HRP20220213B1 - A system for saturating liquids with gas and a method for saturating liquids with gas using this system - Google Patents
A system for saturating liquids with gas and a method for saturating liquids with gas using this system Download PDFInfo
- Publication number
- HRP20220213B1 HRP20220213B1 HRP20220213AA HRP20220213A HRP20220213B1 HR P20220213 B1 HRP20220213 B1 HR P20220213B1 HR P20220213A A HRP20220213A A HR P20220213AA HR P20220213 A HRP20220213 A HR P20220213A HR P20220213 B1 HRP20220213 B1 HR P20220213B1
- Authority
- HR
- Croatia
- Prior art keywords
- liquid
- gas
- pipeline
- source
- chamber
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000009738 saturating Methods 0.000 title claims abstract description 15
- 238000004090 dissolution Methods 0.000 claims abstract description 27
- 230000014759 maintenance of location Effects 0.000 claims abstract description 20
- 239000002101 nanobubble Substances 0.000 claims abstract description 15
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 14
- 239000007921 spray Substances 0.000 claims abstract description 11
- 239000011555 saturated liquid Substances 0.000 claims abstract description 8
- 238000005192 partition Methods 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 72
- 239000001301 oxygen Substances 0.000 claims description 26
- 229910052760 oxygen Inorganic materials 0.000 claims description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 24
- 239000002351 wastewater Substances 0.000 claims description 12
- 230000003068 static effect Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 2
- 238000002844 melting Methods 0.000 abstract 1
- 230000008018 melting Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 16
- 229910001220 stainless steel Inorganic materials 0.000 description 14
- 239000010935 stainless steel Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000005188 flotation Methods 0.000 description 10
- 238000005273 aeration Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 6
- 238000005276 aerator Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000010841 municipal wastewater Substances 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001631 hypertensive effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009688 liquid atomisation Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/234—Surface aerating
- B01F23/2341—Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
- B01F23/23413—Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere using nozzles for projecting the liquid into the gas atmosphere
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/26—Activated sludge processes using pure oxygen or oxygen-rich gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/421—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
- B01F25/423—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
- B01F25/4231—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/80—Mixing plants; Combinations of mixers
- B01F33/82—Combinations of dissimilar mixers
- B01F33/821—Combinations of dissimilar mixers with consecutive receptacles
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/26—Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- General Preparation And Processing Of Foods (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Predmet izuma je sustav za zasićenje tekućine plinom koji se sastoji od izvora tekućine (3), izvora plina (5), komore za otapanje plina (1) te spremnika za prihvat tekućine (4), pri čemu je izvor tekućine (3) povezan putem cjevovoda (11) koji je opremljen pumpom (8) sa kavitacijskim sustavom (14), koji je povezan putem cjevovoda (16) s komorom za otapanje plina (1), pri čemu je kraj cjevovoda (16) skup mlaznica za raspršivanje (7) smještenih u komori za otapanje plina (1) na koju je izvor plina (5) povezan putem plinovoda (10) sa mlaznicom (6); i komora za otapanje plina (1) je putem cjevovoda (12) s regulacijskim ventilom (9) povezana na komoru za zadržavanje (2) s naizmjenično raspoređenim, djelomično otvorenim pregradama (17), koja je putem cjevovoda (13) s ventilom (15), spojena na spremnik za prihvat zasićene tekućine (4).<BR/> <BR/>Postupak zasićenja tekućine plinom pomoću gore opisanog sustava, gdje se tekućina iz izvora tekućine (3) pumpa pomoću pumpe (8), podižući tlak tekućine na najmanje 4 bara, kroz cjevovod (11), u kavitacijski sustav (14) gdje je tekućina zasićena plinom u obliku mikro-nano mjehurića a zatim se kroz cjevovod (10) pumpa u skup mlaznica za raspršivanje (7) pomoću kojih se tekućina raspršuje u komori za otapanje plina (1), pri čemu je tekućina dodatno zasićena plinom koji dolazi iz izvora plina (5) kroz plinovod (10) i mlaznicu (6), gdje dovedeni plin ima tlak jednak tlaku tekućine, a zatim se kroz cjevovod (12) tekućina pumpa u komoru za zadržavanje (2) kroz koju teče u vremenu ne kraćem od 13 minuta i linearnom brzinom koja ne prelazi 0,5 m/s potrebnom za otapanje plina, nakon čega se kroz cjevovod (13) pumpa u spremnik za prihvat tekućine (4).The subject of the invention is a liquid with gas saturation system comprising of a liquid source (3), a gas source (5), a gas dissolution chamber (1) and a liquid receiving tank (4), where the liquid source (3) is connected by means of a pipeline (11) equipped in the pump (8) with the cavitation system (14) which is connected via a pipeline (16) to the gas dissolution chamber (1), where the end of the pipeline (16) is a set of atomizing nozzles (7) located in the gas dissolution chamber (1) to which a gas source (5) is connected via a gas pipeline (10) with a nozzle (6); and the gas dissolution chamber (1) by means of a pipeline (12) with a control valve (9) is connected to a retention chamber (2) with alternately arranged, partly open partitions (17), which via a pipeline (13) with a valve (15) is connected to the saturated liquid receiving tank (4).