IE850494L - Reinforcing fibres for hydraulically setting material - Google Patents
Reinforcing fibres for hydraulically setting materialInfo
- Publication number
- IE850494L IE850494L IE850494A IE49485A IE850494L IE 850494 L IE850494 L IE 850494L IE 850494 A IE850494 A IE 850494A IE 49485 A IE49485 A IE 49485A IE 850494 L IE850494 L IE 850494L
- Authority
- IE
- Ireland
- Prior art keywords
- fibres
- mixture
- mixture according
- fibre
- reinforcing
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
1. A mixture of polyacrilnitrile and polyvinylalcohol fibres as reinforcing fibres for materials setting after the molding thereof, specifically for hydraulically setting materials, characterized in that said mixture of fibres comprises 50-90% polyacrilnitrile fibres and 50-10% polyvinylalcohol fibres.
[EP0155520A1]
Description
10 The present invention relates to a fibre mixture for the production of fibre-reinforced materials, such as, for example, hydraulically setting materials, specifically of a cement material which contains 15 polyacrylonitrile fibres and polyvinylalcohol fibres as reinforcing fibres. The invention further relates to the application of such fibre mixtures in the production of shaped members from materials setting after the molding thereof. 20 The polyacrylonitrile fibres will be designated hereinafter respectively as PAN-fibres, and the polyvinylalcohol fibres will be designated as PVA-fibres.
It is generally known that components, shaped in the most varied of 25 " ways, "such as purlins, corrugated plates, tubes or garden articles can be produced from hydrous suspensions, consisting, for example, of asbestos and cement, by means of dewatering machines, e.g. Hatschek machines, or by means of injection methods. During the past few decades, such components have been able to secure a dominant position 30 amongst construction materials. In the past few years, however, it became increasingly clear that the most important raw material for the production of these products, namely asbestos, will not be available for much longer for this application, for the most varied of reasons, such as availability, price trends, and also because of health 35 aspects. Hot only do the known, excellent properties of use of asbestos cement rest on the unique combination of properties of asbestos fibres, but also they form the basis of the Hatschek dewatering method, which is spread worldwide. - 3 - For a few years, all the ebove-isentioned circumstances heva set in motion an Intensive research activity, which had the task of finding replacement fibres, which con totally replace the asbestos in the existing production processes of the dewatering e&thods. However, it 5 very quickly baches epparseit that no single type of fibre was able to be found, which combined within it all the positive properties of asbestos.
Principally, It is the following properties which distinguish asbestos 10 at the Sc®» time as an excellent process fibre and as a reinforcing fibre : high specific surface good dispersability 15 - excellent chemical resistance high esteem hold-back capacity good fleece fonsetIon cepacity high tensile strength high modulus of elasticity 20 - small elongation at rupture As a process aid, asbestos displays an excellent distribution capability in a hydrous cessnt suspension. During the dewatering step, due to the good filtration capability and the good cement affinity, 25 asbestos is able to hold back the cesisnt in the composite substance which is being produced. In the hydratised end product, the high tensile strength, combined with the high modulus of elasticity and the small elongation at rupture has a positive effect, which is able to give the asbestos cast-sat products the known high bending strength. 30 As neither natural nor synthetic fibres with ths combination of properties of asbestos *ssre able to be found, it arose from the research efforts in seeking for possible replacement products that fibre mixtures have to be used, corresponding to the two main functions 35 of asbestos, in order to be able to produce fibre ceatent with these new fibres on existing Installations (see, for example, DE-PS-3 002 484 of Amiantus). The filtration properties of asbestos can be simulated through additions of celluloses and/or synthetic f1brides In the fibre - 4 - mixtures. Reinforcing fibres are used for the reinforcing effect.
Such fibres may be organic or inorganic high modulus fibres, which are usually added in cut lengths of 4-12 wsa. 5 There is scarcely any synthesis fibre which mould not have been tested as a cement reinforcing fibre as regards this purpose of application.
