IL101331A - Method for picture representation by data compression - Google Patents
Method for picture representation by data compressionInfo
- Publication number
- IL101331A IL101331A IL10133192A IL10133192A IL101331A IL 101331 A IL101331 A IL 101331A IL 10133192 A IL10133192 A IL 10133192A IL 10133192 A IL10133192 A IL 10133192A IL 101331 A IL101331 A IL 101331A
- Authority
- IL
- Israel
- Prior art keywords
- picture
- data
- cell
- models
- model
- Prior art date
Links
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Description
REF : 2097/92 ABBft&ATOS AMD-METHOD FOR PICTURE REPRESENTATION BY DATA COMPRESSION - - 2097/92 101331/2 APPARATUS AND METHOD FOR PICTURE REPRESENTATION BY DATA COMPRESSION Field of the invention This invention relates to apparatus and methods for representing pictures by data compression, particularly, but not exclusively, for the purpose of storing and/or transmitting the compressed data and subsequently reconstructing the picture in manner as faithful as possible.
Background of the invention The representation of various objects by data compression is a problem with which the art has been increasingly occupied in recent times. The problem is encountered in many cases, e.g. when a picture, or a succession of pictures, for example constituting a television broadcast, has to be registered in a magnetic memory, such as a video tape, or is to be transmitted over a distance by electromagnetic waves or by cable. On the one hand, it is of considerable economic importance to increase as much as possible the amount of optical and acoustic information that can be registered on a given memory, whereby to reduce the size and cost of magnetic tapes or other information storage means. On the other hand, the available wave bands are increasingly crowded, and so are the cables, and it is increasingly necessary to compress the transmitted data, so that as great a number of them as possible may be transmitted over a given frequency or by a given cable. Data compression problems, - - 2097/92 101331/2 therefore, are increasingly acute, both in data storage and in data transmission.
In particular, the art has dealt with the problem of compressing the data which represent an object, e.g. a picture. A process for the production of images of objects is disclosed in EPA 0 465 852 A2, which process comprises the steps of: (1) approximating the object by a model comprising at least one differentiable component; (2) establishing the maximum allowable error and the degree of the polynomials by which the differentiable components of the model are to be approximated; (3) constructing a grid of a suitable pitch; (4) computing the coefficients of the Taylor polynomials of the aforesaid differentiable components at selected points of said grid.
However, none of the method and apparatus of the prior art are wholly satisfactory. Either the degree of compression is too small, or the picture cannot be faithfully reconstructed - viz. "decompressed" - from the compressed data, or both.
In describing this invention, two-dimensional pictures, such as those created on a television screen, are considered, but three- or more than three-dimensional objects could be represented by the apparatus and method provided by the invention, e.g. by defining them by means of views or cross-sections in different planes.
Summary of the invention The method of picture representation by data compression according to the invention comprises the steps of: 1 - subdividing the picture into regions; 2 - fixing for each region a characteristic scale (hereinafter indicated by L) preferably defined in terms of a number of pixels; 3 - dividing each region into cells, each comprising a number of points (pixels) defined by two variables (coordinates), said cells having a maximum linear dimension equal approximately to L and being preferably squares having a side equal to L; 4 - identifying in each cell the "basic elements", as hereinafter defined; 5 - in each cell, representing the basic elements by models (or submodels), as hereinafter defined; 6 - storing and/or transmitting, for each cell: a) a code identifying the type of each model, and b) the parameters of each model, said data together representing the "primary compression" of the picture; 7 - optionally, further compressing said data by any suitable methods.
The regions into which the picture is subdivided are chosen in such a way that the data to be stored and/or transmitted for each of them will not be too numerous, and thus will not create files that are too cumbersome, particular with regard to the hardware that is available and to its capacity. Therefore in some cases the whole picture may be considered as a single region, or conversely, in other cases the regions will only be small fractions of the whole picture. Thus a suitable subdivision into regions will offer no difficulties to skilled persons. 2097/92 101331/2 The picture to be represented is defined by the brightness values of the basic colours (usually three) for each pixel, or by equivalent data. Said values may be available in the form of computer files, or may be transmitted by a picture generating apparatus, e.g. a TV camera, or may be read by means of scanners. In any case, when a colour picture is to be compressed, the method according to the invention can be applied separately to each of the three (or two or four) basic colours, and corresponding monochrome picture images are obtained. Alternatively, transform coding of colour data, by methods known in the art (see e.g. R.J. Clarke, Transform Coding of Images, Academic Press, 1985, from page 248) may be carried out, and the three original monochrome signals, corresponding to the RGB system, can be converted by transform coding into one (monochrome) luminance signal and two reduced bandwidth colour-information carrying signals.
By decompressing the compressed and stored and/or transmitted data relative to the various cells, which contain all the chromatic information required, a "picture image", viz. an image which closely approximates the picture, can be reconstructed. Said data include a brightness value for each pixel and for each basic colour, or equivalent information deriving from the transform coding hereinbefore mentioned, and this information permits any apparatus capable of creating an image, be it e.g. a computer which has stored the said information in its memory, or a printer, a still camera, a TV camera, and so on, which receive the information from a computer, to create the picture image. Such 2097/92 101331/2 apparatus and their operation are well known to persons skilled in the art.
The information defining, in any chosen way, the brightness distribution of the various colors, may be a function of time. This will occur e.g. whenever a motion or a television picture is compressed and reconstructed. In such a case, the method steps according to the invention should be carried out in a very short time, e.g. in the order of 30 frames per second.
The apparatus according to the invention comprises: A - means for defining the brightness values of the basic colours, or equivalent information, at each pixel of the original picture; B - means for registering the said brightness values or equivalent information, as sets of values associated with the pixels of a number of cells, of predetermined size, of the each region of the picture; C - means for determining the parameters of any one of set of basic models, in particular minimizing the square deviation of the values of said basic model from the values of a brightness function at the pixels of the cell; and D - means for storing and/or transmitting information defining the types of basic models chosen and the said parameters thereof. 2097/92 101331 2 The means A- for determining the brightness values of the points of the cell may be different depending on the particular embodiment of the invention. They may consist, e.g., merely in means for relaying to the apparatus values which are defined by means that are not part of the apparatus, in particular by the apparatus which creates or transmits the original picture. Thus, if the invention is applied to the compression of a television movie, for the purpose of registering it on a video tape, the brightness values relative to each point of the television receiver screen are transmitted, as functions of time, from a broadcasting station via electromagnetic waves or via cable, and these same values can be relayed directly to the registering means B-. The brightness value determining means will then essentially be a part of the television receiver: said values will be registered in the apparatus according of the invention concurrently with their appearing as optical values on the receiver screen. In this case, one may say that the picture is being compressed in real time. A similar situation will prevail if the picture to be compressed is not being transmitted, but has been registered on a magnetic tape: the reading of the tape, that would be carried out in order to screen the registered picture in a normal way, will directly provide the brightness values. In other embodiments, the invention may be used to compress a picture that is already optically defined. Then the brightness value determining means will be normally constituted by a scanner.
The storing and or transmitting means D- may be conventional in themselves, and may be constituted, e.g. by magnetic tapes, such as video tapes, by television broadcasting apparatus, and the like.
The stored and/or transmitted, compressed picture must be reconstructed by decompression from the compressed data, so that it may be viewed. Therefore, there must be additionally provided, E - means for reconstructing the picture by producing at each point of each cell a color brightness the value of which is defined by the value at said point of said basic model having said parameters.
In some embodiments, decompressing means E- are part of the apparatus according to the invention. Thus, if the invention is used to compress data for recording television pictures on video tapes, the apparatus will comprise means for actuating the television screen to screen pictures defined by the compressed data. This will generally occur when the reconstructed picture must be seen at the location at which it has been compressed. However, if the point at which the picture is to be seen, is different from the one at which the apparatus comprising components A- to D- is located, means E- will not be physically a part of said apparatus. In general, means E- are functionally, but not necessarily or even usually structurally connected with means A- to D-. These latter, while usually connected with one another, need not necessarily be structurally combined. 2097/92 101331/2 Description of the drawings In the drawings: Fig. 1 is a picture to be represented b compression; Fig. 2 is its representation obtained by decompressing data that had been compressed at a ratio of 1:35; Fig. 3 is another picture to be represented by compression; and Fig. 4 is its representation obtained by decompressing data that had been compressed at a ratio of 1:50.
Detailed description of preferred embodiments By "basic elements" is meant a number of simple structures such that in combination they approximate any actual structure or "object" that can be found in the picture. In carrying out the invention, a list of such basic elements is prepared for each application. Usually the same list is adequate for all applications of the same nature, e.g. for all TV pictures. Such a list, particular suitable for representing TV pictures, but also for other applications, will be described hereinafter. However, persons skilled in the art may modify it and add other basic elements, when dealing with other applications or with particular cases of the same application. 2097/92 101331/2 In all the definitions of picture objects (not of models and submodels) , hereinafter, reference is made to a given part of a picture of a size apporoximately equal to the scale L. Therefore said definitions are scale-dependent.
Smooth objects and smooth regions - The word "smooth" is used and will always be used hereinafter to define those brightness distributions (brightness surfaces) that can be represented by a polynomial P(x,y) of a low degree, e.g. a degree generally not higher than 4, in a "visually undistinguishable way" (as hereinafter defined). Thus smooth regions are those in which the brightness surface z = f(x,y) defining the distribution of a colour in the picture, can be so represented; and smooth objects are those any part of which inside any cell can be so represented by a polynomial model or submodel of a low degree. Two pictures are considered to be "visually undistinguishable", as defined by the MEPG (Motion Picture Expert Group of the International Standard Organization), when any ordinary viewer cannot distinguish between them when viewing them from a distance equal to six times the picture height. Different requirements for visual undistinguishability may be defined for different applications, such as: high end computer imaging, PC computer imaging, PC or video games, multimedia, pre-press applications, fax, colour video conferencing, videophone, archiving, medical imaging, aerial picture analysis, etc. However, the invention does not always require that the picture representation and the original be visually undistinguishable, though this is generally preferred: the degree of similarity may depend on the particular 2097/92 -10- 101331/3 application and on the degree of faithfulness that is required of the representation in each case.
Analogously, a "smooth curve" is a curve in the neighbourhood of whose intersection with any cell the picture can be represented by a model, within which the curve is defined by a polynomial of low degree.
As used in this application, the term "submodel" is to be construed as meaning: a) an array of grey levels or RGB values for a certain part of a picture (e.g. grey level z = ΦΆ^(χ,γ), wherein Φ is an expression depending on parameters a and b); or b) the geometry of certain objects on a picture (e.g. the form of a certain curve can be represented as y = Ψ0(Ι(Χ)> such as e.g. y = cx+dx2).
The term "model" means an expression consisting of one or more submodels, and allowing for computing for any given x,y a grey level z = The parameters of submodels, representing the geometry of objects, are called "geometric parameters", and the parameters of submodels, representing grey levels, are called "brightness parameters". Some of the models explicitly contain submodels responsible for the position and the geometry of the described objects, as shown in the following example: In the model z = (x,y), wherein Φ is equal to aix+bjy+cj, if y>ax2+ x+%, and is equal to a2X+b2y+C2, if y< x2+ x+x, the 2097/92 -11- 101331/3 geometric submodel is the curve y = αχ2+βχ+χ and α,β,χ are the geometric parameters, z = and z = a2X+b2y+C2 are two other submodels of this model.
Polynomial models or submodels are those given by polynomials of low degree (usually < 4), with coefficients assuming a limited number of values (usually < 256).
To "represent" a picture, or a part thereof, or a certain object that is in the picture, by a model, is intended to mean to replace the original grey or RGB levels z = f(x,y) by the grey level model values z = 0(x,y).
Simple models or submodels are those containing a small total number of parameters (usually < 6), each of these parameters assuming a limited number of values (usually < 256).
Simple objects - An object, part of a picture, is said to be "simple", if for any cell the part of the object inside the cell can be represented in a visually undistinguishable way (as hereinbefore defined) by a simple model or submodel.
Curvilinear structures - Are those in which the brightness distribution can be represented by a surface z = f(x,y), generated by a simple (as the word is defined hereinbefore) profile, a point of which follows a simple curve, the parameters defining the profile being simple functions of the position of said point on said curve. Curvilinear structures can be unbounded (in the cell under 2097/92 101331/2 consideration), or bounded at one end, or at both ends to constitute . a segment. They can also form nets, when several curvilinear structures are joined at some points or portions, that will be called "crossings".
Local simple elements - An element is "local" if its diameter is comparable with L, at most 2 to 3 L. Local simple elements are those that are local and simple, as the latter word is defined hereinbefore.