<BR/><BR/>The method of saturating the liquid with gas using the above system, where the liquid from the liquid source (3) is pumped by means of a pump (8), raising the liquid pressure to at least 4 bar, through the pipeline (11), to the cavitation system (14) where liquid is saturated with the gas in the form of micro-nano bubbles and then through a pipeline (10) it is pumped into a set of atomizing nozzles (7) with the help of which the liquid is sprayed in the gas dissolution chamber (1), where the liquid is additionally saturated with gas coming from a gas source (5) fed via the gas pipeline (10) and nozzle (6), where the gas is supplied with a pressure equal to the liquid pressure, then via the pipeline (12) the liquid is pumped into the retention chamber (2) through which it flows in not less than 13 minutes and the line speed not exceeding 0.5 m/s necessary to dissolved the gas is then pumped through the pipeline (13) to the liquid receiving tank (4).The subject of the invention is a system for saturating liquid with gas, which consists of a liquid source (3), a gas source (5), a gas dissolution chamber (1) and a container for receiving liquid (4), whereby the liquid source (3) is connected via a pipeline (11) equipped with a pump (8) with a cavitation system (14), which is connected via a pipeline (16) to a gas dissolution chamber (1), the end of the pipeline (16) being a set of spray nozzles (7) located in the gas melting chamber (1) to which the gas source (5) is connected via a gas line (10) with a nozzle (6); and the gas dissolution chamber (1) is connected via a pipeline (12) with a control valve (9) to a retention chamber (2) with alternately arranged, partially open partitions (17), which is connected via a pipeline (13) with a valve (15) ), connected to the container for receiving the saturated liquid (4). at least 4 bar, through the pipeline (11), into the cavitation system (14) where the liquid is saturated with gas in the form of micro-nano bubbles and then through the pipeline (10) it is pumped into a set of spray nozzles (7) by means of which the liquid is dispersed in gas dissolution chamber (1), where the liquid is additionally saturated with gas coming from the gas source (5) through the gas line (10) and the nozzle (6), where the supplied gas has a pressure equal to the pressure of the liquid, and then through the pipeline (12 ) the liquid is pumped into the retention chamber (2) through which it flows in a time not shorter than 13 minutes and at a linear speed not exceeding 0.5 m/s necessary for dissolving the gas, after which it is pumped through the pipeline (13) into the receiving tank liquids (4). The subject of the invention is a liquid with gas saturation system comprising of a liquid source (3), a gas source (5), a gas dissolution chamber (1) and a liquid receiving tank (4), where the liquid source (3) is connected by means of a pipeline (11) equipped in the pump (8) with the cavitation system (14) which is connected via a pipeline (16) to the gas dissolution chamber (1), where the end of the pipeline (16) is a set of atomizing nozzles (7) located in the gas dissolution chamber (1) to which a gas source (5) is connected via a gas pipeline (10) with a nozzle (6); and the gas dissolution chamber (1) by means of a pipeline (12) with a control valve (9) is connected to a retention chamber (2) with alternately arranged, partially open partitions (17), which via a pipeline (13) with a valve (15) is connected to the saturated liquid receiving tank (4).<BR/><BR/>The method of saturating the liquid with gas using the above system, where the liquid from the liquid source (3) is pumped by means of a pump (8), raising the liquid pressure to at least 4 bar, through the pipeline (11), to the cavitation system (14) where liquid is saturated with the gas in the form of micro-nano bubbles and then through a pipeline (10) it is pumped into a set of atomizing nozzles (7) with the help of which the liquid is sprayed in the gas dissolution chamber (1), where the liquid is additionally saturated with gas coming from a gas source (5) fed via the gas pipeline (10) and nozzle (6), where the gas is supplied with a pressure equal to the liquid pressure, then via the pipeline (12) the liquid is pumped into the retention chamber (2) through which it flows in not less than 13 minutes and the line speed not exceeding 0.5 m/s necessary to dissolve the gas is then pumped through the pipeline (13) to the liquid receiving tank (4).
Description
Predmet izuma je sustav za zasićenje tekućina plinom i postupak za zasićenje tekućina plinom. The subject of the invention is a system for saturating liquids with gas and a method for saturating liquids with gas.
Izum se odnosi na područje tehnike pročišćavanja vode te tehnike pročišćavanja otpadnih voda. The invention relates to the field of water purification techniques and waste water purification techniques.
U stanju tehnike postoje poznati uređaji i postupci za zasićenje tekućina plinom. Etchepare R., Oliveira H., Nicknig M., Azevedo A., Rubio J. (2017.). Nanomjehurići: Stvaranje upotrebom višefazne pumpe, svojstva i značajke u flotaciji. Mineralni inženjering, 2017 (svezak 112), str. 19-26. Autori su u svom rješenju koristili pumpu za zasićenje kako bi proizveli komprimiranu mješavinu vode i zraka, a zatim ga proširili kako bi se stvorili nano mjehurići zraka. Ovo rješenje temelji se na usisavanju zraka pod atmosferskim tlakom i miješanju s vodom u tekućem stanju. Rješenje prema izumu osigurava uvođenje plina pri apsolutnom tlaku od 4 bara i atomizaciju zasićene tekućine, što omogućava stvaranje značajne kontaktne površine faza, što rezultira visokom učinkovitošću procesa. In the state of the art, there are known devices and procedures for saturating liquids with gas. Etchepare R., Oliveira H., Nicknig M., Azevedo A., Rubio J. (2017). Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Mineral Engineering, 2017 (Volume 112), p. 19-26. In their solution, the authors used a saturation pump to produce a compressed mixture of water and air and then expanded it to create nano bubbles of air. This solution is based on air suction under atmospheric pressure and mixing with water in a liquid state. The solution according to the invention ensures the introduction of gas at an absolute pressure of 4 bar and the atomization of the saturated liquid, which enables the creation of a significant contact surface of the phases, which results in a high efficiency of the process.
