[go: up one dir, main page]

HUE032821T2 - Topology discovery in a hybrid network - Google Patents

Topology discovery in a hybrid network Download PDF

Info

Publication number
HUE032821T2
HUE032821T2 HUE15186905A HUE15186905A HUE032821T2 HU E032821 T2 HUE032821 T2 HU E032821T2 HU E15186905 A HUE15186905 A HU E15186905A HU E15186905 A HUE15186905 A HU E15186905A HU E032821 T2 HUE032821 T2 HU E032821T2
Authority
HU
Hungary
Prior art keywords
message
topology
discovery
node
network
Prior art date
Application number
HUE15186905A
Other languages
Spanish (es)
Hungarian (hu)
Inventor
Saiyiu Duncan Ho
Bibhu P Mohanty
Etan Gur Cohen
Rahul Malik
Randall C Gellens
Rohit Kapoor
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of HUE032821T2 publication Critical patent/HUE032821T2/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Un procedimiento, que comprende: recibir uno o más mensajes de descubrimiento (302; 304) en un primer nodo (320) de una red que comprende una pluralidad de nodos (320; 324; 326; 328), identificando el uno o más mensajes de descubrimiento (302; 304) al menos un nodo vecino (324) del primer nodo (320); emitir, mediante el primer nodo (320), un mensaje de consulta de topología (308); recibir, mediante el primer nodo (320), al menos un mensaje de respuesta (310) al mensaje de consulta de topología (308) desde al menos un nodo respondedor (324), incluyendo el al menos un mensaje de respuesta (310) datos que identifican cero o más nodos vecinos (326; 328) del al menos un nodo respondedor (324); emitir, mediante el primer nodo (320), uno o más mensajes de consulta de topología (312) a uno o más nodos vecinos (326; 328) identificados en el al menos un mensaje de respuesta (310); en el que el uno o más mensajes de descubrimiento (302; 304) incluyen un primer mensaje de descubrimiento (302) para un primer protocolo de descubrimiento de red y un segundo mensaje de descubrimiento (304) para un segundo protocolo de descubrimiento de red; en el que el primer mensaje de descubrimiento (302) y el segundo mensaje de descubrimiento (304) se emiten casi al mismo tiempo; y donde el primer nodo (320) comprende además inferir un tipo de puente (322) entre el al menos un nodo vecino (324) y el primer nodo (320) en función de la recepción del primer mensaje de descubrimiento (302) y la no recepción del segundo mensaje de descubrimiento (304).A method, comprising: receiving one or more discovery messages (302; 304) in a first node (320) of a network comprising a plurality of nodes (320; 324; 326; 328), identifying the one or more messages of discovery (302; 304) at least one neighbor node (324) of the first node (320); issuing, via the first node (320), a topology query message (308); receiving, via the first node (320), at least one response message (310) to the topology query message (308) from at least one responder node (324), including the at least one response message (310) data identifying zero or more neighboring nodes (326; 328) of the at least one responding node (324); issuing, via the first node (320), one or more topology query messages (312) to one or more neighboring nodes (326; 328) identified in the at least one response message (310); wherein the one or more discovery messages (302; 304) include a first discovery message (302) for a first network discovery protocol and a second discovery message (304) for a second network discovery protocol; wherein the first discovery message (302) and the second discovery message (304) are issued at almost the same time; and where the first node (320) further comprises inferring a bridge type (322) between the at least one neighboring node (324) and the first node (320) as a function of receiving the first discovery message (302) and the no reception of the second discovery message (304).