In practice, the aforesaid types of brightness distributions are never found in their pure form, but types that are sufficiently similar to be treated as such are generally found.
The determination of the characteristic scale L is a fundamental step. If L is too small, the structure found in the cells - the "object" - can easily be represented by basic element models, but the amount of data that will be involved in the compression is too high for the compression to be successful. On the other hand, if L is too large, it is impossible to represent the objects in a visually undistinguishable way by means of basic element models. Therefore the choice of L will depend on each specific application, and L will be chosen as the largest scale that permits to approximate the actual objects by means of basic element models in such a way as to achieve a visually undistinguishable representation, or at least as faithful a representation as desired for the specific application; and it will also depend, of course, on the quality and resolution of the original picture.
L is expressed in terms of pixels. For instance, when applying the invention to the compression of television images, it is found that L should be comprised between 10 and 16 pixels, e.g. about 12 pixels. For most applications, L may be comprised between 8 and 24 pixels, but these values are not a limitation. A frequent value is L=16. It is appreciated that each cell, if square, contains LxL pixels, so that if L is 16, the cell will contain 256 pixels. A square cell having the dimesions LxL will be called the "standard cell". Since most hardware is designed to operate with ASCII symbols, such a size of cell or a smaller one is convenient.
If a certain object is simple or smooth with respect to a given scale L, it is smooth with respect to any smaller scale.
It has been found that, for representing television pictures, if the picture is divided into cells of 4x4 pixels, and in each cell the grey levels are approximated by second deegree polynomials, an essentially visually undistinguishable picture representation is obtained. Thefore in a television picture any object is smooth and simple on a characteristic scale of 4. Furthermore, for such an application, the array of basic elements hereinbefore described is adequate and sufficient for picture representation on any scale between 8 and 16, preferably of 12.
A picture is always considered as an array of pixels, Pjj, of various sizes, for example 480x700, viz. 480 > i > 1 and 700 > j >1. This array is assumed to be contained in the plane with 2097/92 101331/2 coordinates x,y. Thus each pixel has discrete coordinates x,y, though the coordinates themselves are considered as continuous. The grey level brightness distribution z = flx.y) assumes at each pixel Pjj the value Zjj= f(xj,yj), where the values of z vary between 0 and 255. A colour picture is generally defined by three intensity functions R(x,y), G(x,y) and B(x,y), each assuming values between 0 and 255, or by equivalent expressions obtained by the transform coding methods hereinbefore mentioned.
Considering now a single cell, one of the possible implementation processes according to the invention is carried out as follows. The simplest basic element type is chosen and the corresponding model's parameters are determined by minimizing, by known minimization routines, the deviation thereof from the actual object contained in the cell. As a measure of said deviation it is convenient to assume what will be called the "square deviation", viz. the sum of the squares of the differences between the values which the function z=f(x,y), defining the object, has at the various pixels and the corresponding value of the function Φ defining the model, viz.: σβΦ) = ∑ [f x,y) - 0(x,y)]. σ is minimized for each cell with respect to the parameters of Φ, e.g. by a standard minimization routine such as those from the IMSL library. If σ is not greater than a predetermined threshold value T, the model is assumed to represent the object and the processing of the cell is stopped. The threshold value T may vary for various applications, but in general it is comprised between 5 and 15, and preferably is about 10, in the scale of the z or RGB 2097/92 101331/2 values. If σ > T, the procedure is repeated with another basic element model, and if none of them gives a small enough square deviation, the procedure is repeated with a model which is the sum of all the previously tried models. If, even thus, the square deviation is greater than the threshold value, the scale L is decreased. Experience has shown that, if the characteristic scale L is small enough, every object can be represented by a few basic element models.
Each model or combination of models is identified by a code number. Said number and the parameters of the model or combination of models assumed to represent the object of the cell, constitute the "primary compression" data relative to said cell.
At this stage, part of the primary compression data may be omitted and another part simplified, depending on their psychovisual contribution. Thus some small structures may be neglected, some others may be approximated (e.g. ellipsoidal ones by spherical ones), etc.
After the said secondary compression, an operation that will be called "quantisation" may be carried out. "Quantisation" means herein using only a number of the possible parameter values, e.g. approximating each value by the nearest among an array of values differing from one another by a predetermined amount, e.g. 0, 32, 64 etc, thus considerably reducing down from 256 the number of possible values. 2097/92 101331/2 At this stage, the correlations between parameters relative to different cells may be taken into account, whereby larger models, which extend throughout regions that are bigger - e.g. 2-3 times bigger - than a single cell, may be defined. This further simplifies the compression data by extending the validity of certain parameters to larger areas. E.g., the same polynomial may represent a smooth curve extending through several neighbouring cells, curvilinear structures extending through several neighbouring cells may form regular nets, and the like. Small corrections on a single cell level may be required and stored.
All the aforesaid approximation methods may lead to discrepancies between neighbouring cells. These discrepancies may be smoothed out during the decompression stage, during which the basic elements of the same type (e.g. smooth regions, curvilinear regions etc) are smoothed out separately.
A particular application of the invention is to the compression of TV pictures. It has been found that in any such picture, one can find certain smooth regions, curvilinear structures and local simple objects, such that: a) the number of such basic elements in any standard cell is small, usually 5 or 6, the value of L being, as stated hereinbefore, preferably about 12 pixels; b) any array of models, which represents faithfully (in a visually undistinguishable way) each of the above elements, faithfully represents the whole picture. 2097/92 -17- 101331/3 Rather high compression of TV-pictures is thus possible: the models contain a small number of parameters; each of them must be defined by at most 256 values.
An example of the implementation of the process according to the invention will now be given.
The picture to be represented by compression is a colour picture, as shown in Fig. 1 or Fig. 3. The following basic elements and models are used: 1- Model: smooth region - z = Oj(x,y) = Pi(x,y) = aoo+aiox+aoiy+a20x2+aiixy+a02y2+a30x3+a2ix2y+a12xy2+a03y3.
This model has 10 parameters. 2 - Model: curvilinear structure - z = Φ2(χ^) To define this model we use an orthonormal system of coordinates u,v that is rotated by an angle Θ counterclockwise with respect to the system x,y. The central curve of the "line" is given by the equation v = r+ku2. The model is defined by : ζ = J>2*( ,y) = z\ = Poo+P 10x+P0iy for v ≥ r+ku2+h Z2 = P00,+P0l'x+P0l'y for v < r+ku2-h z3 = tz1+(l-t)z2, where t = (v-ku2+h)/2h, for r+ku2+h > v > r+ku2-h, and z = 3(x,y).
Firstly we define a "supporting ellypse" by the angle Θ which the short semiaxis makes with the x-axis, by the coordinates XQ, yo of the center, and by the values r^< ¾ of the semiaxes.
The Φ3 is defined as x =3(x,y) = c(u2/rx2 + v2^2), where u and v are the coordinates of the point (x,y) in the coordinate system (u,v) hereinbefore defined. Here \|/(s) has the form (s2-l).
Finally, the model generated by the objects contains "1" objects, with 1< 1 < 6. The value of z that is finally obtained is the sum of the values of Φ3 for all objects.
Usually, one stores the coefficients of the orthonormal system (u,v) rotated by the angle Θ. Thus the model is characterized by: 1 - the number of objects; 2 - for each object, the coordinates XQ, yo, the angle Θ, r^ < ¾ and the coefficient c of each object in the linear combination. 3 - thus the model on a cell of the third type is given by z = qo + qix + Fig. 1 shows an original picture - a landscape - to which the invention is applied. The procedure hereinbefore described has been followed. Table 1 shows the grey level values of a 40x40 region of the original, which is marked by a black dot in Fig. 2, which Fig. 2 shows the decompressed reproduction. It is seen that this latter is quite undistinguishable from the original. Table 2 lists the grey levels of the models of the same region. Table 3 lists the same data of Table 2, but after quantisation of the models. Table 4 lists the parameters of the models, which are of the type 3 (simple local objects) described above, indicated by code H, which consitute the compressed data. Each group of successive 5 rows contains the coefficients of one cell. Table 5 lists the same data as Table 4, but after quantisation. Fig. 3 shows another original picture - a girl sitting at a desk - and Fig. 4 the decompressed reproduction. Once again, the two images are undistinguishable. Tables 6 to 10 respectively correspond to Table 1 to 5 of the preceding example. However it is seen in Tables 9 and 10 that models indicated by E and T have been used: these respectively indicate models of the type 2 (curvilinear structures) and 1 (smooth regions) described hereinbefore.