B.J. Vinci, B.J. Watten, M.B. Timmons, (1995.). Prijenosa modeliranog plina u apsorberu kisika tornja za raspršivanje. Inženjering akvakulture, svezak 16, brojevi 1-2, 1997. U svom radu koriste mlaznice za raspršivanje vode u stupcu u koji se dovodi kisik. Problem začepljenja mlaznice za raspršivanja krutim česticama, od strane autora, nije riješeno. U slučaju upotrebe nečiste tekućine, mlaznica raspršivača lako će se začepiti, što će (dovesti do povećanja stope kvara uređaja. U rješenju prema izumu mlaznice su opremljene statičkim umetcima za mljevenje koji znatno smanjuju rizik od začepljenja mlaznica. Isto tako, korištenjem raspršivača osigurati će se najveća moguća atomizacija dovedene vode. B.J. Vinci, B.J. Watten, M.B. Timmons, (1995). Modeled gas transport in the oxygen absorber of a spray tower. Aquaculture Engineering, Volume 16, Numbers 1-2, 1997. In their work, they use nozzles to spray water in a column into which oxygen is supplied. The problem of clogging of the spray nozzle with solid particles has not been solved by the author. In case of using an impure liquid, the nozzle of the sprayer will be easily clogged, which will lead to an increase in the failure rate of the device. In the solution according to the invention, the nozzles are equipped with static grinding inserts that significantly reduce the risk of clogging of the nozzles. Also, using the sprayer will ensure the highest possible atomization of the supplied water.
S. Nazari, S.Z. Shafaei, B. Shahbazi, S. Chehreh Chelgani, (2018). Studija odnosa između flotacijskih varijabli i izdvajanja grubih čestica u odsutnosti i prisutnosti nano mjehurića. Koloidi i površine A: Fizikalno-kemijski i inženjerski aspekti. Svezak 559, 2018., str. 284-288. U prikazanom rješenju, autori uvode komprimirani zrak u vodu, miješanje se odvija u dvije statičke mješalice, zatim se mješavina vode i zraka usmjerava na venturijevu cijev, gdje se, kao rezultat hidrodinamičke kavitacije formiraju nano-mjehurići. Autori nisu predložili učinkovitije miješanje faza od statičkih mješalica, što značajno smanjuje topljivost zraka u vodi, što se izravno prenosi u količini nastalih mjehurića zraka. S. Nazari, S.Z. Shafaei, B. Shahbazi, S. Chehreh Chelgani, (2018). A study of the relationship between flotation variables and separation of coarse particles in the absence and presence of nanobubbles. Colloids and surfaces A: Physico-chemical and engineering aspects. Volume 559, 2018, p. 284-288. In the presented solution, the authors introduce compressed air into the water, mixing takes place in two static mixers, then the mixture of water and air is directed to a venturi tube, where, as a result of hydrodynamic cavitation, nano-bubbles are formed. The authors did not propose a more effective mixing of phases than static mixers, which significantly reduces the solubility of air in water, which is directly transmitted in the amount of air bubbles formed.
R. Etchepare, H. Oliveira, M. Nicking i dr. u objavljenoj knjizi pod naslovom "Nano mjehurići: Stvaranje pomoću višefazne pumpe, svojstva i značajke u flotaciji" opisuju sustav za stvaranje mikro-nano mjehurića koji se kasnije koristi u procesu flotacije, kako bi se poboljšala učinkovitost odvajanja mulja u flotacijskoj komori iz otpadnih voda za uklanjanje suspendirane tvari. Za to se koristi sustav opremljen višefaznom pumpom. Predloženo rješenje razlikuje se od rješenja predstavljenog u knjizi po tome što se koristi za otapanje plina u tekućini, odnosno ima za cilj otapanje plina u potpunosti bez stvaranja mjehurića koji ukazuju na neotopljeni plin, dok postupak u knjizi predviđa proizvodnju finih mjehurića plina, čija je uloga krute čestice podići prema gore na razinu površine otpadne vode kako bi se nadalje mehanički uklonile. R. Etchepare, H. Oliveira, M. Nicking et al. in a published book entitled "Nanobubbles: Generation by Multiphase Pump, Properties and Features in Flotation" describe a micro-nanobubble generation system that is later used in the flotation process, in order to improve the efficiency of sludge separation in the flotation chamber from wastewater to remove suspended matter. For this, a system equipped with a multiphase pump is used. The proposed solution differs from the solution presented in the book in that it is used to dissolve the gas in the liquid, i.e. it aims to dissolve the gas completely without the formation of bubbles that indicate undissolved gas, while the procedure in the book foresees the production of fine gas bubbles, whose role is raise the solid particles up to the level of the wastewater surface in order to further remove them mechanically.
