-ethylphosphocholine (chloride salt); 1,2- di - O -octadec enyl -3-trimethylaminonium propane (chloride salt) (DOT MA), NI -[2-((1 S) - 1 - [(3 - aminopropyl) amino] -4- [di (3 - aminop r o py 1 ) animo ] b uty 1 c ar b ox ami do ) e thy 1 ] - 3, 4 - di [o 1 ey 1 oxy ] - b enz ami d e . LIST II - Cationic phospholipids: 1,2-dioleoyl-3-trimethylammonium-propane (chloride salt); 3β- [Ν- (Ν ', Ν’-dimethylaminoethane) -carbamoyl] cholesteiOl hydrochloride (DC-Cholesterol-HCl); 1,2- diteti 'a dee anoyl - 3 -trimethy 1 ammonmmpropane (chloride salt) (DMTAP); 1,2-dioleoyl-3-trimethylammonium-piOpane (methyl sulfate salt); 1,2-dihexadecanoyl-3-trimethylaminonium-propane (chloride salt); 1,2-dioctadecanoyl-3-trimethylamnionium-propane (chloride salt); 1-oleoyl-2- [6 - [(7-nitro-2- 1J3-benzoxadiazol-4-yl) amino] hexanoyl] -3-trimethylammonium propane (chloride salt); Fluorescent 1 -oleoyl-2- [6- [(7-nitiO-2-l; 3-benzoxadiazol-4-yl) amino] hexanoyl] -3-trimethylammonium propane (chloride salt); N- (4-carboxybenzyl) -N, N - di methyl - 2, 3 - bi s (ol eoyloxy) prop an - 1 - ammmm (DOBAQ); 1,2-dioleoyl-3-dimethylainmonium-propane (DODAP); 1,2-dimyristoyl-3-dimethylaminonium -propane; 1,2- di p to 1 to \ d - 3-dimethyl ammonium uni-prop ane; 1,2- di stearoyl - 3-dimethyl ammonium um-propane, dimethyl dioctadecyl animo ni uni (bromide salt) (DDA); 1,2-dilauroyl-sn-glycero-3-ethylphosphocholine (chloride salt); 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (chloride salt); 1, 2 - di my r i sto 1 e oy 1 - s n - g ly c e r o 3-ethylphosphocholine (Tf salt); 1, 2 - d 1 p al mi toy 1 - sn - glycero - 3 -ethylphosphocholine (chloride salt); 1,2- di ste aroy 1 - sn - glycero - 3 -ethylphosphocholine (chloride salt); 1,2- diol eoy 1 - sn - glycero - 3 -ethylphosphocholine (chloride salt); l -palmitoyl-2-oleoyl-snglycero-3-ethylphosphocholine (chloride salt); 1,2- di - O -octadec enyl -3-trimethylaminonium propane (chloride salt) (DOT MA), NI - [2 - ((1 S) - 1 - [(3 - aminopropyl) amino] -4- [di (3 - aminop r o py 1) animo] b uty 1 c ar b ox ami do) e thy 1] - 3, 4 - di [o 1 y 1 oxy] - b enz ami d e.
Elenco III. Fosfolipidi anionici: L-a-phosphatidic acid (Egg, Chicken); L-a-phosphatidic acid (Soy) (sodium salt); 1,2-dihexanoyl-sn-glycero-3-phosphate (sodium salt); 1,2-dioctanoyl-snglycero-3-phosphate (sodium salt); l,2-didecanoyl-sn-glycero-3-phosphate (sodium salt); l,2-dilauroyl-sn-glycero-3-phosphate (sodium salt); 1,2- dimyri stoyl - sn - gly c ero - 3 -p hosphate (sodium salt); 1.2-dimyristoyl-sn-glycero-3-phosphate (sodium salt); 1,2-dipalmitoyl-sn-glycero-3-phosphate (sodium salt); 1,2-diphytanoylsn - gly cero -3 -p hosphate (sodium salt); 1,2-diheptadecanoyl-snglycero-3-phosphate (sodium salt); l,2-distearoyl-sn-glycero-3-phosphate (sodium salt); l,2-dioleoyl-sn-glycero-3-phosphate (sodium salt); 1, 2 - di 1 m ol e o\d - sn - gly c er o - 3 - p ho s p h at e (sodium salt); 1.2-dilinoleoyl-sn-glycero-3-phosphate (sodium salt); 1,2-diarachidonoyl-sn-glycero-3-phosphate (sodium salt); 1,2-didocosahexaenoyl-sn-gl3<r>cero-3-phosphate (sodium salt); 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (sodium salt); 1-p al mi toy 1 - 2 - 1 mo 1 eo\d - s n - g ly c e r o - 3 - p ho sp h at e (sodium salt); 1palmitoyl-2-arachidonoyl-sn-glycero-3-phosphate (sodium salt); 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphate (sodium salt); l-stearoyl-2-oleoyl-sn-glycero-3-phosphate (sodium salt); 1-stearoyl-2dinoleoyl-sn-glycero-3-phosphate (sodium salt); 1-steai’oyl-2-arachidonoyl-sn-glycero-3-phosphate (sodium salt); 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphate (sodium salt); 1-hexanoyl-2-hydroxy-sn-glycero-3-phosphate (ammonium salt); 1-nw ri s toy 1 - 2 - hy dro xy - s n - g ly c e ro - 3 - p ho sp h at e (sodium salt); 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt); 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt); 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt); 1-oleoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt); 1-linoleoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt); l -arachidonoyl-2-hy d roxy - sn - gly c e r o - 3 - p ho s p h at e (ammonium salt); 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphate (ammonium salt); 1-O-octadecyl-2-hydroxy-sn-glyceiO-3-phosphate (ammonium salt); 1-(9Z-octadecenyl)-2-hydroxy-sn-glycero-3-phosphate (ammonium salt); 1 - p al mi toy 1 - s n - g ly c e ro - 2, 3 - cy c 11 c - p ho sp h ate (ammonium salt); 1-h e p t a d ec an oy 1 - gh’ c ero - 2 , 3 - cy c 11 c - p h o s p h at e (ammonium salt); 1-oleoyl-sn-glycero-2,3-cyclic-phosphate (ammonium salt); 1-0-h e x a d e cy 1 - sn - gly c e ro - 2, 3 - c\<7>c 11 c - p ho sp h at e (ammonium salt); 1-0-(9 Z - oc t a cl e c eny 1 ) - s n - gly c ero - 2, 3 - c\<7>c 11 c - p ho s p h at e (ammonium salt); l-oleoyl-2-methyl-sn-glycero-3-phosphothionate (ammonium salt); 1 - o 1 eoy 1 - 2 - methy 1 - sn - gly c er o - 3 - p ho s p ho thi o n at e (ammonium salt); (S)-phosphoric acid mono-{2-octadec-9-enoylamino-3-[4-(pyridin-2ylmethoxy)-phenyl]-propyl} ester (ammonium salt); (S)-phosphoric acid mono - {2 -octad ec - 9 - enoyl amino - 3 - [4- (pyn dm - 2 -y lmethoxy) -phenyl]-propyl} ester (ammonium salt); (R)-phosphoric acid mono-{2-octadec-9-enoylamino-3-[4-(pyridin-2-ylmethoxy)-phenyl]-propyl} ester (ammonium salt); N-palmitoyl-serine phosphoric acid (ammonium salt); N -p almi toyl-ty rosine phosphoric acid (ammonium salt); L-a-phosphatidylglycerol (Egg, Chicken) (sodium salt); L-a-phosphatidylglycerol (Soy) (sodium salt); L-aphosphatidylglycerol (E. coli) (sodium salt); 1,2- dihexanoyl - sn -glycero-3-phospho-(l'-rac-glycerol) (sodium salt); 1,2-dioctanoyl-snglyceiO-3-phospho-(l'-rac-glycerol) (sodium salt); 1, 2 - di d e c anoy 1 - s n -glyceiO-3-phospho-(r-rac-glycerol) (sodium salt); 1,2-dilauroyl-snglyceiO-3-phospho-(l'-rac-glycerol) (sodium salt); 1,2-dimyristoylsn-glycero-3-phospho-(l'-rac-glycerol) (sodium salt); 1,2-dipentadecanoyl-sn-glycero-3-phospho-(l'-rac-glycerol) (sodium salt); L2-dipalmitoyl-sn-glycero-3-phospho-(l'-rac-glycerol) (sodium salt); L2-diphytanoyl-sn-glycero-3-phospho-(l'-rac-glycerol) (sodium salt); l,2-diheptadecanoyl-sn-glycero-3-phospho-(l'-racglycerol) (sodium salt); l,2-distearoyl-sn-glycero-3-phospho-(r-racglycerol) (sodium salt); c i s - 1 , 2 - di o 1 eoy 1 - s n - g ly c e ro - 3 - p ho sp ho - ( 1 ' -rac-glycerol) (sodium salt); trans- l,2-dielaidoyl-sn-glycero-3-phospho-(l'-rac-glycerol) (sodium salt); l,2-dihnoleoyl-sn-glycero-3-phospho-(r-rac-glycerol) (sodium salt); 1,2-dilinolenoyl-sn-glycero-3-phospho-(l'-rac-glycerol) (sodium salt); 1,2- di arac hi donoyl - sn -glycero-3-[phospho-rac-(l-glycerol)] (sodium salt); 1,2didocosahexaenoyl-sn-glycero-3-[phospho-rac-(l-glyceiOl)] (sodium salt); l-palmitoyl-2-oleoyl-sn-glyceiO-3-phospho-(l'-rac-glycerol) (sodium salt); l-palmitoyl-2dinoleoyl-sn-glycero-3-phospho-(l'-racglycerol) (sodium salt); l-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-(l'-rac-glycerol) (sodium salt); l-palmitoyl-2-docosahexaenoyl-sn-glyceiO-3-phospho-(l'-rac-glycerol) (sodium salt); l-steaiOyl-2-oleoyl-sn-glycero-3-phospho-(l'-rac-glycerol) (sodium salt); l-stearoyl-2-linoleoyl-sn-glycero-3-phospho-(r-racglycerol) (sodium salt); l-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-(l'-rac-glycerol) (sodium salt); l-stearoyl-2-docosahexaenoyl-sn-glycero-3-phospho-(r-rac-glycerol) (sodium salt); 1 - my ri s toy 1 - 2 - hy d roxy - s n - g ly c e ro - 3 - p h o s p ho - ( Γ - r ac - g ly c e rol ) (sodium salt); l-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(l'-racglycerol) (sodium salt); l-stearoyl-2-hydroxy-sn-glycero-3-phospho-(Γ-rac-glycerol) (sodium salt); l-oleoyl-2-hydroxy-sn-glycero-3-phospho-(l'-rac-glycerol) (sodium salt); L-a-phosphatidylserine (Brain, Porcine) (sodium salt); L-adysophosphatidylserine (Brain, Porcine) (sodium salt); L-a-phosphatidylserine (Soy, 99%) (sodium salt); l,2-dihexanoyl-sn-glycero-3-phospho-L-serine (sodium salt); l,2-dioctanoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-didecanoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-di 1 aur oy 1 - sn - gh<7>c e r o - 3 - p ho s p ho - L - s e r m e (sodium salt); 1,2-dimyristoyl-sn-glyceiO-3-phospho-L-serine (sodium salt); 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-diphytanoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2diheptadecanoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-diheptadecanoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-distearoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-dilinoleoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-diarachidonoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-didocosahexaenoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1-palmitoyl-2-oleoyl-sn-glyceiO-3-phospho-L-serine (sodium salt); 1-palmitoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-stearoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-stearoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-stearoyl-2-docosahexaenoyl-sn-glycero-3-phospho-L-serine (sodium salt); L-a-lysophosphatidylserine (Brain, Porcine) (sodium salt); l-palmitoyl-2-hydroxy-sn-glycero-3-phospho-L-serine (sodium salt); l-(10Z-heptadecenoyl)-2-hydroxysn-glycero-3-[phospho-L-serine] (sodium salt); l-stearoyl-2-hydiOX3'-sn-glycero-3-phospho-L-serine (sodium salt); l-oleoyl-2-hydroxy-sn-glycero-3-phospho-L-serine (sodium salt); L-aphosphatidylinositol (Liver, Bovine) (sodium salt); L-alysophosphatidylinositol (Liver, Bovine) (sodium salt); L-aphosphatidylinositol (Soy) (sodium salt); L-alysophosphatidylinositol (Soy) (sodium salt); L-aphosphatidylinositol-4-phosphate (Brain, Porcine) (ammonium Salt); L-a-phosphatidylinositol-4,5-bisphosphate (Brain, Porcine) (ammonium salt); l,2-dioctanoyl-sn-glycero-3-phospho-(l'-myoinositol) (ammonium salt); l,2-dipalmitoyl-sn-glycero-3-phospho-(Γ-myo-inositol) (ammonium salt); l,2-distearoyl-sn-glycero-3-phosphoinositol (ammonium salt); l,2-dioleoyl-sn-glycero-3-phospho-(l'-myo-inositol) (ammonium salt); l-palmitoyl-2-oleoylsn-glycero-3-phosphoinositol (ammonium salt); l-stearoyl-2-arachidonoyl-sn-glycero-3-phosphoinositol (ammonium salt); 1,2-dioctanoyl-sn-glycero-3-(phosphoinositol-3-phosphate) (ammonium salt); l,2-dioctanoyl-sn-glyceiO-3-phospho-(l'-myo-inositol-4'-phosphate) (ammonium salt); 1, 2 - di o 1 eoy 1 - s n - g ly c e r o - 3 - p ho sp ho - ( 1 ' -myo-inositol-3'-phosphate) (ammonium salt); 1,2-dioleoyl-snglyceiO-3-phospho-(l'-myo-inositol-4'-phosphate) (ammonium salt); l,2-dioleoyl-sn-glyceiO-3-phospho-(l'-myo-inositol-5'-phosphate) (ammonium salt); l,2-dihexanoyl-sn-glycero-3-phospho-(l'-myoinositol-3',5'-bisphosphate) (ammonium salt); 1,2-dioctanoyl-snglyceiO-3-phospho-(l'-myo-inositol-3',4'-bisphosphate) (ammonium salt); l,2-dioctanoyl-sn-glyceiO-3-phospho-(l'-myo-inositol-3',5'-bisphosphate) (ammonium salt); l,2-dioleoyl-sn-glycero-3-phospho-(l'-myo-inositol-4',5'-bisphosphate) (ammonium salt); l,2-dioleo\dsn-glycero-3-phospho-(l'-myo-inositol-3',4'-bisphosphate) (ammonium salt); l,2-dioleoyl-sn-glycero-3-phospho-(l'-myoinositol-3',5'-bisphosphate) (ammonium salt); 1,2-dioleoyl-snglycero-3-phospho-(l'-myo-inositol-4',5'-bisphosphate) (ammonium salt); l-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-(r-myo- List III. Anionic phospholipids: L-a-phosphatidic acid (Egg, Chicken); L-a-phosphatidic acid (Soy) (sodium salt); 1,2-dihexanoyl-sn-glycero-3-phosphate (sodium salt); 1,2-dioctanoyl-snglycero-3-phosphate (sodium salt); 1,2-didecanoyl-sn-glycero-3-phosphate (sodium salt); 1,2-dilauroyl-sn-glycero-3-phosphate (sodium salt); 1,2- dimyri stoyl - sn - glycero - 3 -p hosphate (sodium salt); 1.2-dimyristoyl-sn-glycero-3-phosphate (sodium salt); 1,2-dipalmitoyl-sn-glycero-3-phosphate (sodium salt); 1,2-diphytanoylsn - glycero -3 -p hosphate (sodium salt); 1,2-diheptadecanoyl-snglycero-3-phosphate (sodium salt); l, 2-distearoyl-sn-glycero-3-phosphate (sodium salt); 1,2-dioleoyl-sn-glycero-3-phosphate (sodium salt); 1, 2 - of 1 m ol e o \ d - sn - gly c er o - 3 - p ho s p h at e (sodium salt); 1.2-dilinoleoyl-sn-glycero-3-phosphate (sodium salt); 1,2-diarachidonoyl-sn-glycero-3-phosphate (sodium salt); 1,2-didocosahexaenoyl-sn-gl3 <r> cero-3-phosphate (sodium salt); 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (sodium salt); 1-p al mi toy 1 - 2 - 1 mo 1 eo \ d - s n - g ly c e r o - 3 - p ho sp h at e (sodium salt); 1palmitoyl-2-arachidonoyl-sn-glycero-3-phosphate (sodium salt); 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphate (sodium salt); l-stearoyl-2-oleoyl-sn-glycero-3-phosphate (sodium salt); 1-stearoyl-2dinoleoyl-sn-glycero-3-phosphate (sodium salt); 1-steai'oyl-2-arachidonoyl-sn-glycero-3-phosphate (sodium salt); 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphate (sodium salt); 1-hexanoyl-2-hydroxy-sn-glycero-3-phosphate (ammonium salt); 1-nw ri s toy 1 - 2 - hy dro xy - s n - g ly c e ro - 3 - p ho sp h at e (sodium salt); 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt); 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt); 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt); 1-oleoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt); 1-linoleoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt); l -arachidonoyl-2-hy d roxy - sn - gly c e r o - 3 - p ho s p h at e (ammonium salt); 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphate (ammonium salt); 1-O-octadecyl-2-hydroxy-sn-glyceiO-3-phosphate (ammonium salt); 1- (9Z-octadecenyl) -2-hydroxy-sn-glycero-3-phosphate (ammonium salt); 1 - p al mi toy 1 - s n - g ly c e ro - 2, 3 - cy c 11 c - p ho sp h ate (ammonium salt); 1-h e p t a d ec an oy 1 - gh 'c ero - 2, 3 - cy c 11 c - p h o s p h at e (ammonium salt); 1-oleoyl-sn-glycero-2,3-cyclic-phosphate (ammonium salt); 1-0-h e x a d e cy 1 - sn - gly c e ro - 2, 3 - c \ <7> c 11 c - p ho sp h at e (ammonium salt); 1-0- (9 Z - oc t a cl e c eny 1) - s n - gly c ero - 2, 3 - c \ <7> c 11 c - p ho s p h at e (ammonium salt); l-oleoyl-2-methyl-sn-glycero-3-phosphothionate (ammonium salt); 1 - o 1 eoy 1 - 2 - methy 1 - sn - gly c er o - 3 - p ho s p ho thi o n at e (ammonium salt); (S) -phosphoric acid mono- {2-octadec-9-enoylamino-3- [4- (pyridin-2ylmethoxy) -phenyl] -propyl} ester (ammonium salt); (S) -phosphoric acid mono - {2 -octad ec - 9 - enoyl amino - 3 - [4- (pyn dm - 2 -y lmethoxy) -phenyl] -propyl} ester (ammonium salt); (R) -phosphoric acid mono- {2-octadec-9-enoylamino-3- [4- (pyridin-2-ylmethoxy) -phenyl] -propyl} ester (ammonium salt); N-palmitoyl-serine phosphoric acid (ammonium salt); N -p almi toyl-ty rosine phosphoric acid (ammonium salt); L-a-phosphatidylglycerol (Egg, Chicken) (sodium salt); L-a-phosphatidylglycerol (Soy) (sodium salt); L-aphosphatidylglycerol (E. coli) (sodium salt); 1,2- dihexanoyl - sn -glycero-3-phospho- (l'-rac-glycerol) (sodium salt); 1,2-dioctanoyl-snglyceiO-3-phospho- (l'-rac-glycerol) (sodium salt); 1, 2 - of d and c anoy 1 - s n -glyceiO-3-phospho- (r-rac-glycerol) (sodium salt); 1,2-dilauroyl-snglyceiO-3-phospho- (l'-rac-glycerol) (sodium salt); 1,2-dimyristoylsn-glycero-3-phospho- (l'-rac-glycerol) (sodium salt); 1,2-dipentadecanoyl-sn-glycero-3-phospho- (l'-rac-glycerol) (sodium salt); L2-dipalmitoyl-sn-glycero-3-phospho- (l'-rac-glycerol) (sodium salt); L2-diphytanoyl-sn-glycero-3-phospho- (l'-rac-glycerol) (sodium salt); 1,2-diheptadecanoyl-sn-glycero-3-phospho- (l'-racglycerol) (sodium salt); 1,2-distearoyl-sn-glycero-3-phospho- (r-racglycerol) (sodium salt); c i s - 1, 2 - di o 1 eoy 1 - s n - g ly c e ro - 3 - p ho sp ho - (1 '-rac-glycerol) (sodium salt); trans- 1,2-dielaidoyl-sn-glycero-3-phospho- (l'-rac-glycerol) (sodium salt); 1,2-dihnoleoyl-sn-glycero-3-phospho- (r-rac-glycerol) (sodium salt); 1,2-dilinolenoyl-sn-glycero-3-phospho- (l'-rac-glycerol) (sodium salt); 1,2- of arac hi donoyl - sn -glycero-3- [phospho-rac- (l-glycerol)] (sodium salt); 1,2didocosahexaenoyl-sn-glycero-3- [phospho-rac- (l-glyceiOl)] (sodium salt); l-palmitoyl-2-oleoyl-sn-glyceiO-3-phospho- (l'-rac-glycerol) (sodium salt); l-palmitoyl-2dinoleoyl-sn-glycero-3-phospho- (l'-racglycerol) (sodium salt); l-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho- (l'-rac-glycerol) (sodium salt); l-palmitoyl-2-docosahexaenoyl-sn-glyceiO-3-phospho- (l'-rac-glycerol) (sodium salt); l-steaiOyl-2-oleoyl-sn-glycero-3-phospho- (l'-rac-glycerol) (sodium salt); l-stearoyl-2-linoleoyl-sn-glycero-3-phospho- (r-racglycerol) (sodium salt); l-stearoyl-2-arachidonoyl-sn-glycero-3-phospho- (l'-rac-glycerol) (sodium salt); l-stearoyl-2-docosahexaenoyl-sn-glycero-3-phospho- (r-rac-glycerol) (sodium salt); 1 - my ri s toy 1 - 2 - hy d roxy - s n - g ly c e ro - 3 - p h o s p ho - (Γ - r ac - g ly c e rol) (sodium salt); l-palmitoyl-2-hydroxy-sn-glycero-3-phospho- (l'-racglycerol) (sodium salt); l-stearoyl-2-hydroxy-sn-glycero-3-phospho- (Γ-rac-glycerol) (sodium salt); l-oleoyl-2-hydroxy-sn-glycero-3-phospho- (l'-rac-glycerol) (sodium salt); L-a-phosphatidylserine (Brain, Porcine) (sodium salt); L-adysophosphatidylserine (Brain, Porcine) (sodium salt); L-a-phosphatidylserine (Soy, 99%) (sodium salt); 1,2-dihexanoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-dioctanoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-didecanoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-di 1 aur oy 1 - sn - gh <7> c e r o - 3 - p ho s p ho - L - s e r m e (sodium salt); 1,2-dimyristoyl-sn-glyceiO-3-phospho-L-serine (sodium salt); 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-diphytanoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2diheptadecanoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-diheptadecanoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-distearoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-dilinoleoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-diarachidonoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1,2-didocosahexaenoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1-palmitoyl-2-oleoyl-sn-glyceiO-3-phospho-L-serine (sodium salt); 1-palmitoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-stearoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-stearoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (sodium salt); l-stearoyl-2-docosahexaenoyl-sn-glycero-3-phospho-L-serine (sodium salt); L-a-lysophosphatidylserine (Brain, Porcine) (sodium salt); l-palmitoyl-2-hydroxy-sn-glycero-3-phospho-L-serine (sodium salt); 1- (10Z-heptadecenoyl) -2-hydroxysn-glycero-3- [phospho-L-serine] (sodium salt); l-stearoyl-2-hydiOX3'-sn-glycero-3-phospho-L-serine (sodium salt); l-oleoyl-2-hydroxy-sn-glycero-3-phospho-L-serine (sodium salt); L-aphosphatidylinositol (Liver, Bovine) (sodium salt); L-alysophosphatidylinositol (Liver, Bovine) (sodium salt); L-aphosphatidylinositol (Soy) (sodium salt); L-alysophosphatidylinositol (Soy) (sodium salt); L-aphosphatidylinositol-4-phosphate (Brain, Porcine) (ammonium Salt); L-a-phosphatidylinositol-4,5-bisphosphate (Brain, Porcine) (ammonium salt); 1,2-dioctanoyl-sn-glycero-3-phospho- (l'-myoinositol) (ammonium salt); 1,2-dipalmitoyl-sn-glycero-3-phospho- (Γ-myo-inositol) (ammonium salt); 1,2-distearoyl-sn-glycero-3-phosphoinositol (ammonium salt); 1,2-dioleoyl-sn-glycero-3-phospho- (l'-myo-inositol) (ammonium salt); l-palmitoyl-2-oleoylsn-glycero-3-phosphoinositol (ammonium salt); l-stearoyl-2-arachidonoyl-sn-glycero-3-phosphoinositol (ammonium salt); 1,2-dioctanoyl-sn-glycero-3- (phosphoinositol-3-phosphate) (ammonium salt); 1,2-dioctanoyl-sn-glyceiO-3-phospho- (l'-myo-inositol-4'-phosphate) (ammonium salt); 1, 2 - di o 1 eoy 1 - s n - g ly c e r o - 3 - p ho sp ho - (1 '-myo-inositol-3'-phosphate) (ammonium salt); 1,2-dioleoyl-snglyceiO-3-phospho- (l'-myo-inositol-4'-phosphate) (ammonium salt); 1,2-dioleoyl-sn-glyceiO-3-phospho- (l'-myo-inositol-5'-phosphate) (ammonium salt); 1,2-dihexanoyl-sn-glycero-3-phospho- (l'-myoinositol-3 ', 5'-bisphosphate) (ammonium salt); 1,2-dioctanoyl-snglyceiO-3-phospho- (l'-myo-inositol-3 ', 4'-bisphosphate) (ammonium salt); 1,2-dioctanoyl-sn-glyceiO-3-phospho- (l'-myo-inositol-3 ', 5'-bisphosphate) (ammonium salt); 1,2-dioleoyl-sn-glycero-3-phospho- (l'-myo-inositol-4 ', 5'-bisphosphate) (ammonium salt); 1,2-dioleo \ dsn-glycero-3-phospho- (l'-myo-inositol-3 ', 4'-bisphosphate) (ammonium salt); 1,2-dioleoyl-sn-glycero-3-phospho- (l'-myoinositol-3 ', 5'-bisphosphate) (ammonium salt); 1,2-dioleoyl-snglycero-3-phospho- (l'-myo-inositol-4 ', 5'-bisphosphate) (ammonium salt); l-stearoyl-2-arachidonoyl-sn-glycero-3-phospho- (r-myo-
1 no si tol - 3 ' , 5 ' - b 1 sp h o s p h at e) (ammonium salt); l-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-(r-myo-inositol-4',5'-bisphosphate) (ammonium salt); 1, 2 - di h ex anoy l-sn-glycero-3-phospho-(r-myo-inositol-3')4')5'-trisphosphate) (ammonium salt); l^-dioctanoyl-sn-glycero-S-phospho^r-myo-inositol-S',^^'-trisphosphate) (ammonium salt); 1, 2 - d ι ol e oy 1 - sn - gly c ero - 3 - p h o s p ho -( 1 ' - my o - 1 no si tol - 3 4', 5 ' - tri s p ho s p h at e) (ammonium salt); 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-(r-myo-inositol-3')4')5'-trisphosphate) (ammonium salt); L-adysophosphatidylinositol (Liver, Bovine) (sodium salt); L-adysophosphatidylinositol (Soy) (sodium salt); 1 - tri d ec an oy 1 - 2 - hy dro xy - sn - gly c er o - 3 - p ho s p h o - (Γ -myo-inositol) (ammonium salt); 1 -palmitoyl-2-hydroxy-sn-glycero-3-phosphoinositol (ammonium salt); l-stearoyl-2-hydroxy-snglycero-3-phosphoinositol (ammonium salt); l-(lt)Z-heptadecenoyl)-2-hydiOxy-sn-glyceiO-3-phospho-(l'-myo-inositol) (ammonium salt); l-oleoyl-2-hydroxy-sn-glyceiO-3-phospho-(l'-myo-inositol) (ammonium salt); l-arachidonoyl-2-hydroxy-sn-glycero-3-phosphoinositol (ammonium salt). 1 no yes tol - 3 ', 5' - b 1 sp h o s p h at e) (ammonium salt); l-stearoyl-2-arachidonoyl-sn-glycero-3-phospho- (r-myo-inositol-4 ', 5'-bisphosphate) (ammonium salt); 1, 2 - di h ex anoy l-sn-glycero-3-phospho- (r-myo-inositol-3 ') 4') 5'-trisphosphate) (ammonium salt); l ^ -dioctanoyl-sn-glycero-S-phospho ^ r-myo-inositol-S ', ^^' - trisphosphate) (ammonium salt); 1, 2 - d ι ol e oy 1 - sn - gly c ero - 3 - p h o s p ho - (1 '- my o - 1 no si tol - 3 4', 5 '- tri s p ho s p h at e) (ammonium salt); 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho- (r-myo-inositol-3 ') 4') 5'-trisphosphate) (ammonium salt); L-adysophosphatidylinositol (Liver, Bovine) (sodium salt); L-adysophosphatidylinositol (Soy) (sodium salt); 1 - tri d ec an oy 1 - 2 - hy dro xy - sn - gly c er o - 3 - p ho s p h o - (Γ -myo-inositol) (ammonium salt); 1 -palmitoyl-2-hydroxy-sn-glycero-3-phosphoinositol (ammonium salt); l-stearoyl-2-hydroxy-snglycero-3-phosphoinositol (ammonium salt); l- (lt) Z-heptadecenoyl) -2-hydiOxy-sn-glyceiO-3-phospho- (l'-myo-inositol) (ammonium salt); l-oleoyl-2-hydroxy-sn-glyceiO-3-phospho- (l'-myo-inositol) (ammonium salt); l-arachidonoyl-2-hydroxy-sn-glycero-3-phosphoinositol (ammonium salt).