While particular embodiments have been described by way of illustration, it will be understood that they are not limitative and that the invention can be carried out in different ways by persons skilled in the art, without departing from its spirit or exceeding the scope of the claims.
Table 1 125 57 58 89 74 57 64 57 50 64 73 66 7-2 78 74 75 76 95 105 106 150 167 98 38 66 167 230 189 171 168 99 60 47 59 123 143 149 134 79 71 63 113 164 161 149 104 52 59 126 146 130 145 149 149 121 71 70 76 44 45 145 177 65 95 153 98 189 240 171 183 198 157 75 59 113 84 97 13*7 68 26 122 166 175 186 193 171 112 112 188 174 147 188 190 191 199 182 146 73 38 84 155 126 100 207 161 44 119 208 202 197 221 195 124 132 156 116 81 86 77 30 169 174 177 180 193 194 134 117 188 182 122 141 173 178 195 182 110 58 75 93 77 55 107 198 132 48 114 196 222 201 180 172 132 123 130 103 101 94 53 55 185 176 173 179 192 193 127 90 165 198 159 155 138 109 92 69 96 151 139 67 34 85 139 158 118 50 92 218 227 164 162 159 110 103 124 109 114 87 25 71 183 170 161 176 201 189 122 85 155 204 189 199 134 51 50 79 168 207 137 68 70 162 184 131 110 94 143 205 187 135 125 159 116 61 99 143 142 83 32 71 186 156 142 161 204 180 105 100 179 221 172 120 86 78 71 106 201 182 101 65 83 179 187 108 99 153 164 121 142 157 147 176 132 75 84 147 182 93 38 92 189 165 136 128 155 129 119 180 205 180 102 68 145 175 104 78 142 149 74 91 158 155 141 124 120 155 172 161 168 188 197 201 168 85 63 135 161 82 41 92 185 182 154 113 114 148 180 190 151 79 70 141 184 192 171 84 67 117 99 149 212 120 85 144 162 182 201 181 186 193 166 158 135 93 74 80 87 56 47 126 182 179 179 166 164 190 203 166 116 83 116 184 185 189 201 127 52 63 148 205 179 109 102 176 161 150 207 158 128 122 75 77 62 60 69 44 49 35 39 133 189 178 185 190 206 209 145 148 196 136 137 204 174 186 214 147 66 56 163 211 118 81 147 187 135 145 166 77 65 110 83 45 65 94 59 46 42 47 94 150 189 191 193 208 200 152 82 93 188 158 118 195 192 184 224 156 71 54 121 154 77 96 183 145 85 111 131 81 79 142 145 143 133 62 87 108 51 113 145 83 Table 1 (cnt'd) 166 196 186 160 128 97 62 64 160 150 104 195 200 182 204 117 69 63 57 79 90 150 159 71 69 93 66 60 95 166 162 116 121 105 140 188 90 50 98 84 70 128 117 90 122 99 59 137 183 120 100 172 201 130 86 99 138 115 53 109 146 108 99 59 103 146 50 33 88 136 146 81 93 165 199 199 128 57 33 69 74 43 49 82 94 112 160 184 190 168 119 158 183 79 38 123 185 137 115 163 105 49 97 111 122 137 74 31 71 100 104 146 182 192 188 146' 108 96 68 45 95 74 78 64 119 190 188 196 201 196 211 189 125 53 67 166 199 139 78 71 99 146 178 165 154 154 117 56 72 127 83 95 188 165 108 91 105 153 145 113 142 143 103 123 170 181 190 174 165 194 207 148 72 49 81 159 193 113 50 70 120 177 200 191 205 195 146 133 135 94 67 52 49 121 163 96 94 181 194 148 137 104 81 67 92 107 105 103 71 79 111 72 56 119 156 158 129 93 151 165 104 130 175 190 210 194 154 159 186 110 48 105 137 167 186 107 119 190 162 138 65 87 122 115 103 100 100 117 109 77 44 30 91 194 188 97 76 139 198 199 166 117 88 140 185 154 113 144 199 112 53 153 202 195 191 110 95 153 127 118 50 101 180 180 175 188 181 181 153 109 85 79 117 162 124 70 79 131 194 196 184 185 132 111 123 115 90 96 166 118 41 136 210 202 205 126 68 100 113 122 79 61 132 175 195 212 202 143 87 119 168 111 48 77 143 170 113 92 173 196 172 193 186 170 168 156 143 120 133 115 48 115 211 212 199 116 74 137 147 141 170 122 92 83 144 185 155 87 94 183 159 81 55 108 195 191 166 154 157 191 181 182 194 184 190 188 188 189 172 125 47 87 207 229 178 121 117 164 180 167 190 186 177 135 104 71 75 123 151 120 72 81 101 143 204 188 178 187 176 183 180 181 186 182 187 185 190 203 204 158 66 69 189 225 142 121 166 182 198 191 189 189 208 203 161 69 66 162 120 43 106 157 103 108 191 192 175 204 190 179 184 179 185 183 183 186 187 199 214 195 109 50 111 160 102 113 185 180 186 202 Table 1 (cnt'd) 183 190 206 210 158 92 137 164 65 85 190 193 147 100 144 210 188 209 202 171 198 186 186 196 182 195 196 198 191 173 143 61 33 62 49 53 101 124 128 164 192 193 193 172 125 131 173 103 85 183 187 172 171 99 110 194 192 180 188 167 178 192 184 188 181 180 176 151 129 116 99 58 48 65 35 38 95 103 74 89 187 169 144 101 137 190 108 60 151 200 164 154 155 98 58 119 169 147 154 151 136 156 137 122 139 150 154 108 51 60 117 165 159 105 39 57 154 182 139 82 128 142 110 89 164 166 57 95 194 183 180 186 174 165 123 79 91 132 139 138 120 63 60 117 164 180 148 75 65 144 185 198 202 118 62 113 143 136 143 88 95 107 66 64 113 89 66 156 195 171 190 187 187 197 187 175 133 98 91 89 86 55 55 123 172 142 86 110 180 187 191 215 179 103 116 185 118 68 137 80 51 57 94 62 29 70 132 182 188 175 187 182 185 197 191 197 192 169 152 144 139 121 101 115 127 101 110 174 194 185 201 216 197 114 88 147 152 172 156 50 105 127 125 71 119 170 162 190 185 175 190 177 185 189 189 187 175 191 196 184 189 183 182 181 158 142 170 195 187 194 208 212 180 83 46 132 208 185 105 51 188 148 96 139 201 181 184 192 175 187 184 180 187 183 194 172 137 168 201 188 189 197 197 202 170 154 194 198 192 208 181 135 85 42 81 177 210 159 77 57 160 106 146 193 183 184 187 181 185 180 184 186 183 187 192 172 123 141 199 184 178 195 192 190 149 150 206 204 195 169 90 47 58 105 154 183 201 157 77 88 98 116 193 186 179 186 179 185 181 182 185 182 179 174 198 192 133 127 184 194 176 193 197 167 133 162 221 188 133 110 92 71 105 195 183 170 227 187 100 119 98 173 196 170 187 183 178 187 178 186 185 179 159 148 195 207 154 117 152 200 184 191 204 156 127 179 206 108 88 178 145 89 179 236 184 206 246 187 132 169 167 188 176 185 179 182 185. 179 185 180 185 189 165 138 154 196 178 107 104 188 209 187 215 175 125 159 132 91 175 222 133 129 221 218 204 235 224 182 159 192 Table 1 (cnt'd) 195 173 180 183 177 186 181 184 183 179 184 187 188 171 150 153 155 110 91 165 207 198 213 171 90 78 125 178 218 201 133 166 220 162 176 228 189 142 146 193 195 168 190 180 181 187 178 186 180 181 185 184 192 193 183 156 152 135 59 68 149 166 145 106 47 40 118 211 227 162 129 198 228 146 109 149 159 102 110 178 185 179 188 183 186 185 180 184 180 182 185 184 188 194 191 169 155 156 141 104 54 49 64 41 53 73 64 147 190 90 113 215 196 164 153 143 118 78 126 178 182 173 182 186 188 191 181 189 184 180 188 182 187 192 192 195 192 198 202 147 61 36 45 52 122 164 105 74 69 42 72 126 119 139 204 192 132 81 99 176 Table 2 94 89 94 95 86 65 35 25 80 72 66 66 67 67 68 69 69 70 71 71 120 124 99 75 81 157 249 205 164 174 115 52 36 68 121 142 126 110 94 78 111 122 138 146 140 116 78 67 127 130 118 141 149 139 116 88 73 73 74 75 120 126 131 109 86 102 181 216 178 175 188 128 86 81 105 126 112 96 80 64 131 151 173 186 180 155 113 100 165 174 130 173 209 222 202 163 120 85 77 78 121 127 133 139 133 74 119 210 207 175 193 177 151 129 121 114 98 82 66 50 145 166 190 204 199 173 130 111 180 199 91 143 188 200 177 146 121 96 82 81 121 127 133 139 123 69 99 218 221 176 179 163 147 131 116 102 91 76 53 36 150 167 187 198 196 181 128 100 169 202 145 171 164 129 91 82 101 152 121 85 121 128 149 144 97 62 97 205 214 176 165 149 133 117 107 112 116 96 46 38 154 157 168 176 211 198 122 79 153 213 170 168 138 98 85 86 170 212 136 88 122 153 189 142 90 85 136 172 192 177 151 136 119 103 106 129 150 96 43 59 165 152 149 158 198 175 99 104 182 214 137 117 92 90 88 102 191 193 106 91 122 178 183 130 107 127 159 165 172 177 171 174 135 90 101 137 160 82 45 89 176 163 149 140 154 126 135 176 186 166 91 102 133 141 119 100 143 120 94 95 123 155 141 136 136 153 159 165 171 177 186 206 166 92 84 125 139 62 51 119 188 174 161 147 134 148 195 202 149 94 95 142 189 197 161 109 96 97 97 98 123 129 135 141 147 153 159 165 172 178 142 163 136 75 58 92 100 39 57 135 200 186 173 159 151 18'6 202 166 103 78 103 157 205 211 169 113 99 100 101 101 124 130 136 142 148 154 160 166 172 178 95 86 69 47 32 48 55 17 55 123 164 189 202 204 195 179 155 138 138 153 161 176 191 206 200 139 85 78 129 220 108 109 145 171 115 111 111 112 112 113 102 101 100 99 98 97 96 95 94 93 181 201 210 207 185 151 124 117 135 159 152 167 182 197 206 152 82 58 89 172 111 119 189 159 92 99 104 104 115 116 99 98 97 96 95 92 88 92 91 90 Table 2 (cnt'd) 160 175 180 158 123 96 90 110 145 167 144 159 174 189 187 128 78 59 68 135 114 146 159 76 73 107 74 59 103 118 96 95 94 99 132 149 94 50 81 87 115 126 115 89 68 68 95 133 161 173 135 150 165 152 101 101 110 82 70 116 116 114 76 63 102 118 61 24 73 121 93 92 114 173 209 193 133 40 33 77 78 84 73 65 75 112 155 178 177 180 146 169 161 73 38 111 168 119 91 108 101 75 79 110 121 121 79 29 62 123 90 105 166 210 204 150 96 99 82 69 81 87 87 94 131 178 204 205 194 188 185 207 126 45 60 155 199 158 88 80 113 133 163 169 159 142 116 71 84 126 87 115 151 153 119 84 110 140 140 108 88 100 108 120 148 175 187 185 177 182 183 161 76 54 120 184 190 129 72 99 135 164 193 209 207 187 157 125 120 129 84 87 98 108 105 89 125 170 178 142 95 105 104 98 103 107 103 92 90 108 129 79 46 89 158 168 118 86 108 172 127 144 172 195 202 193 169 143 131 131 81 97 145 176 166 122 120 168 184 154 102 114 124 121 112 101 87 79 79 88 80 56 81 135 151 114 74 99 177 219 129 130 133 145 154 155 146 135 133 134 80 129 193 223 201 139 98 134 154 135 109 121 133 145 156 163 162 159 157 160 80 91 113 128 123 90 102 162 202 217 132 132 133 133 134 134 135 135 136 136 80 132 191 212 182 119 70 87 103 94 95 74 110 177 214 204 179 154 137 135 177 106 60 81 141 158 153 152 152 148 174 181 182 173 161 152 148 138 125 118 65 85 168 216 187 118 108 120 131 127 183 121 75 83 134 170 148 123 111 116 130 62 55 110 162 160 165 171 172 166 177 185 189 185 184 182 182 176 159 137 54 104 203 247 208 133 138 166 184 182 196 198 178 130 94 88 107 102 97 110 107 74 104 158 164 171 183 190 190 180 179 185 191 190 192 197 202 204 193 169 53 98 181 211 169 122 155 187 207 204 192 195 197 194 161 109 81 95 94 116 128 125 153 166 171 184 196 202 198 184 184 183 189 189 185 190 199 209 206 189 63 65 110 123 98 102 145 173 188 183 Table 2 (cnt'd) 188 191 194 185 153 114 142 115 93 127 172 173 132 125 169 190 200 202 194 176 190 185 185 186 182 174 179 190 194 180 83 49 44 46 61 89 118 136 142 134 185 187 184 157 117 160 178 86 102 146 182 