Kim Yu Beom u prijavi br. KR101771124 UREĐAJ ZA OTAPANJE KISIKA I OBRADA ISTIM opisuje sustav aeracije vode korištenjem mlaznica za raspršivanje koje smanjuju veličinu kapljica tekućine koja prolazi kroz atmosferu plina. Rješenje prema izumu provodi postupak pod visokim tlakom i održava kondenziranu vodu pomiješanu s molekulama plina u nadtlaku sve dok se plin u potpunosti ne otopi u tekućini. Kim Yu Beom in application no. KR101771124 DEVICE FOR DISSOLVING OXYGEN AND PROCESSING THE SAME describes a water aeration system using spray nozzles that reduce the size of liquid droplets passing through a gas atmosphere. The solution according to the invention carries out the process under high pressure and maintains the condensed water mixed with gas molecules under overpressure until the gas is completely dissolved in the liquid.
Agranonik R.J. i Pisklov G.A. u prijavi RU 94030202 POSTUPAK ZA ZASIĆENJE TEKUĆINE PLINOM opisuju postupak zasićenja tekućine namijenjene za proces flotacije plinom. U njihovom rješenju, koriste termo-kompresor za smanjenje potrošnje energije. U izumu prema prijavi koristi se konvencionalna pumpa, a povećanje otopljenog kisika temelji se na produženom vremenu zadržavanja. Agronomist R.J. and Pisklov G.A. in application RU 94030202 PROCEDURE FOR SATURATION OF LIQUID WITH GAS describe the procedure for saturating the liquid intended for the flotation process with gas. In their solution, they use a thermo-compressor to reduce energy consumption. In the invention according to the application, a conventional pump is used, and the increase in dissolved oxygen is based on an extended residence time.
Wiidley P.S. u prijavi WO2013017935 UREĐAJ I POSTUPAK ZA ZASIĆENJE TEKUĆINE PLINOM opisuje postupak aeracije tekućina pomoću uređaja za prelazak ubrzanih tokova tekućina u atmosferi plina. Rješenje prema izumu koristi slobodni pad tekućih čestica pri značajnom nadtlaku te produženo vrijeme zadržavanja na određenoj brzini protoka. Widley P.S. in the application WO2013017935 DEVICE AND PROCEDURE FOR LIQUID SATURATION WITH GAS describes the process of aeration of liquids using a device for passing accelerated flows of liquids in a gas atmosphere. The solution according to the invention uses the free fall of liquid particles at significant overpressure and extended retention time at a certain flow rate.
Sulejmanov B.A.O u prijavi EA030820 POSTUPAK ZA PROIZVODNJU NANO-FLUIDA S NANO-MJEHURIĆIMA PLINA opisuje postupak proizvodnje plinom zasićene tekućine provođenjem postupka pod tlakom. U rješenju prema izumu, tekućina je zasićena mikro-nano mjehurićima kako bi se povećala njezina kontaktna površina s kisikom, te se zatim zadržava u protočnom spremniku tako da se kisik potpuno otopi prije ekspanzije tekućine. Sulejman's B.A.O in the application EA030820 PROCEDURE FOR THE PRODUCTION OF NANO-FLUID WITH NANO-BUBBLES OF GAS describes the process of producing a gas-saturated liquid by carrying out the process under pressure. In the solution according to the invention, the liquid is saturated with micro-nano bubbles to increase its contact surface with oxygen, and is then held in a flow tank so that the oxygen is completely dissolved before the liquid expands.
Lugovkin A. N. i Kuznjecov A. D. u prijavi RU2236898 UREĐAJ ZA ZASIĆENJE TEKUĆINE PLINOM opisuju uređaj za poboljšanje učinkovitosti zasićenja tekućine plinom na temelju povećanja učinkovitosti procesa raspršivanja tekućine u komori. U rješenju prema izumu, povećanje učinkovitosti temelji se na kombinaciji zasićenja mikro-nano mjehurićima i produljenju hipertenzivnog vremena zadržavanja uz održavanje odgovarajuće brzine protoka. Lugovkin A. N. and Kuznetsov A. D. in the application RU2236898 DEVICE FOR LIQUID SATURATION WITH GAS describe a device for improving the efficiency of liquid saturation with gas based on increasing the efficiency of the liquid dispersion process in the chamber. In the solution according to the invention, the increase in efficiency is based on the combination of saturation with micro-nano bubbles and prolonging the hypertensive retention time while maintaining the appropriate flow rate.
Ignatkin V.I. u prijavi RU2230700 POSTUPAK I UREĐAJ ZA ZASIĆENJE TEKUĆINE PLINOM I DOZIRANJE TEKUĆINE predstavlja postupak za poboljšanje učinkovitosti otapanja plina u tekućini pomoću uređaja koji koristi izmjenjivač topline za poboljšanje topljivosti. U rješenju prema izumu svi se procesi odvijaju pri konstantnoj temperaturi. Ignatkin V.I. in application RU2230700 METHOD AND DEVICE FOR LIQUID SATURATION WITH GAS AND LIQUID DOSING presents a method for improving the efficiency of gas dissolution in a liquid using a device that uses a heat exchanger to improve solubility. In the solution according to the invention, all processes take place at a constant temperature.