ELENCO IV - Fosfolipidi coniugati a catene di polietilene glicole: L2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[me thoxy (p oly ethy lene glycol)-750] (ammonium salt); 1,2-dipalmitoyl-sn-glyceiO-3-phosphoethanolamine-N-[methoxy(poly ethy lene glycol)-750] (ammonium salt); 1,2-distearoyl-sn-glyceiO-3-phosphoethanolamine-N[methoxy(polyethylene glycol)-750] (ammonium salt); 1,2-dioleoylsn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-750] (ammonium salt); 1,2- dimy ri stoy 1 - sn - gly c ero - 3 -phosphoethanolamine-N- [methoxy(polyethylene glycol)- 1000] (ammonium salt); 1,2- clip almitoy 1 - sn - gly c ero - 3 -phosphoethanolamine-N- [me th oxy (p oly ethy 1 e n e glycol) - 1000] (ammonium salt); 1,2- di ste aroyl - sn - gly c ero - 3 -phosphoethanolamine-N- [methoxy(polyethylene glycol) - 1000] (ammonium salt); 1, 2 - di ol e oy 1 - s n - g ly c ero - 3 - p ho sp h o e th anol ami n e -N- [methoxy(polyethylene glycol)- 1000] (ammonium salt); 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly ethy lene glycol)-2000] (ammonium salt); 1,2-dip almitoyl - sn - glyc ero - 3 -pho sp ho ethanol amine -N -[methoxy(poly ethy lene glycol)-2000] (ammonium salt); 1,2-disteaiOyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly ethy lene glycol)-2000] (ammonium salt); 1,2-dioleoylsn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol) -2000] (ammonium salt); 1 , 2 -di my ri s toy 1 - sn - gly c ero - 3 -phosphoethanolamine-N- [methoxy(polyethylene glycol) -3000] (ammonium salt); 1,2- dip almitoyl - sn - gly c ero - 3 -phosphoethanolamine-N- [me th oxy (p oly ethy 1 e n e glycol) -3000] (ammonium salt); 1,2- di ste ai’o\d - sn - gly c ero - 3 -phosphoethanolamine-N- [me th oxy (p oly ethy 1 e n e glycol) -3000] (ammonium salt); 1, 2 - di ol e o\d - s n - g ly c er o - 3 - p ho sp h o e th anol ami n e -N - [me th oxy (p oly e th\d e n e glycol) -3 000] (ammonium salt); 1,2dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] (ammonium salt); 1,2-dip alirdtoyl - sn - glyc ero - 3 -pho sp ho ethanol ainine -N -[methoxy(polyethylene glycol)-5000] (ammonium salt); 1,2-distearoyl-sn-glycero-3-phosphoethanolainine-N-[methoxy(polyethylene glycol)-5000] (ammonium salt); 1,2-dioleoylsn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] (ammonium salt); N-palmitoyl-sphingosine-1-{succinyl[methoxy(polyethylene glycol)750]}; N-palmitoylsphingosine- l-{succinyl[methoxy(polyethylene glycol)2000]}; N-palmitoyl-sphingosine- l-{succinyl[methoxy(polyethylene LIST IV - Phospholipids conjugated to polyethylene glycol chains: L2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N- [me thoxy (p oly ethy lene glycol) -750] (ammonium salt); 1,2-dipalmitoyl-sn-glyceiO-3-phosphoethanolamine-N- [methoxy (poly ethy lene glycol) -750] (ammonium salt); 1,2-distearoyl-sn-glyceiO-3-phosphoethanolamine-N [methoxy (polyethylene glycol) -750] (ammonium salt); 1,2-dioleoylsn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol) -750] (ammonium salt); 1,2- dimy ri stoy 1 - sn - glycero - 3 -phosphoethanolamine-N- [methoxy (polyethylene glycol) - 1000] (ammonium salt); 1,2- clip almitoy 1 - sn - glycero - 3 -phosphoethanolamine-N- [me th oxy (p oly ethy 1 e n e glycol) - 1000] (ammonium salt); 1,2- di ste aroyl - sn - glycero - 3 -phosphoethanolamine-N- [methoxy (polyethylene glycol) - 1000] (ammonium salt); 1, 2 - di ol e oy 1 - s n - g ly c ero - 3 - p ho sp h o e th anol ami n e -N- [methoxy (polyethylene glycol) - 1000] (ammonium salt); 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (poly ethy lene glycol) -2000] (ammonium salt); 1,2-dip almitoyl - sn - glyc ero - 3 -pho sp ho ethanol amine -N - [methoxy (poly ethy lene glycol) -2000] (ammonium salt); 1,2-disteaiOyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (poly ethy lene glycol) -2000] (ammonium salt); 1,2-dioleoylsn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol) -2000] (ammonium salt); 1, 2 -di my ri s toy 1 - sn - glycero - 3 -phosphoethanolamine-N- [methoxy (polyethylene glycol) -3000] (ammonium salt); 1,2- dip almitoyl - sn - glycero - 3 -phosphoethanolamine-N- [me th oxy (p oly ethy 1 e n e glycol) -3000] (ammonium salt); 1,2- di ste ai'o \ d - sn - glycero - 3 -phosphoethanolamine-N- [me th oxy (p oly ethy 1 e n e glycol) -3000] (ammonium salt); 1, 2 - di ol e o \ d - s n - g ly c er o - 3 - p ho sp h o e th anol ami n e -N - [me th oxy (p oly e th \ d e n e glycol) -3 000] (ammonium salt); 1,2dimyristoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol) -5000] (ammonium salt); 1,2-dip alirdtoyl - sn - glyc ero - 3 -pho sp ho ethanol ainine -N - [methoxy (polyethylene glycol) -5000] (ammonium salt); 1,2-distearoyl-sn-glycero-3-phosphoethanolainine-N- [methoxy (polyethylene glycol) -5000] (ammonium salt); 1,2-dioleoylsn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol) -5000] (ammonium salt); N-palmitoyl-sphingosine-1- {succinyl [methoxy (polyethylene glycol) 750]}; N-palmitoylsphingosine- 1- {succinyl [methoxy (polyethylene glycol) 2000]}; N-palmitoyl-sphingosine- l- {succinyl [methoxy (polyethylene
gly col) 5000]}; 1, 2 - di s te aroy 1 - s n - g ly c e ro - 3 - p ho sp h o e th anolamme-N-[dibenzocyclooctyl(polyethylene glycol)-2000] (ammonium salt); 1,2-disteaiOyl-sn-glycero-3-phosphoethanolamine-N-[azido(polyethylene glycol)-2000] (ammonium salt); 1,2-distearoylsn - gly c ero - 3 - p ho s p h o e th anol ami n e - N - [ sue c ι ny 1 (p oly ethy 1 e n e glycol)-2000] (ammonium salt); 1,2- di ste aroy 1 - sn - gly c ero - 3 -phosphoethanolamine-N- [carboxy(poly ethy lene glycol)-2000] (ammonium salt); 1,2- di ste aroy 1 - sn - gly c ero - 3 -p ho sp hoethanolamine-N- [maleimi de (poly ethy lene glycol)-2000] (ammonium s alt) ; 1,2- di ste aroyl - sn - gly c ero - 3 -pho sphoethanolamine-N- [PDP(polyethylene glycol)-2000] (ammonium s alt) ; 1,2- di ste aroyl - sn - gly c ero - 3 -pho sphoethanolamine-N- [amino(polyethylene glycol)-2000] (ammonium salt); 1,2- di st e ai’oy 1 - sn - gly c ero - 3 phosphoethanolamine-N- [biotinyl(polyethylene glycol)-2000] (ammonium salt); 1,2- di st e aroyl - sn - gly c ero - 3 -phosphoethanolamine-N- [cyanur(polyethylene glycol)-2000] (ammonium salt); 1,2- di st e aroyl - sn - gly c ero - 3 -phosphoethanolamine-N- [folate(polyethylene glycol)-2000] (ammonium salt); 1,2- di ste ai'oyl - sn - gly c ero - 3 -phosphoethanolamine-N- [folate(polyethylene glycol)-5000] (ammonium salt); 1,2- di st e aroyl - sn - gly c ero - 3 -phosphoethanolamine-N- [poly(ethylene glycol)2000-N’-carboxyfluorescein] (ammonium salt). gly col) 5000]}; 1, 2 - di s te aroy 1 - s n - g ly c e ro - 3 - p ho sp h o e th anolamme-N- [dibenzocyclooctyl (polyethylene glycol) -2000] (ammonium salt); 1,2-disteaiOyl-sn-glycero-3-phosphoethanolamine-N- [azido (polyethylene glycol) -2000] (ammonium salt); 1,2-distearoylsn - glycero - 3 - p ho s p h o e th anol ami n e - N - [sue c ι ny 1 (p oly ethy 1 e n e glycol) -2000] (ammonium salt); 1,2- di ste aroy 1 - sn - glycero - 3 -phosphoethanolamine-N- [carboxy (poly ethy lene glycol) -2000] (ammonium salt); 1,2- di ste aroy 1 - sn - glycero - 3 -p ho sp hoethanolamine-N- [maleimi de (poly ethy lene glycol) -2000] (ammonium s alt); 1,2- di ste aroyl - sn - glycero - 3 -pho sphoethanolamine-N- [PDP (polyethylene glycol) -2000] (ammonium s alt); 1,2- di ste aroyl - sn - glycero - 3 -pho sphoethanolamine-N- [amino (polyethylene glycol) -2000] (ammonium salt); 1,2- di st and ai'oy 1 - sn - glycero - 3 phosphoethanolamine-N- [biotinyl (polyethylene glycol) -2000] (ammonium salt); 1,2- di st and aroyl - sn - glycero - 3 -phosphoethanolamine-N- [cyanur (polyethylene glycol) -2000] (ammonium salt); 1,2- di st and aroyl - sn - glycero - 3 -phosphoethanolamine-N- [folate (polyethylene glycol) -2000] (ammonium salt); 1,2- di ste ai'oyl - sn - glycero - 3 -phosphoethanolamine-N- [folate (polyethylene glycol) -5000] (ammonium salt); 1,2- di st and aroyl - sn - glycero - 3 -phosphoethanolamine-N- [poly (ethylene glycol) 2000-N'-carboxyfluorescein] (ammonium salt).
Surfattanti (tensioattivi) e co-polimeri possono essere utilizzati in sostituzione e/o in associazione ai fosfolipidi coniugati a catene di polietilene glicole, con diverso peso molecolare, riportati in precedenza, per preparare il bilayer esterno o EL descritto nel punto (ii): GM1 Ganglioside (Brain, Ovine-Sodium Salt); GM3 Ganglioside (Milk, Bovine -Ammonium Salt); GD3 Ganglioside (Milk, Bovine -Ammonium Salt); Total Ganglioside Extract (Brain, Porcine -Ammonium Salt); D-lactosyl-β-Ι,Γ N -1 auroy 1 - 1) - ery thro -sphingosine; D-lactosyl-β- 1, Γ N-palmitoyl-D -ery thro- sphingosine; D-Lactosyl-h-l,l'-N-Heptadecanoyl-D- ery thro- Sphingosine; D-lactosyl-β-Ι,Γ N-stearoyl-D-erythro -sphingosine; D-lactosyl-β-Ι,Γ N-lignoceroyl-D-erythro -sphingosine; I) -lactosyl -β 1 - Γ -N -neivonoyl -D-erythro-sphingosine; polietilene glicole a diverso peso molecolare, polipropilene glicole a diverso peso molecolare e ramificazioni in catena laterale, polisorbati a diverso peso molecolare, co-polimeri del polietilene glicole e polipropilene glicole a diverso peso molecolare, ramificazione in catena laterale e numero di unità monomeriche. Surfactants (surfactants) and co-polymers can be used in place of and / or in association with the phospholipids conjugated to polyethylene glycol chains, with different molecular weight, reported above, to prepare the external bilayer or EL described in point (ii): GM1 Ganglioside (Brain, Ovine-Sodium Salt); GM3 Ganglioside (Milk, Bovine -Ammonium Salt); GD3 Ganglioside (Milk, Bovine -Ammonium Salt); Total Ganglioside Extract (Brain, Porcine -Ammonium Salt); D-lactosyl-β-Ι, Γ N -1 auroy 1 - 1) - ery thro -sphingosine; D-lactosyl-β- 1, Γ N-palmitoyl-D -ery thro- sphingosine; D-Lactosyl-h-1, l'-N-Heptadecanoyl-D- ery thro-Sphingosine; D-lactosyl-β-Ι, Γ N-stearoyl-D-erythro -sphingosine; D-lactosyl-β-Ι, Γ N-lignoceroyl-D-erythro -sphingosine; I) -lactosyl -β 1 - Γ -N -neivonoyl -D-erythro-sphingosine; polyethylene glycol with different molecular weight, polypropylene glycol with different molecular weight and branching in the side chain, polysorbates with different molecular weight, co-polymers of polyethylene glycol and polypropylene glycol with different molecular weight, branching in the side chain and number of monomer units.
I solventi utilizzati per solubilizzare i fosfolipidi e preparare il bilayer interno (IL) descritto nel punto (i) ed il bilayer esterno (EL) descritto nel punto (ii) possono essere di tipo apolare, polare aprotico e polare pratico. The solvents used to solubilize the phospholipids and prepare the internal bilayer (IL) described in point (i) and the external bilayer (EL) described in point (ii) can be of the apolar, aprotic polar and practical polar type.
In particolare i seguenti tipi di solventi o miscele degli stessi solventi a diverse percentuali (1 al 99% v/v e dal 99% all’1% v/v) vengono utilizzati per preparare il bilayer interno IL ed esterno EL riportati nei punti (i) e (ii): In particular, the following types of solvents or mixtures of the same solvents at different percentages (1 to 99% v / v and from 99% to 1% v / v) are used to prepare the internal IL and external EL bilayer reported in points (i ) and (ii):
<•>solventi apolari, ad esempio scelti fra: dietiletere, cloroformio, acetato di etile, dicloro metano; <•> non-polar solvents, for example selected from: diethyl ether, chloroform, ethyl acetate, dichloro methane;
<•>solventi polari aprotici, ad esempio scelti fra: acetone, acetonitrile, dimetilformammide; Polar aprotic solvents, for example selected from: acetone, acetonitrile, dimethylformamide;
<•>solventi polari pratici, ad esempio scelti fra: butanolo, 2-propanolo, 2-propanolo, etanolo, metanolo, acqua e soluzioni acquose tamponate e non. <•> practical polar solvents, for example selected from: butanol, 2-propanol, 2-propanol, ethanol, methanol, water and buffered and non-buffered aqueous solutions.
LIn modo preferito per preparare il bilayer che costituisce la fase esterna (EL) consiste nel solubilizzare i lipidi in una miscela di solventi, come riportati sopra. La miscela di solventi può essere rimossa riscaldando con un dispositivo termostatato programmato nelfinte rvallo di temperatura compreso tra 30 ed 80 °C, collegato ad una pompa da vuoto programmata ad una pressione compresa tra 100 e 700 mBar. La rimozione delle tracce residue della miscela di solventi dal film lipidico ottenuto può essere in seguito effettuata per una notte utilizzando un essiccatore, programmato ad un intervallo di temperatura compreso tra 30 ed 80 °C e collegato ad una pompa da vuoto a membrana programmato ad un intervallo di pressione compreso tra 100 e 700 mBar. The preferred way to prepare the bilayer which constitutes the external phase (EL) is to solubilize the lipids in a mixture of solvents, as reported above. The solvent mixture can be removed by heating with a thermostated device programmed in the temperature range between 30 and 80 ° C, connected to a vacuum pump programmed at a pressure between 100 and 700 mBar. The removal of residual traces of the solvent mixture from the obtained lipid film can then be carried out overnight using a dryer, programmed at a temperature range between 30 and 80 ° C and connected to a membrane vacuum pump programmed to a pressure range between 100 and 700 mBar.
Il film lipidico ottenuto nello stadio (ii) viene in seguito idratato con una soluzione acquosa, e la sospensione lipidica così ottenuta viene sottoposta ad un numero di cicli alternati di agitazione continua, compresi tra 3 e 20, e di riscaldamento in bagno d'acqua termostatato, ad una temperatura compresa tra 30 ed 80 °C, per un numero di cicli compreso tra 3 e 20. La concentrazione finale di lipidi ottenuta per i liposomi EL è compresa tra 1 e 13.8 mM. The lipid film obtained in step (ii) is then hydrated with an aqueous solution, and the lipid suspension thus obtained is subjected to a number of alternating cycles of continuous stirring, between 3 and 20, and heating in a water bath. thermostated, at a temperature between 30 and 80 ° C, for a number of cycles between 3 and 20. The final lipid concentration obtained for the EL liposomes is between 1 and 13.8 mM.
I liposomi EL vengono in seguito diluiti fino ad una concentrazione 0.1 mM utilizzando la stessa soluzione acquosa impiegata per la loro preparazione. Il seguente procedimento tecnologico può essere eseguito come riportato in letteratura (Pasut et al., 2015; Paolino et al., 2014; Paolino et al., 2010; Cosco et al., 2009). The EL liposomes are then diluted to a concentration of 0.1 mM using the same aqueous solution used for their preparation. The following technological procedure can be performed as reported in the literature (Pasut et al., 2015; Paolino et al., 2014; Paolino et al., 2010; Cosco et al., 2009).
(iii) miscelare la sospensione EL con la sospensione IL, aggiungendo 1 mi di IL ad 1 mi di EL precedentemente preparati. La miscelazione delle due formulazioni liposomiali può essere vantaggiosamente condotta sotto agitazione meccanica utilizzando una velocità di rotazione compresa nell’intervallo tra 10 e 300 rpm, per un tempo compreso nell’intervallo tra 1 e 72 h, ad una temperatura compresa nell’intervallo tra 30 ed 80°C, per ottenere delle strutture vescicolari costituite da un doppio strato lipidico che formano così una doppia struttura vescicolare per la veicolazione di materiale genico come DNA plasmidico (pDNA) e dsRNA (miRNA ed siRNA) e che possono successivamente essere estruse. In particolare, i liposomi EL, ottenuti utilizzando la metodica di preparazione descritta nel punto (ii), vengono idratati con i liposomi IL, ottenuti utilizzando la metodica di preparazione descritta nel punto (i). (iii) mixing the EL suspension with the IL suspension, adding 1 ml of IL to 1 ml of EL previously prepared. The mixing of the two liposomal formulations can be advantageously carried out under mechanical stirring using a rotation speed in the range from 10 to 300 rpm, for a time in the range from 1 to 72 h, at a temperature in the range from 30 and 80 ° C, to obtain vesicular structures consisting of a double lipid layer which thus form a double vesicular structure for the conveyance of gene material such as plasmid DNA (pDNA) and dsRNA (miRNA and siRNA) and which can subsequently be extruded. In particular, the EL liposomes, obtained using the preparation method described in point (ii), are hydrated with the IL liposomes, obtained using the preparation method described in point (i).
La concentrazione sia dei liposomi IL che dei liposomi EL è compresa neirintervallo tra 1 e 13.8 mM. The concentration of both IL liposomes and EL liposomes is in the range from 1 to 13.8 mM.