176 147 93 105 170 192 190 178 159 194 178 172 178 180 173 166 167 139 102 112 73 67 54 61 85 108 113 104 93 180 168 146 115 129 201 125 84 125 172 180 174 168 125 77 96 159 169 156 138 160 128 121 142 171 177 172 112 61 86 146 144 157 103 70 88.108 116 106 94 153 126 100 80 158 143 75 112 156 193 179 173 167 164 124 80 96 141 135 124 119 78 75 107 155 182 113 56 81 151 180 207 203 123 87 97 112 120 111 99 113 84 62 76 109 73 104 144 179 197 177 176 183 191 193 163 121 124 132 122 104 64 64 101 156 132 76 98 163 170 204 210 183 122 111 113 121 125 116 104 79 55 44 52 66 96 133 167 189 193 176 178 190 202 207 202 183 150 137 121 129 95 97 132 144 118 135 182 181 176 214 198 174 152 138 133 133 131 120 109 159 160 126 73 132 171 174 181 181 174 184 186 187 189 191 181 179 185 186 191 204 199 193 188 182 177 171 184 199 180 159 153 139 91 79 117 159 149 125 107 162 150 100 122 189 195 192 187 183 174 184 186 187 189 189 173 146 178 186 192 194 188 183 177 171 166 179 212 209 167 157 131 67 47 96 167 180 157 125 105 153 107 140 195 175 182 186 187 181 174 184 186 188 189 188 179 126 145 191 197 183 177 172 166 161 163 203 221 189 138 136 70 39 88 172 203 189 157 120 103 107 109 203 196 171 177 183 183 177 176 184 175 179 189 189 189 134 113 181 199 184 176 162 156 150 175 206 194 146 122 99 64 100 178 213 213 196 163 129 114 113 156 187 175 174 177 180 178 178 179 185 172 149 158 187 193 163 100 141 199 195 196 176 149 143 170 176 144 118 130 113 126 178 208 222 226 211 183 160 147 165 174 175 176 177 178 178 179 180 181 185 186 168 143 154 187 191 116 109 187 197 215 204 170 138 142 129 131 171 193 149 161 189 210 221 222 208 189 182 168 Table 2 (cnt'd) 176 177 177 178 179 180 181 182 183 184 185 186 88 179 152 150 164 126 84 149 183 215 220 179 118 77 107 179 230 223 149 166 189 200 198 191 179 175 175 162 178 179 180 181 182 183 184 185 186 187 185 187 188 188 175 154 139 127 70 92 148 157 143 104 53 34 103 187 219 180 149 163 179 180 164 145 137 143 143 132 181 182 183 184 185 186 187 188 189 190 185 187 188 190 191 182 165 152 122 100 73 59 58 53 42 66 117 165 149 95 146 155 161 155 154 137 112 109 105 98 184 185 186 187 188 189 190 191 192 193 185 187 189 190 192 193 195 195 191 167 54 30 46 74 95 116 116 95 68 58 142 143 141 153 195 195 139 101 96 90 Table 3 89 76 67 69 67 54 31 42 95 78 65 67 68 69 70 71 73 74 75 76 124 129 118 83 77 111 209 204 161 168 84 40 39 74 121 139 123 108 92 77 102 92 102 118 123 110 80 102 145 120 80 108 127 126 105 80 75 76 78 79 126 130 135 124 85 74 157 219 172 169 156 97 63 65 92 118 110 94 79 63 115 115 139 164 173 160 126 159 193 153 85 143 205 235 220 171 117 81 80 81 127 132 137 141 145 118 86 203 216 170 190 165 129 106 103 108 97 80 63 50 128 135 164 193 204 191 157 196 225 172 104 130 151 164 152 123 99 82 83 84 128 133 138 143 148 104 72 223 239 172 177 161 146 130 114 103 97 64 46 45 141 145 173 199 210 197 165 206 233 178 153 169 160 132 97 82 83 95 104 87 130 134 139 144 141 79 96 201 228 173 164 148 132 117 108 116 105 61 52 68 153 148 166 186 193 181 151 191 237 201 169 165 139 104 83 84 95 185 153 89 131 136 141 145 126 101 149 165 193 175 169 147 119 103 108 132 102 60 67 103 166 154 154 162 164 151 125 207 255 193 142 123 97 87 86 87 141 220 137 92 132 137 142 147 137 147 161 166 171 176 202 184 135 91 102 128 85 52 79 133 179 166 154 145 139 126 159 235 236 135 97 86 116 152 139 96 133 154 93 94 134 138 143 148 153 158 163 168 172 177 208 199 152 90 84 101 55 35 80 146 192 179 167 154 141 158 193 184 150 111 86 92 159 212 192 122 94 95 96 97 135 140 145 150 154 159 164 169 174 179 167 167 131 78 57 61 15 8 67 134 205 192 179 167 156 172 154 120 125 98 89 92 151 200 182 118 96 97 98 100 136 141 146 151 156 161 165 170 175 180 107 104 82 51 34 20 0 0 38 92 148 178 199 209 209 200 182 163 150 148 171 181 192 202 178 119 74 70 113 189 99 100 112 134 110 103 104 105 106 106 110 107 103 100 96 93 90 86 83 79 174 200 216 220 210 184 158 143 143 154 165 175 186 196 190 136 82 61 88 156 102 106 151 147 106 107 107 107 109 110 106 103 99 96 92 89 86 82 79 75 Table 3 (cnt 'd) 158 177 188 178 150 124 112 119 141 162 158 169 179 190 184 130 106 72 82 135 106 138 170 132 109 110 88 57 110 113 102 99 95 92 96 138 136 88 75 72 112 126 122 99 79 74 91 127 158 171 152 163 173 160 104 139 140 100 94 131 113 156 152 112 113 114 82 16 83 117 98 95 92 117 197 212 140 75 71 68 73 80 68 58 64 96 140 168 171 180 146 157 158 69 75 184 176 138 122 143 140 171 151 141 131 121 109 40 80 121 95 91 95 159 184 131 74 71 67 64 78 79 74 78 108 162 199 201 188 189 140 150 91 42 129 193 198 177 137 130 157 178 190 193 183 164 141 107 113 124 91 87 86 93 79 74 71 93 104 79 87 92 98 112 152 191 206 200 186 192 134 132 70 103 176 186 197 146 100 148 144 172 195 208 207 194 170 145 128 128 87 83 80 84 87 73 76 133 166 137 95 106 109 108 122 136 136 123 118 133 128 121 118 159 170 180 127 83 133 212 125 139 159 176 184 180 167 149 134 131 83 80 115 160 161 113 73 139 190 172 104 116 119 114 106 100 89 80 81 89 121 132 142 153 163 138 90 124 201 216 127 128 129 134 140 142 140 136 134 135 79 98 174 224 207 133 63 101 154 153 113 125 138 146 146 139 130 122 117 117 115 126 136 147 155 130 147 189 199 210 131 132 132 133 134 135 136 137 137 138 75 106 176 208 175 99 55 55 84 90 93 77 112 176 208 201 178 151 131 123 163 98 51 51 95 144 147 144 139 131 184 181 177 174 170 167 163 160 156 153 54 59 152 245 254 170 116 128 133 120 180 120 74 78 127 168 152 124 107 105 126 65 46 76 131 159 162 163 158 146 187 184 180 177 173 170 166 163 159 156 50 61 163 244 240 177 158 182 190 175 194 196 177 127 90 81 100 106 95 101 109 73 85 129 165 173 182 184 176 160 190 187 183 180 176 173 169 166 162 158 57 52 123 175 165 148 182 209 216 197 191 193 195 196 169 113 78 80 98 110 127 111 118 162 175 186 195 195 185 Table 3 (cnt'd) 188 190 192 190 170 135 113 95 102 129 168 173 1 1 109 151 190 196 194 181 160 196 193 189 185 182 178 175 171 168 162 102 67 51 55 74 105 143 156 152 130 185 187 189 174 138 138 144 92 113 151 194 188 177 108 85 143 186 181 167 149 199 195 190 188 185 181 178 174 142 104 136 96 71 66 78 98 116 117 106 88 182 180 160 130 134 192 141 97 137 178 196 190 184 167 94 76 132 164 152 142 193 165 150 160 181 184 181 118 67 101 172 130 100 87 89 103 117 116 102 88 172 146 111 95 186 190 101 124 168 197 198 192 186 180 164 99 85 134 150 143 163 114 94 111 153 185 113 55 91 166 204 166 134 114 108 114 123 121 107 93 141 103 71 119 181 124 114 157 189 196 201 194 188 182 176 167 124 117 148 146 142 85 62 82 134 124 77 108 175 176 224 198 168 145 132 130 132 127 113 99 109 75 59 118 115 105 146 180 190 193 203 197 190 184 178 172 166 150 147 148 151 96 73 92 114 120 147 186 182 179 231 216 195 173 157 148 142 132 118 104 169 171 165 107 114 173 176 177 178 179 176 178 180 181 183 180 186 188 189 191 204 199 193 188 183 178 173 182 196 178 153 149 145 127 130 169 181 166 140 116 170 167 91 73 147 176 177 178 179 180 177 179 181 182 184 171 164 189 191 192 193 188 182 177 172 167 177 211 207 163 153 144 81 69 137 200 195 172 139 114 171 103 78 121 176 177 178 179 180 181 179 180 182 184 185 174 131 174 192 193 184 177 171 166 161 161 202 219 185 137 142 65 38 113 204 214 200 168 132 113 132 90 168 193 177 178 179 180 181 182 180 182 183 185 186 186 120 129 193 195 195 183 163 155 150 172 204 190 142 124 96 62 122 201 220 219 199 165 132 120 110 135 218 182 178 179 180 181 182 183 181 183 184 186 188 189 140 98 171 196 209 206 181 150 141 167 171 139 118 125 125 149 185 211 226 224 203 172 151 144 148 175 178 177 179 180 181 182 183 184 182 182 177 172 169 170 159 92 133 Table 3 (cnt'd) 175 176 177 178 179 181 182 183 184 185 184 181 170 156 144 137 137 87 82 167 194 224 214 164 100 61 95 167 219 216 153 169 190 201 203 194 179 175 177 171 176 177 178 179 180 182 183 184 185 186 185 186 181 167 150 134 125 111 71 123 144 147 130 91 41 32 106 187 221 185 154 167 180 181 171 159 154 161 163 158 177 178 179 180 181 182 184 185 186 187 186 188 189 189 180 166 152 1'43 119 126 60 53 56 53 47 82 136 182 164 106 152 160 164 159 144 131 133 136 137 133 178 179 180 181 182 183 185 186 187 188 187 189 190 192 194 195 192 186 180 173 42 28 50 78 107 136 137 114 78 58 150 150 149 141 133 128 124 120 116 112 Table 4 f 20.0700 I { 18.4366 -6.0736 ) 0.0550 { -0.3473 -0.1166 ! { o. .9746 0. .8863 1 15. .6148 -0.1108 j -0.2950 0.8697 } { o. .4769 1. .2215 } 26. .5451 2.3714 { 0.6283 0.5195 ) { o. .9928 0. .3900 ) 17. .4865 0.5044 { 0.2422 -0.0007 1 f o. .3550 0. .4786 I 10. .5647 1 -7.0400 1 { 10.2532 -14.4972 ) 0. .1672 j -0.4982 -0.3300 } .0439 0. .3757 } 23. .5290 0. .5170 ( 0.1764 0.4417 [ { 0. .3524 0. .5732 ( 18. .8828 2. .6203 { 0.8412 -0.3778 j f o. .6141 0. 5696 ) 15. .1243 2. .6043 f -0.0078 -0.7210 } ί o. .9375 0. 4282 ) 18. .1785 18.2800 ( { 3.2413 19.5803 1 1. .2052 1 -0.6718 0.4028 } { 1 .0955 0. .3574 } 16.2537 2. .0697 { -0.2350 0.1817 1 f i .0141 0. .3891 } -20.6531 0. .5814 { -0.8298 -0.1252 ) 1 o. .9681 0. 3517 1 -12.9288 0. .5258 { 0.2235 -0.5744 ) f o. .2771 0. 5063 } 9.1028 -23.1000 ) { -4.8080 -25.0567 1 2. .1579 { -1.0736 -0.7244 J { 0. .4985 0. .9907 f -18.7614 0. .7606 { 0.6251 0.7408 1 { 1. .2097 0. .8611 ) 15.3114 2. .0238 1 0.5290 -0.6723 } 1 0. .4226 0. .5152 j 13.5875 1. .7335 { 0.5390 0.6098 1 f o. .9090 0. .4148 } -19.6480 H { 7.1100 I -13.3326 8.7161 j -0.1533 { -0.7812 -0.6231 1. .4083 0. .7261 22.7463 -0.4063 { 0.2195 0.2612 I 0. .6989 0. .5217 1 .3231 0.1167 ( 0.6426 0.7914 I 1. .5990 0. .4263 -22.0065 2.5504 ! -0.3412 0.0391 1 .0334 0. .4872 -13.6814 { 1.4300 1 { -8.4689 -4.4372 ( 1.1469 { -0.6161 0.5776 } ! 1. .6198 0. .6623 j -27.6468 2.2397 j 0.1120 -0.2602 1 ( 1. .0931 0. .3968 } -26.5535 2.3735 { 0.5480 0.4953 ( I 1. .0602 0. .3667 ! -21.1788 -0.0810 { 0.21 6 -0.6939 ) j o. .8490 0. .4722 ) 15.7904 1 -3.4100 ) { 13.9906 -7.3165 1 1. .2618 ( -0.2077 0.5029 ) 1 0. .6444 0. .3881 } -19.4196 0 .2360 { 0.3595 -0.1964 1 1 o. .9019 0. .4604 } 19.6177 0. .5043 ( -0.6845 -0.4466 1 { o. , 2806 0. .7137 } 12.4950 2. .4883 { -0.3120 -0.4211 I { o. .8983 0. .3157 1 -11.7791 Table 4 (cnt'd) -9.1600 i 1 15.0612 -2.1272 ) 1. .0308 i -0.1806 -0.1529 1 { o. .3927 0. .8443 ) 21. .3891 2. .5530 { 0.7719 -0.2915 ! ! 0. . 