Agranonik R.V. i Piskolev G.A. u prijavi EP0700873 (A1) POSTUPAK OBRADE OTPADNE VODE, POSTUPAK ODVAJANJA SUSPENDIRANE TVARI I POSTUPAK ZASIĆENJA TEKUĆINE PLINOM opisuju postupak pročišćavanja otpadnih voda koji se temelji na zasićenju otpadne vode plinom pod tlakom, i zatim, prije otapanja plina u tekućini, šireći ga kako bi se stvorili mjehurići zraka tako da onečišćenja plutaju. U rješenju prema izumu, cilj je u cijelosti i potpuno otopiti plin u tekućini, što će osigurati odsutnost plinskih mjehurića nakon širenja tekućine pri atmosferski tlak. Agronomist R.V. and Piskolev G.A. in application EP0700873 (A1) WASTEWATER TREATMENT PROCEDURE, SUSPENDED MATTER SEPARATION PROCEDURE AND LIQUID SATURATION PROCEDURE WITH GAS describe a wastewater treatment process based on saturating wastewater with gas under pressure, and then, before dissolving the gas in the liquid, expanding it to created air bubbles so that the contaminants float. In the solution according to the invention, the goal is to fully and completely dissolve the gas in the liquid, which will ensure the absence of gas bubbles after the expansion of the liquid at atmospheric pressure.
U stanju tehnike, komore s aktivnim muljem aeriraju se pomoću membranskih disk ili cijevnih difuzora, te pomoću površinskih aeratora. Aeracija pomoću difuzora postavljenih na dnu komore sastoji se od uvođenja atmosferskog zraka u njih putem puhala. U ovom procesu, na površini membrana formiraju se mjehurići zraka promjera 1-2mm, koji se dižu prema površini otpadne vode. Postupak aeracije pomoću površinskih aeratora temelji se na kretanju lopatica aeratora koje usisavaju otpadnu vodu s dna spremnika prema aeratoru u u čije se tijelo otpadna voda izbacuje kada se smjer otpadne vode naglo promijeni iz aksijalnog u radijalni. Tijekom ovog postupka, otpadna voda intenzivno se miješa koristeći atmosferski zrak za aeraciju. Koeficijent prijenosa kisika kod membranskih difuzora oscilira na razini od 8% po metru dubine muljne komore, te ovisi o proizvođaču, a ukupnu vrijednost koja prelazi oko 70% za cijelu komoru, nije moguće postići. To prelazi u standardnu učinkovitost areacije u rasponu od 3-8 kgO2/kWh. Za površinske aeratore, standardna učinkovitost areacije ne prelazi 3 kgO2/kWh. Ovdje predstavljeni postupci areacije, zbog svoje niske energetske učinkovitosti, doprinose stvaranju od oko 60% operativnih troškova cjelokupnog postrojenja za pročišćavanje. In the state of the art, chambers with activated sludge are aerated by means of membrane discs or tube diffusers, and by means of surface aerators. Aeration using diffusers placed at the bottom of the chamber consists of introducing atmospheric air into them by means of a blower. In this process, air bubbles with a diameter of 1-2 mm are formed on the surface of the membranes, which rise to the surface of the wastewater. The aeration process using surface aerators is based on the movement of the aerator blades that suck waste water from the bottom of the tank towards the aerator into whose body the waste water is ejected when the direction of the waste water suddenly changes from axial to radial. During this process, the wastewater is intensively mixed using atmospheric air for aeration. The oxygen transmission coefficient of membrane diffusers oscillates at the level of 8% per meter of mud chamber depth, and depends on the manufacturer, and a total value exceeding about 70% for the entire chamber cannot be achieved. This translates into a standard areation efficiency in the range of 3-8 kgO2/kWh. For surface aerators, the standard aeration efficiency does not exceed 3 kgO2/kWh. The areation procedures presented here, due to their low energy efficiency, contribute to the creation of about 60% of the operating costs of the entire treatment plant.
Suprotno poznatom stanju tehnike, u rješenju prema izumu, zbog uvođenja komprimiranog kisika u komoru za otapanje plina, gdje se nalazi vodena magla pod tlakom prethodno zasićena mikro-nano mjehurićima, koja zahvaljujući korištenim raspršivačima ima razvijenu površinu, u aeriranoj vodi moguće je postići visoku koncentraciju kisika >30 g/m3. Time se može dobiti koeficijent prijenosa kisika >99%, što će posljedično omogućiti postizanje standardne učinkovitosti aeracije od 10-12 kgO2/kWh. U usporedbi s visokoučinkovitim difuzorima zraka ovo će dovesti do, u prosjeku, 15-strukog smanjenja volumena medija koji se ubrizgava u komore s aktivnim muljem, značajno povećavajući koeficijent prijenosa kisika ovisno o površini izmjene, tlaku i temperaturi uz održavanje iste koncentracije kisika u komori, što će izravno utjecati na primjenu puno manjih puhala. Stvaranje nanomjehurića također je od ključne važnosti pri provođenju flotacije, pri čemu svako smanjenje veličine flotacijskih čestica rezultira povećanjem učinkovitosti procesa, a time i smanjenjem volumena uređaja za flotaciju. Contrary to the known state of the art, in the solution according to the invention, due to the introduction of compressed oxygen into the gas dissolution chamber, where there is water mist under pressure previously saturated with micro-nano bubbles, which has a developed surface thanks to the sprayers used, it is possible to achieve a high concentration in the aerated water oxygen >30 g/m3. Thus, an oxygen transfer coefficient of >99% can be obtained, which will consequently enable the achievement of a standard aeration efficiency of 10-12 kgO2/kWh. Compared to high-efficiency air diffusers, this will lead to, on average, a 15-fold reduction in the volume of media injected into activated sludge chambers, significantly increasing the oxygen transfer coefficient depending on the exchange surface, pressure and temperature while maintaining the same oxygen concentration in the chamber, which will directly affect the application of much smaller blowers. The formation of nanobubbles is also of critical importance in conducting flotation, where any reduction in the size of the flotation particles results in an increase in the efficiency of the process and thus in a reduction in the volume of the flotation device.