Most fibres, however, have not bean able to be successful for the most varied of reasons, such as insufficient chemical resistance, poor cement affinity, insufficient mechanical properties, or due to too high f 10 a price. From the entire range of fibres on offer, to date only two types of synthesis fibres have been able to be successful, which | satisfy the requirements of a cement reinforcing fibre. One of the fibres was developed on the basis of polyacrylonitrile and has been brought onto the market for example by the firm Hoechst (Federal 15 Republic of Germany) under the trademark "Dolan 10" (see also CH-PS Patent Application Pio. 1919/81-8). The other fibre is composed on the basis of polyvinylalcohol and is obtainable, for example, under the mark "Kuralon" of the firm SCurarai, Japan (DE-PS-2 850 337). The most important properties of these fibres are grouped together in Table 1. 20 Table 1 Textile mechanical properties of fibre types suitable for cement reinforcement : 25 "Fibre type" Polyacrylonitrile 30 PAN (e.g. "Dolan 10") Polyvinylalcohol PVA 35 (e.g. "Kuralon") The comparison of the textile mechanical properties of the PVA- with the PAH-fibres shows that PVA-fibres have the better mechanical Breaking Elongation at Nodulus of strength rupture elasticity cM/dtex % cP3/dtex 6.0-8.5 10-16 rain. 130 10-15 5.5-15 min. 175 - 5 - properties. If 6 s» cut fibres of these two types are distributed in a hydrous cement suspension and are processed into small fibre ceitent plates on a filter press, it is found at the measured strengths of the small plates that the batter fibre properties are also able to give 5 higher strengths to the end product (Table 2).
Table 2 Strength values of small fibre cement plates, produced on a filter press, from Portland ceraenL and the high modulus fibres on the basis of 10 PVA and PAW 15 Fibres %-wt.
Bending strength (according to ISO) M/ibh^ Energy of fracture kj/m^ (tensity g/ccm Mater absorption 20 PAN fibres 1.0 1.5 2.0 12.5 14.7 16.0 0.203 0.457 0.701 1.982 1.920 1.851 15.0 14.5 15.7 25 PVA fibres 1.0 1.5 2.0 14.8 16.1 19.5 0.652 1.208 1.835 1.935 1.900 1.863 14.6 15.1 16.0 30 Textile mechanical properties of the fibres used Tensile Modulus of Elongation Titer strength elasticity at rupture cW/diex cl'5/dtex % dtex 35 PAW 7.5 150 11 3.0 PVA 12 240 6 2.0 The energy of fracture represents a very important property in terms of material technology. It provides evidence of the brittleness, or respectively the impact toughness of a product. In practice, this can have the effect that, for example, on laying purlins with variously high values for the energy of fracture, but with identical bending 5 strengths, under the load by the roofer, in one instance, the plates suddenly fracture without prior warning (brittle fracture), and in the second instance, however, the load is taken up by a higher deflection.
The analysis of the results shows that the PVA-fibres with the better 10 textile mechanical properties are not only able to give the small fibre cement plates a higher bending strength, but that also the energy of fracture is very much higher than in the case of the PA^-fibres. The energy of fracture in these experiments is defined as the area under the stress-strain curve up to the point at which the maximum bending 15 strength is reached, i.e. the plate is ruptured.
In the knowledge of the correlations between the fibre data and the resulting product properties of the fibre cement plates, it would be simple to produce fibre cement products upon which very high 20 requirements are set as regards bending strength, impact toughness and energy of fracture, exclusively with the use of PVA-fibres. However, this solution is opposed by the high prices of PVA-fibres. Due to the high raw material costs, combined with a very costly thread production process, the costs for the production of PVA-fibres are approximately .. . 25 50 to 100% higher than for PAM-fibres. If one considers, in addition, that the present asbestos prices are only a fraction of the synthesis fibre prices, then it is obvious that the fibre price must be given crucial importance so that economic fibre cement products can be produced at all. It would therefore be desirable, to the highest 30 degree, for the fibre cement industry to find a fibre with the properties of the described PVA-fibres, but which is economically acceptable, i.e. is not substantially more expensive than the PAM-fibre.
