HRP930104A2 - Process of sodium oxalate elimination from sodium aluminate solutions through bayer cyclic process - Google Patents
Process of sodium oxalate elimination from sodium aluminate solutions through bayer cyclic process Download PDFInfo
- Publication number
- HRP930104A2 HRP930104A2 HR930104A HRP930104A HRP930104A2 HR P930104 A2 HRP930104 A2 HR P930104A2 HR 930104 A HR930104 A HR 930104A HR P930104 A HRP930104 A HR P930104A HR P930104 A2 HRP930104 A2 HR P930104A2
- Authority
- HR
- Croatia
- Prior art keywords
- oxalate
- sodium
- solution
- liquor
- sodium oxalate
- Prior art date
Links
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 title claims description 69
- 229940039790 sodium oxalate Drugs 0.000 title claims description 69
- 238000000034 method Methods 0.000 title claims description 53
- 230000008569 process Effects 0.000 title claims description 29
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 title claims description 19
- 229910001388 sodium aluminate Inorganic materials 0.000 title claims description 19
- 230000008030 elimination Effects 0.000 title description 2
- 238000003379 elimination reaction Methods 0.000 title description 2
- 125000004122 cyclic group Chemical group 0.000 title 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 60
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical group [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 33
- 238000000354 decomposition reaction Methods 0.000 claims description 30
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 25
- 229940039748 oxalate Drugs 0.000 claims description 25
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 22
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 22
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 19
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 19
- 239000004571 lime Substances 0.000 claims description 19
- 229910001570 bauxite Inorganic materials 0.000 claims description 17
- 238000001914 filtration Methods 0.000 claims description 17
- 238000001556 precipitation Methods 0.000 claims description 17
- 239000000292 calcium oxide Substances 0.000 claims description 16
- 235000012255 calcium oxide Nutrition 0.000 claims description 16
- 239000000725 suspension Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 11
- XLUTWTYXYAQFCL-UHFFFAOYSA-J C(C(=O)[O-])(=O)[O-].[C+4].C(C(=O)[O-])(=O)[O-] Chemical compound C(C(=O)[O-])(=O)[O-].[C+4].C(C(=O)[O-])(=O)[O-] XLUTWTYXYAQFCL-UHFFFAOYSA-J 0.000 claims description 10
- 239000003518 caustics Substances 0.000 claims description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 9
- 230000000368 destabilizing effect Effects 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229920001448 anionic polyelectrolyte Polymers 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 239000000395 magnesium oxide Substances 0.000 claims description 5
- 230000002829 reductive effect Effects 0.000 claims description 5
- 239000007790 solid phase Substances 0.000 claims description 5
- 238000004064 recycling Methods 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000000920 calcium hydroxide Substances 0.000 claims description 3
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 3
- 230000008719 thickening Effects 0.000 claims 4
- 238000005530 etching Methods 0.000 claims 2
- 206010038743 Restlessness Diseases 0.000 claims 1
- 239000000654 additive Substances 0.000 claims 1
- 230000000996 additive effect Effects 0.000 claims 1
- 239000007791 liquid phase Substances 0.000 claims 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims 1
- 239000000243 solution Substances 0.000 description 103
- 239000000126 substance Substances 0.000 description 23
- 238000000926 separation method Methods 0.000 description 13
- 239000007787 solid Substances 0.000 description 11
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 235000012970 cakes Nutrition 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- GXUARMXARIJAFV-UHFFFAOYSA-L barium oxalate Chemical compound [Ba+2].[O-]C(=O)C([O-])=O GXUARMXARIJAFV-UHFFFAOYSA-L 0.000 description 4
- 229940094800 barium oxalate Drugs 0.000 description 4
- QXDMQSPYEZFLGF-UHFFFAOYSA-L calcium oxalate Chemical compound [Ca+2].[O-]C(=O)C([O-])=O QXDMQSPYEZFLGF-UHFFFAOYSA-L 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 150000004684 trihydrates Chemical class 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 150000003891 oxalate salts Chemical group 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-L Oxalate Chemical compound [O-]C(=O)C([O-])=O MUBZPKHOEPUJKR-UHFFFAOYSA-L 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 235000021463 dry cake Nutrition 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000004682 monohydrates Chemical class 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 238000004131 Bayer process Methods 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- PILOURHZNVHRME-UHFFFAOYSA-N [Na].[Ba] Chemical compound [Na].[Ba] PILOURHZNVHRME-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- QKYBEKAEVQPNIN-UHFFFAOYSA-N barium(2+);oxido(oxo)alumane Chemical compound [Ba+2].[O-][Al]=O.[O-][Al]=O QKYBEKAEVQPNIN-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000001033 granulometry Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000020094 liqueur Nutrition 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- WHOPEPSOPUIRQQ-UHFFFAOYSA-N oxoaluminum Chemical compound O1[Al]O[Al]1 WHOPEPSOPUIRQQ-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- -1 sodium oxalate compound Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/46—Purification of aluminium oxide, aluminium hydroxide or aluminates
- C01F7/47—Purification of aluminium oxide, aluminium hydroxide or aluminates of aluminates, e.g. removal of compounds of Si, Fe, Ga or of organic compounds from Bayer process liquors
- C01F7/473—Removal of organic compounds, e.g. sodium oxalate
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/04—Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
- C01F7/06—Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
- C01F7/0606—Making-up the alkali hydroxide solution from recycled spent liquor
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
Tehničko obilježje Technical feature
Ovaj izum odnosi se na postupak eliminacije natrijevog oksalata koji je sadržan u otopinama natrijevog aluminata, a rezultira iz razgradnje alkalina u boksitima prema Bayerovu postupku. This invention relates to the process of eliminating sodium oxalate, which is contained in sodium aluminate solutions, and results from the decomposition of alkali in bauxites according to the Bayer process.
Tehnički režim Technical regime
Bayerov postupak, uveliko opisan u stručnoj literaturi, sastoji se od temeljne tehnike proizvodnje glinice namijenjene transformiranju u aluminij putem vrele elektrolize. Prema tom postupku ruda boksita se podvrgava vrućem tretmanu uz pomoć vodene otopine natrijevog hidroksida, uz odgovarajuću koncentraciju, te se tako izaziva topljenje glinice i dobiva jedna otopina prezasićena natrijevim aluminatom. Nakon separacije iz čvrste faze koja se sastoji od nerazgrađenog taloga rude (crvenih taloga), otopina prezasićena natrijevim aluminatom, nazvana također Bayerova otopina, dekomponira se prosijavanjem s česticama aluminijevog trihidroksida sa svrhom da se potakne separacija (precipitacija) u formi aluminijevog trihidroksida aluminija u otopini. Otopina natrijevog aluminata koji je siromašan glinicom se dakle reciklira do etape razgradnje nakon što je bila koncentrirana i punjena natrijevim hidroksidom kako bi se ponovno postigla odgovarajuća koncentracija pri razgradnji rude. Ali, u isto vrijeme dok se glinica boksita pretvara u natrijev aluminat, otopina prezasićena natrijevim aluminatom koja je rezultirala iz razgradnje, se progresivno zamućuje organskim spojevima koji su nastali nakon manje više potpune dekompozicije vlažnih tvari sadržanih u rudi. Ti organski spojevi koji se pojavljuju u obliku organskih soli natrija i prije svega u obliku natrijevog oksalata pokazuju se vrlo nezgodnima. Preciznije rečeno, te su nepovoljnosti vezane uz akumuliranje natrijevog oksalata u Bayerovoj otopini, a rezultiraju iz činjenice da se navedeni oksalat, koji je dostigao kritični nivo prezasićenosti, pojavljuje u obliku finih iglica na površini aluminijevog hidroksida. Fine iglice natrijevog oksalata djeluju poput pravih klica koje utječu na precipitaciju hidroksida aluminija provocirajući jedno povećanje broja finih čestica koje postaju do te mjere prekobrojne da se više ne mogu djelotvorno kontrolirati tokom razgradnje natrijevog aluminata. Bayer's process, widely described in professional literature, consists of the basic technique of producing alumina intended for transformation into aluminum by means of hot electrolysis. According to this procedure, bauxite ore is subjected to hot treatment with the help of an aqueous solution of sodium hydroxide, with an appropriate concentration, and this causes the melting of alumina and a solution supersaturated with sodium aluminate is obtained. After separation from the solid phase consisting of undecomposed ore precipitate (red precipitate), a solution supersaturated with sodium aluminate, also called Bayer's solution, is decomposed by sieving with particles of aluminum trihydroxide in order to promote separation (precipitation) in the form of aluminum trihydroxide in solution . The alumina-poor sodium aluminate solution is therefore recycled to the decomposition stage after it has been concentrated and filled with sodium hydroxide to achieve the appropriate concentration again during ore decomposition. But, at the same time as the bauxite alumina is converted into sodium aluminate, the solution supersaturated with sodium aluminate resulting from the decomposition becomes progressively turbid with organic compounds formed after the more or less complete decomposition of the moist substances contained in the ore. Those organic compounds that appear in the form of organic sodium salts and above all in the form of sodium oxalate prove to be very inconvenient. More precisely, these disadvantages are related to the accumulation of sodium oxalate in Bayer's solution, and result from the fact that said oxalate, which has reached a critical supersaturation level, appears in the form of fine needles on the surface of aluminum hydroxide. The fine needles of sodium oxalate act like real germs that affect the precipitation of aluminum hydroxide, provoking an increase in the number of fine particles that become so numerous that they can no longer be effectively controlled during the decomposition of sodium aluminate.
