HUE030638T2 - The system of storage boreholes for storage of a spent nuclear fuel and a method of the storage of the spent nuclear fuel - Google Patents
The system of storage boreholes for storage of a spent nuclear fuel and a method of the storage of the spent nuclear fuel Download PDFInfo
- Publication number
- HUE030638T2 HUE030638T2 HUE12466016A HUE12466016A HUE030638T2 HU E030638 T2 HUE030638 T2 HU E030638T2 HU E12466016 A HUE12466016 A HU E12466016A HU E12466016 A HUE12466016 A HU E12466016A HU E030638 T2 HUE030638 T2 HU E030638T2
- Authority
- HU
- Hungary
- Prior art keywords
- storage
- borehole
- thou
- nuclear fuel
- shalt
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 26
- 239000002915 spent fuel radioactive waste Substances 0.000 title description 31
- 239000000872 buffer Substances 0.000 claims description 38
- 239000004927 clay Substances 0.000 claims description 4
- 210000004556 brain Anatomy 0.000 claims 4
- 241000555745 Sciuridae Species 0.000 claims 2
- 239000002023 wood Substances 0.000 claims 2
- 241000842783 Orna Species 0.000 claims 1
- 241000084978 Rena Species 0.000 claims 1
- 241001122767 Theaceae Species 0.000 claims 1
- 235000012054 meals Nutrition 0.000 claims 1
- 239000000843 powder Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 238000012512 characterization method Methods 0.000 description 23
- 239000004459 forage Substances 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 10
- 239000011435 rock Substances 0.000 description 10
- 239000000446 fuel Substances 0.000 description 8
- 229910000278 bentonite Inorganic materials 0.000 description 7
- 239000000440 bentonite Substances 0.000 description 7
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000005484 gravity Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- QYLJIYOGHRGUIH-CIUDSAMLSA-N Arg-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CCCNC(N)=N QYLJIYOGHRGUIH-CIUDSAMLSA-N 0.000 description 1
- 241000251556 Chordata Species 0.000 description 1
- 241001508691 Martes zibellina Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002901 radioactive waste Substances 0.000 description 1
- 239000001054 red pigment Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/20—Disposal of liquid waste
- G21F9/24—Disposal of liquid waste by storage in the ground; by storage under water, e.g. in ocean
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/34—Disposal of solid waste
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/34—Disposal of solid waste
- G21F9/36—Disposal of solid waste by packaging; by baling
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Oceanography (AREA)
- Ocean & Marine Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Processing Of Solid Wastes (AREA)
Description
Description
Field of the invention [0001] The invention is directed to the system of storage boreholes for storage of the spent nuclear fuel or high activity wastes and a method of this storage.
Background of the invention [0002] According to the existing state of the art the spent nuclearfuel or high activity wastes, hereinafter only "spent nuclear fuel", intended for disposal is stored into the so called deep repositories. The spent nuclear fuel is before its storage in these deep repositories placed into special storage containers. At present, there are used two basic principles of deep repositories - vertical or horizontal storage boreholes and eventually a combination of them.
[0003] The method of the storage into vertical storage boreholes assumes the storage of the spent nuclearfuel in storage containers into boreholes with filling of the intermediate space between the container and the rock with a bentonite buffer layer.
[0004] The vertical boreholes are described in the international patent application WO 2008032018, where the spent nuclearfuel is stored in solid barrels in the 3-5 km deep vertical borehole. This solution does not enable a back removal of the fuel.
[0005] The Chinese patent CN 101971268 describes storage of a spent nuclear fuel into a vertical borehole by means of cables reaching upto the bottom of the borehole. Storage containers are stored in the space bounded by theses cables.
[0006] A Russian patent RU 2212720 describes storage of the spent nuclear fuel into 100 m deep vertical boreholes in special repositories equipped with a steel lining with a concrete filling including concentric steel casings.