043 0. .5868 } 20. .1406 2. .6333 ( 0.4417 0.6637 } ! o. .5780 0. .7297 ) 21. .4013 2. .1815 { -0.3739 0.5440 ( { o. 2365 0. .6158 ί -8. .5414 { 6.3900 1 { -7.8074 -3.0968 ( -0.6211 { 0.8587 -0.3780 1 1 1. .8641 0. .7945 } -24.7811 -0. 027 { -0.4325 0.6556 1 { i . .5081 0. .8819 } -11.7734 2.0542 { -0.7873 -0.5476 i ! 0. .3064 1. .3196 ! -23.8431 0.6488 j 0.2881 0.1207 I ! 0. .2702 0. .8305 } 22.1091 H { 25.8600 } ( 6.5314 ' 5.5600 } 2. .2851 { -0.7313 -0.5791 1 1 0. .9312 0. .4245 } -22.5825 0. .7607 { 0.3073 -0.0321 1 .0390 0. .3156 f -21.3682 2. .4944 ) -0.2122 0.6079 1 ί i . .1660 0. .7908 j 12.5409 0. .0589 { 0.8791 0.0193 I ) o . .9180 0 , .4529 } 10.2552 27.8800 -20.4576 -1.1141 } 0858 I 0.6873 -0.6222 f 0. .6976 0. .7652 -18.5806 4152 { 0.5361 0.4932 I 1. .2377 0. 3132 -2 .2860 4854 I -0.3912 0.5750 } 1. .0226 0. .5740 11.4463 0505 ( -0.7026 -0.4049 I 1. .1138 0. .6097 6.0134 j 1.3800 } { -2.6355 2.7156 I 1.0233 1 -0.3111 -0.6606 } i i . .8593 0. .9083 } -29.0218 2.0049 ) -0.6356 -0.3608 ! i o . .6317 0. .5278 1 24.0265 -0.0782 i -0.5204 0.8698 } ! 0. .8911 0. .6808 1 23.9088 0.5359 { 0.4443 -0.5323 I 1 o . .3578 0. .4830 ) 14.7053 j 45.6700 I { 9.9799 9.3010 } 2. .2610 ! -o. .5987 -0.5291 } ί 1. .1727 0. .2857 } -15.5455 0. .0466 { -o. 4726 -0.4997 1 ! 0. .3919 0. .5131 1 8.1386 1. .5708 ! -0. .7000 0.0000 } i o . .3000 0. .5000 } 3.2578 2. .0944 1 -0. 7000 0.5000 } { o. .9000 0. .5000 ) 3.3765 42.5900 } { -4.6566 -11.6684 } 1. .1429 { 0.0554 0.5966 I { i . .3173 0. .3226 1 -20.5178 0 .1971 1 0.5506 0.6132 } f i . .0509 0. .4018 I -12.3190 0. .6258 ί 0.0528 -0.2921 } f o. .7666 0. , 2815 f -8.2027 2 .6180 { -0.7000 0.5000 1 1 o. .9000 0. .5000 I -2.5159 Table 4 (cnt'd) .4600 1 I -32.8136 0.8704 2. .8754 { 0.6706 -0.2593 ) ! 1. .1037 0. .4549 ( -23.2053 0. .9064 j 0.5096 -0.4137 1 { 1. .1957 0. .5655 1 14.8349 2. .5360 ( 0.4107 0.7021 ( ! 1. .0094 0. .4634 ) 22.6862 2. .2286 { -0.4671 0.4722 i f o. .9759 0. .3955 1 14.2152 H { 21.8000 I { 7.1581 0.1462 [ 2. .1212 { -0.1347 -0.0398 1 { i .4448 0. .6800 } 2 .3055 2. .4651 { -0.5664 -0.4291 ) i 1. .0687 0. .3643 1 -21.2993 0. .0539 j 0.1672 0 .6776 j { o. .9691 0. ,6396 1 15.3907 1. .5710 { 0.8884 0 .0184 1 { o, .2705 0. .4484 } 10.9159 Table 5 f 25.0000 1 { 22.0000 6.0000 ) 1. .5708 ( -0.2545 0.0000 ) 1 o. .9000 0. .9000 ) 16.5000 0. .0491 j -0.2545 0.7636 1 f o. .5000 1. .4280 j 31.5000 0. .8345 1 0.5091 0.5091 ) 1 0. .3000 0. .8568 } 16.5000 0. .5890 ί 0.2545 0.0000 j f o. .3000 0. .3900 I 0.0000 I -13.0000 ) { 10.0000 -10.0000 } 1 7181 j -0.5091 -0.2545 } ! 0 3000 0 8568 1 22 5000 0 4909 j 0.2545 0.5091 1 1 o 3000 0 5070 } 16 5000 1 5708 { 0.7636 -0.2545 ) f o 5000 0 5000 1 16 5000 1 0308 ! 0.0000 -0.7636 I ! 0 5000 1 0985 I 19 5000 { 21.0000 } j 6.0000 18.0000 j 2. .7980 ί -0.5091 0. .5091 1 ! 0. .3000 0. .8568 } 16.5000 0. .5400 { -0.2545 0. .2545 ( { o. ,3000 0. .8568 } -16.5000 2. .1108 1 -0.7636 0. .0000 ) i o. .3000 0. .8568 1 -13.5000 0. .4909 j 0.2545 -0. .5091 I ! 0. .3000 0. .5070 I 0.0000 { -29.0000 } { -6.0000 -26.0000 ( 2 1108 { -1.0182 -0.7636 ) 1 0 5000 1 0985 j -22.5000 2 1598 { 0.5091 0.7636 } 1 0 9000 1 1700 } 13.5000 2 1598 j 0.5091 -0.7636 ) f o 5000 0 6500 } 16.5000 0 1473 ) 0.5091 0.5091 } { o 5000 1 0985 1 -22.5000 H { 9.0000 -18.0000 10.0000 1.4235 ! -0.7636 -0.5091 0. .7000 1. .5379 } 22. 5000 0.9817 { 0.2545 0.2545 } 0. .5000 0. .6500 } 16. 5000 1.6935 j 0.7636 1.0182 ) 0. .5000 1 .8565 } -19 .5000 0.9327 ( -0.2545 0.0000 0. 5000 1. .0985 f -13 .5000 { 15.0000 ) ( 2.0000 -2.0000 } 2. .6998 f -0.7636 0.5091 i 1 0. 7000 1. .5379 ) -25.5000 0. .6381 { 0.0000 -0.2545 } { o. .3000 0. .8568 ) -22.5000 0. .8345 ! 0.5091 0.5091 1 I 0. .3000 0. .8568 } -19.5000 1. .4726 f 0.2545 -0.7636 j ! 0. .5000 0. .8450 } 0.0000 f 3.0000 1 1 14.0000 -10.0000 ( 2. .8471 j -0.2545 0.5091 ) ! o. 3000 0. .5070 ) -16.5000 1. .8162 ) 0.2545 -0.2545 1 i o. .5000 1. .0985 ) 19.5000 0. .5400 { -0.5091 -0.5091 ( 1 o. .3000 0. .8568 ) 10.5000 0. .9327 { -0.2545 -0.5091 1 1 0. .3000 0 , .8568 } 0.0000 Table 5 (cnt'd) -21.0000 j j 10.0000 -2.0000 1 1 0 08 1 -0.2545 0.0000 ) 1 o 3000 0 6591 ) 19.5000 0 9817 { 0.7636 -0.2545 } 1 0 5000 0 6500 1 22.5000 2 5525 { 0.5091 0.7636 ) i o 5000 0 6500 } 22.5000 2 2089 { -0.2545 0.7636 } { 3000 0 8568 ί 0.0000 1 13.0000 ) { 2.0000 -6.0000 j 0. .9327 { 0.7636 -0.2545 1 ! 0. .7000 1. .5379 j -16.5000 0. .6872 { -0.5091 0.7636 ) { o. .9000 1. .5210 ) -16.5000 2. .0371 { -0.7636 -0.5091 } { o. .3000 1. .4480 1 -25.5000 0. .6.381 { 0.5091 0.0000 } ! 0. .3000 0 .8568 ( 19.5000 { 23.0000 } { 14.0000 2.0000 1 0. .7363 1 -0.7636 -0.5091 J j 0. .5000 1. .0985 } -25.5000 2. .3317 1 0.2545 0.0000 } I o. .3000 1. .1139 1 -22.5000 0. .9817 { -0.2545 0.5091 1 ! o. .7000 0. .9100 1 10.5000 1 .6199 ! 0. 636 0.0000 } ( o. .5000 1. .0985 ) 0.0000 H { 29.0000 { -18.0000 -6.0000 1.5708 f 0.7636 -0.5091 : 0. .7000 0. .7000 -1 .5000 0.8590 { 0.5091 0.5091 } 0. .3000 1. 1139 -22.5000 2.0617 ί -0.5091 0.5091 J 0. .5000 0. .8450 0.0000 2.6507 ) -0.7636 -0.5091 0. .7000 1. .1830 0.0000 5.0000 1 { -2.0000 6.0000 } 2. .6016 i -0.5091 -0.7636 } { o. .9000 1. .9773 1 -40.5000 0. .5890 { -0.7636 -0.2545 } ! o. .5000 0. .6500 } 19.5000 1. .3744 { -0.5091 0.7636 1 i o. .7000 0. .9100 ) 22.5000 0. .5890 ( 0.5091 -0.5091 } i o. .3000 0. .3900 ( 0.0000 1 43.0000 1 { 10.0000 10.0000 I 0. .7118 1 -0.5091 -0.5091 ( j 0. .3000 1. .1139 ) -19.5000 0. .1963 { -0.2545 -0.5091 } 1 0. .3000 0. ,3900 ) 7.5000 1. .4726 ) -0.7636 0.0000 } ! o. .3000 0. .5070 ) 0.0000 0. .4909 ( -0.7636 0.5091 j f o. .5000 0. .8450 ) 0.0000 ! 41.0000 } { -6.0000 -10.0000 ) 2. .7243 { 0.0000 0.5091 1 I o. .3000 1. .1139 ) -19.5000 1 .8162 { 0.5091 0.5091 ) f o. .5000 1. .4280 ) -16.5000 2. .2089 ! 0.0000 -0.2545 } 1 0. .3000 0 .8568 } 0.0000 1 .0799 1 -0.7636 0.5091 I ! 0. .5000 0 .8450 1 0.0000 Table 5 (cnt'd) H i 23.5000 1 ( -31.5000 0.5000 ( 1. .3008 ( 0.6533 -0.2800 I f o. .4750 1. .1761 } -25.5000 2. .4789 f 0.4667 -0.4667 } { o. .5750 1. .2711 1 15.5000 0. .9572 { 0.4667 0.6533 } { o. .4750 1. .0501 } 23.5000 0. .6627 { -0.4667 0.4667 I I o. .3750 0. .9285 1 13.5000 H { 29.0000 I ( 2.0000 2.0000 } 0. .5400 { -0.2545 0.0000 ) I 0. .7000 1. .5379 } 28.5000 0 .9327 { -0.5091 -0.5091 } ! 0. .3000 0. .8568 1 -19.5000 1. .6690 j 0.2545 0.7636 } { 0. .7000 1. .1830 } 13.5000 1. .6690 { 0.7636 0.0000 } { o. .3000 0. .5070 ) 0.0000 Table 6 142 136 137 139 135 139 138 134 137 136 135 137 137 139 138 135 138 138 138 137 138 140 136 134 139 138 134 135 137 136 140 137 131 138 140 136 136 134 137 138 135 136 136 137 137 134 135 134 139 138 139 141 137 139 1.37 134 139 136 136 141 136 137 138 137 141 137 136 135 137 139 136 137 140 136 136 141 135 131 142 138 133 137 136 137 136 136 138 137 136 134 136 136 135 138 136 136 139 135 141 138 138 139 133 137 140 137 139 139 137 139 137 138 141 137 138 135 135 141 136 136 136 134 140 135 136 140 134 136 138 136 137 135 135 137 134 136 137 133 138 136 131 139 134 131 137 140 139 136 140 141 135 138 142 135 135 137 137 139 139 140 136 135 140 139 135 138 138 137 138 135 136 137 134 140 138 134 141 138 138 136 132 140 137 134 138 134 140 141 132 136 137 133 138 142 139 135 138 141 136 137 137 136 140 136 135 137 141 139 135 139 137 136 139 136 136 138 135 137 139 136 136 139 137 134 137 139 134 137 136 137 140 134 137 138 136 137 133 138 135 136 128 143 136 144 139 135 142 138 138 137 139 137 136 140 136 135 136 136 139 139 141 140 134 136 139 138 137 139 135 137 140 134 136 136 136 141 134 133 139 138 134 136 140 137 136 135 135 138 75 121 141 139 139 140 137 135 136 141 136 135 139 135 139 138 135 138 134 138 138 134 139 140 137 136 135 138 139 139 136 139 141 132 136 141 135 135 137 135 136 138 138 135 136 136 133 137 38 66 108 136 140 138 144 137 137 141 137 139 138 133 139 137 135 142 135 136 139 135 139 138 135 139 137 138 140 136 136 138 133 138 140 135 138 136 135 140 138 137 136 135 137 135 136 136 72 35 58 104 135 144 140 139 138 139 138 138 138 136 137 131 136 139 134 139 138 136 138 136 139 140 133 132 140 139 134 140 137 135 143 141 135 135 138 138 139 137 134 136 137 138 135 129 116 76 48 48 96 135 138 141 142 137 137 137 140 141 134 135 140 139 137 136 140 136 136 141 135 139 136 134 142 135 135 141 137 134 139 139 134 138 139 133 135 141 137 132 141 138 132 138 145 123 84 43 48 91 131 142 140 144 139 133 138 142 140 137 136 138 137 137 141 135 136 141 134 139 139 134 139 138 135 136 138 136 139 138 135 138 136 135 139 136 134 138 140 134 133 139 144 148 128 92 46 41 82 124 142 141 141 140 138 139 138 140 138 136 136 139 138 136 138 136 137 138 135 140 138 134 139 140 135 132 140 139 132 135 139 138 137 136 136 135 136 135 135 137 Table 6 (cnt'd) 143 144 147 132 98 62 38 72 120 139 139 141 139 138 138 138 139 139 137 138 139 136 138 138 136 137 139 139 136 137 140 136 134 137 134 136 141 132 138 141 132 136 137 135 133 137 137 131 143 138 143 146 139 110 60 36 62 111 133 138 142 139 136 141 139 135 137 140 138 136 138 138 136 1.36 137 136 138 139 136 139 135 134 142 135 135 141 137 135 138 136 137 139 136 136 135 135 135 137 143 142 146 143 112 67 37 58 102 135 145 137 137 138 136 139 139 139 140 139 138 140 135 136 141 136 137 138 135 138 137 137 138 134 138 138 136 139 134 135 139 135 140 136 134 139 138 139 139 141 140 141 146 118 75 45 45 90 133 140 142 140 141 143 135 139 141 139 138 133 140 138 132 138 138 134 135 142 137 133 141 139 136 136 133 140 139 133 137 138 139 137 134 141 141 137 139 140 137 143 148 145 126 86 48 47 84 125 144 144 139 137 137 142 141 140 137 131 139 141 134 140 135 133 141 139 134 138 138 133 134 140 136 136 139 135 138 138 137 140 136 138 136 136 140 138 138 140 139 143 148 130 96 53 41 76 120 139 140 142 142 136 139 140 140 139 136 139 138 133 138 140 137 138 137 138 139 137 138 140 135 134 139 139 134 137 140 134 137 141 140 136 135 139 136 137 140 139 146 147 133 107 61 37 61 110 141 141 138 141 137 141 138 137 138 133 139 140 135 139 137 136 138 138 138 137 135 138 137 134 138 139 134 133 136 140 134 138 139 136 138 137 138 140 140 138 137 146 147 136 112 68 42 53 94 136 141 142 146 137 140 142 139 137 135 141 137 136 136 133 141 136 134 143 135 137 140 135 137 138 138 137 136 137 137 135 139 137 139 143 137 137 137 137 139 138 144 144 138 121 84 48 44 