Description

Description
RELATED APPLICATIONS
[0001] This application daims the priority benefit of U.S. Provisional Application Serial No. 61/529,224 filed Aug 30, 2011 and U.S. Application Serial No. 13/599,715 filed August 30, 2012.
BACKGROUND
[0002] Embodiments of the inventive subject matter generally relate to the field of communication systems and, more particularly, to a mechanism for discovery of devices in a hybrid communications network.
[0003] Hybrid communications networks typically comprise multiple networking technologies (e.g., wireless local area network (WLAN) technologies, powerline communication technologies, Ethernet technologies, etc.) that are interconnected using bridging-capable devices that forward packets between devices utilizing the different network technologies and media in order to form a single extended communication network. A convergent communications network may also be referred to as a hybrid communications network. Typically, the communication mechanisms, and protocol specifics (e.g., device and topology discovery, bridging to other networks, etc.) are unique to each networking technology. The convergent communications network can comprise hybrid communication devices and conventional (or legacy) communication devices.
[0004] US 2010/0232317 A1 discloses an apparatus and method for a wireless home mesh network with a network topology visualizer. In one embodiment, the method may include displaying the network topology of a wireless home mesh network. The mobile nodes and stationary nodes of the wireless home mesh network may wirelessly communicate to share topology information regarding the wireless home mesh network. The topology information may include local connectivity information of a node, such as the direct neighbors of the node and the neighbors’ neighbor information. In one embodiment, the local connectivity information is combined with the received node information to form an interactive global topology map of the wireless home mesh network to display for a user. In another embodiment, the combined topology information may be stored for offline processing.
SUMMARY
[0005] The underlying problem of the present invention is solved by the independent claims [0006] Various embodiments provide a discovery protocol allowing nodes that are interested in knowing a network topology to discover other nodes in the network. The discovery protocol may include topology discovery messages and topology query messages. A node may issue topology discovery messages upon powering up, at periodic intervals, or upon detecting a change in network topology. The topology discovery messages may be broadcast to all nodes or a subset of nodes on a network and may identify the issuing node to the network. In some embodiments, more than one type of topology discovery messages may be issued substantially simultaneously, for example, a first type of topology discovery messages for P1905.1 compliant devices and a second type of legacy discovery messages for IEEE 802.1 D compliant devices.
[0007] Nodes on the network that are interested in acquiring further details on the network topology can issue topology query messages. A topology query message may be sent to a particular node (known through the topology discovery messages) to request a response from the receiving node regarding the neighboring nodes of the receiving node. In some embodiments, the topology query may be a onetime request and the receiving node may provide a single response. In alternative embodiments, the topology query may be a subscription request and the receiving node may provide a response when the receiving node detects a change in the network topology. In either case, the querying node can use the response data to discover other nodes and to send the discovered nodes topology query messages such that the querying node can determine a network topology to a desired level of depth.
[0008] In some embodiments, a method comprises: receiving one or more discovery messages at a first node in a network comprising a plurality of nodes, the one or more discovery messages identifying at least one neighbor node to the first node; issuing, by the first node, a topology query message; receiving by the first node at least one response message to the topology query message from at least one responding node, the at least one response message include data identifying zero or more neighboring nodes to the at least one responding node; and issuing, by the first node, one or more topology query messages to one or more neighboring nodes identified in the at least one response message.
[0009] In some embodiments, the topology query message comprises a topology subscription message, and wherein in response to the topology subscription message, a receiving node issues a topology notification message upon detecting a network topology change.
[0010] In some embodiments, the topology subscription message includes a requested duration for a subscription.
[0011] In some embodiments, the method further comprises modifying the requested duration; and transmitting a response to the topology subscription message, the response including the modified requested duration.
[0012] In some embodiments, the method further comprises terminating the subscription based on setting the modified requested duration to a value indicating subscription termination.
[0013] In some embodiments, the one or more discovery messages include a first discovery message for a first network discovery protocol and a second discovery message for a second network discovery protocol, and wherein the first discovery message and the second discovery message are issued at substantially the same time.
[0014] In some embodiments, the method further comprises inferring, by the first node, a type of bridge between the at least one neighbor node and the first node based on reception of the first discovery message and lack of reception of the second discovery message.
[0015] In some embodiments, messages issued or received by the first node include TLV (type, length and value) portions, and further comprises determining that a message exceeds a maximum size; and in response to determining that the message exceeds a maximum transmission unit size, fragmenting the message into multiple transmission units, wherein the fragmenting occurs on a TLV portion boundary.
[0016] In some embodiments, the method further comprises throttling topology discovery messages or topology response messages to a predetermined or configurable rate.
[0017] In some embodiments, the method further comprises bundling topology discovery messages or topology response messages in predetermined or configurable message quantities.
[0018] In some embodiments, a method comprises: issuing, by a first node in a network comprising a plurality of nodes, one or more discovery messages, the one or more discovery messages identifying the first node to one or more neighboring nodes in the plurality of nodes; receiving, by the first node, a topology query message; and issuing by the first node a response message to the topology query message, the response message include data identifying zero or more neighboring nodes to the first node.
[0019] In some embodiments, the one or more discovery messages are issued by the first node in response to a power up of the first node, an expiration of a timer on the first node, or detection of a topology change by the first node.
[0020] In some embodiments, the first node delays transmission of the one or more discovery messages for a predetermined or configurable time period after power up of the first node.
[0021] In some embodiments, a network device comprises: a plurality of network interfaces; and a topology discovery unit coupled with the plurality of network interfaces, the topology discovery unit configured to receive one or more discovery messages, the one or more discovery messages identifying at least one neighbor node to the network device; issue a topology query message; receive at least one response message to the topology query message from at least one responding node, the at least one response message include data identifying zero or more neighboring nodes to the at least one responding node; and issue one or more topology query messages to one or more neighboring nodes identified in the at least one response message.
[0022] In some embodiments, the topology query message comprises a topology subscription message, and wherein in response to the topology subscription message, a receiving node issues a topology notification message upon detecting a network topology change.
[0023] In some embodiments, the topology subscription message includes a requested duration for a subscription.
[0024] In some embodiments, the at least one response message includes a modified requested duration.
[0025] In some embodiments, the topology discovery unit is further configured to terminate the subscription based on setting the requested duration to a value indicating subscription termination.
[0026] In some embodiments, the one or more discovery messages include a first discovery message for a first network discovery protocol and a second discovery message for a second network discovery protocol, and wherein the first discovery message and the second discovery message are issued at substantially the same time.
[0027] In some embodiments, the topology discovery unit is further configured to infer a type of bridge between the at least one neighbor node and the network device based on reception of the first discovery message and lack of reception of the second discovery message.
[0028] In some embodiments, messages issued or received by the topology discovery unit include TLV (type, length and value) portions, and wherein the topology discovery unit is further configured to determine that a message exceeds a maximum size; and in response to determining that the message exceeds a maximum transmission unit size, fragment the message into multiple transmission units, wherein the fragmenting occurs on a TLV portion boundary.
[0029] .In some embodiments, the topology discovery unit is further configured to throttle topology discovery messages or topology response messages to a predetermined or configurable rate.
[0030] In some embodiments, the topology discovery unit is further configured to bundle topology discovery messages or topology response messages in predetermined or configurable message quantities.
[0031] In some embodiments, one or more machine-readable storage media having instructions stored therein, which when executed by one or more processors causes the one or more processors to perform operations that comprise: receiving, by a first node in a network comprising a plurality of nodes, one or more discovery messages, the one or more discovery messages identifying at least one neighbor node to the first node; issuing, by the first node, a topology query message; receiving by the first node at least one response message to the topology query message from at least one responding node, the at least one response message include data identifying zero or more neighboring nodes to the at least one responding node; and issuing, by the first node, one or more topology query messages to one or more neighboring nodes identified in the at least one response message.
[0032] In some embodiments, the topology query message comprises a topology subscription message, and wherein in response to the topology subscription message, a receiving node issues a topology notification message upon detecting a network topology change.
[0033] In some embodiments, the topology subscription message includes a requested duration for a subscription.
[0034] In some embodiments, the operations further comprise modifying the requested duration; and transmitting a response to the topology subscription message, the response including the modified requested duration.
[0035] In some embodiments, the operations further comprise terminating the subscription based on setting the modified requested duration to a value indicating subscription termination.
[0036] In some embodiments, the one or more discovery messages include a first discovery message for a first network discovery protocol and a second discovery message for a second network discovery protocol, and wherein the first discovery message and the second discovery message are issued at substantially the same time.
[0037] In some embodiments, the operations further comprise inferring, by the first node, a type of bridge between the at least one neighbor node and the first node based on reception of the first discovery message and lack of reception of the second discovery message.
[0038] In some embodiments, messages issued or received by the first node include TLV (type, length and value) portions, and wherein the operations further comprise determining that a message exceeds a maximum size; and in response to determining that the message exceeds a maximum transmission unit size, fragmenting the message into multiple transmission units, wherein the fragmenting occurs on a TLV portion boundary.
[0039] In some embodiments, the operations further comprise throttling topology discovery messages or topology response messages to a predetermined or configurable rate.
[0040] In some embodiments, the operations further comprise bundling topology discovery messages or topology response messages in predetermined or configurable message quantities.
BRIEF DESCRIPTION OF THE DRAWINGS
[0041] The present embodiments may be better understood, and numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
Figure 1 is an example block diagram illustrating a system for determining a topology in a hybrid network;
Figure 2 is a flow diagram illustrating example operations for determining a topology in a hybrid network;
Figure 3 illustrates an example sequence diagram for determining a topology in a hybrid network;
Figure 4 illustrates example operations for fragmenting messages that exceed a maximum payload size; and
Figure 5 is an example block diagram of one embodiment of an electronic device including a mechanism for discovery of legacy network devices, hybrid network devices and bridges in a hybrid communications network. DESCRIPTION OF EMBODIMENT(S) [0042] This specification includes references to "one embodiment" or "an embodiment." The appearances of the phrases "in one embodiment" or "in an embodiment" do not necessarily refer to the same embodiment. Particularfeatures, structures, or characteristics may be combined in any suitable manner consistent with this disclosure.
[0043] Various units, circuits, or other components may be described or claimed as "configured to" perform a task or tasks. In such contexts, "configured to" is used to connote structure by indicating that the units/circuits/components include structure (e.g., circuitry) that performs those task or tasks during operation. As such, the unit/circuit/component can be said to be configured to perform the task even when the specified unit/circuit/component is not currently operational (e.g., is not on). The units/circuits/components used with the "configured to" language include hardware-for example, circuits, memory storing program instructions executable to implement the operation, etc. Additionally, "configured to" can include generic structure (e.g., generic circuitry) that is manipulated by software and/or firmware (e.g., an FPGA or a general-purpose processor executing software) to operate in manner that is capable of performing the task(s) at issue.
[0044] The terms "first", "second" etc. are used as labels for nouns that they precede, and do not imply any type of ordering (e.g., spatial, temporal, logical, etc.). For example, in a P1905.1 compliant network, the terms "first" and "second" messages can be used to refer to any two messages. In other words, the "first" and "second" messages are not limited to logical occurrences 0 and 1.
[0045] The term "based on" is used to describe one or more factors that affect a determination. This term does not foreclose additional factors that may affect a determination. That is, a determination may be solely based on those factors or based, at least in part, on those factors. Consider the phrase "determine A based on B." While B may be a factor that affects the determination of A, such a phrase does not foreclose the determination of Afrom also being based on C. In other instances, A may be determined based solely on B.
[0046] The description thatfollows includes example systems, methods, techniques, instruction sequences, and computer program products that embody techniques of the present inventive subject matter. However, it is understood that the described embodiments may be practiced without these specific details. For instance, although in some embodiments the topology discovery mechanism can be implemented for hybrid communications networks comprising wireless local area network (WLAN) devices (e.g., IEEE 802.11η devices), powerline network devices (e.g., HomePlug AV devices) and Ethernet devices, in other embodiments the topology discovery mechanism can be implemented in hybrid communications networks that may comprise other suitable types of network devices that implement other standards/protocols (e.g., WiMAX, etc.). In other instances, well-known instruction instances, protocols, structures, and techniques have not been shown in detail in order not to obfuscate the description.