[0007] A drawback of these solutions is the impossibility or difficulty to remove the stored fuel and a high volume of the excavated rock.
[0008] The method of storage of the spent nuclearfuel to a horizontal storage borehole is described in the Canadian patent CA 1106626, where the fuel is stored into the longitudinal groove made in the bottom of a horizontal tunnel.
[0009] Another known method is described in the patent application US 2010/0234663, where on the base of a vertical borehole, there is drilled a plenty of longitudinal horizontal boreholes, into which the radioactive fuel is stored in special containers. The back removal of storage containers is carried out by means of secondary longitudinal boreholes by a special mechanism including a connector of the container, removing mechanism connectable to the container and a drill pipe.
[0010] The Japanese patent JP2008073572 describes a method of storage of the spent nuclearfuel into a hor izontal borehole and its back removal by means of a parallel horizontal borehole located under the level of the storage borehole. Both parallel boreholes are mutually interconnected with perpendicular removing openings.
[0011] A drawback at horizontal boreholes is the unsuitability for back removal of the already stored fuel or financial and mechanical demand, respectively, of eventual removing. The next drawback of these systems is the unsuitability of placing these boreholes in heterogeneous rock mass due to the stability of the borehole from the time of building upto the end of the storage period.
[0012] The drawback of both types of methods is a difficult handling at storage, demanding requirements for area and character of the rock mass and unsuitability of methods for back removal of stored fuel.
Description of the invention [0013] An object of the present invention is the system according to claim 1 of storage boreholes for storage of a spent nuclear fuel 3DD - Three dimensional disposal and the method according to claim 7 of storage of the spent nuclear fuel into storage boreholes, which eliminates the above given drawbacks of the existing state of the art.
[0014] The system of storage boreholes for storage of a spent nuclear fuel is formed of at least one horizontal corridor, from which at least one storage system comes out, which system consists of a guide characterization borehole and of an angling storage borehole made in its centre line, where storage containers are located.
[0015] The guide characterization borehole and the angling storage borehole are boreholes with an identical angle ranging from 20 to 30 degrees, while the guide characterization borehole exceeds by its length the storage borehole. The diameter of the guide characterization borehole is in the range from 0.1 to 0.2 m, preferably 0.12 m and the diameter of the angling storage borehole is in the range from 0.5 to 2 m, preferably 1.3 m. The guide characterization borehole can be filled with a marking material e.g. a mixture of a sand with a colour pigment in the red or green colour for easy localization of the storage borehole in case of a back removal of the stored spent nuclear fuel. The building process of the system proceeds so that first the characterization borehole is drilled, which serves for a detail verification of rock quality for storage. Consequently, the storage borehole is drilled in the centre line of the characterization borehole.
[0016] For back removal of storage containers, it is possible to build an access working e.g. a handling gallery intersecting the remaining sections of the characterization boreholes, along which the borehole for removal of containers with the stored spent nuclear fuel will be drilled. The access mine working can be constructed also with a long time delay from For back removal of storage containers, it is possible to build an access working e.g. a handling gallery intersecting the remaining sections of the characterization boreholes, along which the borehole for removal of containers with the stored spent nuclear fuel will be drilled. The access mine working can be constructed also with a long time delay from the time of storage of the spent nuclear fuel into storage boreholes. The guide characterization borehole serves for localization of the storage borehole and the consequent drilling of the borehole to remove the container with the stored spent fuel. The system preferably includes more horizontal corridors arranged parallelly in the spacing from 40 to 60 m, preferably 55 m, where at regular sections from 20 to 40 m, preferably 30 m, storage systems are built, which consist of a guide characterization borehole and an angling storage borehole.
[0017] The method of storage of the spent nuclear fuel to the system insists in the storage of at least one storage container into the angling storage borehole (preferably more storage containers) by means of a handling mechanism. The handling mechanism, by which the transport of individual components of the storage system to the bottom of the storage borehole takes place, can be a material handling truck moving by gravity on a rope.