Na taj način precipitacija natrijevog oksalata utječe na fizio-kemijske kakvoće aluminijevog trihidroksida koji je separiran, te tako dovodi do velikih varijacija u granulometriji tako proizvedene glinice, kao i do fragilnosti nastalih zrnaca što može predstavljati najnepovoljniju okolnost pri upotrebi takve glinice u proizvodnji aluminija putem elektrolize. In this way, the precipitation of sodium oxalate affects the physio-chemical qualities of the aluminum trihydroxide that has been separated, and thus leads to large variations in the granulometry of the alumina produced in this way, as well as to the fragility of the resulting grains, which can represent the most unfavorable circumstance when using such alumina in the production of aluminum through electrolysis .
Stoga je neophodno da s u industrijskim postupcima proizvodnje glinice kontrolira ili još bolje izbjegava kontaminacija od samog početka aluminijevim trihidroksidom tokom etape dekompozicije putem separiranog natrijevog oksalata. Therefore, it is necessary to control or even better avoid contamination with aluminum trihydroxide from the very beginning during the stage of decomposition by means of separated sodium oxalate in the industrial processes of alumina production.
Predviđeni su razni postupci za limitiranje prisustva natrijevog oksalata u otopinama Bayerovoj otopini. There are various procedures for limiting the presence of sodium oxalate in Bayer solution solutions.
Postupci koji predviđaju uništavanje ili izravnu razgradnju vlažnih tvari sadržanih u rudi, primjerice putem pečenja, rijetko se koriste u industriji zbog njihove visoke cijene koštanja. Processes that provide for the destruction or direct decomposition of wet substances contained in the ore, for example by roasting, are rarely used in industry due to their high cost.
Poznatiji su postupci koji se sastoje u djelovanju na proizvode razgradnje prezasićene otopine putem ispiranja aluminijevog trihidroksida namijenjenog za proizvodnju ili jednog dijela aluminijevog trihidroksida recikliranog u početku etape razgradnje. Tako se selektivno eliminira natrijev oksalat otopljen u tekućinama ispiranja putem vrele separacije, te se formira kalcijev oksalat. U svakom slučaju, takvi postupci ne dozvoljavaju izvođenje etape separacije aluminijevog trihidroksida pod najboljim uvjetima produktivnosti. Naime znatna kontaminacija nataloženog oksalata na zrncima aluminijevog trihidroksida može uzrokovati krhkost zrnaca što se manifestira u fazi kalcinacije za vrijeme termičke razgradnje oksalata koji je sadržan u kristalnoj strukturi. There are more well-known procedures that consist in acting on the decomposition products of a supersaturated solution by washing the aluminum trihydroxide intended for production or a part of the aluminum trihydroxide recycled at the beginning of the decomposition stage. Thus, sodium oxalate dissolved in the washing liquids is selectively eliminated by means of hot separation, and calcium oxalate is formed. In any case, such procedures do not allow performing the aluminum trihydroxide separation step under the best productivity conditions. Namely, significant contamination of deposited oxalate on the grains of aluminum trihydroxide can cause brittleness of the grains, which manifests itself in the calcination phase during the thermal decomposition of the oxalate contained in the crystalline structure.
Da bi se izbjegle ove nepogodnosti potrebno je održavati koncentraciju natrijevog oksalata u otopini natrijeva aluminata za vrijeme razgradnje na vrijednosti koja je niža od kritične koncentracije prezasićenosti; a ovo bez da se reducira količina vlažnih tvari u otopini čiji je stabilizirajući učinak na otopinu već dobro poznat tako što omogućava reguliranje kritičnog praga prezasićenosti natrijevim oksalatom u otopini. To avoid these disadvantages, it is necessary to maintain the concentration of sodium oxalate in the sodium aluminate solution during decomposition at a value lower than the critical supersaturation concentration; and this without reducing the amount of wet substances in the solution whose stabilizing effect on the solution is already well known by enabling the regulation of the critical threshold of sodium oxalate supersaturation in the solution.
Predlaže se više postupaka za ograničavanje količine natrijeva oksalata u Bayerovoj otopini. U tu svrhu redovno se izaziva na jednom dijelu ili na cjelokupnoj razgrađenoj otopini, koja je već prezasićena natrijevim oksalatom, destabilizacija prezasićenosti kako bi se izdvojio i separirao natrijev oksalat iz tako prezasićene otopine. Several procedures have been proposed to limit the amount of sodium oxalate in Bayer's solution. For this purpose, destabilization of the supersaturation is regularly induced on one part or on the entire decomposed solution, which is already supersaturated with sodium oxalate, in order to separate and separate the sodium oxalate from such a supersaturated solution.
Stoga se postupak, koji je opisan u patentu USP 3899571 (EP-A-0013407), sastoji u obradi prezasićene Bayerove otopine dok se ne postigne ravnoteža natrijeva oksalata (kao što su otopine siromašne natrijevim aluminatom koji nastaje nakon razgradnje, bilo da jesu ili nisu rekoncentrirani) tako da se dodaje spoj recikliranog natrijevog oksalata kako bi se izazvala precipitacija natrijeva oksalata u otopinii i postigla koncentracija ravnoteže otopljenosti dehidriranog natrijevog oksalata. Therefore, the process, which is described in patent USP 3899571 (EP-A-0013407), consists in treating a supersaturated Bayer solution until the sodium oxalate equilibrium is reached (such as solutions poor in sodium aluminate formed after decomposition, whether or not reconcentrated) by adding the recycled sodium oxalate compound to induce precipitation of the sodium oxalate in the solution and achieve the equilibrium solubility concentration of the dehydrated sodium oxalate.
Nakon čvrsto-tekuće separacije koja je izvedena uz pomoć filtracije, pročišćena otopina se podvrgava Bayerovom kružnom procesu, a frakcija čvrste faze natrijeva oksalata se koristi za pripremanje suspenzije kristalnih čestica, dok se ostala frakcija eliminira iz postupka. After the solid-liquid separation, which was carried out with the help of filtration, the purified solution is subjected to the Bayer cycle process, and the sodium oxalate solid phase fraction is used to prepare a suspension of crystalline particles, while the other fraction is eliminated from the process.
Iako se postupak dodavanja tekućine pokazao djelotvornim za provociranje precipitacije natrijeva oksalata, on je ipak nepogodan za industrijsku primjenu. Naime, kristali natrijeva oksalata koji se nalaze u tvari postaju naglo neaktivni zbog toga što njihova površina biva zagađena prisutnim organskim tvarima, te je stoga neophodno pristupiti ispiranju takvih čestica što je vrlo delikatan postupak. U slučaju kada ispiranje nije dovoljno, dolazi do smanjene aktivnosti tvari, te tako i do smanjene djelotvornosti separacije natrijeva oksalata. U slučaju kada je ispiranje prenaglo, dolazi do granulometrijske usitnjenosti tvari, što znatno otežava čvrsto-tekuću separaciju, a otuda i do smanjene učinkovitosti pročišćenja. Although the liquid addition process has proven to be effective in provoking the precipitation of sodium oxalate, it is still unsuitable for industrial use. Namely, the sodium oxalate crystals found in the substance suddenly become inactive due to the fact that their surface is polluted by the organic substances present, and therefore it is necessary to proceed with the washing of such particles, which is a very delicate procedure. In the case when the rinsing is not sufficient, there is a reduced activity of the substance, and thus a reduced effectiveness of sodium oxalate separation. In the case when the rinsing is too rapid, the granulometric fragmentation of the substance occurs, which makes the solid-liquid separation much more difficult, and hence the purification efficiency is reduced.