Secondo una forma di realizzazione preferita, la sospensione lipidica ottenuta dalla combinazione dei liposomi IL ed EL è sottoposta ad un numero di 3 cicli alternati di agitazione meccanica sotto flusso continuo, utilizzando una velocità di rotazione compresa neirintervallo tra 10 e 300 rpm, per un tempo compreso neirintervallo tra 1 e 72 h, ad una temperatura compresa neirintervallo tra 30 ed 80 °C. La sospensione lipidica di AVs così ottenuta viene in seguito sottoposta ad ulteriori cicli alternati d’agitazione continua, compreso tra 3 e 20, e di riscaldamento in bagno d’acqua termostatato, ad una temperatura compresa tra 30 ed 80 °C, per un numero di cicli compreso tra 3 e 20. La combinazione dei liposomi IL ed EL permette di formare degli AVs che presentano una concentrazione totale di lipidi compresa nell’intervallo tra 2 e 26.5 mM. According to a preferred embodiment, the lipid suspension obtained from the combination of the liposomes IL and EL is subjected to a number of 3 alternating cycles of mechanical stirring under continuous flow, using a rotation speed in the range between 10 and 300 rpm, for a time between 1 and 72 h, at a temperature between 30 and 80 ° C. The lipid suspension of AVs thus obtained is then subjected to further alternating cycles of continuous agitation, between 3 and 20, and heating in a thermostated water bath, at a temperature between 30 and 80 ° C, for a number of cycles between 3 and 20. The combination of the liposomes IL and EL allows to form AVs which have a total lipid concentration in the range between 2 and 26.5 mM.
Gli AVs ottenuti vengono ulteriormente incubati ad una temperatura compresa tra i 30 e gli 80 °C per un ulteriore intervallo di tempo compreso tra 1 e 24 ore per favorire la formazione e la stabilizzazione della struttura sopramolecolare. (iv) estrusione della miscela di IL ed EL. Gli AVs vengono estrusi preferibilmente utilizzando un estrusore in acciaio inox sotto pressione d’azoto, compresa tra 100 e 1500 kPa, con una temperatura della camera d’estrusione compresa nell’intervallo tra 30 ed 80 °C, e per un intervallo di tempo compreso tra 10 minuti e 2 ore. E' anche possibile procedere all'estrusione tramite filtri di materiale sintetico, policarbonato, e/o polipropilene, e/o polistirene. Le dimensioni del cut-off sono comprese tra 30 e 1000 mn . Il cutoff preferito è compreso fra 800 e 200 nm II numero di passaggi per ogni filtro è compreso tra un minimo di 1 ad un massimo di 20. Da 1 a 2 filtri di materiale sintetico vengono utilizzati per il processo d’estrusione degli AVs. La resa finale degli AVs dopo il processo d’estrusione è compresa tra il 30 ed il 100%. Dopo la procedura d’estrusione, la resa degli AVs è maggiore del 94%. The obtained AVs are further incubated at a temperature between 30 and 80 ° C for a further time interval between 1 and 24 hours to favor the formation and stabilization of the supramolecular structure. (iv) extrusion of the mixture of IL and EL. The AVs are preferably extruded using a stainless steel extruder under nitrogen pressure, between 100 and 1500 kPa, with an extrusion chamber temperature between 30 and 80 ° C, and for an interval of time between between 10 minutes and 2 hours. It is also possible to proceed with extrusion through filters of synthetic material, polycarbonate, and / or polypropylene, and / or polystyrene. The size of the cut-off is between 30 and 1000 mn. The preferred cutoff is between 800 and 200 nm The number of passes for each filter is between a minimum of 1 and a maximum of 20. From 1 to 2 synthetic material filters are used for the extrusion process of the AVs. The final yield of the AVs after the extrusion process is between 30 and 100%. After the extrusion procedure, the yield of the AVs is greater than 94%.
(v) opzionale lavaggio e purificazione finale con acqua e/o tamponi degli AVs. (v) optional washing and final purification with water and / or buffers of the AVs.
Il procedimento dell’invenzione permette di ottenere vescicole asimmetriche formate da bilayers a struttura doppia, identificate con il seguente acronimo (AVs), per la veicol azione di materiale genico come ad esempio DNA pi asmi dico (pDNA) e dsRNA (miRNA, siRNA). Gli AVs così ottenuti possono trovare applicazioni in campo farmaceutico e diagnostico per il trattamento e la prevenzione di patologie neoplastiche, neuro degenerative, metaboliche, virali, fibro-proliferative, cardiovascolari e psicosomatiche sia neiranimale che nell’uomo. The process of the invention allows to obtain asymmetrical vesicles formed by bilayers with a double structure, identified with the following acronym (AVs), for the conveyance of genetic material such as for example DNA pi asmic (pDNA) and dsRNA (miRNA, siRNA) . The AVs thus obtained can find applications in the pharmaceutical and diagnostic fields for the treatment and prevention of neoplastic, neuro-degenerative, metabolic, viral, fibro-proliferative, cardiovascular and psychosomatic pathologies in both animals and humans.
In particolare gli AVs dell’invenzione permettono di migliorare in vivo l’azione terapeutica di materiale genico come miRNA ed siRNA dopo somministrazione sistemica. Le patologie che trovano giovamento dalla loro somministrazione sono, in particolare: carcinoma con e senza metastasi di: seno, polmoni, reni, ovaio, prostata, pancreas, fegato, cervice uterina, midollo osseo, cellule ematopoietiche (leucemie, linfomi e mielomi), feocromocitoma, glioblastoma, neuroblastoma. Sempre nell'ambito della cura dei tumori maligni, gli AVs dell'invenzione trovano applicazione anche nel trattamento delle cellule tumorali stromali. Altre malattie trattabili con gli AVs dell'invenzione sono: corea di Huntington, malattia di Alzheimer, morbo di Parkinson, sclerosi laterale amiotrofica, infezioni virali, disordini fibro-proliferativi del fegato, dei reni, del cuore e dei polmoni, forme di diabete indotto da altre patologie, patologie cardiovascolari e malattie metaboliche. In particular, the AVs of the invention allow to improve in vivo the therapeutic action of gene material such as miRNA and siRNA after systemic administration. The pathologies that benefit from their administration are, in particular: carcinoma with and without metastases of: breast, lungs, kidneys, ovary, prostate, pancreas, liver, cervix, bone marrow, hematopoietic cells (leukemia, lymphoma and myeloma), pheochromocytoma, glioblastoma, neuroblastoma. Still in the context of the treatment of malignant tumors, the AVs of the invention also find application in the treatment of stromal tumor cells. Other diseases treatable with the AVs of the invention are: Huntington's chorea, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, viral infections, fibro-proliferative disorders of the liver, kidneys, heart and lungs, forms of induced diabetes. from other pathologies, cardiovascular pathologies and metabolic diseases.
Gli A\<7>s dell'invenzione permettono di mitigare gli effetti collaterali delle terapie utilizzate nel trattamento delle patologie di cui sopra e che si manifestano con una tossicità a carico di reni, cuore, fegato, milza, polmoni, pancreas, sistema nervoso centrale e periferico. The A \ <7> s of the invention allow to mitigate the side effects of the therapies used in the treatment of the aforementioned pathologies and which manifest themselves with toxicity affecting the kidneys, heart, liver, spleen, lungs, pancreas, nervous system central and peripheral.
Gli AVs dell’invenzione possono essere formulati in composizioni farmaceutiche comprendenti un veicolo farmaceuticamente accettabile e migliorano la somministrazione terapeutica del materiale genico come i dsRNA (miRNA ed siRNA) che, non incapsulati, perdono rapidamente di efficacia dopo la somministrazione sistemica e superano i problemi di scarsa efficacia dei vettori virali di trascrizione correntemente utilizzati per la somministrazione sistemica di dsRNA (miRNA ed siRNA). Gli AYs possono essere somministrati utilizzando sia vie di somministrazione topiche (quali le vie percutanea, transmucosale ed oftalmica) sia vie sistemiche quali, a titolo di esempio, intramuscolare, endovenosa, intradermica, intraperitoneale, intrac ardi ac a, orale, ecc. Essi inoltre possono essere formulati sotto forma di sospensione da preparare al momento dell’utilizzo. The AVs of the invention can be formulated in pharmaceutical compositions comprising a pharmaceutically acceptable vehicle and improve the therapeutic delivery of gene material such as dsRNAs (miRNA and siRNA) which, unencapsulated, rapidly lose efficacy after systemic administration and overcome the problems of poor efficacy of viral transcription vectors currently used for the systemic administration of dsRNA (miRNA and siRNA). AYs can be administered using both topical routes (such as percutaneous, transmucosal and ophthalmic routes) and systemic routes such as, for example, intramuscular, intravenous, intradermal, intraperitoneal, intracardi ac a, oral, etc. They can also be formulated in the form of a suspension to be prepared at the time of use.
L’innovazione del metodo di preparazione qui proposto consiste nel non prevedere l'utilizzo di solventi organici e nel rendere anche possibile l'ottenimento un gradiente acquoso trans -membrana, con un pH interno acido, rispetto al pH esterno neutro o basico del mezzo acquoso in cui sono dispersi i liposomi. Inoltre, gli AVs possono essere utilizzati mesi dopo la loro preparazione grazie alla loro elevata stabilità. La stabilità della sospensione cosi ottenuta è assicurata per almeno sei mesi a 4°C (dati non mostrati). The innovation of the preparation method proposed here consists in not providing for the use of organic solvents and in also making it possible to obtain an aqueous trans-membrane gradient, with an acid internal pH, with respect to the neutral or basic external pH of the aqueous medium. in which the liposomes are dispersed. Furthermore, the AVs can be used months after their preparation due to their high stability. The stability of the suspension thus obtained is ensured for at least six months at 4 ° C (data not shown).
Gli esempi seguenti sono da considerare illustrativi e non limitativi della portata dell’invenzione. The following examples are to be considered illustrative and not limitative of the scope of the invention.
ESEMPI EXAMPLES
Esempio 1: Materiali Example 1: Materials
Gli AVs sono stati preparati utilizzando i seguenti composti acquistati presso la Sigma-Aldrich Chemical. Co., St. Louis, Mo. The AVs were prepared using the following compounds purchased from Sigma-Aldrich Chemical. Co., St. Louis, Mo.
U.S.A.: l,2-dipalmitoil-sn-gliceiO-3-fosfatidilcolina (DPPC), 1,2-dioleoil-sn-gliceiO-3-fosfotidiletanolamina (DOPE), l,2-dioleoil-3-trimetilammonio-propano (DOTAP), colesterolo (Chol) and 3β-[Ν-(N',N’-dimetilaminoetano)-carbamoil]colesterol idrocloruro (DC-chol), l,2-distearoil-sn-glicero-3-foosfatidiletanolamina-N-[metossi(polietileneglicol)-2000] (DSPE-PEG 2000). Gli esperimenti di microscopia confocale sono stati effettuati utilizzando una formulazione lipidica contenente il fosfolipide (1,2-diesadecanoilsn - glie ero - 3 -fosfati dii etanol amina -N-lissamin a ro damma B sulfonil, sale d’ammonio (DHPE-rhodamine) marcato con la sonda fluorescente rodamina. I lipidi contenenti il marcatore di fluorescenza sono stati aggiunti ai liposomi durante le fasi di preparazione del film lipidico e sono stati acquistati dalla Molecular Probes®, Celi Labeling and Detection (Life Technologies™, Grand Island, NY, USA). Le cellule di carcinoma della cervice uterina (HeLa), di carcinoma mammario di origine umana (MCF-7) e le cellule murine di macrofagi Raw 264.7 sono state acquistate presso l'American Type Celi Collection (ATCC). Tutte le linee cellulari riportate sopra sono state mantenute in coltura utilizzando Dulbecco’s Modified Eagle Medium (Gibco, Invitrogen Corporation, U.K.) integrato con l’aggiunta del 10% v/v di siero fetale bovino (FBS) e l’l% v/v di una soluzione di penicillina/streptomicina (Invitrogen, Life Technologies™, Grand Island, NY, LISA). Le cellule sono state incubate a 37 °C con 5 % CO<2>. Il plasmide contenente DNA codificante per proteine che emettono fluorescenza alle lunghezze d'onda della luce verde (pCMV-GFP) è stato acquistato dalla Plasmid Factory (GmbH & Co. KG, Germany). L’agente di trasfezione FuGene<®>HD è stato acquistato dalla Promega corporation (Madison, USA). Il colorante per gli miRNA FAM™ dyedabeled Pre-miR Negative Control, utilizzato per identificare la quantità di miRNA ed siRNA durante le diverse fasi della sperimentazione, è stato acquistato dalla Life TechnologiesTM (Grand Island, NY, USA). Gli anticorpi IgG policlonali di coniglio usati per identificare l’espressione di ERa, è stato acquistato dalla Santa Cruz Biotechnology, Ine. (Santa Cruz, CA, USA); mentre l’mAB di ratto, per identificare GAPDH, è stato acquistato da Celi Signaling (Merck Millipore S.p.a., Vimodrone (MI), Italy). TNF-α murino, IL-6 and IL-Ιβ ELISA kit sono stati acquistati dalla eBioscience (eBioscience, Ine. San Diego, CA, LISA). U.S.A .: 1,2-dipalmitoyl-sn-glyceiO-3-phosphatidylcholine (DPPC), 1,2-dioleoyl-sn-glyceiO-3-phosphotidylethanolamine (DOPE), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) , cholesterol (Chol) and 3β- [Ν- (N ', N'-dimethylaminoethane) -carbamoyl] cholesterol hydrochloride (DC-chol), 1,2-distearoyl-sn-glycerol-3-phosphatidylethanolamine-N- [methoxy ( polyethylene glycol) -2000] (DSPE-PEG 2000). The confocal microscopy experiments were performed using a lipid formulation containing the phospholipid (1,2-hexadecanoilsn - glycine - 3 -phosphates of ethanol amine -N-lissamin a ro damma B sulfonyl, ammonium salt (DHPE-rhodamine) labeled with the rhodamine fluorescent probe. The lipids containing the fluorescence marker were added to the liposomes during the preparation steps of the lipid film and were purchased from Molecular Probes®, Celi Labeling and Detection (Life Technologies ™, Grand Island, NY, USA). Cervical cancer cells (HeLa), human breast cancer (MCF-7) and Raw 264.7 mouse macrophage cells were purchased from the American Type Cells Collection (ATCC). All lines Cells listed above were maintained in culture using Dulbecco's Modified Eagle Medium (Gibco, Invitrogen Corporation, U.K.) supplemented with the addition of 10% v / v fetal bovine serum (FBS) and 1% v / v d i a penicillin / streptomycin solution (Invitrogen, Life Technologies ™, Grand Island, NY, LISA). Cells were incubated at 37 ° C with 5% CO <2>. The plasmid containing DNA encoding proteins that fluorescence at wavelengths of green light (pCMV-GFP) was purchased from Plasmid Factory (GmbH & Co. KG, Germany). FuGene <®> HD transfection agent was purchased by Promega corporation (Madison, USA). The FAM ™ dyedabeled Pre-miR Negative Control miRNA dye, used to identify the amount of miRNA and siRNA during the different phases of the trial, was purchased from Life TechnologiesTM (Grand Island, NY, USA). Rabbit polyclonal IgG antibodies used to identify ERa expression was purchased from Santa Cruz Biotechnology, Ine. (Santa Cruz, CA, USA); while the rat mAB, to identify GAPDH, was purchased by Celi Signaling (Merck Millipore S.p.a., Vimodrone (MI), Italy). Murine TNF-α, IL-6 and IL-Ιβ ELISA kits were purchased from eBioscience (eBioscience, Ine. San Diego, CA, LISA).
Esempio 2: Preparazione degli AVs. Example 2: Preparation of the AVs.
Gli AVs sono stati preparati utilizzando la metodica TLE (Thin Layer Evaporation; evaporazione su strato sottile). Le fasi dettagliate della metodica sono di seguito riportate. The AVs were prepared using the Thin Layer Evaporation (TLE) method. The detailed steps of the method are shown below.