[0018] The storage container can be located inasuper-container, which includes an external overwrap with engineering barriers including a buffer. The cohesion of the super-container is secured by an external basket with a cover, which is a cylindrical vessel of a perforated sheet, while openings of the perforation form 60% of the over-wrap surface of the super-container. In the external basket of the super-container there are vertically over the circumference located the individual parts of the buffer e.g. bentonite blocks (moulds) and in the centre, there is located the storage container.
[0019] According to another variant, the storage container can be placed into a storage borehole on a bearing buffer segment. In this case, there is first the bearing buffer segment placed by means of the hydraulics on the bottom of the storage borehole and consequently the storage container with the spent nuclear fuel is put on it. The bearing buffer segment is preferably formed by a bentonite block and in its section it has a form of a part of an annular space limited with a section of a circle with the angle from 110 to 130 degrees, preferably 120 degrees. The whole process is finished then by running in and consequent hydraulic storage of two filling buffer segments into the place of storage, and/or by spraying of the free space around the storage container with a sprayed buffer, which is eventually gradually compacted by a special compacting mechanism. The filling buffer segments are preferably formed of bentonite blocks and have in the section the shape of a part of an annular space limited with a section of a circle with an angle ranging from 110 to 120 degrees. The sum of angles of sections of a circle of the bearing buffer segment and filling buffer segments is < 360 degrees. The buffer is a material of group clay, bentonit, having the ability to carry off the heatfrom the radioactive waste to the surrounding rocks, to inhibit fading of radionuclides, at the same time to protect the storage container against mechanical pressure influences. The remaining free space between the segments, the storage container and the wall of the storage borehole is consequently filled with a sprayed buffer. The sprayed buffer is of the group clay, bentonit.
[0020] Behind the storage container, there will be placed a distance block formed of a buffer, behind which another storage container is stored in the same way. The distance block is preferably formed of circular bentonite block.
[0021] For back removal of storage containers, it is possible to built, independently of horizontal corridors and storage systems, an access working (handling gallery). The access mining work can be constructed in undisturbed rocks also in a large time delay from the time of storage of the spent nuclear fuel to storage boreholes. The guide characterization borehole serves for localization of the storage borehole. When the handling gallery locks on the marking material of the guide characterization borehole, it is built along it an access removing borehole to the lowest stored storage container. The removal then consists of releasing of pressure conditions around the storage container for example by drilling or washover and consequent catching of the storage container into a suitable instrument and its withdrawal to the handling gallery and its loading on the transport mean and transport out of the mine.
[0022] The advantage of this method is the lower demand on the area in the underground part of the deep repository, easy handling using the gravity forces at building of the borehole and storage of the spent nuclearfuel, but also the possibility of its back removal. The selected angle is sufficient for movement of the storage mechanism by action of the horizontal component of the gravity force and at the same time it reduces loading of the handling rope by transmission of the vertical component into the underlying rock.
[0023] The advantage of the system of storage boreholes according to the invention is, that the angle of the storage borehole ensures a stabile position of storage containers even in case , that they will be at the back removal released from the pressure locking of the buffer. Another advantage is the possibility to build an access working in heterogeneous rock mass and the possibility of a back removal of the fuel in a large time delay after closing of the deep repository.
Brief description of the drawings [0024] Further the preferred embodiments of the invention are described in reference on the accompanying drawings in which:
Fig. 1 shows a cross section of a horizontal corridor with a handling mechanism and a longitudinal section of the guide characterization borehole and the angling storage borehole, in which the storage containers and a distance block are, including the access mine working,
Fig. 2 shows a cross section of the angling storage borehole, where the storage container is placed on the bearing buffer and the space between the storage container and the wall of the storage borehole is filled with two filling buffer segments, and Fig. 3 shows a cross section of the angling storage borehole, where the storage container is placed on the bearing buffer segment and the space between the storage container and the wall of the storage borehole is filled with a sprayed buffer, and Fig. 4 shows a plan view of the spatial layout of the system with parallel arranged horizontal corridors and with storage systems.