Umjesto da se izvodi destabilizacija Bayerove otopine prezasićene natrijevim oksalatom uz dodavanje tvari natrijeva oksalata, patent US 4597952 (EP-A-0173630) predviđa upotrebu tvari kalcijeva oksalata ili barijeva oksalata čije djelovanje neizravno dovodi do istog rezultata. Naime, kalcijev ili barijev oksalat, nestabilan u jakoj alkalinskoj Bayerovoj otopini, oslobađa ion oksalata da bi tvorio natrijev oksalat koji doprinosi povećanju koncentracije natrijeva oksalata u otopini iznad kritičnog praga prezasićenosti, potičući tako precipitaciju natrijeva oksalata. Dobivena količina oksalata dostiže tako granicu topivosti oksalata u uvjetima eksperimentiranja, što ovisi o temperaturi otopine i koncentraciji natrijeva hidroksida u otopini. Instead of destabilizing the Bayer solution supersaturated with sodium oxalate by adding sodium oxalate, patent US 4597952 (EP-A-0173630) provides for the use of calcium oxalate or barium oxalate whose action indirectly leads to the same result. Namely, calcium or barium oxalate, unstable in a strong alkaline Bayer solution, releases the oxalate ion to form sodium oxalate, which contributes to increasing the concentration of sodium oxalate in the solution above the critical supersaturation threshold, thus promoting the precipitation of sodium oxalate. The amount of oxalate thus obtained reaches the solubility limit of oxalate under experimental conditions, which depends on the temperature of the solution and the concentration of sodium hydroxide in the solution.
Ovim se postupkom istovremeno dobivaju separati natrijeva oksalata koji su fino disperzirani u Bayerovoj otopini, te stoga teško odvojivi postupkom dekantacije odnosno filtriranja bez pomoćnih sredstava. Stoga je potrebna reciklaža tvari, pa se jedan dio separiranog natrijevog oksalata mora reciklirati kako bi regenerirao talog kalcijevog ili barijevog oksalata nakon eliminacije prisutnih organskih tvari. Ova se regeneracija izvodi tako da se barem djelomice separirani natrijev oksalat stavi u tekuću otopinu, te da se tako dobivena suspenzija tretira uz pomoć vapna (CaO) ili barijevog aluminata (Al2O4Ba). Ovaj tretman dovodi do dobivanja separata kalcijeva oksalata ili barijeva oksalata koji se reciklira u precipitaciji natrijevog oksalata. With this process, sodium oxalate separates are obtained at the same time, which are finely dispersed in Bayer's solution, and therefore difficult to separate by decanting or filtering without auxiliary means. Therefore, recycling of the substance is required, so a part of the separated sodium oxalate must be recycled to regenerate the precipitate of calcium or barium oxalate after the elimination of the organic substances present. This regeneration is performed by placing at least partially separated sodium oxalate in a liquid solution, and treating the resulting suspension with lime (CaO) or barium aluminate (Al2O4Ba). This treatment leads to obtaining calcium oxalate or barium oxalate separates, which are recycled in the precipitation of sodium oxalate.
Postavljanje problema Problem setting
Postupkom valja riješiti dvostruki problem: separaciju finih čestica natrijeva oksalata u Bayerovoj otopini i recikliranje taloga oksalata, sa ciljem da se sačuva djelotvornost i osobito selektivnost u postupcima precipitacije natrijeva oksalata uz dodavanje oksalatnih tvari, a kako je to i zacrtano u postupku iz ovog izuma. The method should solve a double problem: the separation of fine particles of sodium oxalate in Bayer's solution and the recycling of oxalate precipitates, with the aim of preserving the effectiveness and especially the selectivity in the sodium oxalate precipitation processes with the addition of oxalate substances, as outlined in the process of this invention.
Predmet ovog izuma The subject of this invention
Ovaj se izum temelji na pretpostavci da je iz heterogene tvari na bazi fino usitnjenog vapna moguće potaknuti znatnu precipitaciju natrijeva oksalata u Bayerovoj otopini u formi jednog separata koji se lako odvaja putem filtracije a da se ne mora koristiti dodatna filtracija. Da bi se selektivno istaložio natrijev oksalat bez odvajanja grubih tvari i tako bez modificiranja na riskantan način praga kritične prezasićenosti natrijevog oksalata u Bayerovoj otopini, kao i svojstava filtriranosti te otopine, potrebno je pridržavati se operativnih uvjeta koji su čvrsto definirani osobito u pogledu temperature pri kojoj se ova precipitacija otopine odvija. This invention is based on the assumption that it is possible to induce considerable precipitation of sodium oxalate in Bayer's solution from a heterogeneous substance based on finely divided lime in the form of a single separate that is easily separated by filtration without having to use additional filtration. In order to selectively precipitate sodium oxalate without separating coarse substances and thus without modifying in a risky way the threshold of critical supersaturation of sodium oxalate in the Bayer solution, as well as the filterability properties of that solution, it is necessary to adhere to operating conditions that are firmly defined, especially with regard to the temperature at which this solution precipitation takes place.
Preciznije rečeno izum se odnosi na postupak eliminacije natrijevog oksalata barem u jednom dijelu otopine ili otopine natrijevog aluminata izdvojenog tokom Bayerovog ciklusa proizvodnje glinice iz boksita kroz etapu dekompozicije i koncentracije navedene otopine namijenjene za recikliranje, kao što je otopina alkalina u drobljenoj rudi boksita, a što obuhvaća taloženje otopljenog natrijevog oksalata uz dodatak jednog faktora destabilizacije stanja prezasićenosti natrijevim oksalataom, zatim kroz separaciju putem filtriranja natrijevog oksalata tako istaloženog, a koji postupak je karakterističan po tome što faktor destabilizacije prezasićenosti natrijevim oksalatom predstavlja također i sredstvo dodatne filtracije. Ovaj se faktor ostavlja u kontaktu preko jedan sat sa otopinom natrijeva aluminata koji je rashlađen između 40°C i 60°C i koji je na bazi fino usitnjenog vapna. Ovo se vapno na koncu dodaje magneziju u proporciji koja ne prelazi 40% težine tako dobivene mješavine. More precisely, the invention relates to the process of eliminating sodium oxalate in at least one part of the solution or solution of sodium aluminate separated during the Bayer cycle of alumina production from bauxite through the stage of decomposition and concentration of said solution intended for recycling, such as the alkaline solution in crushed bauxite ore, which includes the precipitation of dissolved sodium oxalate with the addition of a factor destabilizing the state of supersaturation with sodium oxalate, then through separation by filtering the sodium oxalate thus precipitated, which procedure is characterized by the fact that the factor destabilizing the supersaturation with sodium oxalate is also a means of additional filtration. This factor is left in contact for over one hour with a solution of sodium aluminate which is cooled between 40°C and 60°C and which is based on finely divided lime. This lime is finally added to magnesium in a proportion that does not exceed 40% of the weight of the mixture thus obtained.