80 128 139 138 144 138 137 143 140 137 139 135 137 140 133 138 139 133 137 140 134 137 141 134 138 139 132 137 137 136 137 137 140 140 137 139 138 138 137 137 138 140 142 145 143 132 96 54 38 63 114 136 142 142 137 139 138 138 138 136 138 139 138 134 138 139 132 138 133 132 142 135 136 139 134 139 137 135 140 136 138 140 138 140 138 138 139 133 138 141 136 141 144 146 137 106 70 40 49 103 136 136 138 142 137 138 142 137 134 140 138 136 136 137 137 130 135 140 135 135 139 135 137 142 137 135 137 144 139 135 139 138 136 135 139 138 135 140 138 137 142 143 143 143 119 76 44 46 79 124 140 139 140 136 139 137 136 142 135 135 140 135 137 135 135 142 136 132 138 139 139 135 137 135 133 Table 6 (cnt'd) 143 139 135 139 140 139 137 136 138 138 133 138 139 134 142 143 139 146 133 94 53 35 68 115 136 142 142 140 139 139 137 135 137 138 138 139 136 136 136 135 135 139 138 133 137 138 135 139 136 139 145 137 136 140 136 137 135 135 137 136 140 137 134 143 140 140 149 135 105 72 40 51 102 130 139 142 140 140 138 137 140 137 137 138 137 138 138 136 137 134 138 137 135 135 138 140 137 142 145 136 139 141 135 138 136 137 136 133 139 138 135 139 140 141 141 146 144 120 78 50 46 76 118 140 140 140 139 139 134 135 142 135 137 135 134 142 133 135 140 131 135 141 135 135 137 139 142 142 140 139 142 138 135 138 137 139 137 136 139 137 138 137 135 143 148 143 131 99 56 39 65 109 132 141 142 140 140 138 138 139 136 133 137 138 135 136 134 138 138 133 139 137 140 140 142 138 135 139 138 136 143 137 135 141 137 136 138 138 140 136 138 143 139 142 149 136 112 79 43 47 86 123 139 139 140 139 137 136 138 138 134 137 136 136 139 134 134 137 138 139 143 143 139 142 137 136 142 136 138 138 134 141 137 136 137 137 138 136 142 141 138 139 144 147 141 128 92 53 42 59 107 132 138 144 137 141 144 133 135 140 137 134 139 137 134 139 138 136 134 138 145 142 139 141 138 140 141 138 138 138 138 136 136 138 135 137 138 134 134 132 140 143 139 146 136 107 81 48 43 84 118 131 141 144 137 139 136 138 143 134 132 138 137 135 136 138 96 121 142 147 139 141 142 139 136 140 140 136 138 135 138 139 136 140 136 129 131 139 139 136 141 143 144 144 126 98 58 37 59 97 126 138 138 141 139 135 139 139 132 137 140 135 136 138 47 75 119 142 142 143 141 139 139 139 140 138 140 138 134 137 140 138 135 137 136 135 140 137 136 140 141 144 144 137 116 83 50 39 71 111 128 138 141 139 142 140 138 137 138 139 133 135 58 45 63 106 136 139 146 141 138 142 140 142 135 136 142 134 139 139 135 137 136 139 137 135 138 135 137 143 141 141 147 133 101 70 41 47 86 118 131 135 143 144 140 136 138 140 135 137 116 79 48 45 84 130 135 141 146 138 141 138 138 139 138 139 136 139 137 135 138 136 137 139 136 138 137 135 137 140 144 142 140 128 95 58 39 53 90 116 130 142 141 135 142 141 134 137 144 132 90 51 40 71 111 131 143 139 139 143 137 142 141 135 139 139 136 138 136 137 137 135 136 138 134 135 137 136 140 141 144 145 133 122 91 5 Table 6 ( cnt ' d ) 145 144 138 114 71 41 52 97 131 138 144 139 137 145 139 138 138 136 140 136 137 136 134 137 136 140 136 134 140 134 135 144 138 138 147 145 133 117 89 55 37 56 96 120 131 138 141 140 142 143 147 144 124 88 46 45 83 122 136 140 141 138 140 140 139 136 136 140 137 138 136 135 139 136 138 138 137 136 134 136 140 139 136 142 148 142 133 116 90 56 38 58 91 116 132 137 140 139 143 147 141 133 99 57 41 60 109 132 137 144 139 136 142. 141 138 138 136 139 136 135 142 133 135 143 135 135 137 133 136 137 138 139 140 144 140 141 137 113 83 56 38 55 98 117 138 144 136 139 148 145 137 113 75 45 48 85 119 133 138 143 141 138 140 139 136 136 139 139 135 135 136 136 141 136 131 138 139 134 138 137 138 141 139 142 145 144 128 112 92 58 40 55 142 134 136 143 137 144 148 143 131 102 67 42 55 92 120 134 141 143 139 141 140 139 139 136 138 138 134 132 138 138 133 137 136 138 139 133 137 136 137 138 135 146 144 139 136 115 88 54 138 136 141 142 137 142 145 147 147 140 127 98 65 43 53 100 125 135 147 140 138 142 139 140 137 137 136 136 137 133 135 137 133 139 135 136 140 133 137 133 136 140 134 142 140 139 135 112 136 138 143 139 139 139 143 143 142 150 147 139 121 86 56 44 68 115 131 135 145 144 141 140 137 137 139 140 135 133 140 138 135 137 138 138 136 134 132 137 139 136 133 137 142 141 144 144 141 140 142 135 143 140 138 142 139 145 145 146 147 137 110 74 50 47 78 124 133 134 144 143 142 139 139 140 137 137 140 136 136 138 136 136 139 135 134 139 136 134 140 134 133 141 139 142 141 136 140 141 137 135 141 141 136 137 143 144 144 142 142 131 96 66 43 49 92 116 131 143 139 142 141 138 138 139 141 134 136 140 134 136 138 137 137 134 137 139 137 135 133 137 137 133 138 141 138 136 138 139 138 137 139 138 138 136 140 141 139 147 139 120 93 55 42 53 84 122 135 137 143 142 140 138 137 140 141 136 134 136 137 137 138 134 137 .137 133 139 134 133 141 136 137 138 130 143 140 133 139 137 139 138 140 139 135 139 138 142 147 144 135 119 90 58 42 50 89 120 129 139 144 142 141 141 139 135 140 136 135 138 136 136 134 135 139 135 135 138 137 136 138 138 136 1 0 140 137 135 142 139 140 142 138 139 135 140 147 138 144 146 140 138 121 87 56 40 52 94 122 129 140 146 143 140 138 138 141 137 134 137 135 135 136 135 137 138 133 134 139 Table 7 138 138 138 138 137 137 137 137 137 136 136 136 137 138 138 138 138 138 138 137 137 137 136 136 137 137 137 137 137 137 136 136 136 136 136 137 135 136 1 6 137 137 136 136 136 136 135 135 135 139 138 138 138 138 138 137 137 137 137 136 136 137 138 138 138 138 138 138 138 137 137 137 1 6 137 137 137 137 137 137 136 136 1 6 136 137 137 135 1 6 136 137 137 136 136 136 136 135 135 135 139 139 139 138 138 138 138 137 137 137 137 137 137 137 138 138 138 138 138 138 137 137 137 137 137 137 137 137 137 137 136 136 136 136 137 137 1'35 136 136 137 137 137 136 136 136 135 135 135 139 139 139 139 138 138 138 138 137 137 137 137 137 137 137 138 138 138 138 138 138 137 137 137 137 137 137 137 137 137 137 137 .137 137 137 138 135 136 137 137 137 137 136 136 136 135 135 135 140 139 139 139 139 138 138 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 138 135 136 137 137 137 137 136 136 136 135 135 135 127 140 139 139 139 139 139 138 138 138 138 137 137 137 137 137 137 137 137 137 137 137 138 138 137 1.37 137 137 137 137 137 137 137 137 137. 138 135 136 137 137 137 137 137 136 136 136 135 135 73 120 140 140 139 139 139 139 138 138 138 138 137 137 137 137 137 137 137 137 137 137 138 138 137 137 137 137 137 137 137 137 1 7 137 138 138 135 136 1.37 137 137 137 137 136 136 136 135 135 41 65 112 140 140 139 139 139 139 139 138 138 137 137 137 137 137 137 137 137 137 137 138 138 137 137 137 137 137 137 137 137 137 137 138 138 135 136 137 137 137 137 137 136 136 136 136 135 64 41 58 103 139 140 139 139 139 139 139 138 138 137 137 137 137 137 137 137 137 137 138 138 137 137 137 137 137 137 137 137 137 1 8 138 139 135 136 137 137 137 137 137 137 136 136 136 136 121 72 43 53 95 136 140 140 139 139 139 139 138 138 138 137 137 137 137 137 137 137 138 138 1 7 137 137 137 137 137 137 137 137 138 138 139 135 136 137 137 137 137 137 1 7 136 136 1 6 1 6 146 129 80 45 48 88 132 140 1 0 139 139 139 139 138 138 138 137 137 1.37 1 7 137 137 38 138 1 7 1 7 1 7 137 1 17 137 1 7 137 137 137 138 139 135 136 137 137 137 137 1.37 136 136 136 136 136 146 146 135 87 48 45 81 128 140 140 140 139 140 139 139 138 138 137 137 137 137 138 138 138 137 137 137 137 137 137 137 137 137 137 138 138 135 136 136 137 137 137 137 1.36 136 136 136 135 Table 7 (cnt'd) 142 142 143 140 99 54 42 70 118 138 138 138 140 140 139 139 139 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 1 7 136 135 138 137 137 137 136 136 135 135 135 135 135 135 141 142 142 142 142 1.07 60 41 63 110 138 138 140 140 140 139 139 139 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 136 136 138 137 137 137 137 136 136 136 136 136 136 136 141 141 141 142 142 142 115 66 41 56 100 137 140 140 140 140 139 139 139 138 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 136 137 137 137 137 137 137 137 137 137 137 137 137 140 140 141 141 142 142 142 123 74 43 50 90 136 141 140 140 140 139 139 139 138 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 1 7 137 137 140 140 140 141 141 141 142 142 130 84 47 45 82 129 141 140 140 140 139 139 139 138 138 138 138 137 137 137 137 137 .137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 139 139 140 140 140 141 141 141 142 137 94 52 41 72 119 141 140 140 140 139 139 139 139 138 138 137 137 137 137 137 137 137 137 137 137 137 136 137 137 137 137 137 137 137 137 137 137 137 138 139 139 139 140 140 140 141 141 142 141 105 57 40 61 108 140 140 140 140 139 139 139 139 138 138 137 137 137 137 137 137 137 137 137 137 136 136 137 137 137 137 137 137 137 137 137 137 138 138 138 139 139 140 140 140 141 141 141 142 114 67 41 53 94 136 140 140 140 139 139 139 139 138 138 137 137 137 137 137 137 137 137 137 136 136 136 137 137 137 137 137 137 137 137 137 137 138 138 138 139 139 139 140 140 140 141 141 142 126 79 45 46 81 126 140 140 140 139 139 139 138 138 138 137 137 137 137 137 137 137 137 135 136 136 137 137 137 137 137 137 137 137 137 137 137 137 138 138 138 139 139 139 140 140 140 142 143 136 93 52 42 68 113 140 140 140 140 139 139 138 138 137 137 137 137 137 137 137 137 135 136 136 137 137 1 7 137 137 137 137 137 136 136 136 137 137 137 138 138 138 139 139 140 140 141 142 143 143 108 63 41 56 98 136 140 140 140 139 138 138 137 137 137 137 137 137 137 137 135 136 136 137 137 137 137 137 137 136 136 136 135 136 136 137 137 137 138 138 138 139 139 139 140 141 143 144 145 123 76 45 48 82 126 140 141 140 139 138 138 137 137 137 137 137 136 136 135 136 137 137 137 137 137 137 137 136 136 136 Table 7 (cnt'd) 139 139 139 138 138 138 137 137 136 136 136 135 140 140 140 140 140 141 134 92 52 43 68 109 140 140 140 139 139 139 138 138 138 137 137 137 136 136 136 136 136 136 136 136 136 136 136 136 140 139 139 139 138 138 138 137 137 137 136 136 139 139 140 140 140 140 140 140 108 63 42 56 99 136 140 140 139 139 139 138 138 138 137 137 136 136 136 136 136 136 136 136 136 136 136 136 140 140 139 139 139 138 138 138 137 137 137 136 139 139 139 139 140 140 140 140 140 123 78 46 49 81 124 140 140 140 139 139 139 138 138 138 136 136 136 136 136 136 136 137 137 137 137 137 141 140 140 140 139 139 138 138 138 137 137 137 138 139 139 139 139 139 140 140 140 140 135 95 56 43 64 105 138 140 140 139 139 139 138 138 137 137 137 137 137 137 137 137 137 137 137 137 141 141 140 140 140 139 139 139 138 138 137 137 138 138 138 139 139 139 139 139 140 140 140 140 115 71 45 50 84 125 140 140 140 139 139 139 137 137 137 137 137 137 137 137 137 137 137 137 141 141 141 140 140 140 139 139 139 138 138 138 138 138 138 138 138 139 139 139 139 139 140 140 144 132 90 54 44 64 103 137 140 140 139 139 137 137 137 137 137 137 137 137 137 137 137 137 140 142 141 141 140 140 140 139 139 139 138 138 137 137 138 138 138 138 138 139 139 139 139 139 142 143 143 112 70 45 49 79 119 140 140 140 137 137 137 137 137 137 137 137 137 137 137 137 90 132 142 141 141 141 140 140. 