Examples
Example 1 [0025] The system of storage boreholes for storage of the spent nuclear fuel shown in Fig. 1 consisting of a horizontal corridor 3, from which starts a storage system consisting of an angling guide characterization borehole 1 and of an angling storage borehole 2 with identical angle of 30 degrees. The guide characterization borehole 1 has a diameter of 0.12 m, with its length it exceeds the storage borehole 2 and it is filled with a marking material, in this case a mixture of sand with a colour red pigment.
[0026] The storage borehole 2 has a diameter of 1.3 m and inside it, there are placed storage containers 6 and between them is placed a distance block 7. The storage system includes an access mine working, which is the handling gallery 10. In this variant, the storage container 6 is placed inside a super-container.
Example 2 [0027] The system of storage boreholes for storage of the spent nuclear fuel is carried out as in the example 1 except that the storage container 6 is placed on the bearing buffer segment 5. The space between the storage container 6 and the wall of the storage borehole 2 is filled with two filling buffer segments 8a, 8b, as shown on the Fig. 2.
Example 3 [0028] In another variant, the storage container 6 is placed on the bearing buffer segment 5 and the space between the storage container 6 and the wall of the storage borehole 2 is filled with a sprayed buffer 9, as shown on the Fig. 3. The sprayed buffer (9) is eventually gradually compacted by a special compacting mechanism.
Example 4 [0029] In the spatial layout of the system according to the invention, as shown in the Fig. 4, horizontal corridors 3 are arranged parallelly with spacing of 55 m and from them, in regular sections per 30 m, there start storage systems consisting of a guide characterization borehole 1 and of an angling storage borehole 2, built in its centre line.
Industrial utility [0030] The method of storage of the spent nuclearfuel to the system of storage boreholes according to the invention enables a long-term storage of the spent nuclear fuel or of high active wastes, which is easy to handle, undemanding in terms of a structure of the underlying rock, and enables back removal of the fuel.
Claims 1. A system of storage boreholes for storage of spent nuclearfuel consisting of at least one horizontal corridor (3), from which starts at least one storage system characterized in, that said storage system consists of an angling guide characterization borehole (1) and an angling larger diameter storage borehole (2) made in the centre line of said guide characterization borehole (1 ), with an identical angle below the horizontal level, wherein the guide characterization borehole (1 ) exceeds with its length the storage borehole (2), and wherein in said storage borehole (2) is placed at least one storage container (6) for receiving spent nuclearfuel. 2. The system of the claim 1, characterized in, that the angle ranges from 20 to 30 degrees. 3. The system of any of claims 1 to 2 characterized in, that the guide characterization borehole (1) has a diameter ranging from 0.1 to0.2m, preferably 0.12 m, and the storage borehole (2), has a diameter ranging from 0.5 to 2 m, preferably 1.3 m. 4. The system of any of claims 1 to 3, characterized in, that the guide characterization borehole (1), is filled with a marking material, preferably a mixture of sand and a colour pigment of red or green colour. 5. The system of claim 1, characterized in, that stor-agesystems, starting from the horizontal corridor(3), are apart from each other in regular spacing from 20 to 40 m, preferably 30 m, and horizontal corridors are arranged parallelly with spacing from 40 to 60 m, preferably 55 m. 6. The system of any of claims 1 to 5, characterized in, that it includes an access mine working intersecting the remaining sections of the characterization boreholes (1), which is the handling gallery (10). 