La formulazione IL è stata ottenuta utilizzando DOTAP/Colesterolo. In particolare, 40 mg di una formulazione lipidica costituita da DOTAP/Colesterolo in frazione molare 7/3, oppure da DPPC/DC-Chol, in frazione molare 7/3, sono stati solubilizzati in un pallone in vetro con collo a smeriglio utilizzando 2 mi di cloroformio. La miscela lipidica così ottenuta è stata evaporata sotto pressione ed il solvente organico è stato rimosso utilizzando un evaporatore rotante (Buchi 461, Buchi Italy, Assago (MI), Italia) riscaldato utilizzando un bagno termostatato alla temperatura di 65 °C e collegato ad una pompa da vuoto a membrana (Buchi Italy, Assago (MI), Italia) ad una pressione di 200 mBar. Per la rimozione del solvente organico in eccesso, il film lipidico ottenuto è stato essiccato per una notte utilizzando un essiccatore termostatato, programmato alla temperatura di 45 °C (Buchi mod. TO-51, Buchi Italy, Assago (MI), Italia), collegato ad una pompa da vuoto a membrana (Buchi Italy, Assago (MI), Italia) ad una pressione di 200 mBar. Il film lipidico IL è stato in seguito idratato con 500 pi d’acqua bidistillata e la sospensione lipidica così ottenuta è stata sottoposta a 3 cicli alternati di agitazione continua e di riscaldamento di 3 minuti ciascuno. In particolare, la sospensione lipidica IL è stata prima agitata in modo continuo a 700 rpm utilizzando un agitatore meccanico da banco (Vortex, Heidolph Reax 2000) ed in seguito termostatata a 65 °C in bagnetto termostatato, per 3 volte (cicli alternati per ciascun procedimento) come riportato in precedenza. Alla formulazione IL sono stati aggiunti altri 500 pi d’acqua bidistillata fino ad ottenere una formulazione liposomiale con un volume finale di 1 mi, che è stata poi utilizzata per idratare la formulazione EL. La concentrazione finale di lipidi misurata nei liposomi IL era 13. ,8 mM. Gli miRNA, i pre-miRNA e gli siRNA sono stati complessati con i liposomi IL durante la fase d’idratazione del film lipidico. In particolare, miRNA, pre-miRNA e siRNA sono stati aggiunti ad acqua bidistillata priva dell'enzima di degradazione degli acidi nucleici (RNAasi) ed utilizzati per idratare il film lipidico degli IL come riportato in precedenza. The IL formulation was obtained using DOTAP / Cholesterol. In particular, 40 mg of a lipid formulation consisting of DOTAP / Cholesterol in a 7/3 mole fraction, or of DPPC / DC-Chol, in a 7/3 mole fraction, were solubilized in a glass flask with an emery neck using 2 ml of chloroform. The resulting lipid mixture was evaporated under pressure and the organic solvent was removed using a rotary evaporator (Buchi 461, Buchi Italy, Assago (MI), Italy) heated using a thermostated bath at a temperature of 65 ° C and connected to a diaphragm vacuum pump (Buchi Italy, Assago (MI), Italy) at a pressure of 200 mBar. To remove the excess organic solvent, the obtained lipid film was dried overnight using a thermostat-controlled dryer, programmed at a temperature of 45 ° C (Buchi mod. TO-51, Buchi Italy, Assago (MI), Italy), connected to a diaphragm vacuum pump (Buchi Italy, Assago (MI), Italy) at a pressure of 200 mBar. The lipid film IL was then hydrated with 500 µl of double distilled water and the resulting lipid suspension was subjected to 3 alternating cycles of continuous stirring and heating of 3 minutes each. In particular, the lipid suspension IL was first stirred continuously at 700 rpm using a mechanical bench shaker (Vortex, Heidolph Reax 2000) and then thermostated at 65 ° C in a thermostated bath, for 3 times (alternating cycles for each procedure) as previously reported. Another 500 µl of double distilled water was added to the IL formulation to obtain a liposomal formulation with a final volume of 1 ml, which was then used to hydrate the EL formulation. The final lipid concentration measured in the IL liposomes was 13., 8 mM. The miRNAs, pre-miRNAs and siRNAs were complexed with IL liposomes during the hydration phase of the lipid film. In particular, miRNA, pre-miRNA and siRNA were added to double distilled water devoid of the nucleic acid degradation enzyme (RNAase) and used to hydrate the lipid film of the ILs as previously reported.
La formulazione EL è stata preparata utilizzando i lipidi di seguito riportati: DOPE/Chol/DSPE-PEG(2000). In particolare, 40 mg di una formulazione lipidica costituita da DOPE/Chol/DSPE-PEG(2000) in frazione molare 5/3/2 sono stati solubilizzati in un pallone in vetro con collo a smeriglio utilizzando 2 mi di cloroformio. La miscela lipidica così ottenuta è stata evaporata sotto pressione ed il solvente organico è stato rimosso utilizzando un evaporatore rotante (Buchi 461, Buchi Italy, Assago (MI), Italia) riscaldato utilizzando un bagno termostatato alla temperatura di 65 °C e collegato ad una pompa da vuoto a membrana (Buchi Italy, Assago (MI), Italia) ad una pressione di 200 mBar. Per la rimozione del solvente organico in eccesso, il film lipidico ottenuto è stato essiccato per una notte utilizzando un essiccatore termostatato programmato alla temperatura di 45 °C (Buchi mod. TO-51, Buchi Italy, Assago (MI), Italia), collegato ad una pompa da vuoto a membrana (Buchi Italy, Assago (MI), Italia) ad una pressione di 200 mBar. Il film lipidico EL è stato in seguito idratato con 1 mi della formulazione liposomiale IL ottenuta come sopra descritto. La sospensione lipidica ottenuta dalla combinazione di liposomi IL ed EL è stata sottoposta a 3 cicli alternati di agitazione continua e di riscaldamento di 3 minuti ciascuno. In particolare, la sospensione lipidica ottenuta dalla combinazione di liposomi IL ed EL è stata prima agitata in modo continuo a 700 rpm utilizzando un agitatore meccanico da banco (Vortex, Heidolph Reax 2000) ed in seguito termostatata a 65 °C in bagnetto termostatato, per 3 volte (cicli alternati per ciascun procedimento) come riportato in precedenza. La combinazione dei liposomi IL ed EL ha così portato alla formazione degli A\<7>s che presentano una concentrazione totale di lipidi pari a 26.5 mM. Gli AVs ottenuti sono stati incubati a 60 °C per altre 2 ore per favorire la formazione e la stabilizzazione della struttura sopramolecolare. Gli A\<7>s ottenuti sono stati in seguito estrusi utilizzando un estrusore, in acciaio inox (Lipex Biomembranes, Northern Lipids Ine., Vancouver, BC, Canada) sotto pressione d’azoto. L’estrusore è fornito di un sistema di termoregolazione collegato ad un termostato (Grant Instruments Ltd, Cambridge, LIK). La temperatura di estrusione è stata programmata a 65 °C. Prima del processo d’estrusione, gli AVs sono stati portati alla stessa temperatura d’estrusione (65 °C) per almeno 45 minuti. L’estrusione è stata condotta ad una pressione di circa 850 kPa attraverso due filtri sovrapposti di policarbonato (diametro di 25 mm; Nucleopore Corp., Pleasanton,CA, USA) con pori di dimensioni di 200 nm. Gli AVs sono stati estrusi a 65°C alla pressione di 850 kPa per dieci volte attraverso i filtri di policarbonato con pori del diametro di 200 nm. Dopo la procedura d’estrusione, la resa degli AVs è stata maggiore del 94%. The EL formulation was prepared using the following lipids: DOPE / Chol / DSPE-PEG (2000). In particular, 40 mg of a lipid formulation consisting of DOPE / Chol / DSPE-PEG (2000) in 5/3/2 molar fraction were solubilized in a glass ground flask using 2 ml of chloroform. The resulting lipid mixture was evaporated under pressure and the organic solvent was removed using a rotary evaporator (Buchi 461, Buchi Italy, Assago (MI), Italy) heated using a thermostated bath at a temperature of 65 ° C and connected to a diaphragm vacuum pump (Buchi Italy, Assago (MI), Italy) at a pressure of 200 mBar. To remove the excess organic solvent, the obtained lipid film was dried overnight using a thermostatted dryer programmed at a temperature of 45 ° C (Buchi mod. TO-51, Buchi Italy, Assago (MI), Italy), connected to a diaphragm vacuum pump (Buchi Italy, Assago (MI), Italy) at a pressure of 200 mBar. The lipid film EL was then hydrated with 1 ml of the liposomal formulation IL obtained as described above. The lipid suspension obtained from the combination of IL and EL liposomes was subjected to 3 alternating cycles of continuous stirring and heating of 3 minutes each. In particular, the lipid suspension obtained from the combination of IL and EL liposomes was first stirred continuously at 700 rpm using a bench mechanical stirrer (Vortex, Heidolph Reax 2000) and then thermostated at 65 ° C in a thermostated bath, to 3 times (alternating cycles for each procedure) as previously reported. The combination of IL and EL liposomes thus led to the formation of A \ <7> s which have a total lipid concentration equal to 26.5 mM. The obtained AVs were incubated at 60 ° C for another 2 hours to favor the formation and stabilization of the supramolecular structure. The A \ <7> s obtained were then extruded using a stainless steel extruder (Lipex Biomembranes, Northern Lipids Ine., Vancouver, BC, Canada) under nitrogen pressure. The extruder is equipped with a thermoregulation system connected to a thermostat (Grant Instruments Ltd, Cambridge, LIK). The extrusion temperature was programmed at 65 ° C. Before the extrusion process, the AVs were brought to the same extrusion temperature (65 ° C) for at least 45 minutes. The extrusion was carried out at a pressure of about 850 kPa through two superimposed polycarbonate filters (diameter of 25 mm; Nucleopore Corp., Pleasanton, CA, USA) with pores of 200 nm size. The AVs were extruded at 65 ° C at a pressure of 850 kPa ten times through the polycarbonate filters with pores of 200 nm diameter. After the extrusion procedure, the yield of the AVs was greater than 94%.
Esempio 3: Caratterizzazione chimico-fisica dei AYs Example 3: Physico-chemical characterization of AYs
La Tabella 1 riporta i principali parametri chimico -fisici, come ad esempio dimensioni medie, omogeneità dimensionale (PDI) e carica di superficie (potenziale zeta o ZP) del bilayer interno IL. Table 1 reports the main chemical-physical parameters, such as average dimensions, dimensional homogeneity (PDI) and surface charge (zeta potential or ZP) of the internal bilayer IL.
Tabella 1. Caratterizzazione chimico- fisica di IL. I valori ottenuti rappresentano la media di 6 diverse analisi ± la deviazione standard (SD). Table 1. Physico-chemical characterization of IL. The values obtained represent the mean of 6 different analyzes ± the standard deviation (SD).
Dimensioni Medie PDI ± SD ZP(V) ± SD (nin) ± SD Average size PDI ± SD ZP (V) ± SD (nin) ± SD
DOTAP/Colesterolo<1>65 ± 1.23 0.37 ± 0.01 47.5 ± 0.31<1>Ciascuna analisi rappresenta la media di 6 diverse analisi ± la deviazione standard. DOTAP / Cholesterol <1> 65 ± 1.23 0.37 ± 0.01 47.5 ± 0.31 <1> Each analysis represents the mean of 6 different analyzes ± the standard deviation.
La Tabella 2 riporta i principali parametri chimico -fisici, come ad esempio dimensioni medie, omogeneità dimensionale (PDI) e carica di superficie (potenziale zeta; ZP) della struttura vescicolare che forma il bilayer esterno (EL) degli AVs. Table 2 reports the main chemical-physical parameters, such as average size, dimensional homogeneity (PDI) and surface charge (zeta potential; ZP) of the vesicular structure that forms the external bilayer (EL) of the AVs.
Tabella 2. Caratterizzazione chimico- fisica di EL. I valori ottenuti rappresentano la media di 6 diverse analisi ± la deviazione standard (SD). Table 2. Physico-chemical characterization of EL. The values obtained represent the mean of 6 different analyzes ± the standard deviation (SD).
Dimensioni Medie PDI ± SD ZP (mV) ± SD (nm) ± SD Average size PDI ± SD ZP (mV) ± SD (nm) ± SD
D OPE/C olesterolo/DSPE- 116 ± 1.05 0.24 ± 0.05 -46.9 ± 0.42 PEG 2000<1>D OPE / C olesterol / DSPE- 116 ± 1.05 0.24 ± 0.05 -46.9 ± 0.42 PEG 2000 <1>
<1>Ciascuna analisi rappresenta la media di 6 diverse analisi ± la deviazione standard. <1> Each run represents the mean of 6 different runs ± the standard deviation.
I parametri chimico -fisici ottenuti forniscono numerosi dati relativi all’ auto -assembl amento di IL ed EL all’interno degli AVs. Sia le dimensioni medie che il PDI dei bilayer fosfolipidici IL ed EL presentano delle differenze nei loro valori iniziali e entrambi i parametri chimico -fisici dipendono dalla composizione lipidica e dalle frazioni molari dei lipidi utilizzati per preparare le due formulazioni colloidali (Tabella 1 e 2). La carica di superficie di segno opposto che contraddistingue IL ed EL favorisce l’interazione elettrostatica tra le singole formulazioni liposomiali, il loro autoassemblamento e la loro stabilizzazione probabilmente a causa della forte interazione elettrostatica che si verifica tra IL ed EL. Quest’effetto di natura attrattiva tra i due bilayer con carica di superficie opposta, che favorisce la formazione e la stabilizzazione degli AVs, è confermato dalla riduzione delle dimensioni medie, del PDI e del valore di ZP negli A\<7>s (Tabella 3). Gli AVs, infatti, presentano dimensioni medie di 146.0 nm, un PDI di 0.22 un v alore di ZP di -28.5 mV. La presenza di una carica negativa di superficie negli AVs dimostra che il bilayer esterno, e quindi la superficie del sistema sopramolecolare formatosi, è costituita da EL che circonda lo strato interno (core) formato da IL (carica positiva). The chemical-physical parameters obtained provide numerous data relating to the self-assembly of IL and EL within the AVs. Both the average size and the PDI of the IL and EL phospholipid bilayers show differences in their initial values and both the chemical-physical parameters depend on the lipid composition and the molar fractions of the lipids used to prepare the two colloidal formulations (Table 1 and 2) . The surface charge of opposite sign that distinguishes IL and EL favors the electrostatic interaction between the individual liposomal formulations, their self-assembly and their stabilization probably due to the strong electrostatic interaction that occurs between IL and EL. This attractive effect between the two bilayers with opposite surface charge, which favors the formation and stabilization of AVs, is confirmed by the reduction of the average size, of the PDI and of the ZP value in the A \ <7> s (Table 3). The AVs, in fact, have an average size of 146.0 nm, a PDI of 0.22 and a ZP value of -28.5 mV. The presence of a negative surface charge in the AVs shows that the external bilayer, and therefore the surface of the supramolecular system formed, is made up of EL that surrounds the inner layer (core) formed by IL (positive charge).
Le misure di scattering dinamico di luce (DLS) dimostrano inoltre che il 99% delle particelle presenta i parametri chimico -fisici descritti in precedenza e riportati in Tabella 3. The measurements of dynamic light scattering (DLS) also show that 99% of the particles have the chemical-physical parameters described above and reported in Table 3.
Il processo di estrusione, ha portato ad un'ulteriore riduzione sia delle dimensioni medie (131 nm) sia del PDI (0.12) degli AVs mentre ZP subisce solamente una piccola riduzione (-26.9 mV) dei suoi valori (Tabella 3). The extrusion process led to a further reduction in both the average size (131 nm) and the PDI (0.12) of the AVs while ZP undergoes only a small reduction (-26.9 mV) of its values (Table 3).
Tabella 3. Caratterizzazione chimico- fisica degli AVs. I valori ottenuti rappresentano la media di 6 diverse analisi ± la deviazione standard (SD). Table 3. Physico-chemical characterization of AVs. The values obtained represent the mean of 6 different analyzes ± the standard deviation (SD).
F ormulazioni Dimensioni SD PDI ± SD ZP (mV) ± SD Medie (mn) ± F ormulations Dimensions SD PDI ± SD ZP (mV) ± SD Average (mn) ±
SD AVs<1>146 ± 1.5 0.22 ± 0.01 .-28.5 ± 1.1 AVs<1>200 imi 131 ± 0.8 0.12 ± 0.01 -26.9 ± 0.5 SD AVs <1> 146 ± 1.5 0.22 ± 0.01.-28.5 ± 1.1 AVs <1> 200 imi 131 ± 0.8 0.12 ± 0.01 -26.9 ± 0.5
<1>Ciascuna analisi rappresenta la media di 6 diverse analisi ± la deviazione standard. <1> Each run represents the mean of 6 different runs ± the standard deviation.