According to the mixture rule which is valid for fibre-reinforced 35 composite materials, it would be expected that in the case of fibre mixtures, the strengths resulting for the reinforced material, or respectively the energy of fracture, follow in a linear manner and proportional to the mixture ration (cf. "Fibre-Reinforced Cement - 7 - Composites", Technical Report 51.067, The Concrete Society, Terminal House, Grosvenor Gardens, London 1973, and H.Krenchel "Fibre Reinforcenant", Afcademisk Foralg Copenhagen, 1964). 5 Surprisingly, it was now found that a very high proportion of PVA-fibres can be substituted by cheap PAK-fibres, without a loss of the positive properties being observed in the fibre cerrt-snt product.
The mixture of PVA- and PAtl-fibres according to the invention is 10 characterized in that it contains as few as possible, but at least 10%, PVA-fibres.
The fibre mixtures according to the invention are to be explained in further detail according to the following practical test examples. 15 High modulus polyacrylonitrile fibres, which have a modulus of elasticity of a minimum 15.0 cM/dtex, an elongation at rupture of a maximum 16% and a tensile strength of at least 6 cf>!/dtex, are suitable as fibres for mixtures of PAH-fibres with PVA-fibres in accordance &ith 20 the invention.
Suitable polyvinylalcohol fibres are high modulus fibres with the following specifications : 25 Modulus of elasticity of at least 75 cK/dtex, elongation at rupture of a maximum 15% and a tensile strength of at least 10 cJ3/dtex.
Both types of fibre can be used with uniform titers or as mixtures of fibres of different titers. However, fibres are preferably used in the 30 range of from 0.5-5.0 dtex. The fibres can either be cut to exact, uniform lengths, or they may be ground or present in mixed form in various lengths. Preferably the PVA-fibres are used in lengths of from 4-15 mm and the PAM-fibres in lengths of from 2 to 12 m. 35 The following examples will show that it is particularly advantageous if the PVA-fibres which are used are approximately 1/3 longer than the admixed PAS'3-fibres. - 8 - As possible production methods for components in which the fibre mixtures according to the invention are used, for example dewatering methods by means of round or longitudinal screening machines are suitable, but also mono-line installations, injection installations or 5 filter presses.
Mixtures which are suitable for processing on the above-mentioned installations also contain, in a hydrous suspension, in addition to the fibre mixtures according to the invention, a setting material, such as, ' 10 for example, cement and, if required, additional fibrous substances with filter properties and also various fillers or additives. I Hydraulic inorganic setting materials such as cement, gypsum, earth alkaline silicates or earth alkaline aluminates are suitable as setting 15 materials. However, organic setting materials such as, for example, synthetic resins, can also be used. Quartz sand, blast furnace slag, fly ash, puzzolane, mica, rock dust, are suitable for example as fillers and additives. Cellulose fibres in the form of sulphate cellulose, mechanical wood pulp, thermomechanical pulp and/or synthetic 20 fibrides on the basis of plastics, such as, for example, polyethylene, may be used as auxiliary fibres, which serve to hold back setting materials and fillers on the screens. The retention capacity may be additionally further improved through the use of flocculation agents, e.g. on the basis of polyacrylamides. 25 Products which can be produced with these mixtures on the dewatering installations are, for example, flat plates, corrugated plates, tubes or moulded articles such as, for example, garden articles. 30 The PVA-/PAN-fibre mixtures according to the invention will be explained wore precisely below in a few examples of application. a) Production of the fibre cement plates for test purposes 35 The tests were carried out on a round screen dewatering machine of the i Hatschek type.
In a separate pulper, the fibre cement suspensions were prepared with a - 9 - solid matter content of 80g/l, and were pumped from there continuously into the draining tank of a Hatschek machine. 10 15 Shortly before running into the draining tank, additionally 200 ppm of a flocculation agent of the polyacrylamide type were added to improve the cement retention. Plates of approximately Sum mre produced on the machine sriih 22 revolutions of the format roller, which plates were pressed between oiled sheets for 60 fiiin in a stack press at a specific applied pressure of 2S0 bar to a thickness of 4.8 nun. Unprsssed samples were also produced from all the variants, and were tested. The setting of the fibre cemsnt plates took place over 25 days in a humidity chamber of 100% r.humidity at 20°C. After the plates had been additionally stored for 3 days under water, the tests were carried out in wet state.