7. The method of storage the spent nuclear fuel into the system of storage boreholes of claim 1, characterized in, that into the angling storage borehole (2) there will be placed, by means of a handling mechanism (4), at least one storage container (6). 8. The method of claim 7, characterized in, that the handling mechanism (4) is a material handling truck moving by gravity on a rope. 9. The method of claim 7, characterized in, that between each adjacent storage container there will be placed at least one distance block (7). 10. The method of claims 7 to 9, characterized in, that the storage container (6) is placed inside a supercontainer. 11. The method of claim 7, characterized in, that the storage container (6) is placed on a bearing buffer segment (5), prior put on the bottom of the storage borehole (2) while the space between the storage container (6) and the wall of the storage borehole (2) will be consequently filled with two filling buffer segments (8a, 8b) and/or with a sprayed buffer (9). 12. The method of claim 11, characterized in, that the bearing buffer segment (5), filling bufFer segments (8a, 8b), and the sprayed buffer (9) are of the group clay, bentonite. 13. The method of claims 11, characterized in, that the bearing buffer segment (5) has in the cross section a shape of a part of the annular space limited by a section of circle with an angle from 110 to 130 degrees, preferably 120 degrees. 14. The method of claims 11 and 12, characterized in, that filling buffer segments (8a, 8b) have in the section a shape of a part of the annular space limited by a section of circle with an angle ranging from 110 to 120 degrees, while the sum of angles of sections of the circle of the bearing buffer segment (5) and filling buffer segments (8a, 8b) is < 360 degrees.
Patentansprüche 1. Ein System von Lagerbohrlöchern für Lagerung des abgebrannten Kernbrennstoffes bestehend aus mindestens einem waagerechten Korridor (3), wovon mindestens ein Lagerungssystem beginnt, dadurch gekennzeichnet, dass das genannte Lagerungssystem aus einem schrägen charakteristischen Führungsbohrloch (1) und einem schrägen Lagerbohrloch (2) mit größerem Durchmesser gefertigt in der Mittellinie vom genannten charakteristischen Bohrloch (1) mit einem identischen Winkel unter der waagerechte Ebene besteht, worin das charakteristische Führungsbohrloch (1) mit seiner Länge das Lagerbohrloch (2) überschreitet und worin im genannten Lagerbohrloch (2) mindestens ein Lagerbehälter (6) für Aufnahme vom abgebrannten Kernbrennstoff platziert ist. 2. Das System des Anspruchs 1 dadurch gekennzeichnet, dass der Winkel im Bereich von 20 bis 30 Grad liegt. 3. Das System des jeden von den Ansprüchen 1 bis 2 dadurch gekennzeichnet, dass das charakteristische Führungsbohrloch (1 ) einen Durchmesser zwischen 0,1 und 0,2 m, vorzugsweise 0,12 m, hat und das Lagerbohrloch (2) einen Durchmesserzwischen 0,5 und 2 m, vorzugsweise 1,3 m, hat. 4. Das System des jeden von den Ansprüchen 1 bis 3 dadurch gekennzeichnet, dass das charakteristische Führungsbohrloch (1) mit Markierungsmaterial, vorzugsweise mit einem Gemisch von Sand und einem Farbpigment der roten oder grünen Farbe, gefüllt ist. 5. Das System des Anspruchs 1 dadurch gekennzeichnet, dass die vom waagerechten Korridor (3) beginnenden Lagerungssysteme in regelmäßigen Abständen von 20 bis 40 m, vorzugsweise 30 m, voneinander getrennt sind und die waagerechten Korridore mit Abständen von 40 bis 60 m, vorzugsweise 55 m, angeordnet sind. 6. Das System des jeden von den Ansprüchen 1 bis 5 