S iznenađenjem se može utvrditi da se vapno koje se ponekad koristi kao sredstvo filtracije za lakše separiranje nekih čvrstih nečistih tvari iz Bayerove otopine, može vrlo djelotvorno nadomjestiti pri temperaturi između 40°C i 60°C s tvarima natrijevog barijevog i kalcijevog oksalata kako je to potvrđeno u ranijoj praksi. Zbog snažno lužnatih svojstava Bayerove otopine nakon dekompozicije i koncentracije i do 60°C, ne može se koristiti mješavina vapna s elementima otopine u otopini, osobito ne s oksalatnim ionom C2O4-2 i s grubim tvarima koje ostaju u otopini. Valja naglasiti da vapno može doći u kontakt s otopinom natrijeva aluminata u formi živog vapna CaO ili u formi vapnenog mlijeka čija se koncentracija CaO kreće između 100 i 300 g/l, ali se ravnoteža topivosti natrijevog oksalata ni na koji način nije promijenila. It can be surprisingly found that lime, which is sometimes used as a filtration agent to facilitate the separation of some solid impurities from the Bayer solution, can be very effectively replaced at a temperature between 40°C and 60°C with sodium barium and calcium oxalate substances as confirmed in earlier practice. Due to the strongly alkaline properties of the Bayer solution after decomposition and concentration up to 60°C, a mixture of lime with solution elements in the solution, especially not with the oxalate ion C2O4-2 and with coarse substances remaining in the solution, cannot be used. It should be emphasized that lime can come into contact with sodium aluminate solution in the form of quicklime CaO or in the form of milk of lime whose concentration of CaO ranges between 100 and 300 g/l, but the solubility balance of sodium oxalate has not changed in any way.
Valja napomenuti da vapno prije svega djeluje kao tvar koja potiče sedimentaciju oksalata u prezasićenoj otopini na način običnog mehaničkog kontakta tekućine/čvrste tvari što je u ovom slučaju značajno imajući u vidu veliku površinu koja se stvara u kontaktu između fine prašine vapna i otopine. Međutim, važno je napomenuti da se iznad 60°C taj efekt taloženja naglo gubi, a da se iznad 70°C taloženje više ne odvija. It should be noted that lime primarily acts as a substance that promotes sedimentation of oxalate in a supersaturated solution in the manner of ordinary mechanical liquid/solid contact, which in this case is significant considering the large surface that is created in contact between fine lime dust and the solution. However, it is important to note that above 60°C this deposition effect is suddenly lost, and above 70°C deposition no longer takes place.
Paralelno s rasponom temperature 40°C - 60°C, može se konstatirati da se nakon dovoljno duga kontakta koji omogućava taloženje sitnih čestica kristala natrijeva oksalata u otopini s česticama vapna, tako dobivena čvrsta tvar može lagano filtrirati. Iz toga slijedi, da nakon isušivanja netopiva kolača kako bi se izvukao maksimum otopine impregnacije, ovaj više ne sadrži vrijednih tvari i može se u cijelosti baciti. Ovo se razlikuje od postupaka u kojima se koristi talog oksalata da bi se prikupio barem jedan dio i regenerirao kroz kompleksne postupke. Parallel to the temperature range of 40°C - 60°C, it can be stated that after a sufficiently long contact that enables the deposition of small particles of sodium oxalate crystals in a solution with lime particles, the solid substance thus obtained can be easily filtered. It follows that after drying the insoluble cake in order to extract the maximum of the impregnation solution, it no longer contains valuable substances and can be completely thrown away. This differs from processes in which the oxalate precipitate is used to collect at least one part and regenerate it through complex processes.
Valja također napomenuti da kritični prag prezasićenja nakon kojega natrijev oksalat spontano sedimentira, opada sa smanjenjem temperature. Već od 40°C treba se pribojavati nepravilnih precipitacija finih čestica natrijeva oksalata na dijelovima koji nisu u postupku predviđeni, a te vrlo fine čestice se i vrlo teško filtriraju. Ako povećanje koncentracije kaustične sode u otopini (koncentracija slobodne sode plus spojene sode u AlO2Na izražena u Na2O g/l) ima također tendenciju da smanjuje kritični prag prezasićenja natrijevim oksalataom. To znači da na njega prije svega utječe prisustvo slabo razgrađenih čvrstih tvari u otopini. Taj će prag biti to veći što je u otopini više organskih tvari, te se stoga lako može zaključiti da će postupak prema ovome izumu biti to efikasniji što je taj prag viši i što količina nataloženog oksalata bude viša u odnosu na volumen otopine. To je razlog zbog čega ovaj izum svoju najbolju primjenu nalazi u obradi tropskih boksita trihidrata. Ovi boksiti na bazi hidragilita su bogati čvrstim tvarima i podvrgavaju se lužnatoj otopini pri prosječnoj temperaturi od ≤ 150°C na način da se otopina u razgradnji progresivno obogaćuje natrijevim oksalatom, a što je posljedica postepene razgradnje čvrstih tvari. Iz ovoga slijedi da se sadržaj topivog natrijevog oksalata može kretati između 0,3 do 0,6 % od težine oksaličnog ugljika u kaustičnoj sodi (slobodna soda plus soda u skupini AlO2Na) prije nego što nakon sedimentacije kroz postupak iz ovoga izuma dostigne vrijednosti od 0,15 do 0,25 %. Valja također napomenuti da u slučaju boksita monohidrata koji sadrži malo čvrstih tvari i koji uz to drobi pri visokoj temperaturi (≥200°C) kritični prag prezasićenja ne prelazi 0,15 do 0,25 % od težine oksaličnog ugljika prisutnog u kaustičnoj sodi obzirom na činjenicu da je u vrlo malim količinama prisutan u otopini čvrstih tvari. Ovaj se prag može na umjetan način povećati do 0,3 ili 0,5 % tako da se u otopina u bilo kom trenutku Bayerovog ciklusa, doda jedan anionski polielektrolit sinteze kao što je poliakrilamid, poliakrilina kiselina, a u skladu s elaboratom iz patenta EP 0173630 (US 4597952), na zahtjev naručitelja. Postupak usporavanja taloženja natrijevog oksalata uz korištenje faktora sinteze, koji je sličan onome za čvrste ili organske tvari koje su malo razgrađene i prirodno prisutne u Bayerovoj otopini, dozvoljava primjenu postupka iz ovoga izuma za sve boksite sa istom djelotvornošću kao i za tropske boksite trihidrata. It should also be noted that the critical supersaturation threshold, after which sodium oxalate spontaneously sediments, decreases with decreasing temperature. Already from 40°C, one should be afraid of irregular precipitation of fine particles of sodium oxalate on parts that are not foreseen in the process, and these very fine particles are very difficult to filter. If the concentration of caustic soda in the solution (concentration of free soda plus combined soda in AlO2Na expressed in Na2O g/l) also tends to decrease the critical threshold of sodium oxalate supersaturation. This means that it is primarily affected by the presence of poorly decomposed solids in the solution. This threshold will be higher the more organic substances are in the solution, and therefore it can easily be concluded that the process according to this invention will be more efficient the higher this threshold is and the higher the amount of deposited oxalate in relation to the volume of the solution. This is the reason why this invention finds its best application in the processing of tropical bauxite trihydrate. These hydragylite-based bauxites are rich in solids and are subjected to an alkaline solution at an average temperature of ≤ 150°C in such a way that the solution is progressively enriched with sodium oxalate as a result of the gradual decomposition of solids. It follows from this that the content of soluble sodium oxalate can range between 0.3 to 0.6% of the weight of oxalic carbon in caustic soda (free soda plus soda in the AlO2Na group) before it reaches values of 0 .15 to 0.25 %. It should also be noted that in the case of bauxite monohydrate, which contains little solids and which in addition crushes at high temperature (≥200°C), the critical supersaturation threshold does not exceed 0.15 to 0.25% of the weight of the oxalic carbon present in the caustic soda, considering the fact that it is present in very small amounts in a solution of solids. This threshold can be artificially increased up to 0.3 or 0.5% by adding an anionic polyelectrolyte of synthesis such as polyacrylamide, polyacrylic acid to the solution at any time of the Bayer cycle, and in accordance with the elaboration from patent EP 0173630 (US 4597952), at the request of the customer. The process of retarding the precipitation of sodium oxalate using a synthesis factor, which is similar to that for solids or organics that are slightly decomposed and naturally present in the Bayer solution, allows the process of this invention to be applied to all bauxites with the same effectiveness as tropical bauxite trihydrate.