The tests in which fibre cement plates were produced consisting only of the fibre mixture according to the invention and cement, i.e. without filter adjuvants, have been produced on a filter press. 20 b) Mixtures used For production on filter press Portland cement (2800 Blaine) Fibre mixtures 100 parts 2.0 parts 25 30 For production in the Hatschek process : Portland cement (2800 Blaine) 100 parts Waste paper (45° SR) 3.5 parts Polyethylene fibride ("Pulpex" E-A, Hercules USA) 2.0 parts Fibre mixtures 2.0 parts The following variants were used as fibre mixtures : 35 PAN 2 1.7 1.3 1.0 0.7 0 parts PVA 0 0.3 0.7 1.0 1.3 2.0 parts The textile technical properties of the fibres used were : -PAN Titer 1.5 dtex, tensile strength 7.2 cN/dtex, modulus of elasticity 140 - 10 - cN/dtex, elongation at rupture 9% -PVA Titer 2 dtex, tensile strength 12.5 cN/dtex, modulus of elasticity 250 cN/dtex, elongation at rupture 6.5% 5 PAP!-fibres and PVA-fibres were used in various combinations in 4 and 6 mm cut lengths.
For the tests on the filter press, mixtures consisting only of Portland 10 cement and the PVA/PAN-fibres, were produced in water. c) Examination of the fibre cement plates The examinations of the test plates took place by means of a Wolpert 15 testing machine with three point bearing on plates of 25X25 cm. The bearing distance was 167 mm and the testing speed was 26mm/min. The evaluation of the results was carried out by means of a connected computer. 20 d) Results The results are collected together in Tables 3 to 7. 25 30 0 35 C Table 3 - 11 - 10 15 20 25 Test results of small fibre cement plates with variable PVA-PAM- ratios, produced on a Hatschek machine Fibre mixt ure Bending Energy of Density Watei PAP!, PVA strength fracture absos 6 mm 6imi parts parts M/ircm2 kJ/m2 g/ccm % Pressed plates - 2.0 22.4 3.047 1. .941 12.3 0.3 1.7 21.1 2.799 1. .934 11.4 0.7 1.3 21.8 2.884 1. .943 10.9 1.0 1.0 20.7 2.698 1, .982 12.0 1.3 0.7 21.3 2.532 1, .919 11.9 1.7 0.3 19.0 2.105 1. .932 12.4 2.0 - 17.1 1.108 1. .911 12.1 Unpressed plates - 2.0 14.8 4.272 1. .555 20.1 0.3 1.7 14.7 3.820 1. .567 19.9 0.7 1.3 14.5 4.133 1. .557 19.8 1.0 1.0 13.6 3.740 1, .539 21.2 1.3 0.7 13.8 4.010 1. .500 23.7 1.7 0.3 13.1 3.205 1, .532 20.8 2.0 - 12.4 1.902 1. .514 21.9 30 35 Table 4 - 12 - Test results of small fibre cement plates with variable PVA-PAN-fibre ratios, produced on a filter press Fibre mixture PAW, 6mm 10 parts pyA 6mm parts Bending Si/mm Energy of Density Water strength fracture IcJ/m g/ccm absorption 15 0.3 0.7 1.0 1.3 1.7 2.0 2.0 1.7 1.3 1.0 0.7 0.3 14.2 14.4 13.9 13.9 13.7 13.1 12.2 2.603 2.512 2.543 2.527 2.410 1.700 0.975 1.753 1.758 1.752 1.754 1.732 1.748 1.731 19.9 19.8 19.7 19.8 19.9 19.6 19.8 20 Table 5 Test results of small fibre cement plates with variable PVA-PAN-fibre ratios, produced on a Hatschek machine 25 Fibre mixture PAN, 6mm parts 30 pressed plates 0.3 0.7 1.0 1.3 1.7 2.0 35 PVA 4mm parts 2.0 1.7 1.3 1.0 0.7 0.3 Bending strength N/mrn 24.2 23.1 20.4 19.2 18.9 17.5 17.1 Energy of fracture kJ/m 3.075 2.418 1.990 2.001 1.820 1.221 1.108 Density g/ccm 1.935 1.942 1.919 1.920 1.923 1.917 1.911 Water absorption 12.6 