dadurch gekennzeichnet, dass es einen Zugangsabbauraum enthält, derdie übrigen Abschnitte des charakteristischen Bohrlochs (1) durchschneidet, das die Handhabungsrundgang (10) ist. 7. Die Methode der Lagerung des abgebrannten Kernbrennstoffes ins System der Lagerbohrlöcher des Anspruchs 1 dadurch gekennzeichnet, dass mindestens ein Lagerbehälter (6) in das schräge Lagerbohrloch (2) mit Hilfe von einem Handhabungsmechanismus (4) gestellt wird. 8. Die Methode des Anspruchs 7 dadurch gekennzeichnet, dass das Handhabungsmechanismus (4) ein Materialtransportwagen ist, der sich durch Schwerkraft am Seil bewegt. 9. Die Methode des Anspruchs 7 dadurch gekennzeichnet, dass mindestens ein Distanzstück (7) zwischen jeden nebeneinanderliegenden Lagerbehälter gestellt wird. 10. Die Methode der Ansprüche 7 bis 9 dadurch gekennzeichnet, dass der Lagerbehälter (6) in einen
Supercontainer gestellt wird. 11. Die Methode des Anspruchs 7 dadurch gekennzeichnet, dass der Lagerbehälter (6) auf ein tragendes Puffersegment (5) gestellt wird, früher auf den Boden des Lagerbohrloches (2) gelegt wird, während der Raum zwischen dem Lagerbehälter (6) und der Wand des Lagerbohrloches (2) folglich mit zwei füllenden Puffersegmenten (8a, 8b) und/oder mit einem gesprühten Puffer (9) gefüllt wird. 12. Die Methode des Anspruchs 11 dadurch gekennzeichnet, dass das tragende Puffersegment (5), die füllenden Puffersegmente (8a, 8b) und der gesprühte Puffer (9) aus der Gruppe Ton, Bentonit gefertigt sind. 13. Die Methode des Anspruchs 11 dadurch gekennzeichnet, dass das tragende Puffersegment (5) im Querschnitt eine Form von einem Teil des ringförmigen Raumes hat, derdurch einen Abschnittdes Kreises mit einem Winkel von 110 bis 130 Grad, vorzugsweise 120 Grad, begrenzt ist. 14. Die Methode der Ansprüche 11 und 12 dadurch gekennzeichnet, dass die füllenden Puffersegmente (8a, 8b) im Querschnitt eine Form von einem Teil des ringförmigen Raumes haben, der durch einen Abschnitt des Kreises mit einem Winkel von 110 bis 120 Grad begrenzt ist, während die Summe der Winkel von Abschnitten des Kreises des tragenden Puffersegment (5) und der füllenden Puffersegmente (8a, 8b) < 360 Grad beträgt.
Revendications 1. Un système de puits de stockage destiné au stockage de combustible nucléaire usagé constitué par au moins un couloir horizontal (3), à partir duquel commence au moins un système de stockage, est caractérisé en ce que ledit système de stockage est constitué d’un guide d’orientation de caractérisation du puits de forage (1) et d’un puits de forage de stockage orienté de grand diamètre (2) réalisé dans la ligne médiane dudit guide de caractérisation du puits de forage (1), avec un angle identique en dessous du plan horizontal, dans lequel le guide de caractérisation du puits de forage (1) dépasse par sa longueur le puits de forage de stockage (2), et dans lequel est placé dans ledit puits de forage de stockage (2) au moins un conteneur de stockage (6) destiné à la réception du combustible nucléaire usagé. 2. Le système de la revendication 1 est caractérisé en ce que l’angle est compris entre 20 et 30 degrés. 3. Le système de n’importe laquelle des revendications 1 à 2 est caractérisé en ce que le guide de caractérisation du puits de forage (1 ) a un diamètre compris entre 0,1 et 0,2 m, de préférence 0,12 m, et le puits de forage de stockage (2) a un diamètre compris entre 0,5 et 2 m, de préférence 1,3 m. 4. Le système de n’importe laquelle des revendications 1 à 3 est caractérisé en ce que le guide de caractérisation du puits de forage (1) est rempli d’un matériau de marquage, de préférence un mélange de sable et de pigment de couleur rouge ou verte. 