[0047] A hybrid communication network is typically formed by interconnecting communication networks (that support different communication protocols) across different network technologies and communication media. A Convergent Digital Home Network (CDHN) is one example of such a hybrid network, although many other types of hybrid networks exist. The hybrid communications network can comprise multi-interface communication devices ("hybrid devices") that are configured to operate across multiple networking technologies as well as conventional, single-interface communication devices ("legacy devices"). It is desirable forthe hybrid devices and legacy devices to implement topology discovery and other information exchange protocols to advertise their presence to other devices in the hybrid communications network. For proper packet routing and to enable power saving and other optimizations, the devices on the network should be aware of the topology of the hybrid communications network. Existing topology discovery techniques may rely on manual configuration of network parameters, or explicit provision of topology information that can be too complicated for users.
[0048] Various embodiments are disclosed for topology discovery and message structures in a hybrid communication network (e.g., a CDHN). Although the following disclosure is described in terms of P1905.1 compliant networks and devices for ease of understanding, the disclosed embodiments may be applied to other types of networks and technologies. A hybrid communications network may allow for the utilization and interfacing of heterogeneous networking technologies. Example heterogeneous networking technologies may include powerline networks (IEEE P1901), WiFi (IEEE 802.11), Ethernet (IEEE 802.3) and MoCA 1.1, among others. Hybrid devices maybe capable of dynamic interface selection for transmission of packets arriving from any interface (e.g., upper protocol layers or underlying network technologies). End-to-end Quality of Service (QOS) may also be supported. In some embodiments, the hybrid communications network may interface with another network (e.g., a LAN provided by a service provider). The topology discovery mechanisms described herein may allow devices to determine the topology for connectivity of the whole network (or a subset of the network). In addition, the message structures described herein may allow for handling of fragmentation and provide general information (e.g., source interface address, destination interface address, etc.) of the message. Such message structures may be used in topology discovery, security, and network configuration, among other types of protocols.
[0049] In particular embodiments, the disclosed topology discovery protocol may enable devices (e.g., P1905.1 compliant devices) to discover other devices (e.g., P1905.1 compliant devices, legacy devices, etc.) in a hybrid network such as a CDHN. The topology discovery protocol may also enable devices to populate a topology database. For instance, the topology database may be a P1905.1 topology database. The topology discovery protocol may also enable updating of the topology database in the event of a change in network topology.
[0050] In various embodiments, the topology discovery protocol may enable devices to determine which devices are reachable by it, and by extension, a device (e.g., a mapper of the device) may infer a more complete network topology. The protocol may also enable the devices to be notified by other devices of any changes in network topology.
[0051] Figure 1 is a block diagram illustrating an example system for determining a network topology in a hybrid communications network 100. As described above, the hybrid communications network 100 can comprise communication devices (e.g., hybrid devices, bridges, legacy devices, etc.) that implement one or more communication protocols (e.g., WLAN, HomePlug AV, Ethernet, etc.), based on various networking standards and operating either wirelessly or over various wired media (powerline, coax cable, unshielded twisted pair telephone cable, CAT5 shielded twisted pair cable, etc.). In some implementations, the hybrid devices can be electronic devices that comprise bridging capabilities across multiple types of network interfaces in addition to communication capabilities over multiple types of network interfaces. Such hybrid devices may be referred to as "hybrid bridges." The hybrid devices can also be electronic devices that comprise communication capabilities over multiple types of network interfaces but do not comprise bridging capabilities.
Such hybrid devices may be referred to as "hybrid communication devices." In some implementations, the legacy devices can be electronic devices that comprise bridging capabilities in addition to communication capabilities, which can be referred to herein as "legacy bridges." The legacy devices can also be electronic devices that comprise communication capabilities but do not comprise bridging capabilities. Such legacy devices may be referred to as "legacy communication devices." In Figure 1, example hybrid communications network 100 comprises two network segments 120 and 122. The network segment 120 comprises hybrid devices 102 and 116, and a legacy device 106. The network segment 122 comprises a hybrid device 104 and a legacy device 108. Abridge 110 couples the network segment 120 and the network segment 122. The bridge 110 may be either a hybrid bridge ora legacy bridge. The hybrid device 102 includes a topology discovery unit 112 and a mapper unit 114. Likewise, although not depicted in Figure 1, the hybrid devices 104 and 116 can also optionally include their own respective device topology discovery units and mapper units. In some embodiments, the hybrid devices 102, 104, and/or 116 can be hybrid bridges or hybrid communication devices. Likewise, the legacy devices 106 and 108 can be legacy bridges or legacy communication devices.
[0052] In some implementations, the hybrid devices 102,104, and 116 can include multiple communication interfaces, each of which couples the hybrid device to different types of communication networks. For example, the hybrid device 102 can include three communication interfaces (e.g., a powerline interface, an Ethernet interface, and a wireless local area network (WLAN) interface) that enable the hybrid device 102 to connect to a powerline communication network, an Ethernet, and a WLAN, respectively. It is noted that even though Figure 1 does not explicitly show multiple communication interfaces for the hybrid devices 102, 104 and 116, the hybrid devices 102, 104 and 116 can comprise two or more communication interfaces that couple the hybrid devices to two or more communication networks. The legacy devices typically comprise only one communication interface for communication via the corresponding communication network. For example, the legacy devices 106 and 108 may comprise an Ethernet interface for communication via Ethernet.
[0053] In some implementations described herein, a two stage topology discovery protocol may be used. The two stage topology discovery protocol may include a first stage where devices announce their presence by issuing topology discovery messages to other nodes in the hybrid communications network 100, and a second stage where devices interested in determining a network topology issue topology query messages to selected nodes in the hybrid communications network 100. A mapper unit 114 may use the information obtained in responses to the topology query messages to build a topology map in a topology database. Thus during the first stage, some or all of hybrid devices 102, 104, and 116 can broadcast topology discovery messages to advertise their presence in the hybrid communications network 100. For example, hybrid device 116 can broadcast a topology discovery message including an identifier of the hybrid device 116 to announce its presence in the hybrid communications network 100 to the hybrid devices 102 and 104.
[0054] In some embodiments, hybrid communications network 100 includes P1905.1 compliant devices. In such embodiments, the two stage topology discovery protocol may include a Multicast Discovery Mechanism that is used during the first stage and a Unicast Topology Discovery Mechanism that is used during the second stage. The Unicast Topology Discovery Mechanism may include a Topology Query/Response Procedure and/or a Topology Subscription/Notification Procedure, as described herein. During the second stage of the topology discovery protocol, the Unicast Topology Discovery Mechanism may enable a P1905.1 mapper (e.g., mapper unit 114 of hybrid device 102) to obtain another P1905.1 compliant device’s neighbor information. For example, a P1905.1 mapper may construct a more complete network map by sending a topology query or topology subscription request messages to each of its neighboring P1905.1 compliant devices to obtain topology information regarding the neighboring device’s neighbors (via topology response ortopology notification messages). The Topology Query/Response Procedure may enable a device to obtain information about another device as well as another device’s neighbors. Also, in some implementations, the device may implement the Topology Subscription/Notification Procedure that may enable a device to subscribe to receive notification of any changes in topology at another device. Upon detection of a change in topology, a message (e.g., a topology notification message) may be sent to a subscriber device.
[0055] In one embodiment, during the first stage of the topology discovery protocol, a device may send multiple types of multicast messages on each of its interfaces. For example, a P1905.1 compliant device may send a legacy discovery message and a topology discovery message on each of its interfaces. In some embodiments, the legacy discovery message may be used to add information about legacy devices that are reachable in the hybrid network and that may not have implemented the P1905.1 protocol. In addition, the legacy discovery message may, in combination with a topology discovery message, be used to determine a type of bridge between a P1905.1 device and other devices on the hybrid communications network based at least in parton whether or not the bridge forwards either the legacy discovery message or the topology discovery message, as further described below. The legacy discovery message in some embodiments is an LLDP (Link Layer Discovery Protocol) compliant discovery message that may be sent to the LLDP nearest bridge multicast address. The topology discovery message may be sent to a predetermined multicast address such as the P1905.1 Multicast Address. The legacy discovery message and the topology discovery message may be forwarded in different manners by different types of devices. For example, a legacy discovery message may be forwarded by P1905.1 compliant bridges and IEEE 802.1-D compliant legacy bridges. The topology discovery message may be forwarded by IEEE 802.1-D compliant legacy bridges, but in some cases, not by P1905.1 compliant bridges.
[0056] A P1905.1 compliant device (e.g., a mapper unit 114 of the hybrid device 102) may construct a more complete network map by sending a topology query message or topology subscription request message to a neighboring P1905.1 compliant device to obtain topology information regarding the neighboring device’s neighbors (e.g., via a topology response message or a topology notification message sent by the neighboring device in response to the topology query message or topology subscription request message). The P1905.1 compliant device may send the topology query messages or the topology subscription request messages to some or all of the neighboring device’s P1905.1 compliant neighbors, and so forth in order to obtain network topology information to a desired depth. It is noted that, in some implementations, a first device does not have to be physically adjacent to a second device in order to be considered a "neighbor" device." Instead, the first device may only be "communicatively located adjacent" to at least one interface of the second device in order for the first device and second device to be neighbors. In particular embodiments, a device is a "neighbor" if the device is reachable without being bridged by another P1905.1 compliant device. Some devices may be reachable but not neighbors, for example, a P1905.1 compliant or legacy device bridged by another P1905.1 compliant device.
[0057] In some embodiments, the Multicast Discovery Procedure, Topology Query/Response Procedure, and the Topology Subscription/Notification Procedure may enable P1905.1 compliant devices to discover, build, and/or maintain network topology information. The various mechanisms or procedures may utilize one or more of the following messages: topology discovery message (multicast), legacy discovery message (multicast), topology query message (unicast), topology response message (unicast), topology subscription request message (unicast), and topology notification message (unicast). Further details on the messages listed above and the use of the messages by devices and topology discovery units 112 within hybrid devices in hybrid communications network 100 are provided below with respect to Figures 2 -4.
[0058] Figure 2 is a flow diagram illustrating example operations in a method 200 for determining a topology in a hybrid communications network. Method 200 begins at block 202 when a device in a hybrid communications network (e.g., a CDHN) issues one or more topology discovery messages. The messages may include one or more message TLV (type, length, value) portions. In one embodiment, a P1905.1 compliant device may transmit the topology discovery message on all its interfaces, addressed to a P1905.1 Multicast Address. Transmission may occurfor a variety of reasons. For instance, a topology discovery message may be sent when power is applied to the P1905.1 compliant device. Further, the topology discover message may be sent periodically, e.g., the topology discover message may be sent a certain amount of time (e.g., 60 seconds) after the last topology discovery message was sent. As another example, a topology discovery message may be sent when the transmitting device detects a change in topology. The topology change may be indicated by a change in any of the information received in a topology query response message. The topology change may also be determined by a transmitting device in response to detecting a neighboring device of the transmitting device can no longer communicate with the transmitting device. As a fourth example, a topology discovery message may be sent by a P1905.1 compliant device when a new device’s topology discovery message is received by the P1905.1 compliant device. In some embodiments, a P1905.1 compliant device receiving additional topology discovery messages from new devices may defer sending its own additional topology discovery messages until a time period (e.g., 60 seconds) has elapsed since the last topology discovery messages was sent by the P1905.1 compliant device. Those of skill in the art having the benefit of the disclosure will appreciate that other implementation-dependent occasions may also trigger a topology discovery message to be sent. The topology discovery message may include a session ID, which, in some embodiments, may be generated upon device initialization (e.g., power up or reset) and may be unique over a period of time. A session identifier type TLV may be included with a topology discovery message. An example session identifier type TLV is shown in Table 1.
Table 1
[0059] In one embodiment, a P1905.1 compliant device may transmit a legacy discovery message on all its interfaces, whenever a topology discovery message is sent. In other words, a P1905.1 compliant device may send both a topology discovery message and a legacy discovery message on all of the P1905.1 compliant device’s interfaces. The legacy discovery message may include LLDP packets sent to the LLDP multicast address (using the LLDP Ethertype). The legacy discovery message may contain the sending device’s P1905.1 device ID. An example Ethernet frame header
Information on which a legacy discovery message may be carried is described in Table 2.
Table 2
In one embodiment, the following LLDP TLVs may be used to form a LLDPDU (Link Layer Discovery Protocol Data Unit): a chassis ID TLV, a port ID TLV, a time to live TLV, and an end of LLDPDU TLV. The chassis ID TLV may include a chassis ID subtype, which may be set to 4-MAC address. The chassis ID may be set to the P1905.1 MAC address. The port ID TLV may include a port ID subtype, which may be set to 3 (MAC address (IEEE 802)). The port ID may be set to the MAC ID of the interface on which the message is transmitted. The time to live TLV may include a time to live (TTL) value (e.g., 180 seconds).