11.6 12.0 11.6 11.2 11.8 12.0 10 - 13 - Unpressed plates 2.0 15.0 4.519 1.550 22.6 0.3 1.7 14.7 4.095 1.541 22.4 0.7 1.3 14.2 3.465 1.528 21.9 1.0 1.0 13.4 2.968 1.536 20.4 1.3 0.7 13.1 2.436 1.532 20.4 1.7 0.3 12.7 2.150 1.521 21.3 2.0 - 12.4 2.100 1.514 21.9 Table 6 Test results of small fibre cement plates with variable PVA-PA^-fibre ratios, produced on a filter press 15 Fibre mixture Bending Energy of Density Hater strength fracture absorption PAN, PVA 6mm 4nmi 20 parts parts O PI/mm kj/m2 g/ccm % - 2.0 14.8 2.429 1.807 18.7 0.3 1.7 15.3 2.510 1.823 17.7 0.7 1.3 14.0 2.010 1.779 18.6 1.0 1.0 13.5 1.619 1.785 18.2 25 1.3 0.7 12.9 1.327 1.761 18.8 1.7 0.3 12.5 0.902 1.750 18.7 2.0 - 12.4 0.945 1.747 18.9 30 i 35 - 14 - Table 7 Small fibre cement plates produced according to the invention with variable PVA-PAN-fibre ratios, produced on a Hatschek machine. 5 Fibre mixture 10 PAN, 4nmi parts pressed plates PVA 6mm parts Bending strength N/mm Energy of fracture kJ/m Density g/ccm Water absorption - 2.0 22.6 3.331 1.938 12.2 0.3 1. ,7 22.8 3.115 1.933 12.1 0.7 1. ,3 22.1 3.101 1.941 11.0 15 1.0 1. ,0 22.0 2.987 1.931 11.5 1.3 0. .7 21.3 2.605 1.929 12.3 1.7 0. .3 18.2 1.980 1.937 12.0 2.0 15.3 0.972 1.941 11.1 20 Unpressed plates - 2. 0 15.1 4.657 1.548 22.3 0.3 1. .7 15.2 4.450 1.551 22.0 0.7 1. ,3 14.8 4.522 1.550 21.9 25 1.0 1. ,0 14.8 4.186 1.542 22.6 1.3 0. ,7 14.1 3.475 1.553 21.9 1.7 0.3 12.9 2.497 1.561 20.7 2.0 11.7 1.303 1.568 19.9 30 Textile mechanical properties of the fibres used in Table 7. PAW, 4mm titer 3.0 dtex, tensile strength 7.2 cW/dtex, modulus of elasticity 1.52 cN/dtex, elongation at rupture 9.8% PVA, 6mm titer 2.0 dtex, tensile strength 12.5 cN/dtex, 35 modulus of elasticity 250 cM/dtex, elongation at rupture 5.5%
Claims (33)
1. A mixture of polyacrylonitrile and polyvinylalcohol fibres as reinforcing fibres for materials setting after the molding thereof, 5 specifically for hydraulically setting materials, wherein said mixture of fibres comprises 50-60% polyacrylonitrile fibres and 50-10% polyvinylalcohol fibres.
2. ' 2. The mixture according to claim 1, wherein the PAW-fibres have a 10 modulus of elasticity of at least 130 c?S/dtex, a maximal elongation at "i rupture of 16% and a strength of at least 6 cN/dtex.
3. The mixture according to claim 1, wherein the PVA-fibres have a modulus of elasticity of at least 175 cN/dtex, a maximal elongation at 15 rupture of 15% and a strength of at least 10cH/dtex.
4. The mixture according to claims 1 to 3, wherein the used PVA- and PAPI-fibres comprise titers in the range of 0.5-10 dtex. 20
5. The mixture according to one or more of claims 1 to 3, wherein the length of the PAfS-fibres is in the range of 2 to 12 nun.
6. The mixture according to one or more of claims 1 to 3, wherein the length of the PVA-fibres is in the range of 4 to 15 nsn. 25
7. The mixture according to one or more of claims 1 to 6, wherein the preferred ratio of the cut length of the PVA- and PASl-fibres, respectively, amounts to 4:3 to 3:2. 30 8. The mixture according to one or more of claims 1 to 7, wherein the reinforcing fibre mixture further contains an additive as a process aid.