Općeniti postupak pročišćavanja oksalata iz Bayerovih otopina koji je razgrađen pa zatim koncentriran, da bi se postigla koncentracija kaustične sode izražene u Na20 u čemu je kaustična soda sadržana između 170 i 250 g/l i koncentracija natrijevog oksalata izražena u ugljičnom oksalatu prisutnom u kaustičnoj sodi u količini između 0,3 i 0,6 %, izvodi se samo na jednom dijelu (frakciji), koja predstavlja 3 do 20 % ukupne količine otopine nakon koncentracije, a pri temperaturi koja se kreće između 40°C i 60°C što znači da se zahtijeva rashlađivanje tog dijela Bayerove otopine. Živo vapno čijih je 2 % težine zrnaca manje od 10 mikrometara ili vapneno mlijeko čijih 20 % prosječne težine zrnaca je manje od 10 mikrometara, dodaju se redovno u rashlađena otopina koja se kontinuirano miješa kako bi se stvorila vrlo homogena suspenzija vapna u koncentraciji CaO između 2 i 20 g/l otopine. U tu svrhu, nakon dodavanja vapna suspenzija se i dalje kontinuirano miješa preko jedan sat. Čvrsta faza nastale otopine sastoji se od mješavine finih čestica vapna i natrijevog oksalata koji je kristaliziran i separiran putem dekantacije i filtracije ili izravne filtracije. Treba napomenuti da je separacija relativno lagana obzirom da se može prikupiti barem 36 kg suhog kolača na sat po m2 površine filtranta uz sadržaj slobodne sode izražene u Na20 do 3 % od neobrađenog sušenog kolača. Nakon separacije, čvrsta faza bez vrijednih materija može se dodati crvenom mulju ili talogu za odbacivanje, dok se otopina, čija je koncentracija topivog natrijevog oksalata smanjena, te je niža od 0,25 % oksalata ugljika prisutnog u kaustičnoj sodi, dodaje osnovnoj frakciji smjese nepročišćene oksalatom kako bi se formirala otopina koja je snažno lužnata, a koja se reciklira kao otopina razgradnjom boksita. The general procedure for the purification of oxalate from Bayer solutions which is decomposed and then concentrated, in order to achieve a concentration of caustic soda expressed in Na20 in which the caustic soda is contained between 170 and 250 g/l and the concentration of sodium oxalate expressed in the carbon oxalate present in the caustic soda in the amount between 0.3 and 0.6%, it is performed only on one part (fraction), which represents 3 to 20% of the total amount of solution after concentration, and at a temperature ranging between 40°C and 60°C, which means that requires cooling that portion of the Bayer solution. Quicklime of which 2% by weight of grains is less than 10 micrometers or milk of lime of which 20% of average weight of grains is less than 10 micrometers are added regularly to the chilled solution which is continuously stirred to create a very homogeneous suspension of lime with a concentration of CaO between 2 and 20 g/l solution. For this purpose, after adding the lime suspension, it is still continuously stirred for over one hour. The solid phase of the resulting solution consists of a mixture of fine particles of lime and sodium oxalate, which is crystallized and separated by decantation and filtration or direct filtration. It should be noted that the separation is relatively easy considering that it is possible to collect at least 36 kg of dry cake per hour per m2 of filter area with a content of free soda expressed in Na20 up to 3% of the untreated dry cake. After separation, the solid phase without valuable substances can be added to the red mud or sludge for rejection, while the solution, whose concentration of soluble sodium oxalate is reduced and is lower than the 0.25% of carbon oxalate present in caustic soda, is added to the basic fraction of the unpurified mixture with oxalate to form a solution that is strongly alkaline, which is recycled as a solution by the decomposition of bauxite.
Praktična primjena izuma Practical application of the invention
Realizacija izuma pod povoljnim operativnim uvjetima biti će lakše shvatljiva iz opisa koji se temelji na općoj shemi postupka (S. 1). The realization of the invention under favorable operating conditions will be easier to understand from the description based on the general scheme of the procedure (S. 1).
Prema crtežu 1, Bayerova otopina Lo, u koju se eventualno dodaje prije faze dekompozicije jedan anionski polielektrolit 10, npr.: FLOERGER (R) tip AN 934SH u omjeru od 20 mg po litri otopine kako bi se, ako je potrebno, podigao prag kritičnog prezasićenja oksalatom u prosjeku na 0,5 % oksalata ugljika u odnosu na kaustičnu sodu koja je razgrađena i nakon separacije sedimentiranog aluminijskog trihidroksida, rezultanta otopina L1 se koncentrira evaporacijom na način da je koncentracija kaustične sode sadržana između 170 i 250 g Na2O/l i po mogućnosti između 190 i 210 g Na2O/l. According to drawing 1, the Bayer solution Lo, to which an anionic polyelectrolyte 10 is optionally added before the decomposition stage, for example: FLOERGER (R) type AN 934SH in a ratio of 20 mg per liter of solution in order to raise the critical threshold if necessary supersaturation with oxalate to an average of 0.5% of carbon oxalate in relation to the caustic soda that has been decomposed and after the separation of the sedimented aluminum trihydroxide, the resulting solution L1 is concentrated by evaporation in such a way that the caustic soda concentration is contained between 170 and 250 g Na2O/l and preferably between 190 and 210 g Na2O/l.
Frakcija L4 prisutna po mogućnosti s 4 do 6 % od volumena koncentrirane otopine L2 se izdvaja kako bi se podvrgla tretmanu deoksalatacije prema ovom izumu. Fraction L4, preferably present at 4 to 6% by volume of the concentrated solution L2, is separated to undergo the deoxalation treatment according to the present invention.
Značaj izdvojene frakcije L4 se određuje po količini natrijeva oksalata koji valja eliminirati iz svakog ciklusa kako bi se izbjeglo progresivno zasićenje Bayerove otopine s natrijevim oksalatom i svaki rizik od nepravilne precipitacije tog oksalata na zrncima aluminijevog trihidroksida u toku razgradnje. Treba napomenuti da je povećanje oksalata u Bayerovoj otopini, brže ili sporije što ovisi o prirodi i porijeklu boksita, uvjetovano prelaskom oksalata prisutnih u otopini u rudu boksita za vrijeme alkalne razgradnje, ali isto tako i progresivnom degradacijom u obliku natrijeva oksalata organskih tvari već otopljenih u recikliranoj Bayerovoj otopini. The significance of the separated fraction L4 is determined by the amount of sodium oxalate that must be eliminated from each cycle in order to avoid the progressive saturation of the Bayer solution with sodium oxalate and any risk of improper precipitation of this oxalate on the grains of aluminum trihydroxide during decomposition. It should be noted that the increase of oxalate in the Bayer solution, faster or slower depending on the nature and origin of the bauxite, is conditioned by the transfer of oxalates present in the solution to the bauxite ore during alkaline decomposition, but also by the progressive degradation in the form of sodium oxalate of organic substances already dissolved in recycled Bayer solution.
Nakon rashlađivanja na temperaturu koja se kreće između 40°C i 60°C rashlađena otopina L5 čiji je prag kritične prezasićenosti dostignut, štoviše premašen, uz smanjenje temperature, dovodi se u kontakt u prvom pokretnom reaktoru R1 sa fino usitnjenim živim vapnom SO kako bi se formirala homogena suspenzija čija se koncentracija po mogućnosti kreće između 7 do 9 g CaO po litri otopine L5. After cooling to a temperature ranging between 40°C and 60°C, the cooled solution L5 whose critical supersaturation threshold has been reached, even exceeded, with a decrease in temperature, is brought into contact in the first moving reactor R1 with finely divided quicklime SO in order to formed a homogeneous suspension whose concentration preferably ranges between 7 to 9 g of CaO per liter of solution L5.
Tako dobivena suspenzija S1 se prebacuje u sekundarni pokretni reaktor, zatim u treći pokretni reaktor R3. Ukupni protok vremena koje je potrebno da bi se živo vapno dovelo u kontakt sa likerom u ovom slučaju kroz tri reaktora u seriji iznosi po mogućnosti između 3 i 5 sati. Suspenzija S3 koja izlazi iz reaktora R3 se filtrira. Ova filtracija kroz filtersku presu je vrlo brza i odvija se brzinom od 1,5 m3/sat po m2 površine filtriranja. The thus obtained suspension S1 is transferred to the secondary mobile reactor, then to the third mobile reactor R3. The total flow of time required to bring the quicklime into contact with the liquor in this case through three reactors in series is preferably between 3 and 5 hours. The suspension S3 leaving the reactor R3 is filtered. This filtration through the filter press is very fast and takes place at a rate of 1.5 m3/hour per m2 of filtering surface.