[0060] In one embodiment, a P1905.1 message container may be used to carry TLVs from a transmitting device to one or more receiving devices. For example, the TLV may be transmitted to one receiving device if the destination address is a unicast address and to more than one receiving device if the destination address is a multicast address. If the message is too large to fit within an Ethernet frame, multiple fragments may be created at the TLV boundaries to form multiple messages. Table 3 includes an example of an Ethernet frame header on which the message is carried:
Table 3
[0061] Table 4 includes an example P1905.1 message container format.
Table 4
(continued)
[0062] Table 5 includes an example end of message TLV as follows:
Table 5
[0063] At block 204 a first node receives the one or more discovery messages issued at block 202 and may use the information in the message to update a network topology maintained in the first node. In some embodiments, the Multicast Discovery Mechanism and message formats described above may allow for a P1905.1 compliant device to discover the existence of other P1905.1 compliant devices and legacy devices, to the extent possible, through the use of the topology discovery message and the legacy discovery message. The legacy discovery message, in combination with the topology discovery message, may be used to assist detection of the existence in the hybrid network topology of one or more legacy bridges between a transmitter and receiver of the message. A P1905.1 compliant device may infer that one of its interfaces has another P1905.1 compliant device as a neighbor without the intermediate presence of a conformant legacy bridge when it receives, on that interface, both a topology discovery message and a legacy discovery message transmitted by the same 1905.1 device. A P1905.1 compliant device may infer the presence of one or more legacy bridges between it and another P1905.1 compliant device when it receives only a topology discovery message transmitted by the other P1905.1 compliant device and not a legacy discovery message from that device on that interface. In the event that a legacy discovery message is dropped or damaged, a P1905.1 compliant device may make an incorrect inference that a legacy bridge is present between it and another P1905.1 compliant device when in fact a legacy bridge is not present. Transmission of both types of messages at periodic intervals may allow the P1905.1 compliant device to correct the improper inference of the presence of a legacy bridge because the receiving device may nevertheless subsequently receive another legacy discovery message and update its information to correct its topology information by removing the incorrectly inferred legacy bridge.
[0064] Blocks 206-210 describe a Topology Query/Response Procedure that may allow for a P1905.1 compliant device to query and retrieve topology information from another device through the use of a topology query message and a topology response message.
[0065] At block 206, in various embodiments, the first node issues a topology query message. A topology query message may be sent from one P1905.1 compliant device to another at any time. As described herein, the topology query message may be unicast. In some embodiments, no TLV need be included in the topology query message. The topology query message may include the sending device’s P1905.1 device ID and a unique transaction ID for the query. If the querying device does not receive a topology response message containing the same transaction ID that was included in the topology query message, it may resend the topology query message.
[0066] At block 208, the first node receives one or more responses to the topology query message. In some embodiments, upon receiving a topology query message, a P1905.1 compliant device may respond with a topology response message. In some embodiments, the P1905.1 compliant device responds to a received topology query message with a topology response message. One topology response message may be sent per topology query message. A topology response message may be sent on any port, regardless of the port on which it was received. The topology response message may contain the same transaction ID that was received in the topology query message, the sending device’s P1905.1 device ID, and for each of the receiving device’s ports, the MAC address and media type/subtype of the port, and a list of neighboring legacy devices and neighboring P1905.1 compliant devices reachable via the port. The list of neighboring legacy devices may include, for each neighboring legacy device, the MAC address of the neighboring device’s port, and the number of seconds since traffic of any kind from the neighboring legacy device was seen. The list of neighboring P1905.1 compliant devices may include, for each P1905.1 compliant neighboring device, the neighboring device’s P1905.1 device ID, and the number of seconds since traffic of any kind from the neighboring P1905.1 device was seen. As described herein, the topology response message may be unicast. The following TLVs may be included in the topology response message: a device information type TLV, zero or one legacy neighbor list TLV, and zero or one P1905.1 neighbor list TLV. Table 6 includes an example P1905.1 compliant device information type TLV, Table 7 includes example media types, Table 8 includes an example legacy neighbor list TLV, and Table 9 includes an example neighbor TLV.
Table 6
Table 7
Table 8
Table 9
(continued)
[0067] In some embodiments, the topology query messages and the topology response messages issued and received at blocks 206 and 208 respectively may be topology subscription and topology notification messages. The topology subscription messages and topology notification messages may be in addition to, or instead of, the topology query and response messages described above. A Topology Subscription/Notification Procedure may allow a device to subscribe for topology changes at another P1905.1 compliant device. This may be accomplished through unicast messages, which may include: the topology subscription request message, the topology notification message, and the topology notification confirm message. A P1905.1 compliant device may be configured to support a minimum and maximum number of concurrent subscriptions.
[0068] In one embodiment, a topology subscription request message may be sent from one P1905.1 compliant device to another at any time. A topology subscription request message may contain a requested duration of the subscription. The subscription duration may be modified. For example, the receiving device may assign a duration that is shorter or longer than what was requested and indicate the modification in the topology notification message by including the modified subscription duration. If the subscriber device does not receive a topology notification message in response to a topology subscription request message, it may resend the topology subscription request message. A subscription may include a subscription ID, the sending device’s P1905.1 device ID, and a requested subscription duration (e.g., in seconds). A new subscription ID may create a new subscription while specification of an existing subscription ID may modify an existing subscription. Further, a subscription may be established such that the requesting device is subscribed to topology changes at the target device. A subscriber device may modify the duration or cancel a subscription by sending a topology subscription request message with the subscription ID of the subscription for which modification or cancellation is desired and the modified subscription duration (e.g., zero representing zero seconds to cancel the subscription). A notification subscription request TLV may be included in the message. An example notification subscription request TLV is shown in Table 10.
Table 10
[0069] In one embodiment, a P1905.1 compliant device receiving a topology subscription request message may respond by sending a topology notification message to a requesting device when a subscription is established or canceled, and, for the duration of the subscription, for changes in topology. The responding device may modify the requested subscription duration received in the topology subscription request message and include the modified subscription duration in the topology notification message. In some cases, a subscription request may not be accepted. Non-acceptance of a subscription request may be indicated by a value (e.g., zero) sent to the requesting device. A device may cancel or modify an existing subscription by sending a topology notification message with the subscription ID, with the subscription duration appropriately set, to the subscribing device. Cancelation of the subscription may be indicated by a value (e.g., zero representing a duration of zero) in the topology notification message. In some embodiments, a device may send a topology notification message to a subscribing device when a change in topology is detected, which may be indicated by a change in any information that is sent in a topology response message. If the device does not receive a topology notification confirm message in response to a topology notification message, it may resend the message up to a certain number of times. There is no requirement to wait for some period of time after receiving a cancelation before resubscribing. Renewal of a subscription may be performed by sending a subscription request with the same subscription ID. After expiration or cancelation, the requesting device may request a new subscription with a new subscription ID.
[0070] The topology notification message may include the duration of the subscription and the device’s current topology state. It may also include the sending device’s P1905.1 device ID, the subscription ID of the subscription, the remaining duration, and for each of the device’s ports, the MAC address and media type/subtype of the port, and a list of neighboring legacy devices and neighboring P1905.1 compliant devices reachable via the port. The list of neighboring legacy devices may include, for each neighboring legacy device, the MAC address of the neighboring legacy device’s port, and the number of seconds since traffic of any kind from the neighboring legacy device was seen. The list of neighboring P1905.1 compliant devices may include the neighboring device’s P1905.1 device ID, and the number of seconds since traffic of any kind from the neighboring P1905.1 compliant device was seen. The topology notification message may contain the current state of the information. In various embodiments, the following TLVs may be included with the message: one device information type TLV, zero or one legacy neighbor list TLV, and zero or one P1905.1 neighbor TLV.
[0071] In some embodiments, a P1905.1 compliant device may respond to a received topology notification message with a topology notification confirm message. Upon receiving the notification, the requesting device may store the duration so that it may renew the subscription before expiration. The topology notification confirm message may include the same transaction ID as received in the topology notification message. In one embodiment, no TLVs need be included in the topology notification confirm message.
[0072] At block 210, the first node may issue topology query messages or topology subscription request messages to neighboring nodes identified in the response messages received at block 208. The first node can repeat the topology query process to a desired depth in the network, or until no new devices are discovered.
[0073] Some or all of the messages above may be throttled or bundled in order to avoid undesirable flooding of a hybrid network with topology discovery protocol messages. For example, in some embodiments, messages may be throttled to a predetermined or configurable message rate. As an example, a network device may be configured to send no more than one message every five seconds. Additionally, a network device may be configured to delay issuing topology discovery messages until a predetermined or configurable amount of time after power up. The delay may be determined differently on different devices so that not all devices transmit discovery requests simultaneously when powered up at or near the same time.
[0074] Further, a network device may be configured to bundle notification messages so that not every topology change is immediately reported. For example, a network device may be configured to bundle twenty topology changes in a notification message. In other words, a node may be configured to not report any detected topology change until twenty changes have been detected. In some embodiments, bundling may be combined with a timer. For example, a node may be configured to not report any detected topology changes until twenty changes are detected or until ten seconds have elapsed after the last reported change, whichever comes first.
[0075] Figure 3 is a sequence diagram illustrating an example sequence of messages that may be exchanged between a subset of devices in a hybrid communications network during a portion of a topology discover procedure. For the purposes of the example, assume that a hybrid communications network includes hybrid device 320, hybrid device 324, legacy bridge 322 between hybrid device 320 and hybrid device 324, hybrid device 326 and legacy device 328. Further assume that hybrid device 324 and hybrid device 326 are neighbor devices and that legacy device 328 is a neighbor of hybrid device 326.
[0076] At some point in time, hybrid device 324 determines that topology discovery messages are to be sent. As noted above, the determination may be due to a power up event, a topology change event, or a timer expiration event. At sequence step 302, hybrid device 324 may send a topology discovery message to a P1905.1 multicast address. In some embodiments, hybrid device 324 may also send a legacy discovery message (sequence step 304) at approximately the same time as the topology discovery message. The topology discovery message and the legacy discovery message include data identifying hybrid device 324 and announce the presence of hybrid device 324 on the hybrid network. In some embodiments, either or both the legacy discovery message and the topology discovery message do not identify any other nodes (e.g., neighbor nodes) other than the sending node (hybrid device 324 in this example).
[0077] Legacy bridge 322 receives the topology discover message and legacy discovery message. Other devices in the hybrid network may also receive the messages as the messages may be multicast messages. However, to avoid obfuscating the example, only interaction between legacy bridge 322 and hybrid device 324 is illustrated in Figure 3 with respect to the multicast discovery messages issued by hybrid device 324.
[0078] Legacy bridge 322, in compliance with legacy communications protocols, may be configured to decline to forward legacy discovery messages. As a result, at sequence step 306, the topology discovery message is forwarded to hybrid device 320, while the legacy discovery message is not forwarded.
[0079] Upon receipt and processing of the topology discovery message, hybrid device 320 may learn that hybrid device 324 is part of the network topology. In addition, because hybrid device 320 received a topology discovery message and did not receive a legacy discovery message, hybrid device 320 may infer that a legacy bridge (e.g., legacy bridge 322) exists between hybrid device 320 and hybrid device 324 and can add that information to its view of the network topology. It should be noted that had legacy bridge 322 been a hybrid bridge, in some embodiments both the topology discovery message and the legacy discovery message would have been forwarded by the hybrid bridge. In this case, hybrid device 320 may inferthe existence of a hybrid bridge between hybrid device 320 and hybrid device 324 rather than a legacy bridge.
[0080] For the purposes of this example, assume that hybrid device 320 is configured to maintain more information about the network topology than is available from topology discovery messages or legacy discovery messages. At sequence step 308, hybrid device 320 sends a topology query message to hybrid device 324. In response to receiving the topology query message, at sequence step 310 hybrid device 324 sends a topology response message to hybrid device 320. The topology response message includes a list network nodes that are neighbors of hybrid device 324 and information about the neighboring network nodes (e.g., information identifying the neighboring nodes and the type of neighboring nodes). In this example, hybrid device 326 is included in the list of neighboring nodes.