5. Le système de la revendication 1 est caractérisé en ce que les systèmes de stockage, commençant à partir du couloir horizontal (3) sont séparés les uns des autres à distance régulière de 20 à 40 m, de préférence 30 m, et les couloirs horizontaux sont disposés en parallèle avec un espacement de 40 à 60 m, de préférence 55 m. 6. Le système de n’importe laquelle des revendications 1 à 5 est caractérisé en ce qu’il comprend une mine d’accès coupant les sections restantes de la caractérisation des puits de forage (1), constituées par la galerie de manutention (10). 7. La méthode de stockage du combustible nucléaire usagé dans le système des puits de forage de stockage de la revendication 1 est caractérisée en ce qu’est placé dans le puits de forage de stockage orienté (2), au moyen d’un mécanisme de manutention (4), au moins un conteneur de stockage (6). 8. La méthode de la revendication 7 est caractérisée en ce que le mécanisme de manutention (4) est un chariot de manutention se déplaçant pargravité avec une corde. 9. La méthode de la revendication 7 est caractérisée en ce qu’est placé entre chaque conteneur de stockage adjacent au moins un bloc d’espacement (7). 10. La méthode des revendications 7 à 9 est caractérisée en ce que le conteneurde stockage (6) est placé à l’intérieur d’un super conteneur. 11. La méthode de la revendication 7 est caractérisée en ce que le conteneur de stockage (6) est placé sur un palier de segment amortisseur (5), au préalable disposé à l’arrière du puits de forage de stockage (2) tandis que l’espace situé entre le conteneur de stockage (6) et la paroi du puits de forage de stockage (2) sera ultérieurement rempli avec deux segments amortisseur (8a, 8b) et/ou un dispositif amortisseur pulvérisé (9). 12. La méthode de la revendication 11 est caractérisée en ce que le palier de segment amortisseur (5), les segments amortisseurde remplissage (8a, 8b), et le dispositif amortisseur pulvérisé (9) sont constitués d’un type d’argile, la bentonite. 13. La méthode des revendications 11 est caractérisée en ce que le palier de segment amortisseur (5) a dans la section transversale la forme de l’espace annulaire limité par une section circulaire dotée d’un angle compris entre 110 et 130 degrés, de préférence 120 degrés. 14. La méthode des revendications 11 et 12 est caractérisée en ce que les segments amortisseurde remplissage (8a, 8b) ont dans la section transversale la forme de l’espace annulaire limité par une section circulaire dotée d’un angle compris entre 110 et 120 degrés, la somme des angles des sections circulaires du palier de segment amortisseur (5) et des segments amortisseur de remplissage (8a, 8b) étant < 360 degrés.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • WO 2008032018 A [0004] • CN 101971268 [0005] • RU 2212720 [0006] • CA 1106626 [0008] • US 20100234663 A[0009] • JP 2008073572 B[0010]
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ20110475A CZ2011475A3 (en) | 2011-08-04 | 2011-08-04 | System of stowing wells for stowing depleted fuel and method of stowing depleted fuel |
Publications (1)
Publication Number | Publication Date |
---|---|
HUE030638T2 true HUE030638T2 (en) | 2017-05-29 |
Family
ID=46832326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HUE12466016A HUE030638T2 (en) | 2011-08-04 | 2012-08-03 | The system of storage boreholes for storage of a spent nuclear fuel and a method of the storage of the spent nuclear fuel |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2555203B1 (en) |
CZ (1) | CZ2011475A3 (en) |
ES (1) | ES2609602T3 (en) |
HU (1) | HUE030638T2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2649656C1 (en) * | 2017-06-29 | 2018-04-05 | Российская Федерация, от лица которой выступает Государственная корпорация по атомной энергии "Росатом" | Method of nuclear fuel fragments detecting and parameters determining in the stopped uranium graphite reactor stack |