Svrha izuma je dobiti, na energetski učinkovit način, vodu s visokom (>30 g/m3) koncentracijom kisika za potrebe procesa pročišćavanja. The purpose of the invention is to obtain, in an energy-efficient manner, water with a high (>30 g/m3) oxygen concentration for the purposes of the purification process.
Suština izuma je sustav za zasićenje tekućine plinom koji se sastoji od izvora tekućine, izvora plina, komore za otapanje plina te spremnika za prihvat tekućine, pri čemu je izvor tekućine povezan putem cjevovoda koji je opremljen pumpom sa kavitacijskim sustavom, koji je povezan putem cjevovoda s komorom za otapanje plina, pri čemu je kraj cjevovoda skup mlaznica za raspršivanje smještenih u komori za otapanje plina na koju je putem plinovoda s mlaznicom povezan izvor plina. Komora za otapanje plina je putem cjevovoda s regulacijskim ventilom povezana na komoru za zadržavanje s naizmjenično raspoređenim, djelomično otvorenim pregradama, koja je putem cjevovoda s ventilom, spojena na spremnik za prihvat zasićene tekućine. The essence of the invention is a system for saturating a liquid with gas, which consists of a liquid source, a gas source, a gas dissolution chamber and a container for receiving liquid, wherein the liquid source is connected via a pipeline equipped with a pump to the cavitation system, which is connected via a pipeline with gas dissolution chamber, where the end of the pipeline is a set of atomizing nozzles located in the gas dissolution chamber to which the gas source is connected via a gas line to the nozzle. The gas dissolution chamber is connected via a pipeline with a regulating valve to a holding chamber with alternately arranged, partially open partitions, which is connected via a pipeline with a valve to a container for receiving saturated liquid.
Poželjno je da je skup mlaznica za raspršivanje opremljen statičkim umetcima, koji su po mogućnosti izrađeni od nehrđajućeg materijala, čiji su rubovi savijeni prema unutra pod kutem od 20 do 40 stupnjeva u odnosu na plohu umetka. Preferably, the set of spray nozzles is equipped with static inserts, which are preferably made of stainless material, the edges of which are bent inward at an angle of 20 to 40 degrees with respect to the surface of the insert.
Suština izuma je postupak zasićenja tekućina plinom pomoću gore opisanog sustava, gdje se tekućina iz izvora tekućine pumpa pomoću pumpe, podižući tlak tekućine na najmanje 4 bara apsolutnog tlaka, kroz cjevovod, u kavitacijski sustav, pri čemu je tekućina zasićena plinom u obliku mikro-nano mjehurića, zatim se kroz cjevovod pumpa u skup mlaznica za raspršivanje pomoću kojih se tekućina raspršuje u komori za otapanje plina, pri čemu je tekućina dodatno zasićena plinom koji dolazi iz izvora plina kroz plinovod i mlaznicu, gdje dovedeni plin ima tlak jednak tlaku tekućine, a zatim se kroz cjevovod tekućina pumpa u komoru za zadržavanje kroz koju teče u vremenu ne kraćem od 13 minuta i linearnom brzinom koja ne prelazi 0,5 m/s potrebnom za otapanje plina, nakon čega se kroz cjevovod tekućina pumpa u spremnik za prihvat tekućine. The essence of the invention is the process of saturating liquids with gas using the system described above, where the liquid from the liquid source is pumped using a pump, raising the liquid pressure to at least 4 bar absolute pressure, through the pipeline, into the cavitation system, whereby the liquid is saturated with gas in the form of micro-nano bubbles, then it is pumped through the pipeline to a set of atomizing nozzles by means of which the liquid is dispersed in the gas dissolution chamber, the liquid being additionally saturated with gas coming from the gas source through the gas pipeline and the nozzle, where the supplied gas has a pressure equal to the pressure of the liquid, and then, through the pipeline, the liquid is pumped into the holding chamber through which it flows in a time not shorter than 13 minutes and at a linear speed not exceeding 0.5 m/s necessary to dissolve the gas, after which the liquid is pumped through the pipeline into the tank for receiving the liquid.