8. I
9. The mixture according to claim 8, wherein the additive comprises cellulose fibres. I 35
10. The mixture according to claims 8 wherein the additive comprises synthetic pulp. - 16 -
11. The mixture according to claim 8, wherein the additive comprises cellulose fibres and synthetic pulp.
12. The mixture according to claim 8 wherein it further comprises a 5 filler.
13. The mixture according to claim 12, wherein the filler comprises quartz sand.
14. V 10 14. The mixture according to claim 8 wherein the filler comprises amorphous silicic acid. p
15. The mixture according to claim 8 wherein the filler comprises blast furnace slag. 15
16. The mixture according to claim 8 wherein the filler comprises fly ashes.
17. The mixture according to claim 8 wherein the filler comprises 20 puzzolane.
18. The mixture according to claim 8 wherein the filler comprises 1imestone. 25
19. The mixture according to claim 8 wherein the filler comprises mica.
20. Use of the mixture according to any of claim 1 to 19 for reinforcing hvdraulically setting materials. 30
21. Use according to claim 20 wherein the hydraulicallv setting material comprises reinforcing cement.
22. Use according to claim 20 wherein the hydraulically setting ^ material comprises reinforcing gypsum. 35 i
23. Use according to claim 20 wherein the hydraulically setting material comprises reinforcing earth alkaline-silicates. - 17 -
24. Use according to claim 20 wherein the hydraulically setting material comprises reinforcing earth alkaline-aluminates.
25. The use according to any of claims 20 to 24 for the production of 5 the fibre reinforced shaped articles whereby a diluted, hydrous suspension is produced from said hydraulically setting materials, which hydrous suspension is produced and moulded into the desired shape and set thereafter. 10
26. The use according to claim 25 wherein the fibre reinforced shaped articles comprise plates.
27. The use according to claim 25 wherein the fibre reinforced shaped articles comprise corrugated plates. 15
28. The use according to claim 25 wherein the fibre reinforced shaped articles comprise tubes.
29. Shaped articles whenever produced by utilization of a mixture of Z0 reinforcing fibres according to any of claims 1 to 19.
30. Shaped articles according to claim 29, wherein they contain 1 to 5% preferably 1.5 to 2.5% of the reinforcing fibre mixture. 25
31. A mixture of polyacrylonitrile and polyvinylalcohol fibres substantially as hereinbefore described by way of Example.
32. Use of the mixture according to any of claims 1 to 19 or claim 31 substantially as hereinbefore described by way of Example. 30
33. Shaped articles substantially as hereinbefore described by «fav of Example. Dated this 28th day of February, 1985. 35 BY: TOMKIKS & CO., Applicants' Agents, (Signed) 5, Dartmouth Road, DUBLIN 6.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1017/84A CH660357A5 (en) | 1984-03-01 | 1984-03-01 | MIXING CONTAINING FIBER FIBERS FOR THE REINFORCEMENT OF MATERIALS. |
Publications (2)
Publication Number | Publication Date |
---|---|
IE850494L true IE850494L (en) | 1985-09-01 |
IE56925B1 IE56925B1 (en) | 1992-01-29 |
Family
ID=4200502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IE494/85A IE56925B1 (en) | 1984-03-01 | 1985-02-28 | A mixture of fibres for the reinforcement of construction materials specifically for the reinforcement of hydraulic binding agents,a method of reinforcing construction materials and formed articles of said mixture |