Nakon filtriranja i isušivanja netopivog kolača S4 čiji je sadržaj slobodnog Na2O niži od 3 %, se miješa s crvenim muljem za odbacivanje. otopina L6 siromašna natrijevim oksalatom uz koncentraciju između 0,15 i 0,25 % oksalata ugljika prisutnog u kaustičnoj sodi se miješa s principalnom frakcijom L3 otopine koja nije deoksalirana da bi se postigao lužnata otopina L7 koja se reciklira kao otopina iz razgradnje rude boksita. After filtering and drying the insoluble S4 cake whose free Na2O content is lower than 3%, it is mixed with red sludge for rejection. sodium oxalate-poor solution L6 with a concentration between 0.15 and 0.25% of carbon oxalate present in caustic soda is mixed with the main fraction of solution L3 which is not deoxalated to achieve alkaline solution L7 which is recycled as a solution from the decomposition of bauxite ore.
Primjeri primjene Application examples
Primjer 1 Example 1
Prema postupku iz ovoga izuma obrađeno je 40 m3/sat izdvojene industrijske otopine L4 tokom razgradnje otopine i koncentracije L2 čiji je protok 1000 m3/sat, a koji je u biti dobiven alkalnom razgradnjom tropskog boksita trihidrata pri temperaturi od 105°C. Dobivena otopina L4 imala je slijedeći sastav: According to the process of this invention, 40 m3/hour of the separated industrial solution L4 was processed during the decomposition of the solution and concentration L2, the flow of which is 1000 m3/hour, which was basically obtained by the alkaline decomposition of tropical bauxite trihydrate at a temperature of 105°C. The obtained solution L4 had the following composition:
Na2O kaustični: 200 g/l Na2O caustic: 200 g/l
Na2O ugljični: 25 g/l Na2O carbonate: 25 g/l
Al2O3: 120 g/l Al2O3: 120 g/l
Natrijev oksalat izražen u C oksalatu: 0,90 g/l Sodium oxalate expressed in C oxalate: 0.90 g/l
Visina oksalatnog C/kaustični Na2O: 0,45 %. Amount of oxalate C/caustic Na2O: 0.45 %.
Nakon rashlađivanja na 40°C, rashlađena otopina L5 se miješa s 270 kg živog vapna čemu se dodaje 30 kg magnezija u prvom pokretnom reaktoru kako bi se stvorila homogena suspenzija koncentracije 8 g Cao + MgO/l. Tri sata nakon miješanja u reaktoru suspenzija koja ima volumen od 40 m3 filtrira se barem jedan sat na filtru od 30 m2. Nakon isušivanja netopivog kolača S4 tretira se s najmanje 3 % slobodne sode izražene s Na2O, te se otopina L6 ponovno ubacuje u Bayerov ciklus kako bi se miješao s 960 m3 otopine L3 koja nije deoksalinirana, te reciklirala kao otopina razgradnje koji sadrži samo 0,37 g oksalata ugljika po litri, tj. C ox/Na2O kaust.=0,18 %. After cooling to 40°C, the cooled solution L5 is mixed with 270 kg of quicklime to which 30 kg of magnesium is added in the first mobile reactor to create a homogeneous suspension with a concentration of 8 g Cao + MgO/l. Three hours after mixing in the reactor, the suspension, which has a volume of 40 m3, is filtered for at least one hour on a filter of 30 m2. After drying the insoluble cake S4 is treated with at least 3% of free soda expressed as Na2O, and solution L6 is re-introduced into the Bayer cycle to be mixed with 960 m3 of solution L3 which is not deoxalinized, and recycled as a decomposition solution containing only 0.37 g of carbon oxalate per liter, i.e. C ox/Na2O caust.=0.18 %.
Za vrijeme ovoga postupka (0,88 - 0,37) 4.104 g, odnosno otprilike 20,4 kg oksalatnog ugljika koji odgovara 113,8 kg kristaliziranom natrijevom oksalatu, eliminirano je za vrijeme ciklusa. During this process (0.88 - 0.37) 4,104 g, or approximately 20.4 kg of oxalate carbon corresponding to 113.8 kg of crystallized sodium oxalate, was eliminated during the cycle.
Primjer 2 Example 2
Prema uvjetima iz primjerka 1 obrađivano je 40 m3/h industrijske otopine L4 dobivene razgradnjom pri 250°C boksita monohidrata mediteranskog porijekla. Otopina L4 čiji je prag kritične prezasićenosti natrijevim oksalataom podignut na 0,68 g/l oksalatnog ugljika dodavanjem anionskog polielektrolita Floerger A N 934 SH, u omjeru od 20 mg/l, imao je slijedeći sastav: According to the conditions from example 1, 40 m3/h of industrial solution L4 obtained by decomposition at 250°C of bauxite monohydrate of Mediterranean origin was processed. Solution L4, whose threshold of critical supersaturation with sodium oxalate was raised to 0.68 g/l of oxalate carbon by adding the anionic polyelectrolyte Floerger A N 934 SH, in a ratio of 20 mg/l, had the following composition:
Na2O kaustični: 195 g/l Na2O caustic: 195 g/l
Na2O karbonatni: 22 g/l Na2O carbonate: 22 g/l
Al2O3: 120 g/l Al2O3: 120 g/l
Natrijev oksalat izražen sa C oksalatom: 0,58 g/l odgovara količini C ox./Na2O kaust. od 0,30 % što je osjetno niže od kritičnog praga prezasićenja od 0,68 g/l što odgovara količini od 0,35 %. Sodium oxalate expressed as C oxalate: 0.58 g/l corresponds to the amount of C ox./Na2O caustic. of 0.30%, which is significantly lower than the critical supersaturation threshold of 0.68 g/l, which corresponds to an amount of 0.35%.
Nakon filtriranja u trajanju od najmanje jednog sata i isušivanja, netopivi kolač S4 tretira se s 3 % slobodne sode izražene s Na2O, te deoksalinirana otopina L6 sadrži samo 0,19 g oksalnog ugljika po litri, odnosno količinu C ox/Na2O kaustični od 0,1 %. After filtering for at least one hour and drying, the insoluble cake S4 is treated with 3% of free soda expressed as Na2O, and the deoxalinized solution L6 contains only 0.19 g of oxalic carbon per liter, i.e. the amount of C ox/Na2O caustic of 0, 1%.
Tokom ovoga postupka (0,58 - 0,19) 4.104 g odnosno otprilike 15,6 kg oksalnog ugljika koji odgovara količini od 87 kg natrijevog kristaliziranog oksalata je eliminirano u toku ciklusa. During this procedure (0.58 - 0.19) 4,104 g or approximately 15.6 kg of oxalic carbon corresponding to the amount of 87 kg of sodium crystallized oxalate was eliminated during the cycle.