Prema Henryjevom zakonu, broj molova određenog plina koji se može otopiti u određenoj tekućini ovisi o tlaku i konstanti koja karakterizira dati plin i tekućinu, što ovisi o temperaturi na kojoj je tekućina zasićena. Stoga, nedvojbeno je jasno da će svako povećanje tlaka u procesu zasićenja tekućine dovesti do povećanja topljivosti plina. Odlučeno je da se proces zasićenja provodi pod tlakom od 4 bar(a), jer je to ekonomski opravdano - radi se o kompromisu između utroška energije i dobivenih koncentracija otopljenih plinova. Primjena najviše razine atomizacije tekućine korisna je zbog povećanja kontaktne površine plinskih i tekućih faza, što rezultira povećanjem učinkovitosti procesa. According to Henry's law, the number of moles of a certain gas that can be dissolved in a certain liquid depends on the pressure and the constant that characterizes the given gas and liquid, which depends on the temperature at which the liquid is saturated. Therefore, it is undoubtedly clear that any increase in pressure in the liquid saturation process will lead to an increase in gas solubility. It was decided that the saturation process is carried out under a pressure of 4 bar(s), because it is economically justified - it is a compromise between energy consumption and the obtained concentrations of dissolved gases. The application of the highest level of liquid atomization is beneficial due to the increase in the contact surface of the gas and liquid phases, which results in an increase in the efficiency of the process.
Korištenjem komore za zadržavanje u predstavljenom rješenju s vremenom zadržavanja od najmanje 10 minuta i dobivanjem nastale kontaktne površine plinske i tekuće faze osigurava se adekvatno miješanje i pristup kisika cjelokupnom volumenu aerirane tekućine. Za tlak mješavine od 4 bara apsolutnog tlaka i brzine protoka u rasponu od 0,4 - 0,6 m/s, minimalno vrijeme zadržavanja iznosi 10 minuta - tako da oblik komore za zadržavanje treba predvidjeti volumen dovoljan za pohranu mješavine, u istoj količini koja protiče kroz sustav u vremenu od 600 sekundi. Apsolutni tlak 4 bara je minimalna vrijednost, međutim, moguće je provesti proces oksigenacije i na višem tlaku te za svaki bar povećanja apsolutnog tlaka, potrebno vrijeme zadržavanja smanjuje se za 15%, no procesni tlak ne smije prekoračiti 6 bara apsolutnog tlaka zbog ograničenja koja se odnose na uređaje za odvajanje kisika iz zraka čiji je maksimalni tlak nakon odvajanja 6 bara apsolutnog tlaka. Using a retention chamber in the presented solution with a retention time of at least 10 minutes and obtaining the resulting contact surface of the gas and liquid phases ensures adequate mixing and access of oxygen to the entire volume of aerated liquid. For a mixture pressure of 4 bar absolute pressure and a flow rate in the range of 0.4 - 0.6 m/s, the minimum retention time is 10 minutes - so the shape of the retention chamber should provide a volume sufficient to store the mixture, in the same amount that flows through the system in 600 seconds. The absolute pressure of 4 bar is the minimum value, however, it is possible to carry out the oxygenation process at a higher pressure and for every bar of absolute pressure increase, the required retention time is reduced by 15%, but the process pressure must not exceed 6 bar of absolute pressure due to the restrictions refer to devices for separating oxygen from air whose maximum pressure after separation is 6 bar absolute pressure.
Izum je prikazan crtežima, na kojima slika1. prikazuje poželjnu varijantu sustava za zasićenje tekućine plinom, a slika 2. predstavlja poželjnu varijantu skupa mlaznice. The invention is shown in drawings, in which figure 1. shows a preferred variant of the system for saturating the liquid with gas, and Fig. 2 represents a preferred variant of the nozzle assembly.
Izvedbeni primjer 1 Implementation example 1
Sustav se sastoji od komore za otapanje plina (1) izrađene od nehrđajućeg čelika 316L, vanjskog promjera 500 mm, visine 2000 mm te debljine stijenke 3 mm, spremnika za sakupljanje otpadne vode (3), centrifugalne pumpe (8) prilagođene za pumpanje tekućina s najvećim promjerom čvrstih čestica od 1 mm i tlakom tekućine do 4 bar(a), cjevovoda (11) od polietilena, skupa mlaznica za raspršivanje (7) s promjerom kapljica atomizirane tekućine ne većim od 5 mikrona, izrađenih od PVDF plastike i opremljenih statičnim umetcima od nehrđajućeg čelika 316L debljine 1 mm. Mlaznice (7) povezane su polietilenskim cjevovodom (16) sa kavitacijskim sustavom (14) čiji je injektor od nehrđajućeg čelika 316L, koji usisava atmosferski zrak u količini od 3 Nm3/h, formirajući mjehuriće zraka promjera 100 nanometara. Komora za otapanje plina (1) spojena je na izvor plina (5) u obliku cilindra kisika čistoće iznad 95%, putem plinovoda (10) izrađenog od nehrđajućeg čelika 316L i mlaznicu (6) izrađenu od nehrđajućeg čelika 316L. Komora za otapanje plina (1) kroz cjevovod (12) od nehrđajućeg čelika 316L promjera 80 mm i ventil za kontrolu tipa nož (9) od nehrđajućeg čelika 316L, spojena je na komoru za zadržavanje (2) izrađenu od čelika 316L, promjera 2200 mm, visine 1200 mm te debljine stijenke 3 mm, u kojoj su postavljene polukružne (17) pregrade; koja je preko cjevovoda (13) od nehrđajućeg čelika 316L promjera 80mm spojena na sabirno mjesto kisikom zasićene otpadne vode (4). The system consists of a gas dissolution chamber (1) made of stainless steel 316L, external diameter 500 mm, height 2000 mm and wall thickness 3 mm, waste water collection tank (3), centrifugal pump (8) adapted for pumping liquids with with a maximum diameter of solid particles of 1 mm and a liquid pressure of up to 4 bar(s), a pipeline (11) made of polyethylene, an expensive spray nozzle (7) with a droplet diameter of atomized liquid not exceeding 5 microns, made of PVDF plastic and equipped with static inserts made of stainless steel 316L with a thickness of 1 mm. The nozzles (7) are connected by a polyethylene pipeline (16) to the cavitation system (14) whose injector is made of stainless steel 316L, which sucks atmospheric air in the amount of 3 Nm3/h, forming air bubbles with a diameter of 100 nanometers. The gas dissolution chamber (1) is connected to a gas source (5) in the form of an oxygen cylinder of purity above 95%, through a gas line (10) made of stainless steel 316L and a nozzle (6) made of stainless steel 316L. The gas dissolution chamber (1) is connected to the retention chamber (2) made of 316L steel, 2200 mm diameter, through a pipe (12) of 80 mm diameter 316L stainless steel and a knife type control valve (9) of 316L stainless steel. , height 1200 mm and wall thickness 3 mm, in which semicircular (17) partitions are placed; which is connected via a pipeline (13) made of stainless steel 316L with a diameter of 80 mm to the collection point of oxygen-saturated waste water (4).