Country Status (19)
Country | Link |
---|---|
EP (1) | EP0155520B1 (en) |
JP (1) | JPS60204649A (en) |
BR (1) | BR8500897A (en) |
CA (1) | CA1234703A (en) |
CH (1) | CH660357A5 (en) |
DE (1) | DE3562221D1 (en) |
DK (1) | DK160484C (en) |
ES (1) | ES8606813A1 (en) |
FI (1) | FI850772L (en) |
GR (1) | GR850498B (en) |
IE (1) | IE56925B1 (en) |
IL (1) | IL74339A (en) |
MA (1) | MA20360A1 (en) |
NO (1) | NO850819L (en) |
OA (1) | OA07959A (en) |
PH (1) | PH23179A (en) |
PT (1) | PT80039B (en) |
TR (1) | TR23396A (en) |
ZA (1) | ZA851524B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6296354A (en) * | 1985-10-21 | 1987-05-02 | 株式会社クラレ | Hydraulic inorganic paper products and their manufacturing method |
JPH07102995B2 (en) * | 1985-10-25 | 1995-11-08 | 住友化学工業株式会社 | Fiber-reinforced curable material and manufacturing method thereof |
ATE78457T1 (en) * | 1988-10-13 | 1992-08-15 | Polyfibre Sa | FIBER-REINFORCED HYDRAULICALLY BONDED BUILDING MATERIAL AND PROCESS FOR ITS PRODUCTION. |
DE4133895C2 (en) * | 1991-10-10 | 1994-03-24 | Maerkische Faser Ag | Multi-component system made of natural polymers and PAN moldings with asbestos-specific properties for use in hydraulic binders |
JP3181375B2 (en) * | 1992-05-30 | 2001-07-03 | 株式会社豊夢 | Bonding tool, method for bonding structural members using the same, and bonding structure between structural members |
EP0865554A1 (en) * | 1995-12-05 | 1998-09-23 | Josef Scherer | Construction component or construction with a composite structure, associated composite construction element, and method of production |
FR2797868B1 (en) * | 1999-08-25 | 2002-02-01 | Schappe Sa | REINFORCING WIRE FOR CONCRETE AND CEMENT MORTARS |
BR0107280A (en) * | 2001-09-17 | 2004-03-23 | Rhodia Poliamida Ltda | Microfibers for reinforcement of inorganic matrices, such as cement, mortar. plaster and concrete, polyamide-based microfibres for inorganic matrix reinforcement, process for obtaining polyamide-based microfibres for inorganic matrix reinforcement and fiber-cement products |
FR2918390A1 (en) | 2007-07-05 | 2009-01-09 | Schappe Sa Sa | HYBRID WIRE FOR REINFORCING PLATES |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2128935A1 (en) * | 1970-06-12 | 1971-12-16 | Halliburton Co., Duncan, OkIa. (V.StA.) | High-strength cement bodies contng alkali-resistant fibre reinforcement |
CH633503A5 (en) * | 1977-11-21 | 1982-12-15 | Inventa Ag | FIBER REINFORCED CEMENT-LIKE MATERIAL. |
PT72082B (en) * | 1979-12-18 | 1981-10-13 | Amrotex Ag | PRODUCED BY HYDRAULIC BINDER AND / OR PLASTIC PRODUCT |
AT370064B (en) * | 1980-04-21 | 1983-02-25 | Eternit Werke Hatschek L | BUILDING MATERIAL MIXING OF FIBER REINFORCED, PARTICULARLY CEMENTED PRODUCTS |
JPS58185474A (en) * | 1982-04-22 | 1983-10-29 | 株式会社クラレ | Fiber-reinforced hydraulic molded product |
JPS60161362A (en) * | 1984-02-01 | 1985-08-23 | 株式会社クラレ | Fiber reinforced hydraulic inorganic paper product and manufacture |
-
1984
- 1984-03-01 CH CH1017/84A patent/CH660357A5/en not_active IP Right Cessation
-
1985
- 1985-02-13 IL IL74339A patent/IL74339A/en unknown
- 1985-02-20 EP EP85101830A patent/EP0155520B1/en not_active Expired
- 1985-02-20 DE DE8585101830T patent/DE3562221D1/en not_active Expired
- 1985-02-25 MA MA20584A patent/MA20360A1/en unknown
- 1985-02-25 PH PH31906A patent/PH23179A/en unknown
- 1985-02-26 FI FI850772A patent/FI850772L/en not_active Application Discontinuation
- 1985-02-27 TR TR8626/85A patent/TR23396A/en unknown
- 1985-02-27 GR GR850498A patent/GR850498B/el unknown