La struttura degli AVs, evidenziata analizzando i parametri chimico-fisici, ottenuti dall’analisi di scattering dinamico di luce (DLS), è stata confermata dagli studi di microscopia elettronica, che hanno evidenziato la presenza di un bilayer interno, formato dai liposomi IL, ed un bilayer esterno formato dai liposomi EL. Gli AVs ottenuti hanno mostrato le migliori proprietà chimico -fisiche ed i migliori parametri tecnologici di formulazione per la veicolazione del materiale genetico (dimensioni medie -140 nm, buona omogeneità dimensionale e carica di superficie (potenziale zeta) pari a ~-21 mV). Gli AVs sono in grado di complessare elevate quantità sia di DNA pi asmi dico sia di dsRNA (miRNA ed siRNA); sono stabili in siero per oltre 72 ore d’incubazione e proteggono i dsRNA (miRNA ed siRNA) dalla degradazione enzimatica mediata dalla RNasi A. The structure of the AVs, highlighted by analyzing the chemical-physical parameters, obtained from the analysis of dynamic light scattering (DLS), was confirmed by electron microscopy studies, which highlighted the presence of an internal bilayer, formed by IL liposomes, and an external bilayer formed by the EL liposomes. The obtained AVs showed the best chemical-physical properties and the best technological formulation parameters for the conveyance of the genetic material (average size -140 nm, good dimensional homogeneity and surface charge (zeta potential) equal to ~ -21 mV). AVs are capable of complexing large amounts of both pi asthmatic DNA and dsRNA (miRNA and siRNA); they are stable in serum for over 72 hours of incubation and protect dsRNAs (miRNA and siRNA) from enzymatic degradation mediated by RNase A.
La biocompatibilità degli AVs e la loro capacità di non attivare il sistema immunitario e di non provocare una risposta immune è stata valutata in vitro utilizzando cellule HeLa e Raw 264.7. I dati sperimentali ottenuti hanno dimostrato che gli AVs sono biocompatibili e non stimolano l’attivazione del sistema immunitario in modelli sperimentali in vitro. Gli AVs sono inoltre internalizzati dalle cellule e favoriscono incorporazione del materiale sia per la veicolazione del DNA plasmidico sia del dsRNA (miRNA ed siRNA), favorendo così il rilascio intatto del materiale genetico incapsulato all’interno delle cellule come dimostrato dagli esperimenti di trasfezione ottenuti utilizzando cellule HeLa. L’efficienza di trasfezione e l’attività antitumorale degli AVs contenenti dsRNA (miRNA ed siRNA) sono state valutate utilizzando cellule MCF-7. I dati sperimentali ottenuti hanno dimostrato che gli AVs aumentano l’efficienza di trasfezione di miRNA e di siRNA in cellule MCF-7 rispetto sia al controllo (cellule non trattate) sia al complesso formato da dsRNA (miRNA ed siRNA) e dall’agente di trasfezione commerciale Fu Gene®. Inoltre, gli AVs contenenti dsRNA (miRNA ed siRNA) diminuiscono la vitalità cellulare delle cellule MCF-7 rispetto alle cellule non trattate (controllo) ed al complesso dsRNA (miRNA ed siRNA)/FuGene®. La riduzione della vitalità cellulare sulle cellule MCF-7 è una conseguenza dell’inibizione dell’espressione del gene ERa promossa dagli AVs che contengono dsRNA (miRNA ed siRNA). I risultati sperimentali ottenuti evidenziano che gli AVs possono rappresentare degli innovativi nanovettori non virali per la veicolazione di DNA plasmidico e di dsRNA (miRNA ed siRNA). The biocompatibility of AVs and their ability not to activate the immune system and not to provoke an immune response was evaluated in vitro using HeLa and Raw 264.7 cells. The experimental data obtained have shown that the AVs are biocompatible and do not stimulate the activation of the immune system in in vitro experimental models. The AVs are also internalized by the cells and favor the incorporation of the material both for the delivery of the plasmid DNA and of the dsRNA (miRNA and siRNA), thus favoring the intact release of the encapsulated genetic material inside the cells as demonstrated by the transfection experiments obtained using HeLa cells. The transfection efficiency and antitumor activity of AVs containing dsRNA (miRNA and siRNA) were evaluated using MCF-7 cells. The experimental data obtained have shown that AVs increase the transfection efficiency of miRNA and siRNA in MCF-7 cells compared to both the control (untreated cells) and the complex formed by dsRNA (miRNA and siRNA) and the agent of commercial transfection Fu Gene®. Furthermore, AVs containing dsRNA (miRNA and siRNA) decrease cell viability of MCF-7 cells compared to untreated (control) cells and dsRNA (miRNA and siRNA) / FuGene® complex. The reduction in cell viability on MCF-7 cells is a consequence of the inhibition of ERa gene expression promoted by AVs that contain dsRNA (miRNA and siRNA). The experimental results obtained show that AVs can represent innovative non-viral nanovectors for the delivery of plasmid DNA and dsRNA (miRNA and siRNA).
Esempio 4: Saggi di citotossicità degli AVs. Example 4: AV cytotoxicity assays.
La citotossicità degli AVs non complessati con siRNA ed miRNA è stata valutata utilizzando la metodica MTT (saggio di vitalità cellulare). Le cellule sono state seminate in piastre per colture cellulari da 96 pozzetti alla concentrazione di 5 x IO<3>cellule/0.2 mi ed incubate per 24 ore a 37 °C per favorire la loro adesione al fondo delle piastre per colture cellulari. Ottenuta una confluenza del 70%, il mezzo di coltura cellulare è stato rimosso e sostituito con nuovo mezzo (controllo) o le diverse formulazioni da saggiare, come ad esempio liposomi cationici, FuGene® ed AYs) . Le cellule trattate sono state incubate per 24, 48 e 72 ore. Le cellule trattate con il solo mezzo per colture cellulari e quelle non trattate con alcuna formulazione sono state utilizzate come controllo. The cytotoxicity of AVs not complexed with siRNA and miRNA was evaluated using the MTT method (cell viability assay). The cells were seeded into 96-well cell culture plates at a concentration of 5 x 10 <3> cells / 0.2 ml and incubated for 24 hours at 37 ° C to promote their adhesion to the bottom of the cell culture plates. Once a confluence of 70% was obtained, the cell culture medium was removed and replaced with new medium (control) or the different formulations to be tested, such as cationic liposomes, FuGene® and AYs). The treated cells were incubated for 24, 48 and 72 hours. Cells treated with cell culture medium alone and cells not treated with any formulation were used as controls.
10 LI 1 di sali di tetrazolio, solubilizzati in PBS (5 mg/ml) sono stati aggiunti a ciascun pozzetto e le cellule sono state mantenute in incubazione per altre 3 ore. Il mezzo di coltura cellulare contenente i sali di tetrazolio è stato successivamente rimosso ed i cristalli di formazano, formatisi dalla precipitazione di questi sali sul fondo di ciascun pozzetto dopo reazione ossidativa mitocondri al e, sono stati solubilizzati utilizzando 200 pi di una soluzione costituita da DMSG/etanolo (1:1, v/v). La soluzione ottenuta è stata mantenuta in agitazione per 20 minuti a 230 rpm utilizzando un agitatore orbitante (IRA® KS 130 Control, IRA® WERRE GMBH & Co., Staufen, Germany). I cristalli di formazano ottenuti sono stati in seguito quantificati utilizzando uno spettrofotometro da banco con piatto di lettura (Multiscan MS 6.0, Labsystem) programmato alla lunghezza d’onda di 540 nm, con una lunghezza d’onda di riferimento fissata a 690 nm. La percentuale di vitalità è stata calcolata utilizzando la seguente equazione: 10 LI 1 of tetrazolium salts, solubilized in PBS (5 mg / ml) were added to each well and the cells were incubated for a further 3 hours. The cell culture medium containing the tetrazolium salts was subsequently removed and the formazan crystals, formed by the precipitation of these salts at the bottom of each well after mitochondria oxidative reaction to e, were solubilized using 200 µl of a solution consisting of DMSG. / ethanol (1: 1, v / v). The solution obtained was stirred for 20 minutes at 230 rpm using an orbiting shaker (IRA® KS 130 Control, IRA® WERRE GMBH & Co., Staufen, Germany). The formazan crystals obtained were then quantified using a bench spectrophotometer with reading plate (Multiscan MS 6.0, Labsystem) programmed at a wavelength of 540 nm, with a reference wavelength set at 690 nm. The viability percentage was calculated using the following equation:
Vitalità Cellulare (%) = Abst/Absc x 100 Cell viability (%) = Abst / Absc x 100
In cui, Abst rappresenta il valore d’assorbanza delle cellule trattate con le diverse formulazioni e Absc rappresenta il valore d’assorbanza delle cellule non trattate (controllo). La concentrazione di cristalli di formazano ottenuti è direttamente proporzionale alla vitalità cellulare. I valori ottenuti sono la media di 6 diversi esperimenti ± la deviazione standard. In which, Abst represents the absorbance value of the cells treated with the different formulations and Absc represents the absorbance value of the untreated cells (control). The concentration of formazan crystals obtained is directly proportional to cell viability. The values obtained are the mean of 6 different experiments ± the standard deviation.
La Figura 2 mostra che gli AVs non producono effetti tossicità nelle cellule trattate, alle stesse concentrazioni ed agli stessi tempi d’incubazione, rispetto sia al FuGene® che ai liposomi cationici. Esempio 5: Interazione tra AVs e modelli cellulari utilizzati durante la sperimentazione. Figure 2 shows that the AVs do not produce toxic effects in the treated cells, at the same concentrations and at the same incubation times, compared to both FuGene® and cationic liposomes. Example 5: Interaction between AVs and cellular models used during the experimentation.
L’interazione tra le linee cellulari riportate in precedenza e gli AVs marcati con la sonda fluorescente rodamina è stata studiata mediante microscopia confocale (CLSM). Il fosfolipide DHPE-rodamina è stato solubilizzato in cloroformio con gli altri fosfolipidi utilizzati per preparare la formulazione EL durante la preparazione del film lipidico. Le misure CLSM sono state effettuate seminando le cellule alla densità di 4 x IO<5>cellule/ml in piastre per colture cellulari da 6 pozzetti. Le cellule sono state posizionate su un vetrino sterile inserito in ciascun pozzetto e coperte con mezzo di coltura DMEM. Le cellule sono state incubate per 24 ore e successivamente trattate a diversi tempi d’incubazione (6 e 24 ore) con AVs contenenti DHPE-rodamina. A diversi tempi d’incubazione, i diversi pozzetti sono stati lavati con 2 mi di PBS (3 volte) per rimuovere l’eccesso di AVs contenenti il marcatore fluorescente rodamina e le cellule sono state successivamente fissate sul vetrino utilizzando 1 imi d’etanolo (70% v/v) in soluzione. In seguito i vetrini sono stati nuovamente lavati con 2 mi di PBS (3 volte) ed infine il PBS (2 mi) è stato sostituito con una soluzione fresca dello stesso tampone. Il colorante DAPI è stato utilizzato per marcare i nuclei delle cellule. Le piastre per colture cellulari da 6 pozzetti, contenenti le cellule fissate sono state conservate a 4 °C fino all’analisi CLSM. I vetrini con le cellule adese sulla loro superficie e fissate in precedenza sono stati coperti con altri vetrini. Una soluzione di glicerolo (70% v/v) è stata usata per fissare le cellule e rimuovere l’aria intrappolata tra i due vetrini. Infine, le lastrine di vetro contenenti i campioni sono state fissate con smalto trasparente per evitare l’inclusione di aria nel campione. Le misure sono state eseguite utilizzando un microscopio Leika TCS SP2 MP CLSM programmato alla lunghezza d’onda d’eccitazione Xexc = 557 nm e d’emissione Xeni = 571 nm della rodamina. I parametri del microscopio sono di seguito riportati: risoluzione tra 4096 x 4096 pixels, raggio laser Ar/Kr con potenza nominale di 75 mW, correlato con un filtro per l’analisi in fluorescenza. I campioni sono stati processati utilizzando il programma Micro Developer software package che permette un'acquisizione di serie multimediale ed un accesso diretto al pannello di controllo digitale. Una lente 100x per microscopia a immersione è stata usata durante gli esperimenti. The interaction between the cell lines reported above and the AVs labeled with the rhodamine fluorescent probe was studied by confocal microscopy (CLSM). The DHPE-rhodamine phospholipid was solubilized in chloroform with the other phospholipids used to prepare the EL formulation during the preparation of the lipid film. CLSM measurements were performed by seeding cells at a density of 4 x 10 <5> cells / mL in 6-well cell culture plates. The cells were placed on a sterile slide inserted into each well and covered with DMEM culture medium. The cells were incubated for 24 hours and subsequently treated at different incubation times (6 and 24 hours) with AVs containing DHPE-rhodamine. At different incubation times, the different wells were washed with 2 ml of PBS (3 times) to remove excess AVs containing the fluorescent marker rhodamine and the cells were subsequently fixed on the slide using 1 mg of ethanol ( 70% v / v) in solution. Subsequently the slides were washed again with 2 ml of PBS (3 times) and finally the PBS (2 ml) was replaced with a fresh solution of the same buffer. The DAPI dye was used to label the cell nuclei. The 6-well cell culture plates containing the fixed cells were stored at 4 ° C until CLSM analysis. The slides with the cells adhered to their surface and fixed in advance were covered with other slides. A glycerol solution (70% v / v) was used to fix the cells and remove the air trapped between the two slides. Finally, the glass plates containing the samples were fixed with transparent enamel to avoid the inclusion of air in the sample. The measurements were performed using a Leika TCS SP2 MP CLSM microscope programmed at the excitation wavelength Xexc = 557 nm and the rhodamine emission Xeni = 571 nm. The microscope parameters are shown below: resolution between 4096 x 4096 pixels, Ar / Kr laser beam with a nominal power of 75 mW, correlated with a filter for fluorescence analysis. The samples were processed using the Micro Developer software package which allows a multimedia series acquisition and direct access to the digital control panel. A 100x immersion microscopy lens was used during the experiments.
La Figura 3 mostra che gli AVs interagiscono meglio con le cellule HeLa (modello cellulare) dopo 6 e 24 ore d’incubazione rispetto ai liposomi cationici. Figure 3 shows that AVs interact better with HeLa cells (cell model) after 6 and 24 hours of incubation than cationic liposomes.
Esempio 6: Valutazione dei meccanismi d'internalizz azione intracellulare degli AVs. Example 6: Evaluation of the intracellular internalization mechanisms of AVs.
L’internalizzazione degli AVs nelle linee cellulari riportate in precedenza è stata valutata utilizzando l’analisi CLSM (Confocal Laser Scanning Microscopy). Brevemente, le cellule MCF-7 sono state seminate in 4 sezioni di una camera BD FalconTM (Bedford, USA) alla concentrazione di 1 x IO<5>cellule/500 id di mezzo per colture cellulari DMED ed incubate a 37°C, 5% CO2. Dopo 24 ore d’incubazione, le cellule sono state trattate con complessi PremiRNA-FAM/FuGene® incapsulati in AVs ed con complessi formati da PL'e-miRNA-FAM/FuGene®. Le cellule sono state successivamente raccolte a diversi tempi d’incubazione (0,5; 1, 3 e 6 ore). L’internalizzazione cellulare di Pre-miRNA-FAM/FuGene® incapsulati in AVs è stata valutata misurando gli effetti della preme ap sul azione degli miRNA con il solo Fu Gene®. Per questo motivo, è stata monitorata e valutata l’internalizz azione degli AVs in lisosomi, endosomi tardivi e precoci, secondo quanto riportato nel protocollo fornito dal produttore del kit di reazione. The internalization of AVs in the cell lines reported above was evaluated using CLSM (Confocal Laser Scanning Microscopy) analysis. Briefly, MCF-7 cells were seeded in 4 sections of a BD FalconTM chamber (Bedford, USA) at a concentration of 1 x 10 <5> cells / 500 id of DMED cell culture medium and incubated at 37 ° C, 5 % CO2. After 24 hours of incubation, the cells were treated with PremiRNA-FAM / FuGene® complexes encapsulated in AVs and with complexes formed by PL'e-miRNA-FAM / FuGene®. The cells were subsequently collected at different incubation times (0.5; 1, 3 and 6 hours). The cellular internalization of Pre-miRNA-FAM / FuGene® encapsulated in AVs was evaluated by measuring the effects of press ap on the action of miRNAs with Fu Gene® alone. For this reason, the internalization of AVs in lysosomes, late and early endosomes was monitored and evaluated, as reported in the protocol provided by the manufacturer of the reaction kit.