139 139 139 138 137 137 137 137 138 138 138 138 138 139 139 139 140 141 142 144 132 92 56 43 59 94 131 140 137 137 137 137 137 137 137 137 137 137 137 138 46 75 119 142 141 141 141 140 140 140 139 139 136 137 137 137 137 137 138 138 138 138 139 139 139 140 141 142 143 144 117 76 48 46 69 107 137 137 137 137 138 138 138 138 138 138 138 138 60 44 61 102 138 141 141 141 140 140 140 139 136 136 137 137 137 137 137 138 138 138 138 138 137 138 139 140 141 142 143 137 102 64 44 50 85 122 138 138 138 138 138 138 138 138 138 138 118 73 46 51 85 127 141 141 141 140 140 140 136 136 136 136 137 137 137 137 137 138 138 138 135 136 137 138 140 141 142 143 144 128 90 56 43 54 87 123 138 138 138 138 138 138 138 138 144 132 90 53 45 69 111 141 141 141 140 140 135 136 136 136 136 136 137 137 137 137 137 138 133 135 136 137 138 139 140 141 142 143 144 119 87 55 43 55 86 122 138 138 138 138 138 138 Table 7 (cnt'd) 143 143 143 120 70 44 58 100 137 139 139 139 139 139 139 138 138 138 137 1 7 137 137 136 136 137 137 137 137 137 137 137 137 137 137 137 137 140 123 85 53 41 53 84 118 133 135 137 139 142 142 143 143 129 82 48 48 81 123 139 139 140 139 139 139 139 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 140 140 140 .120 83 53 43 57 88 122 137 139 141 142 142 143 143 139 99 58 43 62 100 134 140 140 140 139 139 139 139 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 139 140 140 140 140 118 82 53 45 59 90 125 141 141 142 142 142 143 143 119 75 47 47 74 111 140 140 140 140 1.39 139 139 138 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 139 139 139 139 140 140 139 117 82 55 47 61 140 140 141 141 142 142 143 143 137 100 62 44 51 85 126 140 140 140 140 139 139 139 138 138 137 137 137 137 137 137 137 137 137 137 137 137 138 138 139 139 139 139 139 140 139 118 84 57 139 140 140 141 141 141 142 142 143 143 127 89 60 44 61 99 135 140 140 140 140 139 139 139 137 137 137 137 138 138 138 138 138 138 138 138 138 138 138 138 138 139 139 139 139 139 139 120 139 139 140 140 140 141 141 142 142 142 143 143 126 83 50 46 71 111 139 140 140 140 139 139 138 138 138 138 138 138 138 138 138 138 138 1.38 137 137 137 138 138 138 138 138 139 139 139 139 138 139 139 139 140 140 141 141 141 142 142 143 143 143 112 70 46 50 79 118 140 140 140 140 138 138 138 138 138 138 138 138 138 138 138 138 136 137 137 137 137 137 138 138 138 1.38 138 139 137 138 138 139 139 140 140 140 141 141 142 142 142 143 143 137 100 62 44 53 85 122 140 140 138 138 138 138 138 138 138 138 138 138 138 138 136 136 136 136 137 137 137 137 137 138 138 138 137 137 138 138 138 139 139 140 140 141 141 141 141 141 142 142 143 130 92 57 44 56 87 123 138 138 138 138 138 138 138 138 138 138 138 138 135 135 136 136 136 136 136 137 137 137 137 137 136 137 137 137 138 138 139 139 139 140 140 141 139 140 141 141 142 142 143 125 87 55 44 56 90 125 138 138 138 138 138 138 138 138 138 138 135 135 135 135 136 136 136 136 136 137 137 137 136 136 136 137 137 138 138 1.38 139 139 140 140 138 139 139 140 140 141 142 142 143 123 86 55 39 55 88 123 138 138 138 138 138 138 138 138 134 134 135 135 135 135 135 136 136 136 136 136 Table 8 139 139 138 138 138 138 137 137 137 136 136 136 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 139 139 139 138 138 138 138 137 137 137 136 136 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 140 139 139 139 138 138 138 138 137 137 137 136 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 140 140 139 139 139 138 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 140 140 140 139 139 139 138 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 134 140 140 140 139 139 139 138 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 82 127 140 140 140 139 139 139 138 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 44 73 118 140 140 140 139 139 139 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 56 42 64 109 140 140 140 139 139 139 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 110 64 42 56 98 137 140 140 139 139 139 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 146 120 73 43 50 88 131 140 140 139 139 139 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 146 146 129 82 47 45 78 123 140 140 139 139 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 1.37 137 137 137 137 137 137 137 134 135 136 137 137 137 137 137 137 136 135 134 Table 8 (cnt'd) 14J 143 143 135 91 51 43 71 117 138 138 138 140 140 139 139 139 139 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 142 142 143 143 139 99 56 41 64 109 138 138 140.140 140 139 139 139 139 138 138 138 137 137 137 137 137 137 137 137 137 137 1 7 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 141 142 142 142 143 142 107 62 41 57 101 136 141 140 140 140 139 139 139 139 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 1.37 137 137 137 137 137 137 137 137 137 137 137 141 141 141 142 142 142 143 116 69 42 52 92 127 141 140 140 140 139 139 139 139 138 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 140 141 141 141 141 142 142 142 123 76 44 47 71 118 141 140 140 140 139 139 139 139 138 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 140 140 140 141 141 141 141 142 142 130 84 47 39 62 108 140 140 140 140 139 139 139 139 138 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 139 139 140 140 140 141 141 141 141 142 135 93 61 39 55 98 137 140 140 140 139 139 139 139 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 139 139 139 139 140 140 140 141 141 141 141 139 117 70 41 48 87 131 140 140 140 139 139 139 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 138 138 139 139 139 139 140 140 140 141 141 141 142 127 80 45 44 77 123 140 140 140 139 139 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 138 138 138 139 139 139 139 140 140 140 141 142 143 135 91 51 41 68 114 140 140 140 139 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 138 138 138 139 139 139 139 140 140 141 142 143 141. 103 58 41 60 104 139 140 140 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 136 137 137 137 137 138 138 138 139 139 139 139 140 142 143 144 145 114 67 42 53 94 135 140 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 Table 8 (cnt'd) 138 138 138 138 137 137 137 136 136 136 136 135 139 139 140 1.40 140 140 136 96 56 43 66 107 139 139 139 139 138 138 138 137 137 137 137 136 135 135 135 135 135 135 135 1.35 135 135 135 1.35 139 139 138 138 138 138 137 137 1 7 136 136 136 139 139 139 140 140 140 140 141 112 67 43 55 104 139 139 139 139 139 138 138 138 137 137 137 136 136 136 136 136 136 136 136 136 136 136 136 140 139 139 139 138 138 138 138 137 137 137 136 138 139 139 139 140 140 140 140 141 126 82 48 50 87 130 140 139 139 139 139 138 138 138 137 136 136 1.36 136 136 136 136 136 136 136 136 136 140 140 140 139 139 139 138 138 138 138 137 137 138 138 139 139 139 140 140 140 140 141 137 97 54 43 69 113 140 140 139 139 139 139 138 138 136 136 136 136 136 136 136 136 136 136 136 136 141 140 140 140 140 139 139 139 138 138 138 138 138 138 138 139 139 139 140 140 140 140 141 141 114 68 43 53 91 131 140 140 139 139 139 139 137 137 137 137 137 137 137 137 137 137 137 137 141 141 141 140 140 140 140 139 139 139 138 138 138 138 138 138 139 139 139 140 140 140 140 141 143 131 87 51 44 69 111 140 140 140 139 139 137 137 137 137 137 7 137 137 137 137 137 137 137 142 141 141 141 140 140 140 140 139 139 139 137 138 138 138 138 139 139 139 140 140 140 140 142 143 143 110 67 44 51 85 125 140 140 140 137 137 137 137 137 137 137 137 137 137 137 137 85 126 142 142 141 141 141 140 140 140 140 139 137 137 138 138 138 138 139 139 139 140 140 140 140 141 142 143 132 91 54 43 61 98 133 140 137 137 137 137 137 137 137 137 137 137 137 137 45 70 111 141 142 142 141 141 141 140 140 140 137 137 137 138 138 138 138 139 139 139 140 140 138 139 141 142 143 144 117 76 48 45 69 107 138 138 138 138 138 136 138 138 138 138 1 8 138 61 44 57 95 133 142 142 142 141 141 141 140 136 137 137 137 138 138 138 138 139 139 139 140 137 138 139 140 141 142 143 139 105 67 45 48 87 122 138 138 138 138 138 138 138 138 138 138 117 75 47 49 78 120 142 142 142 142 1.41 141 136 136 137 137 137 138 138 138 138 139 139 139 135 136 137 138 139 141 142 143 144 133 97 62 43 54 83 118 138 138 138 138 138 138 138 138 144 131 91 55 44 64 105 139 142 142 142 .142 136 136 136 137 137 137 138 138 138 138 139 139 133 134 135 137 138 139 1.40 141 142 143 145 129 , 87 58 44 51 78 114 138 139 139 139 139 139 Table 8 (cnt'd) 143 143 143 120 71 44 56 96 134 139 139 139 139 139 139 139 138 138 138 137 137 137 137 136 138 138 138 138 138 138 138 138 138 138 138 138 131 101 67 45 42 58 87 119 133 135 137 139 142 142 143 143 131 85 49 47 76 118 139 139 140 140 139 139 139 139 138 138 138 137 137 137 138 138 138 138 138 138 138 138 138 138 138 138 139 139 132 103 70 47 43 59 89 121 137 139 141 142 142 142 143 140 103 61 43 57 94 130 141 140 140 140 139 139 139 139 138 138 138 137 138 138 138 138 138 138 138 138 138 138 138 138 138 139 139 139 133 105 73 50 45 61 91 124 141 141 141 142 142 142 143 123 81 50 45 67 111 140 141 140 140 140 139 139 139 139 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 139 139 139 135 108 75 52 47 62 140 141 141 141 141 142 142 142 140 107 68 46 53 86 125 141 141 140 140 140 139 139 139 139 138 138 138 138 138 138 138 138 138 138 138 138 137 138 138 138 138 139 139 139 136 110 78 55 140 140 140 141 141 141 141 142 142 142 133 98 56 45 62 99 133 141 141 140 140 140 139 139 138 138 138 138 138 138 138 138 138 138 138 138 137 137 137 138 138 138 138 139 139 139 137 112 139 139 140 140 140 141 141 141 141 142 142 142 119 77 49 47 70 107 137 141 141 140 .140 140 138 138 138 138 138 138 138 138 138 138 138 138 136 136 137 137 137 138 138 138 138 139 139 139 139 139 139 139 140 140 140 141 141 141 141 142 144 139 105 67 46 50 76 112 139 141 141 140 138 138 138 138 138 138 138 138 138 138 138 138 136 136 136 136 137 137 137 138 138 1 8 138 139 138 138 139 139 139 139 140 140 140 141 141 141 142 143 143 132 96 61 45 51 78 113 138 141 138 138 138 138 138 138 138 138 138 138 138 138 135 135 136 136 136 136 137 137 137 138 138 138 137 138 138 138 139 139 139 139 140 140 140 141 141 141 142 142 143 127 91 59 44 51 76 109 138 138 138 138 138 138 138 138 138 138 138 138 134 135 135 135 136 136 136 136 137 137 137 138 137 137 137 138 138 138 139 139 139 139 140 140 139 140 140 141 142 142 143 125 90 60 44 49 100 133 138 138 138 138 138 138 138 138 138 138 134 134 134 135 135 135 136 136 136 136 137 137 136 137 137 137 137 138 138 138 139 139 139 139 138 138 139 140 140 141 141 142 142 126 94 63 41 63 99 131 138 138 138 138 138 138 138 138 133 134 134 134 134 1.35 135 135 136 136 136 136 Table 9 E ¾: -0.7082 R: 0.7976 K : 0.0094 H: 0.3366 Prof i le type : 1 a: -101.9714 I 17.6667 } { 10.8323 I { 1.0630 -0.7789 I 9.4236 } { 0.1056 -0.1257 } f 0.1332 0.0319 0.0621 } I 0.1378 -0.2445 0.3248 -0.0091 } T ( 9.0694 } { 0.2132 0.1408 | 1 -0.0939 0.1978 0.1984 } j -0.1013 -0.0698 0.0375 0.1925 ! 