Primjer 3 Example 3
Prema postupku iz ovoga izuma obrađeno je 40 m3/sat industrijske otopine L4 dobivene u postupku razgradnje i koncentracije L2 čiji je protok 1.000 m3/h i koji je u biti rezultat alkalne izgradnje tropskog boksita trihidrata pri temperaturi od 105°C. Dobiveni liker L4 ima slijedeći sastav: According to the process of this invention, 40 m3/hour of industrial solution L4 obtained in the process of decomposition and concentration of L2, whose flow rate is 1,000 m3/h and which is essentially the result of the alkaline construction of tropical bauxite trihydrate at a temperature of 105°C, was processed. The obtained liqueur L4 has the following composition:
Na2O kaustični 205 g/l Na2O caustic 205 g/l
Na2O karbonatni: 24 g/l Na2O carbonate: 24 g/l
Al2O2: 120 g/l Al2O2: 120 g/l
Natrijev oksalat izražen s C oksalatom: 0,88 g/l Sodium oxalate expressed as C oxalate: 0.88 g/l
Visina oksalatnog C/Na2O kaustični: 0,43 % Amount of oxalate C/Na2O caustic: 0.43 %
Nakon rashlađivanja na 40°C rashlađena otopina L5 se miješa s 270 kg živog vapna kojem se dodaje 30 kg magnezija u prvom pokretnom reaktoru kako bi se formirala homogena suspenzija koncentracije 8 g CaO + MgO/l. Nakon tri sata obrade u pokretnom reaktoru suspenzije volumena 40 m3, ona se filtrira barem jedan sat na filteru površine 30 m2. Nakon isušivanja netopivog kolača S4 koji sadrži manje od 3 % slobodne sode izražene s Na2O, te otopina L6 ubacuje se u After cooling to 40°C, the cooled solution L5 is mixed with 270 kg of quicklime to which 30 kg of magnesium is added in the first mobile reactor in order to form a homogeneous suspension with a concentration of 8 g CaO + MgO/l. After three hours of treatment in a moving reactor of a suspension with a volume of 40 m3, it is filtered for at least one hour on a filter with a surface area of 30 m2. After drying the insoluble cake S4, which contains less than 3% of free soda expressed as Na2O, the solution L6 is introduced into
Bayerov ciklus da bi se miješali s 960 m3 otopine L3 koja je dezoksalinirana i reciklirana kao razgradna smjesa koja sadrži samo 0,37 g oksalnog ugljika po litri, odnosno C ox/Na2O caust. = 0,18 %. Za vrijeme ovog postupka (0,88 - 0,37) 4.104 g, odnosno oko 20, 4 kg oksaličnog ugljika koji odgovara težini od 113,8 kg natrijevog oksalata koji je kristaliziran, eliminira se u toku ciklusa. Bayer cycle to mix with 960 m3 of solution L3 which is de-oxalinized and recycled as a digestate containing only 0.37 g of oxalic carbon per liter, i.e. C ox/Na2O caust. = 0.18%. During this procedure (0.88 - 0.37) 4,104 g, or about 20.4 kg of oxalic carbon, which corresponds to the weight of 113.8 kg of crystallized sodium oxalate, is eliminated during the cycle.
Primjer 4 Example 4
Postupku se podvrgava druga alikvotna količina L4 otopine L2 iz primjera 3 pod istim uvjetima precipitacije kao i ona iz primjera 3 uz izuzetak što se temperatura otopine održava na 80°C umjesto na 40°C. Utvrđeno je, neovisno o manje povoljnoj permeabilnosti netopivog čvrstog kolača da uz povećanje vremena filtracije pri konstantnom volumenu (1h10' za 40 m3 otopine za filtriranje) da dolazi do neznatnog smanjenja količine natrijeva oksalata izraženog s C oksalatom od 0,88 g/l u početnoj otopini na 0,86 g/l u filtriranoj otopini. Zauzvrat, sadržaj organskog ugljika koji je u početnoj otopini iznosio 7,2 g/l, u filtriranoj otopini iznosi 5,3 g/l potvrđujući da je kod grubih ili organskih tvari koje su blago degradirane došlo do djelomičnog pročišćenja, te da su sedimentirane ili vjerojatno netopive nakon miješanja s magnezijevim vapnom. Ovime se potvrđuje da dodavanje smjese na bazi vapna nema učinka na sadržaj oksalata u otopini. A second aliquot of L4 solution L2 from Example 3 is subjected to the procedure under the same precipitation conditions as that of Example 3 with the exception that the temperature of the solution is maintained at 80°C instead of 40°C. It was determined, regardless of the less favorable permeability of the insoluble solid cake, that with an increase in the filtration time at a constant volume (1h10' for 40 m3 of filtration solution) there is a slight decrease in the amount of sodium oxalate expressed as C oxalate of 0.88 g/l in the initial solution to 0.86 g/l in the filtered solution. In turn, the content of organic carbon, which was 7.2 g/l in the initial solution, is 5.3 g/l in the filtered solution, confirming that coarse or slightly degraded organic substances have undergone partial purification, and that they are sedimented or probably insoluble after mixing with magnesia lime. This confirms that the addition of a lime-based mixture has no effect on the oxalate content in the solution.
Primjer 5 Example 5
Postupku se podvrgava treća alikvotna količina L4 otopine L2 iz primjera 3 pod istim uvjetima precipitacije kao što su oni iz primjera 3 uz izuzetak što se temperatura održava na 60°C i što se smjesa od 300 kg faktora stabilizacije sastoji u ovome slučaju od mješavine koja sadrži 180 kg CaO i 120 kg MgO (60 % / 40 % težine). Utvrđena je dobra filtrabilnost netopivog kolača kao u primjeru 3, te znatno smanjenje količine od 0,88 g/l na 0,39 g/l što odgovara Coxal/Na2O kaust. = 0,19 %, kao i da je tokom ciklusa obrade 40 m3 otopine došlo do eliminacije (0,88 - 0,39) 4.104 g odnosno oko 19,6 kg oksalatnog ugljika što odgovara težini od 109,4 kg kristaliziranog natrijevog oksalata. A third aliquot L4 of solution L2 from Example 3 is subjected to the process under the same precipitation conditions as those from Example 3 with the exception that the temperature is maintained at 60°C and that the mixture of 300 kg of stabilization factor consists in this case of a mixture containing 180 kg of CaO and 120 kg of MgO (60 % / 40 % by weight). A good filterability of the insoluble cake as in example 3 was determined, and a significant reduction in the amount from 0.88 g/l to 0.39 g/l, which corresponds to Coxal/Na2O caustic. = 0.19%, as well as that during the treatment cycle of 40 m3 solution, 4,104 g or about 19.6 kg of oxalate carbon was eliminated (0.88 - 0.39), which corresponds to the weight of 109.4 kg of crystallized sodium oxalate.
Istovremeno je utvrđeno i blago smanjenje sadržaja organskog ugljika od 7,2 g/l u početnoj otopini na 6,7 g/l u filtriranoj otopini nakon deoksalinacije, što upućuje na pretpostavku da se počelo s ne otapanjem blago degradiranih čvrstih ili organskih tvari. At the same time, a slight decrease in the content of organic carbon was determined from 7.2 g/l in the initial solution to 6.7 g/l in the filtered solution after deoxalination, which indicates the assumption that it started with the non-dissolution of slightly degraded solids or organic substances.