La Figura 4 mostra che gli AVs contenenti Pre-miRNA-FAM/FuGene® e marcati con la sonda fluorescente rodamina sono meglio internalizzati all'interno dei nuclei delle cellule MCF-7 ed aumentano la trasfezione nucleare di miRNA se paragonati ai liposomi cationici. Figure 4 shows that AVs containing Pre-miRNA-FAM / FuGene® and labeled with the rhodamine fluorescent probe are better internalized within MCF-7 cell nuclei and increase miRNA nuclear transfection when compared to cationic liposomes.
Esempio 7: Valutazione della stabilità in siero degli AVs. Example 7: Evaluation of the serum stability of AVs.
La stabilità in siero degli AVs è stata misurata mediante DLS (Dynamic Light Scattering). The serum stability of the AVs was measured by Dynamic Light Scattering (DLS).
200 pi di A\<7>s sono stati aggiunti ad 1 mi di una soluzione costituita da FBS/PBS (70:30 v/v, pii 7.4) e la sospensione ottenuta è stata incubata a 37 °C sotto continua agitazione (Li et al. 2012). Il complesso Pre-miRNA-FAM/FuGene® ed i liposomi cationici sono stati usati come controllo durante l'esperimento. L’analisi delle diverse formulazioni mediante DLS è stata eseguita al tempo zero (controllo) (Figure 5 — i, ii e iii) e a diversi tempi d'incubazione (1, 6, 12, 24 e 48 ore) (Figure 5 - A, B e C). Le dimensioni medie delle diverse formulazioni sono state misurate in funzione del parametro d'intensità ai diversi tempi d’incubazione. 200 µl of A \ <7> s were added to 1 ml of a solution consisting of FBS / PBS (70:30 v / v, pii 7.4) and the suspension obtained was incubated at 37 ° C under continuous stirring (Li et al. 2012). The Pre-miRNA-FAM / FuGene® complex and the cationic liposomes were used as controls during the experiment. The analysis of the different formulations by DLS was performed at time zero (control) (Figures 5 - i, ii and iii) and at different incubation times (1, 6, 12, 24 and 48 hours) (Figures 5 - A , B and C). The average sizes of the different formulations were measured as a function of the intensity parameter at the different incubation times.
La Figura 5 mostra che gli AVs sono la sola formulazione stabile in siero per più di 24 ore d’incubazione (Figure 5 — D). Il complesso Pre-miRNA-FAM/FuGene® viene degradato dopo solamente un'ora d'incubazione a causa dell’interazione del materiale genetico con le proteine del siero ed è seguito dalla formazione di aggregati di diverse dimensioni (Figure 5 - B). I liposomi cationici sono stabili per meno di 24 ore (Figure 5 — C). Figure 5 shows that AVs are the only stable formulation in serum for more than 24 hours of incubation (Figure 5 - D). The Pre-miRNA-FAM / FuGene® complex is degraded after only one hour of incubation due to the interaction of the genetic material with the whey proteins and is followed by the formation of aggregates of different sizes (Figures 5 - B). Cationic liposomes are stable for less than 24 hours (Figure 5 - C).
Esempio 8: Saggi di degradazione enzimatica in presenza di RNasi A, Example 8: Enzymatic degradation assays in the presence of RNase A,
La capacità degli AVs di proteggere gli miRNA incapsulati dalla degradazione enzimatica è stata valutata mediante analisi elettrofor etica (Yuan et al. 2010). Brevemente, 0,2857 id di RNasi A (2 unità) sono stati aggiunti a 4 iliof miRNA incapsulati in AVs o 0.1 Lig of miRNA nudo (scramble). I campioni ottenuti sono stati in seguito incubati a 37 °C sotto agitazione continua per 1 ora. Per inattivare l’RNasi A, i diversi campioni sono stati trattati con 4 ul di EDTA (0.25 M) per 10 minuti e miscelati con una soluzione all’ 1.0% (v/v) di sodio dodecil solfato (SDS) precedentemente solubilizzato in una soluzione 1 M di NaOH (pH 7.2 - 7.5). I campioni ottenuti sono stati portati ad un volume finale di 18 pi e , infine, sono stati incubati per 1 ora. L’analisi elettrofor etica è stata eseguita su un gel d’agarosio all’1% p/v, con una corsa elettroforetica effettuata in tamponeTBE per 45 minuti a 100 V. miRNA nudo (scramble (seri); Figura 6 - linea 1) ed il complesso scrl/FuGene® sono stati usati come campioni di controllo durante gli esperimenti. The ability of AVs to protect encapsulated miRNAs from enzymatic degradation was evaluated by electrophoretic analysis (Yuan et al. 2010). Briefly, 0.2857 id of RNase A (2 units) was added to 4 iliof miRNAs encapsulated in AVs or 0.1 Lig of bare miRNA (scramble). The samples obtained were then incubated at 37 ° C under continuous stirring for 1 hour. To inactivate RNase A, the different samples were treated with 4 ul of EDTA (0.25 M) for 10 minutes and mixed with a 1.0% (v / v) sodium dodecyl sulfate (SDS) solution previously solubilized in a 1 M NaOH solution (pH 7.2 - 7.5). The obtained samples were brought to a final volume of 18 µl and, finally, they were incubated for 1 hour. Electrophorethical analysis was performed on a 1% w / v agarose gel, with an electrophoretic run performed in TBE buffer for 45 minutes at 100 V. bare miRNA (scramble (serious); Figure 6 - line 1) and the scrl / FuGene® complex were used as control samples during the experiments.
Gli AVs proteggono gli miRNA (seri) dalla degradazione prodotta dall’enzima RNasi A. Gli miRNA (seri) non degradati (Figura 6, linea 1), sono visibili solo quando incapsulati negli AVs (Figura 6, linea 4), ma non quando sono presenti nel complesso miRNA (seri) /FuGen e<®>(Figura 6, linea 6). AVs protect (serious) miRNAs from degradation produced by the enzyme RNase A. Non-degraded (serious) miRNAs (Figure 6, line 1), are visible only when encapsulated in AVs (Figure 6, line 4), but not when are present in the miRNA (seri) / FuGen and <®> complex (Figure 6, line 6).
Esempio 9: Valutazione dell· efficienza di trasfezione in vitro degli AVs. Example 9: Evaluation of the in vitro transfection efficiency of AVs.
L’efficienza di trasfezione in vitro degli AVs è stata misurata utilizzando FAM-miRNA. L’efficienza di trasfezione è stata valutata da un punto di vista quantitativo utilizzando un FACSCaliburTM flow cy tome ter (BD Bio Sciences, San Ho se, CA, LISA). The in vitro transfection efficiency of AVs was measured using FAM-miRNA. The transfection efficiency was assessed from a quantitative point of view using a FACSCaliburTM flow cytome ter (BD Bio Sciences, San Ho se, CA, LISA).
Le cellule HeLa sono state seminate in piastre per coltura cellulare da 6 pozzetti alla concentrazione di 5 x IO<5>cellule/pozzetto e incubate per una notte a 37 °C in 2 mi di mezzo per colture cellulari DMEM completo di FBS con penicillina/streptomicina. Raggiunta una confluenza del 70-80%, il mezzo di coltura cellulare è stato rimosso e le cellule sono state lavate 2 volte con PBS, incubate con mezzo di coltura cellulare privo di siero e trattate per 6 ore con FAM-miRNA/FuGene® incapsulato in AVs (Figura 7 - C). Il mezzo per colture cellulari privo di siero è stato in seguito sostituito con mezzo completo e le cellule sono state mantenute in incubazione per altre 24 ore. Il complesso FuGene<®>/FAM-miRNA è stato usato come controllo positivo durante gli esperimenti (Figure 7 - B). L’efficienza di trasfezione in vitro delle diverse formulazioni è stata determinata misurando lo spostamento dell’intensità di fluorescenza dei diversi campioni rispetto al controllo (Figure 7 -A). HeLa cells were seeded into 6-well cell culture plates at a concentration of 5 x 10 <5> cells / well and incubated overnight at 37 ° C in 2 ml of DMEM cell culture medium complete with penicillin / FBS. streptomycin. At 70-80% confluence, the cell culture medium was removed and the cells were washed 2 times with PBS, incubated with serum-free cell culture medium and treated for 6 hours with encapsulated FAM-miRNA / FuGene® in AVs (Figure 7 - C). The serum-free cell culture medium was then replaced with complete medium and the cells were incubated for an additional 24 hours. The FuGene <®> / FAM-miRNA complex was used as a positive control during the experiments (Figures 7 - B). The in vitro transfection efficiency of the different formulations was determined by measuring the shift in fluorescence intensity of the different samples with respect to the control (Figure 7 -A).
Gli AVs hanno un'efficienza di trasfezione pari al 68.57%; mentre il complesso Fu Gene® /FAM-miRNA ha un'efficienza di trasfezione di circa il 52%. AVs have a transfection efficiency of 68.57%; while the Fu Gene® / FAM-miRNA complex has a transfection efficiency of approximately 52%.
Esempio 10: Efficacia terapeutica in vitro di miRNA incapsulati in AVs. Example 10: In vitro therapeutic efficacy of miRNAs encapsulated in AVs.
Per valutare Γ efficacia terapeutica in vitro degli AVs, anti-miRNA-18a (anti-18a) è stato incapsulato negli AVs e la sua attività antitumorale è stata valutata utilizzando cellule MCF-7 come modello. L’attività citotossica di anti-18a incapsulati in AVs è stata valutata utilizzando la metodica MTT (saggio di vitalità cellulare). Il complesso anti-18a/FuGene® è stato utilizzato come controllo negli esperimenti di citotossicità in vitro su cellule MCF-7. Le cellule sono state seminate in piastre per coltura cellulare da 96 pozzetti (5 x IO<3>cellule/0.2 mi) ed incubate per 24 ore a 37 °C. Raggiunta una confluenza del 70%, il mezzo di coltura è stato rimosso, le cellule sono state lavate 2 volte con PBS, mantenute in incubazione con mezzo di coltura privo di siero e poi trattate utilizzando sia il complesso formato da anti-18a/Fugene<®>che gli anti-18 incapsulati in AVs. Dopo 6 ore d’incubazione, il mezzo di coltura privo di siero è stato sostituito con mezzo completo e le cellule sono state incubate per altre 24, 48 e 72 ore. Anti-18a è stato utilizzato alla concentrazione finale pari a 10 nM. Le cellule non trattate sono state utilizzate come controllo durante gli esperimenti. To evaluate the in vitro therapeutic efficacy of AVs, anti-miRNA-18a (anti-18a) was encapsulated in the AVs and its antitumor activity was evaluated using MCF-7 cells as a model. The cytotoxic activity of anti-18a encapsulated in AVs was evaluated using the MTT method (cell viability assay). The anti-18a / FuGene® complex was used as a control in in vitro cytotoxicity experiments on MCF-7 cells. Cells were seeded in 96-well cell culture plates (5 x 10 <3> cells / 0.2 ml) and incubated for 24 hours at 37 ° C. When a confluence of 70% was reached, the culture medium was removed, the cells were washed twice with PBS, incubated with serum-free culture medium and then treated using both the anti-18a / Fugene complex < ®> that the anti-18 encapsulated in AVs. After 6 hours of incubation, the serum-free culture medium was replaced with complete medium and the cells were incubated for another 24, 48 and 72 hours. Anti-18a was used at the final concentration of 10 nM. Untreated cells were used as controls during the experiments.
A diversi tempi d’incubazione, 10 pi di sali di tetrazolio solubilizzati in PBS (5 mg /mi) sono stati aggiunti ad ogni pozzetto e le piastre per colture cellulari sono state mantenute in incubazione per altre 3 h. Il mezzo di coltura è stato poi rimosso ed i cristalli di formazano ottenuti sono stati solubilizzati utilizzando 200 Lil di una miscela foimata da DMSO/etanolo (1:1, v/v). La sospensione ottenuta è stata mantenuta sotto costante agitazione su una piastra orbitante per 20 minuti a 230 rpm (IKA® KS 130 Control, IKA® WERKE GMBH & Co., Staufen, Germany). La vitalità cellulare è stata valutata utilizzando uno spettrofotometro con alloggiamento per piastre per coltura cellulare (Multi se an MS 6.0, Labsystem) programmato alla lunghezza d’onda di 540 nm, con una lunghezza d’onda di riferimento di 690 nm. La percentuale di vitalità cellulare è stata calcolata utilizzando la seguente formula: àhtalità Cellulare (%) = Abst/Absc x 100 At different incubation times, 10 µl of tetrazolium salts solubilized in PBS (5 mg / ml) were added to each well and the cell culture plates were kept in incubation for another 3 h. The culture medium was then removed and the formazan crystals obtained were solubilized using 200 Lil of a mixture formed by DMSO / ethanol (1: 1, v / v). The suspension obtained was kept under constant stirring on an orbiting plate for 20 minutes at 230 rpm (IKA® KS 130 Control, IKA® WERKE GMBH & Co., Staufen, Germany). Cell viability was assessed using a spectrophotometer with cell culture plate housing (Multi se an MS 6.0, Labsystem) programmed at a wavelength of 540 nm, with a reference wavelength of 690 nm. The cell viability percentage was calculated using the following formula: Cellular htality (%) = Abst / Absc x 100
in cui, Abst rappresenta l’assorbanza delle cellule trattate con le diverse formulazioni e Absc rappresenta l’assorbanza delle cellule utilizzate come controllo (cellule non trattate). La concentrazione dei cristalli di formazano è direttamente proporzionale alla vitalità cellulare. I risultati ottenuti sono la media di 6 diversi esperimenti ± la deviazione standard. in which, Abst represents the absorbance of the cells treated with the different formulations and Absc represents the absorbance of the cells used as control (untreated cells). The concentration of formazan crystals is directly proportional to cell viability. The results obtained are the mean of 6 different experiments ± the standard deviation.
Gli anti-18 incapsulati in AVs sono più efficaci nel ridurre la vitalità cellulare delle cellule MCF-7 rispetto al complesso formato da anti-18/FuGene<®>. Il risultato ottenuto dipende dalla migliore efficacia di trasfezione ottenuta utilizzando gli AVs rispetto al complesso formato da anti-18/FuGene<®>. La Figura 8 dimostra che anti-18 incapsulati in AVs riducono la vitalità cellulare fino al 46%, rispetto al 60% ottenuto utilizzando il complesso formato da anti18/FuGene<®>. Anti-18 encapsulated in AVs are more effective in reducing cell viability of MCF-7 cells than anti-18 / FuGene <®> complex. The result obtained depends on the better transfection efficacy obtained using the AVs compared to the complex formed by anti-18 / FuGene <®>. Figure 8 demonstrates that anti-18 encapsulated in AVs reduce cell viability by up to 46%, compared to 60% using the anti18 / FuGene <®> complex.
Esempio 11: Analisi mediante western blotting deirefficacia di miRNA complessati in AVs. Example 11: Western blotting analysis of the re-efficacy of miRNAs complexed in AVs.