8.0903 0.1559 -0.2263 } { -0.1065 1015 ■0.5252 } ! -0.0788 0514 -0.0346 0.2444 ( E Q : 2.4427 R : 0.7269 : 0.0125 H: 0.3295 Profile type 1 a: -99.8569 ! 10.0000 I { 12.5987 I -2.0156 1.2151 E Q: -0.6614 0.5372 : -0.0131 H: 0.3295 Profile type: : -103.4667 f 22.3493 ) .3316 4.0633 ! 11.9938 } 1234 -1.0171 9.2708 { 0.2726 -0.4033 ) -0.0481 -0.2758 0.1060 ) 0.0164 -0.2178 0.2337 -0 1412 i 8.6944 I { -0.0141 0.0181 } { -0.2915 0.2640 -0.1256 } { 0.1589 -0.2775 -0.2572 0.0718 Q : -0.6265 R: 0.9160 K: -o.oioo H: 0.3295 Profile type.- 1 a: -99.6773 { 16.0000 } i 11.7162 ) f 1.5029 -1.2395 } Table 9 (cnt'd) E Q : 2.5066 : 1.0541 K: 0.0103 H:0.3117 Profile type 1 a: -92.8743 j 0.0000 I j 10.5651 } 1.3324 0.6983 Q: -0.5703 R: 0.0839 K: -0.0214 H: 0.3237 Profile type 1 a: -101.5896 { 20.8458 I ( -5.9137 3.7597 } j 13.1990 } i 1.7771 -1.1217 } E Q: -0.4601 R: 1.0753 K: -0.0150 H : 0.2796 Profile type: 1 a: -90.3296 { 0.0000 ) f 9.1003 } 0.6131 0.0838 Q : 2.5517 R: 0.7077 : 0.0638 H : 0.3138 Profile type: 1 a: -98.5962 f 11.4000 } { 13.3455 I { -2.2201 1.4149 ) E Q : -0.5143 R: 0.3120 : -0.02 5 H: 0.2994 Profile type: 1 a: -99.8304 { 20.6534 } i -4.5809 2.0873 f { 12.5008 } { 1.7990 -1.0101 } E Q : -0.4397 R: 1.2347 K: -0.0270 H:0.2897 Prof 1 e type : 1 a: -94.4909 ! 0.0000 } j 9.5831 I { 0.4157 0.0353 } E Q : 2.6754 R: 0.6984 K: 0.0103 H : 0.2978 Profile type 1 a: -92.1178 { -0.0610 I { 0.0000 6.8199 | i 10.4021 I { -1.9867 0.6955 ) Table 10 -0.6875 : 0.8125 K: 0.0000 H : 0.3438 Profile type: 1 a: -102.0000 ί 18.0000 i I 11.0000 ! { 1.0000 ■1.0000 I { 9.0000 } { 0.0000 0.0000 I 1 0.0000 0.0000 0.0000 ) { 0.0000 0.0000 0.0000 0.0000 { 9.0000 } { 0.0000 0.0000 ) j 0.0000 0.0000 0.0000 } 1 0.0000 0.0000 0.0000 0.0000 { 8.0000 f { 0.0000 0.0000 ) { 0.0000 0.0000 -1.0000 I { 0.0000 0.0000 0.0000 0.0000 E Q: 2.4375 R: 0.7188 K: 0.0000 H: 0.3438 Profile type: 1 a: -100.0000 { 10.0000 I f 13.0000 I •2.0000 1.0000 E Q: -0.6875 R: 0.5312 K: 0.0000 H:0.3438 Profile type: 1 a: -104.0000 i 22.0000 I { -2.0000 4.0000 ( ί 12.0000 j { 1.0000 -1.0000 I 9.0000 } { 0.0000 0.0000 j 0.0000 0.0000 0.0000 } 0.0000 0.0000 0.0000 0.0000 { 9.0000 I ( 0.0000 0.0000 I ( 0.0000 0.0000 0.0000 I { 0.0000 0.0000 0.0000 0.0000 } E Q: -0.6250 R: 0.9062 K: 0.0000 H : 0.3438 Profile type: 1 a: -100.0000 i 16.0000 ) { 12.0000 I 2.0000 •1.0000 Table 10 (cnt'd) E y: 2.5000 .0625 K: 0.0000 H : 0.3125 Profile type: -92.0000 ) 0.0000 } 11.0000 0000 1.0000 E Q: -0.5625 R: 0.0938 K: -0.0312 H: 0.3125 Profile type: 1 -102.0000 i 21.0000 } { -6.0000 4.0000 j i 13.0000 } 2.0000 -1.0000 ) Q: -0.4375 R: 1.0625 K: 0.0000 H: 0.2812 Profile type: 1 -90.0000 { 0.0000 ) 9.0000 { 1.0000 0.0000 E Q : 2.5625 .7188 K: 0.0625 H: 0.3125 Profile type -98.0000 f 11.0000 { 13.0000 -2.0000 1.0000 E Q: -0.5000 R: 0.3125 K: -0.0312 H: 0.3125 Profile type 1 -100.0000 { 21.0000 { -5.0000 2.0000 } ) 13.0000 } { 2.0000 -1.0000 } E Q : -0.4375 R: 1.2500 : -0.0312 H : 0.2812 Profile type: 1 -94.0000 { 0.0000 f 10.0000 I 0.0000 0.0000 Q: 2.6875 R: 0.6875 K: 0.0000 H : 0.3125 Profile type 1 -92.0000 0.0000 } { 0.0000 7.0000 } { 10.0000 } ( -2.0000 1.0000
Claims (1)
1. 2097/92 101331/3 C LA I M S 1 - A method of picture representation by data compression which comprises the steps of: 1 - subdividing the picture into regions; 2 - fixing for each region a characteristic scale in terms of a number of pixels; 3 - dividing each region into cells, each comprising a number of pixels defined by two coordinates, said cells having a maximum linear dimension equal approximately to said characteristic scale; 4 - identifying in each cell the basic elements, as herein defined; 5 - in each cell, representing the basic elements by models , as herein defined; and 6 - storing and/or transmitting: a) a code identifying the type of each model, and b) the parameters of each model, said data together representing the primary compression of the picture. 2 - Method according to claim 1, further comprising further compressing the primary compression data. 3 - Method according to claim 1, wherein the cells are squares having a side equal to the characteristic scale. 4 - Method according to claim 1, wherein the original picture is defined by the brightness values of the basic colours for each pixel. 2097/92 101331/3 5 - Method according to claim 1, wherein the original picture is defined by data obtain by transform coding the brightness values of the basic colours for each pixel. 6 - Method according to claim 1, further comprising reconstructing from the compressed and stored and/or transmitted data relative to the various cells, which contain all the chromatic information required, an image which closely approximates the original picture. 7 - Method according to claim 1, wherein the information defining the brightness distribution of the various colors is a function of time. 8 - Method according to claim 1, comprising defining a number of basic models, minimizing for each cell, for at least one of said models and/or combination thereof, the square deviation of the values thereof from those of a brightness distribution function, comparing the minimized square deviation with a predetermined threshold value, and, if said minimized square deviation is not greater than said threshold value, assuming the type of model and its parameters as primary compression data for said cell. 9 - Method according to claim 1, wherein the characteristic scale is between 8 and 24 pixels. I U N JM > JIN io*yi* L UZZATTO & LUZZATTO
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL10133192A IL101331A (en) | 1992-03-22 | 1992-03-22 | Method for picture representation by data compression |
EP19930200761 EP0562672A3 (en) | 1992-03-22 | 1993-03-16 | Process of picture representation by data compression |
CA 2091920 CA2091920A1 (en) | 1992-03-22 | 1993-03-18 | Apparatus and method for picture representation by data compression |
JP8682193A JPH06326987A (en) | 1992-03-22 | 1993-03-22 | Method and equipment for representing picture accompanied by data compression |
US08/343,210 US5510838A (en) | 1992-01-08 | 1994-11-22 | Apparatus and method for picture representation by data compression |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL10133192A IL101331A (en) | 1992-03-22 | 1992-03-22 | Method for picture representation by data compression |
Publications (1)
Publication Number | Publication Date |
---|---|
IL101331A true IL101331A (en) | 1996-05-14 |
Family
ID=11063461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IL10133192A IL101331A (en) | 1992-01-08 | 1992-03-22 | Method for picture representation by data compression |
Country Status (1)
Country | Link |
---|---|
IL (1) | IL101331A (en) |
-
1992
- 1992-03-22 IL IL10133192A patent/IL101331A/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5327254A (en) | Method and apparatus for compressing and decompressing image data | |
US5510838A (en) | Apparatus and method for picture representation by data compression | |
Thyagarajan | Still image and video compression with MATLAB | |
US5121191A (en) | Method and apparatus for coding motion pictures | |
US6151075A (en) | Device and method for converting frame rate | |
US5495538A (en) | Segmentation-based JPEG image artifacts reduction | |
US5537492A (en) | Picture compressing and restoring system and record pattern forming method for a spatial light modulator | |
US5557298A (en) | Method for specifying a video window's boundary coordinates to partition a video signal and compress its components | |
US5724450A (en) | Method and system for color image compression in conjunction with color transformation techniques | |
US7013050B2 (en) | Image encoding apparatus and method, program code, and storage medium | |
EP0671845B1 (en) | Multi-dimensional image data compression and decompression | |
US5689612A (en) | Image signal processing device | |
US5790717A (en) | Apparatus and method for predicting subjective quality of compressed images | |
US5367334A (en) | Video signal encoding and decoding apparatus | |
JPH0326600B2 (en) | ||
US6292591B1 (en) | Image coding and decoding using mapping coefficients corresponding to class information of pixel blocks | |
US5926611A (en) | High resolution digital recorder and method using lossy and lossless compression technique | |
US20020168111A1 (en) | Image compression method | |
Nasrabadi | Use of vector quantizers in image coding | |
US6047089A (en) | Image compression and expansion device | |
JP2000013608A (en) | Image processing method | |
IL101331A (en) | Method for picture representation by data compression | |
US6226445B1 (en) | Image compression and expansion device | |
US6445870B1 (en) | Image compression and expansion device | |
US6628718B1 (en) | Color solid-state image-pickup camera system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FF | Patent granted | ||
RH | Patent void |