[0081] Hybrid device 320 receives the response and, in this example, determines that hybrid device 326 is part of the network topology. At sequence step 312, hybrid device 320 sends a topology query message to hybrid device 326. In response, at sequence step 314, hybrid device 326 sends a topology response message to hybrid device 320. The topology response message may include a list network nodes that are neighbors of hybrid device 326 and information about the neighboring nodes. In this example, the list may include hybrid device 324 and legacy device 328. Hybrid device 320 receives the response and may use the information in the response to add to its view of the network topology. In this example, hybrid device 320 already knows about hybrid device 324 and may add information about legacy device 328 to its view of the hybrid network topology.
[0082] Those of skill in the art having the benefit of the disclosure will appreciate that the example message sequence illustrated in Figure 3 is but one example of many message sequences that could take place in a hybrid network, that that other sequences using the above-described messages and methods are possible and within the scope of the inventive subject matter.
[0083] In some embodiments, the two stage topology discovery protocol described above may be a stateless protocol. The multicast topology discovery message and legacy discovery message announce that a potential change has occurred in a hybrid network topology without detailing changes in the hybrid network topology and thus do not require participating nodes to maintain a communications state. Only those nodes that are interested in obtaining further information about the hybrid network topology need use topology query messages as described above to obtain a current topology for the hybrid network.
[0084] Figure 4 illustrates example operations in a method 400 for fragmenting messages that exceed a maximum payload size. The method begins at block 402 by receiving a message (e.g., one of the messages described above). At block 404, the device determines if the message size exceeds a maximum payload size. If the message size does not exceed the maximum payload size, then at block 406 the message is transmitted. Otherwise In various embodiments, when a P1905.1 compliant device attempts to form a message that exceeds the payload of the Ethernet frame, then at block 408 the device may fragment the message. Fragmenting may include breaking down the message into multiple fragments at TLV boundaries. The transmitting device may sequentially generate a sequence of fragments where each fragment may contain a number of TLVs such that the message may fit the payload of the Ethernet frame. For each generated message with the same sequence number, the transmitting device may assign a unique fragment number to it, starting from 0 (e.g., 0,1,2, 3). The transmitting device may set a last fragment indicator field to ’1’ in the last fragment. A TLV may be too large to fit in a single message. For example, a neighbor list TLV may have a sufficient number of individual neighbor TLVs such that the neighbor list TLV exceeds a maximum message size. In some embodiments, a TLV that is too large to fit into a single message may be divided into multiple TLVs of the same type. For example, assume that a neighbor list having fifty neighbor TLVs is too large to transmit as a single message. The single neighbor list TLV may be divided into multiple neighbor list TLVs, each containing a subset of the original list of neighbor TLVs. The multiple smaller neighbor list TLVs may then be transmitted in separate messages.
[0085] In some embodiments, if the receiving device receives a message fragment, the receiving device may attempt to reassemble the message. The receiving device may deliver the reassembled message for further processing if all of the fragments have been received. An indication that all fragments have been received may include receiving a fragment with a last fragment indicator. In one embodiment, a receiving device may wait for a time out before discarding received fragments that cannot be reassembled completely to avoid waiting for lost fragments indefinitely.
[0086] Embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a "circuit," "module" or "system." Furthermore, embodiments of the inventive subject matter may take the form of a computer program product embodied in any tangible medium of expression having computer usable program code embodied in the medium. The described embodiments may be provided as a computer program product, or software, that may include a machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic device(s)) to perform a process according to embodi- ments, whether presently described or not, since every conceivable variation is not enumerated herein. A machine-readable medium includes any mechanism for storing or transmitting information in a form (e.g., software, processing application) readable by a machine (e.g., a computer). A machine-readable medium may be a machine-readable storage medium, or a machine-readable signal medium. A machine-readable storage medium may include, for example, but is not limited to, magnetic or optical media, e.g., disk (fixed or removable), tape, CD-ROM, or DVD-ROM, CD-R, CD-RW, DVD-R, DVD-RW, or Blu-Ray. Storage media may further include volatile or non-volatile memory media such as RAM (e.g. synchronous dynamic RAM (SDRAM), double data rate (DDR, DDR2, DDR3, etc.) SDRAM, low-power DDR (LPDDR2, etc.) SDRAM, Rambus DRAM (RDRAM), static RAM (SRAM), etc.), ROM, erasable programmable memory (e.g., EPROM and EEPROM); Flash memory, non-volatile memory (e.g. Flash memory) accessible via a peripheral interface such as the Universal Serial Bus (USB) interface, etc. Storage media may include microelectromechanical systems (MEMS) or other types of tangible medium suitable for storing electronic instructions. A machine-readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, an electrical, optical, acoustical, or other form of propagated signal (e.g., carrier waves, infrared signals, digital signals, etc.). Program code embodied on a machine-readable signal medium may be transmitted using any suitable medium, including, but not limited to, wireline, wireless, optical fiber cable, RF, or other communications medium.
[0087] Computer program code for carrying out operations of the embodiments may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the "C" programming language or similar programming languages. The program code may execute entirely on a user’s computer, partly on the user’s computer, as a stand-alone software package, partly on the user’s computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computermay be connected to the user’s computer through any type of network, including a local area network (LAN), a personal area network (PAN), ora wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) [0088] Figure 5 is a block diagram of one embodiment of an electronic device 500 including a mechanism for determining a network topology in a hybrid communications network. In some implementations, the electronic device 500 may be one of a laptop computer, a netbook, a mobile phone, a powerline communication device, a personal digital assistant (PDA), or other electronic systems comprising a hybrid communication unit configured to exchange communications across multiple communication networks (which form the hybrid communications network). The electronic device 500 includes a processor unit 502 (possibly including multiple processors, multiple cores, multiple nodes, and/or implementing multi-threading, etc.). The electronic device 500 includes a memory unit 506. The memory unit 506 may be system memory (e.g., one or more of cache, SRAM, DRAM, zero capacitor RAM, Twin Transistor RAM, eDRAM, EDO RAM, DDR RAM, EEPROM, NRAM, RRAM, SONOS, PRAM, etc.) or any one or more of the above already described possible realizations of machine-readable media. The electronic device 500 also includes a bus 510 (e.g., PCI, ISA, PCI-Express, HyperTransport®, InfiniBand®, NuBus, AHB, AXI, etc.), and network interfaces 504 that include at least one of a wireless network interface (e.g., a WLAN interface, a Bluetooth® interface, a WiMAX interface, a ZigBee® interface, a Wireless USB interface, etc.) and a wired network interface (e.g., an Ethernet interface, a powerline communication interface, etc.). In some implementations, the electronic device 500 may support multiple network interfaces - each of which is configured to couple the electronic device 500 to a different communication network.
[0089] The electronic device 500 also includes a communication unit 508. The communication unit 508 comprises a topology discovery unit 512 and a mapper unit 514. As described above in Figures 1 - 3, the communication unit 508 implements functionality to determine a topology for a hybrid communication network (e.g., a CDHN). Any one of these functionalities may be partially (or entirely) implemented in hardware and/or on the processor unit 502. For example, the functionality may be implemented with an application specific integrated circuit, in logic implemented in the processor unit 502, in a co-processor on a peripheral device or card, etc. Further, realizations may include fewer or additional components not illustrated in Figure 5 (e.g., video cards, audio cards, additional network interfaces, peripheral devices, etc.). The processor unit 502, the memory unit 506, and the network interfaces 504 are coupled to the bus 510. Although illustrated as being coupled to the bus 510, the memory unit 506 may be coupled to the processor unit 502.
[0090] While the embodiments are described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the inventive subject matter is not limited to them. In general, a mechanism for determining a network topology in a hybrid communications network as described herein may be implemented with facilities consistent with any hardware system or hardware systems. Many variations, modifications, additions, and improvements are possible.
[0091] Plural instances may be provided for components, operations, or structures described herein as a single instance. Finally, boundaries between various components, operations, and data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within the scope of the inventive subject matter. In general, structures and functionality presented as separate components in the example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the inventive subject matter.
[0092] Although the embodiments above have been described in considerable detail, numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Claims 1. A method for discovering a topology for a network, the method comprising: receiving one or more discovery messages (302; 304) at a first node (320), the one or more discovery messages (302; 304) identifying a neighbor node (324) to the first node (320); determining that a first type of bridge (322) is between the first node (320) and the neighbor node (324) based on determining that the one or more discovery messages (302, 304) include a first discovery message (302) for a first discovery protocol and a second discovery message (304) for a second discovery protocol; and determining that a second type of bridge (322) is between the first node (320) and the neighbor node (324) based on determining that the one or more discovery messages (302, 304) include the first discovery message (302) for the first discovery protocol and do not include the second discovery message (304) for the second discovery protocol. 2. The method of claim 1, wherein determining that the one or more discovery messages (302, 304) include the first discovery message (302) for the first discovery protocol and the second discovery message (304) for the second discovery protocol includes determining that the one or more discovery messages (302, 304) include a discovery message for a legacy protocol received from the neighbor node and a discovery message for a hybrid communications network protocol received from the neighbor node. 3. The method of claim 2, wherein determining that the first type of bridge (322) is between the first node (320) and the neighbor node (324) includes determining that the first type of bridge is a hybrid communications network compliant bridge. 4. The method of claim 1, wherein determining that the one or more discovery messages (302, 304) include the first discovery message (302) for the first discovery protocol and do not include the second discovery message (304) for the second discovery protocol includes determining that the one or more discovery messages (302, 304) include a discovery message for a hybrid communications network protocol received from the neighbor node and do not include a discovery message for legacy protocol received from the neighbor node. 5. The method of claim 4, wherein determining that the second type of bridge (322) is between the first node (320) and the neighbor node (324) includes determining that the second type of bridge is a legacy bridge. 6. The method of claim 1, wherein receiving the one or more discovery messages includes receiving a legacy protocol discovery message and a hybrid communications network protocol compliant discovery message from the neighbor node. 7. A method for providing network topology information, the method comprising: transmitting, by a first node, a first discovery message for a first discovery protocol and a second discovery message for a second discovery protocol, the first discovery message and the second discovery message identifying the first node to a neighboring node; so that the neighboring node (320) can determine that a first type of bridge (322) exists between the first node (324) and the neighbor node (320) based on receiving the first discovery message for the first discovery protocol and the second discovery message for the second discovery protocol; and so that the neighboring node (320) can determine that a second type of bridge (322) exists between the first node (324) and the neighbor node (320) based on receiving the first discovery message (302) for the first discovery protocol and not receiving the second discovery message (304) for the second discovery protocol; receiving, by the first node, a topology query message; and transmitting, by the first node, a response message to the topology query message, wherein the response message includes data identifying zero or more neighboring nodes to the first node. 8. The method of claim 7, wherein the first discovery message and the second discovery message are transmitted in response to at least one member of a group consisting of a power up of the first node, an expiration of a timer on the first node and detection of a topology change by the first node. 9. The method of claim 7, wherein the first node delays, after power up of the first node, the transmitting of the first discovery message and the second discovery message for a predetermined time or a configurable time period. 10. A network device (102) comprising: a plurality of network interfaces; and a topology discovery unit (112) coupled with the plurality of network interfaces, the topology discovery unit (112) configured to: receive one or more discovery messages, the one or more discovery messages identifying a neighbor node to the network device, determine that a first type of bridge is between the network device and the neighbor node based on a determination that the one or more discovery messages include a first discovery message for a first discovery protocol and a second discovery message for a second discovery protocol, and determine that a second type of bridge is between the network device and the neighbor node based on a determination that the one or more discovery messages include the first discovery message for the first discovery protocol and do not include the second discovery message for the second discovery protocol. 11. The network device of claim 10, wherein the first discovery protocol comprises a legacy discovery protocol and the second discovery protocol comprises a hybrid communications network protocol. 12. The network device of claim 10, wherein the first type of bridge (322) comprises a hybrid communications network compliant bridge. 13. The network device of claim 10, wherein the second type of bridge comprises a legacy bridge. 14. A network device comprising: a plurality of network interfaces; and a topology discovery unit coupled with the plurality of network interfaces, the topology discovery unit configured to: transmit a first discovery message for a first discovery protocol and a second discovery message for a second discovery protocol, the first discovery message and the second discovery message identifying the network device to a neighboring node; so that the neighboring node can determine that a first type of bridge exists between the network device and the neighbor node based on receiving the first discovery message for the first discovery protocol and the second discovery message for the second discovery protocol; and so that the neighboring node can determine that a second type of bridge exists between the network device and the neighbor node based on receiving the first discovery message for the first discovery protocol and not receiving the second discovery message for the second discovery protocol; receive a topology query message; and transmit a response message to the topology query message, wherein the response message includes data identifying zero or more neighboring nodes to the network device. 15. A computer program comprising instructions to perform all the steps of any of the methods of claims 1 - 6 or 7 - 9. Patentansprüche 1. Verfahren zum Entdecken einer Topologie für ein Netzwerk, wobei das Verfahren umfasst:
Empfangen einer oder mehrerer Entdeckungsnachrichten (302; 304) an einem ersten Knoten (320), wobei die eine oder mehreren Entdeckungsnachrichten (302; 304) einen Nachbarknoten (324) zum ersten Knoten (320) identifizieren;
Bestimmen, dass ein ersterTyp einer Brücke (322) zwischen dem ersten Knoten (320) und dem Nachbarknoten (324) ist, basierend auf Bestimmen, dass die eine oder mehreren Entdeckungsnachrichten (302, 304) eine erste Entdeckungsnachricht (302) für ein erstes Entdeckungsprotokoll beinhalten und eine zweite Entdeckungsnachricht (304) für ein zweites Entdeckungsprotokoll beinhalten; und
Bestimmen, dass ein zweiterTyp einer Brücke (322) zwischen dem ersten Knoten (320) und dem Nachbarknoten (324) ist, basierend auf Bestimmen, dass die eine oder mehreren Entdeckungsnachrichten (302, 304) die erste Entdeckungsnachricht (302) für das erste Entdeckungsprotokoll beinhalten und die zweite Entdeckungsnachricht (304) für das zweite Entdeckungsprotokoll nicht beinhalten. 2. Verfahren nach Anspruch 1, wobei Bestimmen, dass die eine oder mehreren Entdeckungsnachrichten (302, 304) die erste Entdeckungsnachricht (302) für das erste Entdeckungsprotokoll beinhalten und die zweite Entdeckungsnachricht (304) für das zweite Entdeckungsprotokoll beinhalten, Bestimmen beinhalten, dass die eine oder mehreren Entdeckungsnachrichten (302, 304) eine Entdeckungsnachricht für ein Altprotokoll beinhalten, welches vom Nachbarknoten empfangen wird und eine Entdeckungsnachricht für ein hybrides Kommunikationsnetzwerkprotokoll beinhalten, welches vom Nachbarknoten empfangen wird. 3. Verfahren nach Anspruch 2, wobei Bestimmen, dass der erste Typ von Brücke (322) zwischen dem ersten Knoten (320) und dem Nachbarknoten (324) ist, Bestimmen beinhaltet, dass der erste Typ von Brücke eine Brücke ist, die mit einem hybriden Kommunikationsnetzwerk konform ist. 4. Verfahren nach Anspruch 1, wobei Bestimmen, dass die eine oder mehreren Entdeckungsnachrichten (302, 304) die erste Entdeckungsnachricht (302) für das erste Entdeckungsprotokoll beinhalten und dass die zweite Entdeckungsnachricht (304) für das zweite Entdeckungsprotokoll nicht beinhalten, Bestimmen beinhaltet, dass die eine oder mehreren Entdeckungsnachrichten (302, 304) eine Entdeckungsnachricht für ein hybrides Netzwerkprotokoll beinhalten, welches vom Nachbarknoten empfangen wird und nicht eine Entdeckungsnachricht für ein Altprotokoll beinhalten, welches vom Nachbarknoten empfangen wird. 5. Verfahren nach Anspruch 4, wobei Bestimmen, dass der zweite Typ der Brücke (322) zwischen dem ersten Knoten (320) und dem Nachbarknoten (324) ist, Bestimmen beinhaltet, dass der zweite Typ von Brücke eine Altbrücke ist. 6. Verfahren nach Anspruch 1 .wobei Empfangen der einen oder mehreren Entdeckungsnachrichten Empfangen einer Altprotokoll-Empfangsnachricht und einer Entdeckungsnachricht, die konform zu einem hybriden Kommunikationsnetzwerkprotokoll vom Nachbarknoten ist, beinhaltet. 7. Verfahren zum Bereitstellen von Netzwerktopologie-Informationen, wobei das Verfahren umfasst:
Senden, durch einen ersten Knoten, einer ersten Entdeckungsnachricht für ein erstes Entdeckungsprotokoll und eine zweite Entdeckungsnachricht für ein zweites Entdeckungsprotokoll, wobei die erste Entdeckungsnachricht und die zweite Entdeckungsnachricht den ersten Knoten für einen Nachbarknoten identifizieren; sodass der Nachbarknoten (320) bestimmen kann, dass ein ersterTyp von Brücke (322) zwischen dem ersten Knoten (324) und dem Nachbarknoten (320) existiert, basierend auf Empfangen der ersten Entdeckungsnachricht für das erste Entdeckungsprotokoll und der zweiten Entdeckungsnachricht für das zweite Entdeckungsprotokoll; und sodass der Nachbarknoten (320) bestimmen kann, dass ein zweiterTyp von Brücke (322) zwischen dem ersten Knoten (324) und dem Nachbarknoten (320) existiert, basierend auf Empfangen der ersten Entdeckungsnachricht (302) für das erste Entdeckungsprotokoll und Nichtempfangen der zweiten Entdeckungsnachricht (304) für das zweite Entdeckungsprotokoll;
Empfangen, durch den ersten Knoten, einer Topologie-Anfragenachricht; und
Senden, durch den ersten Knoten, einer Antwortnachricht für die Topologie-Anfragenachricht, wobei die Anfragenachricht Daten beinhaltet, welche keinen oder mehrere Nachbarknoten für den ersten Knoten identifizieren. 8. Verfahren nach Anspruch 7, wobei die erste Entdeckungsnachricht und die zweite Entdeckungsnachricht in Antwort zu zumindest einem Mitglied der Gruppe gesendet werden, welche aus einem Anschalten des ersten Knotens, einem Auslaufen einer Zeituhr des ersten Knotens und einer Detektion einer Änderung der Topologie durch den ersten Knoten besteht. 9. Verfahren nach Anspruch 7, wobei der erste Knoten, nach dem Anschalten des ersten Knotens, das Übertragen der ersten Entdeckungsnachricht und der zweiten Entdeckungsnachricht für eine vorbestimmte Zeit oder einer konfigurierbaren Zeitperiode verzögert. 10. Netzwerkvorrichtung (102) umfassend: eine Vielzahl von Netzwerkschnittstellen; und eine Topologie-Entdeckungseinheit (112), welche mit der Vielzahl von Netzwerkschnittstellen gekoppelt ist, wobei die Topologie-Entdeckungseinheit (112) dazu konfiguriert ist zum:
Empfangen einer oder mehrerer Entdeckungsnachrichten, wobei die eine oder mehrere Entdeckungsnachrichten einen Nachbarknoten für die Netzwerkvorrichtung identifizieren,
Bestimmen, dass ein erster Typ von Brücke zwischen der Netzwerkvorrichtung und dem Nachbarknoten ist basierend auf einer Bestimmung, dass die eine oder mehreren Entdeckungsnachrichten eine erste Entdeckungsnachricht für ein erstes Entdeckungsprotokoll beinhalten und eine zweite Entdeckungsnachricht für ein zweites Entdeckungsprotokoll beinhalten, und
Bestimmen, dass ein zweiter Typ von Brücke zwischen der Netzwerkvorrichtung und dem Nachbarknoten ist, basierend auf einer Bestimmung, dass die eine oder mehreren Entdeckungsnachrichten die erste Entdeckungsnachricht für das erste Entdeckungsprotokoll beinhalten und die zweite Entdeckungsnachricht für das zweite Entdeckungsprotokoll nicht beinhalten. 11. Netzwerkvorrichtung nach Anspruch 10, wobei das erste Entdeckungsprotokoll ein Altentdeckungsprotokoll umfasst und das zweite Entdeckungsprotokoll ein hybrides Kommunikationsnetzwerkprotokoll umfasst. 12. Netzwerkvorrichtung nach Anspruch 10, wobei der erste Typ von Brücke (322) eine Brücke umfasst, die zu einem hybriden Kommunikationsnetzwerk konform ist. 13. Netzwerkvorrichtung nach Anspruch 10, wobei der zweite Typ von Brücke eine Altbrücke umfasst. 14. Netzwerkvorrichtung umfassend: eine Vielzahl von Netzwerkschnittstellen; und eine Topologie-Entdeckungseinheit, welche mit der Vielzahl von Netzwerkschnittstellen gekoppelt ist; wobei die Topologie-Entdeckungseinheit dazu konfiguriert ist zum:
Senden einer ersten Entdeckungsnachricht für ein erstes Entdeckungsprotokoll und einer zweiten Entdeckungsnachricht für ein zweites Entdeckungsprotokoll, wobei die erste Entdeckungsnachricht und die zweite Entdeckungsnachricht die Netzwerkvorrichtung für einen Nachbarknoten identifizieren; sodass der Nachbarknoten bestimmen kann, dass ein erster Typ von Brücke zwischen der Netzwerkvorrichtung und dem Nachbarknoten existiert, basierend auf Empfangen der ersten Entdeckungsnachricht für das erste Entdeckungsprotokoll und der zweiten Entdeckungsnachricht für das zweite Entdeckungsprotokoll; und sodass der Nachbarknoten bestimmen kann, dass ein zweiter Typ von Brücke zwischen der Netzwerkvorrichtung und dem Nachbarknoten existiert, basierend auf Empfangen der ersten Entdeckungsnachricht für das erste Entdeckungsprotokoll und Nichtempfangen der zweiten Entdeckungsnachricht für das zweite Entdeckungsprotokoll;
Empfangen einer Topologie-Anfragenachricht; und Übertragen einer Antwortnachricht zu der Topologie-Anfragenachricht, wobei die Antwortnachricht Daten beinhalt, welche keinen oder mehrere Nachbarknoten für die Netzwerkvorrichtung identifizieren. 15. Ein Computerprogramm umfassend Instruktionen um all die Schritte eines Verfahrens der Ansprüche 1-6 oder 7-9 durchzuführen.
Revendications 1. Un procédé de découverte d’une topologie pour un réseau, le procédé comprenant : la réception d’un ou plusieurs messages de découverte (302 ; 304) au niveau d’un premier noeud (320), les un ou plusieurs messages de découverte (302 ; 304) identifiant un noeud voisin (324) pour le premier noeud (320) ; la détermination qu’il y a un premier type de pont (322) entre le premier noeud (320) et le noeud voisin (324) sur la base de la détermination que les un ou plusieurs messages de découverte (302, 304) comprennent un premier message de découverte (302) pour un premier protocole de découverte et un second message de découverte (304) pour un second protocole de découverte ; et la détermination qu’il y a un second type de pont (322) entre le premier noeud (320) et le noeud voisin (324) sur la base de la détermination que les un ou plusieurs message de découverte (302, 304) comprennent le premier message de découverte (302) pour le premier protocole de découverte et ne comprennent pas le second message de découverte (304) pour le second protocole de découverte. 2. Le procédé de la revendication 1, dans lequel la détermination que les un ou plusieurs messages de découverte (302, 304) comprennent le premier message de découverte (302) pour le premier protocole de découverte et le second message de découverte (304) pour le second protocole de découverte comprend la détermination que les un ou plusieurs messages de découverte (302, 304) comprennent un message de découverte pour un protocole d’ancienne génération reçu du noeud voisin et un message de découverte pour un protocole de réseau de communication hybride reçu en provenance du noeud voisin. 3. Le procédé de la revendication 2, dans lequel la détermination qu’il y a le premier type de pont (322) entre le premier noeud (320) et le noeud voisin (324) comprend la détermination que le premier type de pont est un pont compatible avec un réseau de communication hybride. 4. Le procédé de la revendication 1, dans lequel la détermination que les un ou plusieurs messages de découverte (302, 304) comprennent le premier message de découverte (302) pour le premier protocole de découverte et ne comprennent pas le second message de découverte (304) pour le second protocole de découverte comprend la détermination que les un ou plusieurs messages de découverte (302, 304) comprennent un message de découverte pour un protocole de réseau de communication hybride reçu en provenance du noeud voisin et ne comprennent pas un message de découverte pour un protocole d’ancienne génération reçu du noeud voisin. 5. Le procédé de la revendication 4, dans lequel la détermination qu’il y a le second type de pont (322) entre le premier noeud (320) et le noeud voisin (324) comprend la détermination que le second type de pont est un pont d’ancienne génération. 6. Le procédé de la revendication 1, dans lequel la réception des un ou plusieurs messages de découverte comprend la réception d’un message de découverte de protocole d’ancienne génération et un message de découverte compatible avec un protocole de réseau de communication hybride en provenance du noeud voisin. 7. Un procédé de délivrance d’une information de topologie de réseau, le procédé comprenant : l’émission, par un premier noeud, d’un premier message de découverte pour un premier protocole de découverte et d’un second message de découverte pour un second protocole de découverte, le premier message de découverte et le second message de découverte identifiant le premier noeud pour un noeud voisin ; de sorte que le noeud voisin (320) puisse déterminer qu’il existe un premier type de pont (322) entre le premier noeud (324) et le noeud voisin (320) sur la base de la réception du premier message de découverte pour le premier protocole de découverte et du second message de découverte pour le second protocole de découverte ; et de sorte que le noeud voisin (320) puisse déterminer qu’il existe un second type de pont (322) entre le premier noeud (324) et le noeud voisin (320) sur la base de la réception du premier message de découverte (302) pour le premier protocole de découverte et l’absence de réception du second message de découverte (304) pour le second protocole de découverte ; la réception, par le premier noeud, d’un message d’interrogation de topologie ; et l’émission, parle premier noeud, d’un message de réponse au message d’interrogation de topologie, le message de réponse comprenant une donnée identifiant zéro ou plus noeuds voisins du premier noeud. 8. Le procédé delà revendication 7, dans lequel le premier message de découverte et le second message de découverte sont émis en réponse à au moins un membre d’un groupe constitué d’une mise en service du premier noeud, d’une expiration d’un temporisateur sur le premier noeud et d’une détection d’un changement de topologie par le premier noeud. 9. Le procédé de la revendication 7, dans lequel le premier noeud retarde, après la mise en service du premier noeud, l’émission du premier message de découverte et du second message de découverte pendant une durée prédéterminée ou une période temporelle configurable. 10. Un dispositif réseau (102), comprenant : une pluralité d’interfaces réseau ; et une unité de découverte de topologie (112) couplée à la pluralité d’interfaces réseau, l’unité de découverte de topologie (112) étant configurée pour : recevoir un ou plusieurs messages de découverte, les un ou plusieurs messages de découverte identifiant un noeud voisin pour le dispositif réseau, déterminer qu’il existe un premier type de pont entre le dispositif réseau et le noeud voisin sur la base d’une détermination que les un ou plusieurs messages de découverte comprennent un premier message de découverte pour un premier protocole de découverte et un second message de découverte pour un second protocole de découverte, et déterminer qu’il existe un second type de pont entre le dispositif réseau et le noeud voisin sur la base d’une détermination que les un ou plusieurs messages de découverte comprennent le premier message de découverte pour le premier protocole de découverte et ne comprennent pas le second message de découverte pour le second protocole de découverte. 11. Le dispositif réseau de la revendication 10, dans lequel le premier protocole de découverte comprend un protocole de découverte d’ancienne génération et le second protocole de découverte comprend un protocole de réseau de communication hybride. 12. Le dispositif réseau de la revendication 10, dans lequel le premier type de pont (322) comprend un pont compatible avec un réseau de communication hybride. 13. Le dispositif réseau de la revendication 10, dans lequel le second type de pont comprend un pont d’ancienne génération. 14. Un dispositif réseau comprenant : une pluralité d’interfaces réseau ; et une unité de découverte de topologie couplée à la pluralité d’interfaces réseau, l’unité de découverte de topologie étant configurée pour : émettre un premier message de découverte pour un premier protocole de découverte et un second message de découverte pour un second protocole de découverte, le premier message de découverte et le second message de découverte identifiant le dispositif réseau pour un noeud voisin ; de sorte que le noeud voisin puisse déterminer qu’il existe un premier type de pont entre le dispositif réseau et le noeud voisin sur la base de la réception du premier message de découverte pour le premier protocole de découverte et du second message de découverte pour le second protocole de découverte ; et de sorte que le noeud voisin puisse déterminer qu’il existe un second type de pont entre le dispositif réseau et le noeud voisin sur la base de la réception du premier message de découverte pour le premier protocole de découverte et la non-réception du second message de découverte pour le second protocole de découverte ; recevoir un message d’interrogation de topologie ; et émettre un message de réponse au message d’interrogation de topologie, le message de réponse comprenant des données identifiant zéro ou plus noeuds voisins pour le dispositif réseau. 15. Un programme informatique comprenant des instructions pour mettre en oeuvre toutes les étapes de l’un quelconque des procédés des revendications 1 à 6 ou 7 à 9.