Per convalidare i risultati ottenuti neirEsempio 8, i campioni sono stati analizzati mediante western blotting. Le cellule (5 x IO<5>cellule/2 mi) sono state staccate dalle piastre per colture cellulari utilizzando una soluzione di tripsina, raccolte dopo 72 h d’incubazione, centrifugate 1.200 x g per 5 min per rimuovere il mezzo in eccesso, ed infine lavate 2 volte con PBS. I pellet ottenuti sono stati solubilizzati in tampone di lisi (35 pi) e congelati per 15 minuti. I campioni sono stati poi centrifugati a 4 °C per 10 minuti a 14.800 rpm, il supernatante è stato raccolto ed è stata valutata la concentrazione totale di proteine contenuta in ciascun campione. Le proteine sono state in seguito separate utilizzando SDS-PAGE caricando 50 pg di proteine in ciascun pozzetto. Anticorpi anti-ERa and anti-GAPDH sono stati utilizzati nel corso degli esperimenti. Gli anti-18a incapsulati in AVs riducono i livelli d’espressione di ERa (Figura 9 - linea 3), dimostrando una maggiore efficacia del FuGene<®>(Figura 9 - linea 2). Quest’effetto dipende dalla maggiore attività citotossica in vitro degli anti-18a veicolati da AVs in cellule MCF7. Nessuna riduzione significativa dei livelli d’espressione di ERa sono stati ottenuti utilizzando il complesso formato da seri /FuGene<®>(Figura 9 - linea 4), inserì /FuGene® incapsulato in AVs (Figura 9 - linea 5) ed AVs vuoti (Figura 9 - linea 6). To validate the results obtained in Example 8, the samples were analyzed by western blotting. Cells (5 x 10 <5> cells / 2 mL) were detached from cell culture plates using a trypsin solution, collected after 72 h incubation, centrifuged 1,200 x g for 5 min to remove excess medium, and finally washed twice with PBS. The obtained pellets were solubilized in lysis buffer (35 µl) and frozen for 15 minutes. The samples were then centrifuged at 4 ° C for 10 minutes at 14,800 rpm, the supernatant was collected and the total protein concentration contained in each sample was evaluated. The proteins were then separated using SDS-PAGE by loading 50 µg of proteins into each well. Anti-ERa and anti-GAPDH antibodies were used throughout the experiments. The anti-18a encapsulated in AVs reduce the expression levels of ERa (Figure 9 - line 3), demonstrating a greater efficacy of FuGene <®> (Figure 9 - line 2). This effect depends on the greater in vitro cytotoxic activity of anti-18a carried by AVs in MCF7 cells. No significant reduction of ERa expression levels were obtained using the complex formed by seri / FuGene <®> (Figure 9 - line 4), inserted / FuGene® encapsulated in AVs (Figure 9 - line 5) and empty AVs ( Figure 9 - line 6).
Esempio 12: Valutazione della risposta immunitaria in vitro per gli AVs in modelli cellulari specifici. Example 12: Evaluation of the in vitro immune response for AVs in specific cell models.
Cellule Raw 264.7 (1.5 x IO<4>cellule/100 pi) sono state seininate in piastre per coltura cellulare da 96 pozzetti, incubate per 24 ore e, infine, sono state trattate con lipopolisaccaride (EPS) (1 Lig/ml), AVs vuoti e miRNA -incapsulati in AVs (100 nM) a 37 °C per 24 ore. La produzione delle seguenti citochine prò-infiammatorie (TNF-α, IL-6 ed IL-Ιβ) è stata valutata utilizzando un kit ELISA (Figura 8). Tutti gli esperimenti sono stati realizzati in triplicato. La Figura 10 mostra che sia gli AVs vuoti che quelli contenenti miRNA anti-18 non producono alcuna risposta immunitaria significativa dopo trattamento in vitro delle cellule Raw 264.7. Quest’effetto è stato valutato sotto il profilo quantitativo misurando l’espressione di TNF-α, IL-6 ed IL-Ιβ sulle cellule Raw 264.7 dopo trattamento con le diverse formulazioni. I risultati ottenuti sono in accordo con quelli già riportati nell’Esempio 2. La mancata risposta immunitaria dopo trattamento delle cellule Raw 264.7 con gli AVs giustifica il loro utilizzo in vivo e supporta la loro potenzialità clinica, per esempio nel trattamento delle patologie tumorali. Raw 264.7 cells (1.5 x 10 <4> cells / 100 µl) were seininated in 96-well cell culture plates, incubated for 24 hours and finally treated with lipopolysaccharide (EPS) (1 Lig / mL), Empty AVs and miRNAs -encapsulated in AVs (100 nM) at 37 ° C for 24 hours. The production of the following pro-inflammatory cytokines (TNF-α, IL-6 and IL-Ιβ) was evaluated using an ELISA kit (Figure 8). All experiments were performed in triplicate. Figure 10 shows that both empty AVs and those containing anti-18 miRNA do not produce any significant immune response after in vitro treatment of Raw 264.7 cells. This effect was evaluated quantitatively by measuring the expression of TNF-α, IL-6 and IL-Ιβ on Raw 264.7 cells after treatment with the different formulations. The results obtained are in agreement with those already reported in Example 2. The lack of immune response after treatment of Raw 264.7 cells with AVs justifies their use in vivo and supports their clinical potential, for example in the treatment of tumor pathologies.
Bibliografia Bibliography
Adii MM, et al., Langmuir. 2014;30:3802-10. Adii MM, et al., Langmuir. 2014; 30: 3802-10.
Ando H, et al., J Control Release. 2014;181:32-9. Ando H, et al., J Control Release. 2014; 181: 32-9.
Ando H, et al., J Gene Med. 2013;15:375-83. Ando H, et al., J Gene Med. 2013; 15: 375-83.
Annesini MC, et al., Biochem Mol Biol Int. 1994;32:87-94. Annesini MC, et al., Biochem Mol Biol Int. 1994; 32: 87-94.
Barenholz Y, et al., J Control Release. 2012;160:117-34. Barenholz Y, et al., J Control Release. 2012; 160: 117-34.
Biswas S, et al., J Control Release. 2012;159:393-402. Biswas S, et al., J Control Release. 2012; 159: 393-402.
Blume G, et al., Biochim Biophys Acta. 1990;1029:91-7. Blume G, et al., Biochim Biophys Acta. 1990; 1029: 91-7.
Calvagno MG, et al., Curr Drug Deliv. 2007;4:89-101. Calvagno MG, et al., Curr Drug Deliv. 2007; 4: 89-101.
Castano tto D, et al., Nature 2009; 457:426-33. Castano tto D, et al., Nature 2009; 457: 426-33.
Celano M, et al., BMC Cancer. 2004; 4:63. Celano M, et al., BMC Cancer. 2004; 4:63.
Celia C, et al., J Nanosci Nanotechnol. 2008;8:2102-13. Celia C, et al., J Nanosci Nanotechnol. 2008; 8: 2102-13.
Celia C, et al., Expert Opin Drug Deliv. 2011;8:1609-29. Celia C, et al., Expert Opin Drug Deliv. 2011; 8: 1609-29.
Cosco D, et al., Cancer Chemother Pharmacol. 2009;64:1009-20. Cosco D, et al., Int J Pharm. 2012;422:229-37. Cosco D, et al., Cancer Chemother Pharmacol. 2009; 64: 1009-20. Cosco D, et al., Int J Pharm. 2012; 422: 229-37.
Cosco D, et al., Drug Deliv Transl Res. 2011;1:66-75. Cosco D, et al., Drug Deliv Transl Res. 2011; 1: 66-75.
Dan N, et al., Adv Colloid Interface Sci. 2014;205:230-9. Dan N, et al., Adv Colloid Interface Sci. 2014; 205: 230-9.
Davidson BL, et al., Sci Rep. 2014; 4: 3883. Davidson BL, et al., Sci Rep. 2014; 4: 3883.
Fehring V, et al., Mol Ther. 2014;22:811-20. Fehring V, et al., Mol Ther. 2014; 22: 811-20.
Fritze A, et al., Biochim Biophys Acta. 2006;1758:1633-40. Fritze A, et al., Biochim Biophys Acta. 2006; 1758: 1633-40.
Gao LY, et al., Biomaterials. 2014;35:2066-78. Gao LY, et al., Biomaterials. 2014; 35: 2066-78.
Gentile E, et al., Future Oncol. 2013;9:1849-59. Gentile E, et al., Future Oncol. 2013; 9: 1849-59.
Hashimoto Y, et al., J Control Release. 2014;184:1-8. Hashimoto Y, et al., J Control Release. 2014; 184: 1-8.
Hatakeyama H, et al., Adv Drug Deliv Rev. 2011a;63:152-60. Hatakeyama H, et al., Biomaterials. 2011b;32:4306-16. Hatakeyama H, et al., Adv Drug Deliv Rev. 2011a; 63: 152-60. Hatakeyama H, et al., Biomaterials. 2011b; 32: 4306-16.
Hatakeyama H, et al., Mol Ther. 2011c;19:1487-98. Hatakeyama H, et al., J Control Release. 2014;173:43-50. Hatakeyama H, et al., Mol Ther. 2011c; 19: 1487-98. Hatakeyama H, et al., J Control Release. 2014; 173: 43-50.
Jain S, Rumar S, et al., Mol Pharm. 2013;10:2416-25. Jain S, Rumar S, et al., Mol Pharm. 2013; 10: 2416-25.
Kibria G, et al., J Control Release. 2011;153:141-8. Kibria G, et al., J Control Release. 2011; 153: 141-8.
Li Y, et al., J Control Release. 2014;176:104-14. Li Y, et al., J Control Release. 2014; 176: 104-14.
Liu Q, et al., Bioorg Med Chem. 2013;21:3105-13. Liu Q, et al., Bioorg Med Chem. 2013; 21: 3105-13.
Maccarrone M, et al., Biochem Biophys Res Commini. Maccarrone M, et al., Biochem Biophys Res Commini.
1992;186:1417-22. 1992; 186: 1417-22.
Molinaro R, et al., Expert Opin Drug Deliv. 2013;10:1653-68. Molinaro R, et al., Expert Opin Drug Deliv. 2013; 10: 1653-68.
Paolino D, et al., Biomaterials. 2014;35:7101-9. Paolino D, et al., Biomaterials. 2014; 35: 7101-9.
Paolino D, et al., J Control Release. 2010;144:144-50. Paolino D, et al., J Control Release. 2010; 144: 144-50.
Pasut G, et al., J Control Release. 2015;199:106-13. Pasut G, et al., J Control Release. 2015; 199: 106-13.
Patel NR, et al., Int J Pharm. 2011;416:296-9. Patel NR, et al., Int J Pharm. 2011; 416: 296-9.
Pozzi D, et al., Biochim Biophys Acta. 2014;1838:957-67. Wells D, et al., Biochim Biophys Acta. 2014; 1838: 957-67.
Puras G, et al., J Control Release. 2014;174:27-36. Puras G, et al., J Control Release. 2014; 174: 27-36.
Rai K, et al., Mol Cancer Ther. 2011;10:1720-7. Rai K, et al., Mol Cancer Ther. 2011; 10: 1720-7.
Schworer SA, et al., J Biol Chem. 2014;289:14422-33. Schworer SA, et al., J Biol Chem. 2014; 289: 14422-33.
Seyhan AA. et al., Hum Genet 2011;130:583-605. Seyhan AA. et al., Hum Genet 2011; 130: 583-605.
Sheng R, et al., B Biointerfaces. 2014;116:32-40. Sheng R, et al., B Biointerfaces. 2014; 116: 32-40.
Takahashi M, et al., Nucleic Acids Res. 2013;41:10659-67. Takahashi M, et al., Nucleic Acids Res. 2013; 41: 10659-67.
Tan FL, et al., Front Biosci 2005;10:1946-60. Tan FL, et al., Front Biosci 2005; 10: 1946-60.
Tiramt G, et al., J Biomed Nanotechnol. 2014;10:50-66. Tiramt G, et al., J Biomed Nanotechnol. 2014; 10: 50-66.
Torchilin VP. et al., Nat Rev Drug Discov. 2005;4:145-60. Torchilin VP. et al., Nat Rev Drug Discov. 2005; 4: 145-60.
Yang Y, et al., Small. 2014;10:1250-4. Yang Y, et al., Small. 2014; 10: 1250-4.
Zhang Y, et al., J Control Release. 2013;172:962-74. Zhang Y, et al., J Control Release. 2013; 172: 962-74.
Zhuo H, et al., Clin Cancer Res. 2013;19:4206-17. Zhuo H, et al., Clin Cancer Res. 2013; 19: 4206-17.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITUB2015A004631A ITUB20154631A1 (en) | 2015-10-12 | 2015-10-12 | Vesicular systems formed by asymmetric bilayers with double structure for the transmission of genetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITUB2015A004631A ITUB20154631A1 (en) | 2015-10-12 | 2015-10-12 | Vesicular systems formed by asymmetric bilayers with double structure for the transmission of genetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
ITUB20154631A1 true ITUB20154631A1 (en) | 2017-04-12 |
Family
ID=55237805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ITUB2015A004631A ITUB20154631A1 (en) | 2015-10-12 | 2015-10-12 | Vesicular systems formed by asymmetric bilayers with double structure for the transmission of genetic material |
Country Status (1)
Country | Link |
---|---|
IT (1) | ITUB20154631A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040043954A1 (en) * | 1999-05-14 | 2004-03-04 | Gregory Gregoriadis | Liposomes |
US20040191306A1 (en) * | 2003-03-31 | 2004-09-30 | Yuanpeng Zhang | Lipid particles having asymmetric lipid coating and method of preparing same |
US20130149374A1 (en) * | 2010-05-14 | 2013-06-13 | Korea Research Institute Of Bioscience And Biotechnology | Asymmetric Liposomes for the Highly Efficient Encapsulation of Nucleic Acids and Hydrophilic Anionic Compounds, and Method for Preparing Same |
-
2015
- 2015-10-12 IT ITUB2015A004631A patent/ITUB20154631A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040043954A1 (en) * | 1999-05-14 | 2004-03-04 | Gregory Gregoriadis | Liposomes |
US20040191306A1 (en) * | 2003-03-31 | 2004-09-30 | Yuanpeng Zhang | Lipid particles having asymmetric lipid coating and method of preparing same |
US20130149374A1 (en) * | 2010-05-14 | 2013-06-13 | Korea Research Institute Of Bioscience And Biotechnology | Asymmetric Liposomes for the Highly Efficient Encapsulation of Nucleic Acids and Hydrophilic Anionic Compounds, and Method for Preparing Same |
Non-Patent Citations (1)
Title |
---|
SHINSUKE OGUE: "Preparation of double liposomes and their efficiency as an oral vaccine carrier", BIOL. PHARM. BULL. 29(6), 17 March 2006 (2006-03-17), pages 1223 - 1228, XP055283168, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/bpb/29/6/29_6_1223/_pdf> [retrieved on 20160623] * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230132645A1 (en) | Lipid membrane structure for delivery into sirna cell | |
CA2853685C (en) | Single use system for sterilely producing lipid-nucleic acid particles | |
JP6997862B2 (en) | Compositions and kits containing biodegradable compounds, lipid particles, lipid particles | |
Chen et al. | Chondroitin sulfate-functionalized polyamidoamine as a tumor-targeted carrier for miR-34a delivery | |
Kabilova et al. | Targeted delivery of nucleic acids into xenograft tumors mediated by novel folate-equipped liposomes | |
KR20060120009A (en) | Polyethyleneglycol Modified Lipid Compounds and Uses thereof | |
WO2010014895A2 (en) | Nanoparticle compositions for nucleic acids delivery system | |
WO2018225871A1 (en) | Compound serving as cationic lipid | |
Zheng et al. | A novel gemini-like cationic lipid for the efficient delivery of siRNA | |
Ellipilli et al. | Ligand-displaying-exosomes using RNA nanotechnology for targeted delivery of multi-specific drugs for liver cancer regression | |
TW201408324A (en) | RNAi pharmaceutical composition for suppressing expression of KRAS gene | |
Liu et al. | Self-assembling doxorubicin-prodrug nanoparticles as siRNA drug delivery system for cancer treatment: in vitro and in vivo | |
CN111904934A (en) | Liposome of miRNA185 inhibitor and its preparation method | |
CN105085292B (en) | Amphipathic derivatives of 3 ((2 (dimethylamino) ethyl group) (methyl) amino) propionic acid and application thereof | |
CN117534585A (en) | A new type of ionizable cationic lipid compound and its preparation method and application | |
JP5914418B2 (en) | Lipid particle, nucleic acid delivery carrier, composition for producing nucleic acid delivery carrier, lipid particle production method and gene introduction method | |
ITUB20154631A1 (en) | Vesicular systems formed by asymmetric bilayers with double structure for the transmission of genetic material | |
CN105085437B (en) | Amphipathic derivatives of 3- (1- tert-butoxy carbonyl piperazines -4-yl) propionic acid and application thereof | |
WO2017111172A1 (en) | Compounds as cationic lipids | |
EP4527380A1 (en) | Lipid nanoparticles | |
CN103845737B (en) | Targeted long-circulating liposome based on MIM (Metal injection Molding) protein cyclopeptide inhibitor and preparation method and application of targeted long-circulating liposome | |
KR100986604B1 (en) | Pharmaceutical composition of sirna containing new amino-lipid and preparation thereof | |
Xiang et al. | Dual-modified siRNA-loaded liposomes for prostate cancer therapy | |
WO2016010111A1 (en) | Method for producing lipid particle and nucleic acid delivery carrier comprising lipid particle | |
WO2025063214A1 (en) | Method for producing ligand-modified lipid nanoparticles encapsulating nucleic acid |