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9201481A FR2686872B1 (en) | 1992-02-05 | 1992-02-05 | PROCESS FOR REMOVAL OF SODIUM OXALATE FROM BAYER CYCLE SODIUM ALUMINATE SOLUTIONS. |
Publications (2)
Publication Number | Publication Date |
---|---|
HRP930104A2 true HRP930104A2 (en) | 1994-08-31 |
HRP930104B1 HRP930104B1 (en) | 1998-10-31 |
Family
ID=9426498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HR9201481A HRP930104B1 (en) | 1992-02-05 | 1993-02-03 | Process for the removal of sodium oxalate from sodium aluminate solutions originating from the bayer-cycle |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0555163B1 (en) |
CN (1) | CN1033379C (en) |
AU (1) | AU648215B2 (en) |
BR (1) | BR9300494A (en) |
DE (1) | DE69300121T2 (en) |
ES (1) | ES2071533T3 (en) |
FR (1) | FR2686872B1 (en) |
GR (1) | GR3015945T3 (en) |
HR (1) | HRP930104B1 (en) |
OA (1) | OA09774A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113149048B (en) * | 2021-03-26 | 2022-08-26 | 马朝扬 | Method for treating sodium oxalate solid waste residues in alumina production process |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU669576B2 (en) * | 1992-11-17 | 1996-06-13 | Bhp Billiton Worsley Alumina Pty Ltd | Hydrate precipitation and oxalate removal |
FR2736908B1 (en) * | 1995-07-20 | 1997-08-29 | Pechiney Aluminium | PROCESS FOR PURIFYING SODIUM ALUMINATE SOLUTIONS CONTAINING SODIUM OXALATE |
FR2785895B1 (en) * | 1998-11-16 | 2001-01-19 | Pechiney Aluminium | PROCESS FOR PURIFYING SODIUM ALUMINATE LIQUORS CONTAINING SODIUM OXALATE FOR INCREASING THE QUANTITY OF ALUMINUM HYDRATE PRODUCED |
AU768730B2 (en) * | 1999-03-19 | 2004-01-08 | South32 Worsley Alumina Pty Ltd | Process for the removal of oxalate and/or sulphate from bayer liquors |
AUPP933499A0 (en) | 1999-03-19 | 1999-04-15 | Worsley Alumina Pty Ltd | Process for the removal of oxalate and/or sulphate from bayer liquors |
FR2794449B1 (en) * | 1999-06-04 | 2001-10-19 | Pechiney Aluminium | METHOD FOR PURIFYING SODIUM ALUMINATE LIQUORS CONTAINING SODIUM OXALATE FOR USE OF RESIDUES |
AUPR437001A0 (en) * | 2001-04-11 | 2001-05-17 | Worsley Alumina Pty Ltd | Process for the removal of anionic impurities from caustic aluminate solutions |
FR2860782B1 (en) * | 2003-10-10 | 2006-09-29 | Pechiney Aluminium | METHOD FOR REDUCING THE HEAT EXCHANGER ENCRASSMENT OF A BAYER CIRCUIT |
CN101462114B (en) * | 2007-12-17 | 2010-10-13 | 贵阳铝镁设计研究院 | Processing method of sodium oxalate crystallization in heat-exchange facility for producing aluminum oxide |
CN101734694B (en) * | 2008-11-17 | 2012-10-03 | 贵阳铝镁设计研究院有限公司 | Method for excluding sodium oxalate and carbonate from Bayer process solution by adopting ultra-concentration method |
CN102489244A (en) * | 2011-11-24 | 2012-06-13 | 中国铝业股份有限公司 | Filtering aid for filtering aluminate solution and using method thereof |
CN102716616A (en) * | 2012-06-21 | 2012-10-10 | 中国铝业股份有限公司 | Filter aid used in leaf filtering process of sodium aluminate solution |
CN103342377B (en) * | 2013-07-23 | 2015-08-05 | 山东南山铝业股份有限公司 | A kind of sodium aluminate solution lime causticization is except the method for sodium oxalate |
CN103818935A (en) * | 2014-01-13 | 2014-05-28 | 赵凿元 | Method for separating potassium oxide from potassium-containing sodium aluminate solution |
CN105731511B (en) * | 2016-01-19 | 2017-10-20 | 中国铝业股份有限公司 | A kind of method that sodium oxalate is removed from stoste is decomposed |
CN107572570A (en) * | 2017-09-15 | 2018-01-12 | 臧海伟 | A kind of method that oxalates is removed in the washing lotion from Bayer process |
CN110203954A (en) * | 2019-03-20 | 2019-09-06 | 昆明冶金研究院 | A kind of method of oxidizing process removing aluminium oxide mother liquor organic matter |
CN113912096B (en) * | 2021-10-22 | 2023-07-11 | 中铝矿业有限公司 | Oxalate Removal Process of Seed Separation Mother Liquor by Bayer Process |
CN116640936B (en) * | 2023-05-25 | 2024-07-16 | 中铝郑州有色金属研究院有限公司 | Method for producing high-grade vanadium concentrate |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3370017A (en) * | 1963-07-30 | 1968-02-20 | Du Pont | Microcrystalline corundum powder, sols thereof, and processes for preparing both |
HU166060B (en) * | 1973-04-09 | 1975-01-28 | ||
CA1285373C (en) * | 1984-06-25 | 1991-07-02 | Jean Fabre | Bayer cycle sodium aluminate solution purification through elimination of sodium oxalates |
AT389884B (en) * | 1986-10-03 | 1990-02-12 | Treibacher Chemische Werke Ag | METHOD FOR PRODUCING A Sintered Abrasive Material Based On Alpha-Al2o3 |
JP2639121B2 (en) * | 1989-08-25 | 1997-08-06 | 三菱マテリアル株式会社 | Method for producing fine α-alumina powder |
-
1992
- 1992-02-05 FR FR9201481A patent/FR2686872B1/en not_active Expired - Fee Related
-
1993
- 1993-02-03 HR HR9201481A patent/HRP930104B1/en not_active IP Right Cessation
- 1993-02-03 EP EP93420049A patent/EP0555163B1/en not_active Expired - Lifetime
- 1993-02-03 DE DE69300121T patent/DE69300121T2/en not_active Expired - Lifetime
- 1993-02-03 ES ES93420049T patent/ES2071533T3/en not_active Expired - Lifetime
- 1993-02-03 AU AU32197/93A patent/AU648215B2/en not_active Ceased
- 1993-02-04 CN CN93100958A patent/CN1033379C/en not_active Expired - Fee Related
- 1993-02-05 BR BR9300494A patent/BR9300494A/en not_active Application Discontinuation
- 1993-02-05 OA OA60337A patent/OA09774A/en unknown
-
1995
- 1995-04-27 GR GR950401053T patent/GR3015945T3/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113149048B (en) * | 2021-03-26 | 2022-08-26 | 马朝扬 | Method for treating sodium oxalate solid waste residues in alumina production process |
Also Published As
Publication number | Publication date |
---|---|
FR2686872B1 (en) | 1994-06-03 |
BR9300494A (en) | 1993-08-10 |
EP0555163B1 (en) | 1995-04-26 |
EP0555163A1 (en) | 1993-08-11 |
DE69300121T2 (en) | 1995-08-31 |
FR2686872A1 (en) | 1993-08-06 |
CN1076427A (en) | 1993-09-22 |
CN1033379C (en) | 1996-11-27 |
AU648215B2 (en) | 1994-04-14 |
ES2071533T3 (en) | 1995-06-16 |
AU3219793A (en) | 1993-08-12 |
GR3015945T3 (en) | 1995-07-31 |
DE69300121D1 (en) | 1995-06-01 |
OA09774A (en) | 1993-11-30 |
HRP930104B1 (en) | 1998-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HRP930104A2 (en) | Process of sodium oxalate elimination from sodium aluminate solutions through bayer cyclic process | |
CN1956925A (en) | Improvement to the bayer process for the production of alumina trihydrate by means of alkaline leaching of bauxite, said method comprising a predesilicification step | |
US2806766A (en) | Process of purifying caustic aluminate liquors | |
US4101629A (en) | Purification of solutions circulating in the bayer cycle | |
WO2006084328A1 (en) | Alumina recovery | |
US4597952A (en) | Purification of solutions of sodium aluminate in the Bayer cycle by the removal of sodium oxalate | |
US3832442A (en) | Method for producing alumina hydrates | |
US5628972A (en) | Process for removing iron in sodium aluminate liquors obtained from alkaline attack of bauxite containing alumina monohydrate | |
US5888461A (en) | Process for purifying sodium aluminate solutions containing sodium oxalate | |
US5728180A (en) | Adsorbent combinations for enhanced removal of sodium oxalate from bayer process spent liquor | |
CA1150517A (en) | Method of decreasing the organic substance of alum earth production cycle performed according to the bayer technology | |
HRP960126A2 (en) | Method for processing trihydrate alumina bauxite with a low reactive silica content | |
US4519989A (en) | Removal of organic contaminants from bauxite and other ores | |
US4443416A (en) | Purification of bayer process liquors | |
CN112551564B (en) | Deep purification method of sodium aluminate solution | |
US3099527A (en) | Purification of leach liquor containing lithium values | |
AU760072B2 (en) | Method for purifying sodium aluminate liquors containing sodium oxalate | |
CA2182744C (en) | Method for the removal of iron from sodium aluminate liquors resulting from alkaline attack on alumina-monohydrate-containing bauxite | |
RU2302995C1 (en) | Method of purification of the aluminate solutions from the impurities | |
US2631923A (en) | Purification of magnesia | |
AU2006212716B2 (en) | Alumina recovery | |
SU481543A1 (en) | The method of cleaning aluminate solutions | |
JPH032802B2 (en) | ||
JPS5951488B2 (en) | How to remove organic matter | |
SU1742214A1 (en) | Method for preparation of coagulator on the basis of aluminium sulfate from helenite slags |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
AIPI | Request for the grant of a patent on the basis of a substantive examination of a patent application | ||
B1PR | Patent granted | ||
ODRP | Renewal fee for the maintenance of a patent |
Payment date: 19990203 Year of fee payment: 7 |
|
PBON | Lapse due to non-payment of renewal fee |
Effective date: 20000204 |