Claims (5)

Topológíá fold erst« s hibrid háióxstbsn ^abedalmi igénypontok 1. gfpt* égy iopoldp: felderítésére egyMI&amp;pi|b% »2 eljárás í**taft*«***!. -eg* va-p több ûmmï im im) vétkét egy «Isa imi * m V8iv· « f*Mwm ümm&amp;M 02, 304): ggy a? első csomóponttal (320) sammsxedöS csomópontöt (324): azonosít; annak meghatásozásih fmgy egy elsőtípsdhíd (322] Ve«#. ÖsomöpöotpkO) és a szomszédos esörnópont (324) kskötí, annak a fhéghatároxásnak ae alstles, bogy ex egy vagy több telderltés öteeet |302, 3Ö4tégy elsO felderítés «zenéiét (303) foglal magában egy eM felderítés profokbllhöz, és égy második feldsrÄ «ïenéiet 1304) foglal magába« egy másodlkifélderdés, protnkoiloöz; és annak meghatározását, bogy égy másödtk típdStf bfd -322) ved SáelM esodi;3p«ei: (320) es a szomszédos eSo·· mögont; (324). kötött $.rnk 4 rn^mmiimk te alapján, bogy as egy vagy több felderítés Skenet (302, M® magában foglalja et első felderítés Szenetet (302) bt első felderítés protoksilböA de bem: föglélía magában a második felderítés pxénefei (304) a második felderítés protokollhoz,Topology and Hybrid Hyperxpression Absentions 1. gfpt * iopoldp: detecting a single & pi | b% »2 procedure í ** taft *« *** !. -eg * va-p more mmmmï im im) an offense to a "Father imi * m V8iv" «f * Mwm round &amp; M 02, 304): ggy a? first node (320) sammsxedo node (324): identifies; its effect is a first type bridge (322) Ve «#. eM reconnaissance for a pro, and one of the second subdivisions 1304) «a secondary assault; and specifying how to change the type stf bfd -322) ved SéelM; 3p «no: (320) and the adjacent eSo ·· behind; (324). knit $ .rnk 4 rn ^ mmiimk te as one or more exploration Skenet (302, M® includes that first exploration charcoal (302) bt first detection protoxylbA de bem: föglélía the second exploration pxénefei (304) is the second detection protocol 2. Az £,. igénypont szerinti eljárás, ahoi se a N«SV 4* dgy vagy több felderítés Saenet 138¾ 334) magában foglalja az éisö felderítés üzenetet (302) m. első: felöfezítés: pöfököllhöX;, |S:s második felderítés öfS-estet 1304) a mdsedib iféldefltás: ptútokOllte, magéban föglalp áhösk ámeghatározását, begy a*:egy vagy több feldemés üzenet (302,: 304) egy a szomszédos csomóponttól kápbty örökölt örótö|öllfe vonatkozó felderítés: üzenetet, és egy a szomszédos csomóponttöl: Wÿm> MWÛ kommtmikáelós hátóxsíí protokollra vonatköxö feldeméx üzenetei: foglal magában.2. The £ ,. The method according to claim 1, wherein the N «SV 4 * dgy or more detection is Saenet 138¾ 334) includes a live detection message (302) m. first: upscaling: flip flop ;, | s: s second exploration yfS-estle 1304) mdsedib youthfulness: ptútokOllte, herself a hollow out of heroes, be a *: one or more devastating messages (302: 304) inherited from the adjacent node percussion: a message and a message from the adjacent node: Wÿm> MWÛ to the backbone protocols of the train-to-skeleton protocol: includes. 3. Az 1, vagy 2. igénypont szerinti eljárás, ahol annak a meghatározása, hogy at első típusú bfd (322) az első csomópont (320) és a szomszédos csomópont4324) kötött van, magában foglalja; annak a meghatározását, hogy se első típusé híd egy hibrid kommunikációs hálózatod konform híd.The method of claim 1 or claim 2, wherein determining that the first type bfd (322) is connected to the first node (320) and the adjacent node 4324); to determine whether the first type of bridge is a hybrid communication network conform bridge. 4. Ax 1. igénypont szerinti eljárás., ahol annak a megháiározása, bogy az egy vagy több felderítés ttomét {30.2.. 304) magában foglaljb sí első felderbés üzenetet (302): az első feiöerftás protokollhoz, de ném foglalja magában a második felderítés üzenetei (304) a második felderítés protokollhoz,: magában: foglalja annak a meghatározását, hogy as egy vagy több felderítés üzenet (30¾ 304) egy felderítés üzenetet foglei magában egy, a szomszédos csomóponttól kapót;, egy hibrid kommunikációs hálózati protokollra vonsíkosó felderítés «zene-tat, de nem foglal magában felderítés üzenetet a síomsxédos csomópontiéi kapott, örököd protokollra vonatkozó felderítés üzenetet. 5. 4 4, Igénypont szerint:! eljárás, aboi ennék a meghatározása, begy a második tlbpád; híd (322) van ax első csomópont (320) és a szomszédos csomópont (324) között, magéban foglalja annak meghatárotását, hogy a második típusú híd egy örökölt típusú híd. ® Az i. igénypont szerinti eljárás, ahol át egy vagy több: felderítés: Szénét vételé magában foglalja egy örökölt píötokaii felderítés dienet;, és egy hibrid kommunikációs hálózati Protokolle! köídörm felderítés özönét vételét a szomszédíis csomóponttól. y, Si!?'#Mióxeíii nyójtáslza, azspijlrés tarzaífeazze; egy első csomópont útján egy első felderítés üzenet adását egy első féiderités protokollhoz, és egy második midezitls üzenet adásit egy második felderítés protokollhoz, az első'felderítés üzenet és a másöOík loldoçfÎls üzenet az első csomópof-tót 8zpno$itfa: egy szomszédos csomópont számára; ágy; hegy 8 szomszédos csomópont (32¾¾ meg tudja határozni, hogy egy első típusú híd {322} síi fenn az első esomépoot |324): es a: sxomsíódos csomópont {|2Ö} köxott «z Odó földerítés protokollra vonatkozó odd íelderf-tésüzenéí és a második felderítés fsr^t^i^öíÍt^Möífí^tfe^i^ii^áSo.áikri^Ííd^'rílté-S-^íg^g.^jiS^Í^ óSápjép; és ógy. Oögy 8: Srornsrédos csomópont (3201 meg oidja határozni, hogy egy második típusú híd {3I2J áli fenn az dsO csornópom {324} és a szomszédos csomópont (320) körött, ez első földerítés protokollra vonatkóső ÓM felderítés üzenet (302) vétele, és a második felderítés protokollra.vematkozó rnácodík felderítés ö*snét:{3Ö4} vételének elmaradása alapján; M eléd esomöpöotútjén égy topológia lekérő öze riet: vétóiét; és az édő csddtópOfft útján égy vóisseorénét adását spíopöíégia lekérd üzenetre* ahol a válasz Szenet az elsó eső-nsöpotit szSmátá núiiá vágy több szomszédos csomópontot: azonosító adatot tartálmáz, % 4 ?, Igénypont szeríoti eijáráSí ahol az első felderítés ézeoeíet és s második felderítés dzenetet válaszképpen adjuk egy olyan csoport SegáSáPd égy tég|8; számára, mely csoport az első csomópont táphálózatra csatlakoztatásából, az első csomóponton egy időzítő lejáratából és egy topológia változás alsó csomópont révén történd detektálásából áll. §* A?. Igénypont szerinti eljárás, ahol az első csomópont késlelteti, az «ísö -csomópont táphálózatra csatlakoztatás» tdá»,.«í-;el#J#áérttéá üzenet és apmásodÉ feidérités üzenet küldését: egy előre meghatározott Időre, vagy egy beállítható időtartamraA method as claimed in claim 1, wherein the discovery of one or more discovery telomach {30.2 .. 304) includes a ski first scrambling message (302) for the first scaling protocol, but does not include a second scouting protocol. messages (304) to the second discovery protocol: include: determining whether one or more discovery messages (30¾ 304) contain a discovery message from a neighboring node; a hybrid communication network protocol retrieval «music - but does not include a reconnaissance message on the legacy protocol discovery message received by the flat node. 5. 4 4, By demand :! procedure, the definition of aboi, is the second tbbpád; a bridge (322) has a first node (320) and an adjacent node (324), including a definition that the second type of bridge is a legacy type bridge. ® The i. A method according to claim 1, wherein one or more of the following: reconnaissance: Carbon capture involves an inherited pieococcus reconnaissance day; and a hybrid communication network protocol! Trapped up with a neighbour's node. y, Si!? '# Mioxyl syllables, snapshots; a first node transmitting a first discovery message to a first semititution protocol, and transmitting a second midezitls message to a second discovery protocol, a first discovery message, and a second Interleaving message to the first node 8zpno $ itfa: an adjacent node; brain; hill 8 adjacent nodes (32¾¾ can determine whether a first type of bridge {322} skips the first image | 324): es and: sxomode node {| 2Ö} coaxed «z cheap sniffing protocol odd rootwave and second Detection of the title compound is obtained by recrystallization from methylene chloride. and oh. Behind 8: Srorns (node 3201 determines that a second type of bridge {3I2J exists between the dsO chop {324} and the adjacent node (320), this is the reception of the first UM detection message (302), and second reconnaissance protocol. Desire for more adjacent nodes: Identification data is stored,% 4?, Requisition of the request where the first discovery of the echo canopy and the second reconnaissance gesture is given to a group of assistant groups that connect the first node to the power network, first node has a timer le and a method of detecting a topology change through a lower node § * A ?. The method of claim where the first node is delayed, the connection of a "junk node to the power network" is deactivated, and its message is received. to send a message with a predetermined delay: for a predetermined time or for an adjustable period of time 30, Hálózati kósz0íék|202j, âmeiydâ'rtâjtazô több náiózatl interfészt; és sgy topológia felderítő egységet (1121, amely a több hálózati ínterfésszel kapcsolódik, a topológia felderítő egység 1112} úgy van konfigurálva, hogy: egy vagy tóöb felóerdés üzenetet vegyem az egy: vagy több felderítés üzenet égy g: hôlazati készdlókkél; szom* szédos csomópontol azonosít; meghatározza, hogy egy első típusú híd van a hálózati készülék és a szomszédos csomópont között, annak, a meghatározásnak az alapján, hogy ez egy vagy több felderítés üzenet egy első felderítés üzenetet foglal magában egy első felderítés protokollhoz, és egy második felderítés üzenetet foglal magában egy második felderítés protokollhoz; és meghatározza, bogy egy második dpusü Pld van a hálózati készülék és a szomszédos csomópont között, annaka .meghatárözásnák áz alapján, hogy az égy vaiy több féldérítés ozonet magában foglalja az eléd fefderitësüzépè' W m első teldeckés p^k^hois, Óé nemdögíoljs magába« s második felderítés ö*«ftét«t a mtefik MénAtei psötokoí Ihoa,: Ü, A % igénypont saerlntí hälötitlÄÄ· ahol sa első feldöíiés Protokoll egy örökölt MdetMs p«» tamslmáa, és a második felderítés protokoll égy jhiÎjr?d:;-ko^.miï^lkà:ei5s;-h^ïô^1ii*l;'i#i^>t<skoîit tàfïiÉPit. m A m itéwpmmmi %*iám JMKMI#** ##lkfe#Wd i$m egy-«ikómísunik#a$ héiosaitái konform hidal: i:«rtaimar. m A KI, ígénypsrít saenntl haldaati késtöíék, sho! a másod* típusú kid egy örökölt hidat: ferMmaa, 14« Hálásat! kèsaûièk, amely tártéImea: több hálóaati interfészt; ét agy topológia felderítő egységet, amelya több: halötsti iotsrfássasl áll kapcsolatban« «topológia felderítő: egy-ség égy vsa konfigurálva, hogy; egy első felderítés üzenetet adjon egy ess# feídfíítés protokollhoz, és egy másíkjíkfejdéröéa éassftgt adását egy második feíderítis;pfötököilböä, sa első felderítés öaeosi és a második felderítés ûaeoet a hálózati készüléket azonosítja egymmmzMm csomópont sasmira; égy, Hogy a saoroszédos csomópont meg tudja határoam, hogy egy első típusú híd áll fenő s hálózati készülék és s stprasséáos psomöpoPt kötött, M felső fejdsrftés # á második fejdófités protokollja vöóolkoaö úgy, hogy 8 saomsaédos csomópont meg mops fedárdafehogyfegy mááOííik#tíSd::bidlíífco· s háíétáH kiMS-lékfesóázomsáédds csomöpoát kotótk át elsó feiöoröés protokpíks yenotkotó alsó felóeröés üzenet vétele, és g másödik féiÖeriíés protokollra yonatköaö maso# fejderitgS: Oágpet yétgldPók plpíarádisá alapján;: egy topológia lekérdező üzenetet vegyem és egy válastötonetet aölöö á topológia fekMéaö: ömtetrs, aboi a vàlastéteosî a báiöaatí készülék számára : bolls vagy több szomszédos csomópontot azonosító adatot tartalmaz. M Számítógépi pídpsm, amely etssltasokat tattslmst sa i,g, vagy 1¾. rá sók Összes lépésének végreh aj tásáf á.30, Network Interface | 202j, âmeiydâ'rtâjtazt several multi-interface interfaces; and sgy topology reconnaissance unit (1121 connected to the plurality of network interfaces, the topology reconnaissance unit 1112) is configured to: take one or more uplink message one: or multiple discovery messages at g: determines that there is a first type of bridge between the network device and the adjacent node, as defined by the fact that this one or more discovery messages include a first discovery message for a first discovery protocol and a second discovery message and determines that a second duplex Pld is between the network device and the adjacent node, so that it is limited by the fact that the four or more half-ozonation includes the first fefderit's first call. ^ hois, Oh, no gíoljs embraces and the second exploration of the MénAtei psötokoí Ihoa,: Ü, The% claim saerlntí hälötitlÄÄ · where sa first assignment Protocol is an inherited MdetMs p «» tamslma, and the second reconnaissance protocol is jhiÎjr:; -ko ^ .miï ^ page: ei5s; -h ^ ïô ^ 1ii * l; 'i # i ^> t <skoîit tàfïiÉPit. m m itéwpmmmi% * iM JMKMI # ** ## lkfe # Wd i $ m one-to-one # the $ hosos of the $ conformal bridge: i: «rtaimar. m The KI, the promissory saenntl administration is a knife, sho! the second * kid is an inherited bridge: ferMmaa, 14 «Grateful! gadgets featuring multiple network interfaces; a brain topology reconnaissance unit, which is more related to: "iotsrfassasas" «« topology scout: unity is configured to; provide a first detection message for an ess # refinement protocol, and a transponder transmission to a second superimposition, and a first detection Öaeosi and a second discovery identifies the network device to a mmmzMm node sasmira; be that the sacred node is able to determine that a first type of bridge consists of a horn and a network device and a high-end head-to-head protrusion # a second head-end protocol, such that the 8-node nodes and the mops bayonet are mapped. And back to the top of the report, and to receive a copy of the protocol, the following is a topology query message, and a topology query message is drawn, and a topology is compiled by the topology of the topology. for the boot device: includes bolls or multiple adjacent nodes. M A computer psdm which can be used to detect, g, or 1¾. Take all the steps to take salts on it.
HUE15186905A 2011-08-30 2012-08-30 Topology discovery in a hybrid network HUE032821T2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161529224P 2011-08-30 2011-08-30