- 1985-02-28 IE IE494/85A patent/IE56925B1/en not_active IP Right Cessation
- 1985-02-28 ZA ZA851524A patent/ZA851524B/en unknown
- 1985-02-28 DK DK094585A patent/DK160484C/en not_active Application Discontinuation
- 1985-02-28 CA CA000475492A patent/CA1234703A/en not_active Expired
- 1985-02-28 BR BR8500897A patent/BR8500897A/en unknown
- 1985-02-28 NO NO850819A patent/NO850819L/en unknown
- 1985-03-01 JP JP60039001A patent/JPS60204649A/en active Pending
- 1985-03-01 ES ES540845A patent/ES8606813A1/en not_active Expired
- 1985-03-01 OA OA58533A patent/OA07959A/en unknown
- 1985-03-01 PT PT80039A patent/PT80039B/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE3562221D1 (en) | 1988-05-26 |
CA1234703A (en) | 1988-04-05 |
DK94585D0 (en) | 1985-02-28 |
CH660357A5 (en) | 1987-04-15 |
ES540845A0 (en) | 1986-05-16 |
BR8500897A (en) | 1985-10-22 |
DK160484B (en) | 1991-03-18 |
DK94585A (en) | 1985-09-02 |
OA07959A (en) | 1987-01-31 |
DK160484C (en) | 1991-08-26 |
MA20360A1 (en) | 1985-10-01 |
IL74339A0 (en) | 1985-05-31 |
FI850772A0 (en) | 1985-02-26 |
PT80039B (en) | 1986-11-20 |
PH23179A (en) | 1989-05-19 |
GR850498B (en) | 1985-04-03 |
PT80039A (en) | 1985-04-01 |
IE56925B1 (en) | 1992-01-29 |
ZA851524B (en) | 1985-10-30 |
JPS60204649A (en) | 1985-10-16 |
NO850819L (en) | 1985-09-02 |
TR23396A (en) | 1989-12-29 |
ES8606813A1 (en) | 1986-05-16 |
EP0155520B1 (en) | 1988-04-20 |
FI850772L (en) | 1985-09-02 |
EP0155520A1 (en) | 1985-09-25 |
IL74339A (en) | 1988-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5338357A (en) | Fibre reinforced shaped solid articles | |
FI67072B (en) | FOER FARING FOER FRAMSTAELLNING AV FIBERFOERSTAERKT HYDRAULISKT BINDANDE MATERIAL | |
FI69623C (en) | FRAMEWORK FOR THE FIXING OF FIBERS ASBESTOS IN CEMENTS | |
NO161907B (en) | PROCEDURE FOR THE MANUFACTURE OF ASBESTOUS CORRUGATED PLATES, SPECIFIC BUILDING PLATES. | |
EP0127960B1 (en) | A process for the manufacture of autoclaved fibre-reinforced shaped articles | |
US6875503B1 (en) | Cementitious product in panel form and manufacturing process | |
EP0263723A2 (en) | A process for manufacture of fibre-reinforced shaped articles | |
IE850494L (en) | Reinforcing fibres for hydraulically setting material | |
EP0047158B1 (en) | A process for the manufacture of fibre reinforced shaped articles | |
DK169430B1 (en) | Fiber reinforced, hydraulically bonded building material and process for its manufacture | |
EP0220649B1 (en) | Asbestos-free, wet-formed hydraulic inorganic article and production thereof | |
US4263049A (en) | Fibre-reinforced product and method of preparing same | |
JPH0669901B2 (en) | Hydraulic inorganic papermaking product and method for producing the same | |
JP2721563B2 (en) | Hydraulic molding composition | |
Warden et al. | Fibre-cement composites from Brazilian agricultural and industrial waste materials | |
JPS6021836A (en) | Hydraulic inorganic board and manufacture | |
US3684650A (en) | Method for the production of mineral fiber boards,containing mineral wool | |
Han et al. | Application of composite addictives in paper-making using slag-wool fiber | |
JPS63117943A (en) | Hydraulic hardened matter | |
JPS616167A (en) | Hydraulic inorganic paper products and their manufacturing method | |
MXPA04004968A (en) | Hydraulic formed body. | |
JPH04342448A (en) | Fiber-reinforced hydraulic composition | |
JPH07292845A (en) | Production of hydraulic cement board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Patent lapsed |