US10692618B2 (en) | 2018-06-04 | 2020-06-23 | Deep Isolation, Inc. | Hazardous material canister |
TW202036599A (en) | 2018-12-18 | 2020-10-01 | 美商深絕公司 | Radioactive waste repository systems and methods |
US10878972B2 (en) | 2019-02-21 | 2020-12-29 | Deep Isolation, Inc. | Hazardous material repository systems and methods |
US10943706B2 (en) | 2019-02-21 | 2021-03-09 | Deep Isolation, Inc. | Hazardous material canister systems and methods |
WO2022099051A1 (en) * | 2020-11-05 | 2022-05-12 | Deep Isolation, Inc. | Drillhole aspect ratio |
WO2022159502A1 (en) | 2021-01-19 | 2022-07-28 | Deep Isolation, Inc. | Supporting hazardous waste canisters in drillholes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5863283A (en) * | 1997-02-10 | 1999-01-26 | Gardes; Robert | System and process for disposing of nuclear and other hazardous wastes in boreholes |
US6238138B1 (en) * | 1997-07-14 | 2001-05-29 | Henry Crichlow | Method for temporary or permanent disposal of nuclear waste using multilateral and horizontal boreholes in deep islolated geologic basins |
US20100105975A1 (en) * | 2008-10-12 | 2010-04-29 | James Russell Baird | Nuclear Assisted Hydrocarbon Production Method |
-
2011
- 2011-08-04 CZ CZ20110475A patent/CZ2011475A3/en unknown
-
2012
- 2012-08-03 EP EP12466016.8A patent/EP2555203B1/en not_active Not-in-force
- 2012-08-03 HU HUE12466016A patent/HUE030638T2/en unknown
- 2012-08-03 ES ES12466016.8T patent/ES2609602T3/en active Active
Also Published As
Publication number | Publication date |
---|---|
ES2609602T3 (en) | 2017-04-21 |
CZ2011475A3 (en) | 2013-02-13 |
EP2555203A1 (en) | 2013-02-06 |
EP2555203B1 (en) | 2016-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HUE030638T2 (en) | The system of storage boreholes for storage of a spent nuclear fuel and a method of the storage of the spent nuclear fuel | |
CN105443037B (en) | A kind of top jumbolter and the top roofboltier comprising the drilling machine | |
US20110061989A1 (en) | Distribution auger for roll-off box | |
JPH06507217A (en) | Pole installation device | |
CN103189591B (en) | The stopping of drilling rod and automatic commanding apparatus and relevant auger | |
NO174498B (en) | Procedure for transporting pipes for installation on an offshore platform | |
CN214659328U (en) | Deep basal pit is with accomodating convenient type rail | |
CN100398781C (en) | Tunnel fracture type excavation method and excavation unit thereof | |
CN204716265U (en) | Anchor Agent pushes conduit and pusher | |
JP2000034731A (en) | Wood fence | |
JP2014012971A (en) | Reinforced soil wall and construction method for the same | |
DE2338140C2 (en) | Process for underground storage of liquid petroleum products | |
RU2132467C1 (en) | Method for isolation of underground toxic waste storage in salt-bearing rock mass | |
US20130047412A1 (en) | Lockable Anchor System and Method | |
CN222276584U (en) | A movable all-round tunnel repair ladder | |
FR2592413A3 (en) | Foundation with floating base for offshore structures | |
Rieuwerts | A technological history of the drainage of the Derbyshire lead mines | |
CN214460134U (en) | Slope protection net for hydraulic engineering with high safety | |
CN103168714B (en) | Tree-bundle-shaped cavity group body | |
CN211267857U (en) | Rock mountain ecological remediation mechanism | |
CN203058084U (en) | Cave-serried reef body | |
Lyles et al. | A brief history of exploration in Lechuguilla Cave in New Mexico, USA | |
CN209907377U (en) | Manual hole digging pile structure | |
COSTA | The animal powered irrigation well of Oman (zajara) | |
Marshall | Redressing the balance—an archaeological evaluation of North Yorkshire's coastal alum industry |