Publications (1)

Publication Number Publication Date
HUE032821T2 true HUE032821T2 (en) 2017-11-28

Family

ID=55345606

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE15186905A HUE032821T2 (en) 2011-08-30 2012-08-30 Topology discovery in a hybrid network

Country Status (2)

Country Link
ES (1) ES2560965T3 (en)
HU (1) HUE032821T2 (en)

Also Published As

Publication number Publication date
ES2560965T3 (en) 2016-02-23

Similar Documents

Publication Publication Date Title
JP6204510B2 (en) Topology discovery in hybrid networks
US9461928B2 (en) LACP negotiation processing method, relay node, and system
JP4863771B2 (en) How to determine the home network connection topology
CN108206761A (en) For setting the method for the link-speeds of both-end mouth switch
KR20130121181A (en) Frame delivery path selection in hybrid networks
CN104363181B (en) Flow transfer control method and device
USRE44104E1 (en) Cross-layer architecture for a network device
CN106302230B (en) A kind of data transmission method and device
JP2016524412A (en) Method and forwarder for processing packets
CN103188153B (en) BFD file transmitting method and equipment on a kind of broadcasting network link
WO2014169557A1 (en) Interface switching method and device
CN103812769B (en) TRILL network construction method, node and system
CN104468158B (en) The method and apparatus of state advertisement between a kind of node
CN105450697A (en) Method and apparatus for multiple devices to share screen, and server
CN102394824B (en) Method and device for sending message in dual-machine annular stacking system
CN102571555B (en) Hello message sending method and device in neighborhood relationship establishing process
HUE032821T2 (en) Topology discovery in a hybrid network
CN103596221B (en) A kind of data transmission method moving Ad Hoc network and system
CN104270255A (en) A module and method for communication between nodes based on LINX progress
CN105281832B (en) Neighbor discovering method in a kind of ultraviolet optical-fiber network
CN104253756B (en) A kind of LAV switching methods and ED
CN102035894B (en) Distance-based state synchronization method
CN103414646B (en) A kind of multicast service negotiation method and device
CN106034078A (en) Method and system for reducing DR change of PIM protocol
CN104769993B (en) Radio resource control method, apparatus and system