Izvedbeni primjer 2 Implementation example 2
Postupak zasićenja tekućina plinom, pri čemu se tekućina, iz izvora tekućine (3) koji je međuspremnik za komunalne otpadne vode sa sadržajem suspenzije od 240mg/l i BZT5 na razini 250mg/l u količini od 20m3/h na temperaturi od oko 25 stupnjeva Celzijusa, pumpa pomoću centrifugalne cirkulacijske pumpe, prilagođene za pumpanje tekućina koje se svrstavaju u komunalne otpadne vode (8), podižući tlak tekućine na najmanje 4 bar(a), kroz cjevovod (11) od polietilena, u kavitacijski sustav (14) gdje je tekućina zasićena plinom (atmosferskim zrakom) s promjerom mjehurića između 50 i 100 mikrona, te se zatim kroz cjevovod (16) izrađenog od polietilena pumpa do skupa mlaznica za raspršivanje (7) do promjera kapljica ne većeg od 5 mikrona, izrađenog od PVDF plastike, opremljenog statičkim umetcima od nehrđajućeg čelika 316L debljine 1mm, čiji je zadaća razbijanje nakupljenih suspendiranih krutih čestica u manje frakcije, kako bi se zaštitile mlaznice od začepljenja. To se postiže korištenjem turbulentnog protoka i pratećih sila pomoću kojih se tekućina raspršuje u komori za otapanje plina (1) izrađenoj od nehrđajućeg čelika 316L debljine 3 mm, promjera 2200 mm i visine 2000 mm, gdje je tekućina dodatno zasićena plinom (kisik s koncentracijom od 95%) koji potječe iz izvora plina (5) u obliku generatora kisika (PSA - Pressure Swing Adsorption Type) koji se dovodi kroz plinovod (10) od nehrđajućeg čelika 316L i mlaznicu (6), pri čemu dovedeni plin ima tlak koji je jednak tlaku tekućine. The process of saturating liquids with gas, whereby the liquid, from the liquid source (3) which is a buffer for municipal waste water with a suspension content of 240mg/l and BZT5 at the level of 250mg/l in an amount of 20m3/h at a temperature of about 25 degrees Celsius, is pumped by means of a centrifugal circulation pump, adapted for pumping liquids classified as municipal wastewater (8), raising the pressure of the liquid to at least 4 bar(s), through a pipeline (11) made of polyethylene, into a cavitation system (14) where the liquid is saturated with gas (atmospheric air) with a bubble diameter between 50 and 100 microns, and is then pumped through a pipeline (16) made of polyethylene to a set of spray nozzles (7) to a droplet diameter of no more than 5 microns, made of PVDF plastic, equipped with static inserts made of stainless steel 316L with a thickness of 1 mm, whose task is to break the accumulated suspended solid particles into smaller fractions, in order to protect the nozzles from clogging. This is achieved by using turbulent flow and accompanying forces by which the liquid is dispersed in a gas dissolution chamber (1) made of 3 mm thick 316L stainless steel, 2200 mm in diameter and 2000 mm high, where the liquid is additionally saturated with gas (oxygen with a concentration of 95%) originating from a gas source (5) in the form of an oxygen generator (PSA - Pressure Swing Adsorption Type) which is supplied through a gas pipe (10) made of stainless steel 316L and a nozzle (6), whereby the supplied gas has a pressure equal to liquid pressure.
Kao rezultat atomizacije tekućine u kapljice promjera 5 mikrona i njihovog ubrizgavanja u volumen plina pod tlakom u komori za otapanje plina (1), površina izmjene tekućina-plin širi se na vrijednost od 1200 m2, što je 1000% više nego u konvencionalnom rješenju, dok održavani tlak od 4 bar(a) povećava koeficijent otapanja plina u tekućini, i 5 puta je veći od uočenog koeficijenta u slučaju površinske aeracije, što omogućuje vrlo dinamičan i učinkovit proces zasićenja plinom. Zatim se putem cjevovoda (12) od nehrđajućeg čelika 316L tekućina pumpa u komoru za zadržavanje (2), izrađenu od čelika 316L, promjera 2200mm, visine 1200mm i debljine stijenke 3mm, u kojoj su postavljene polukružne pregrade (17), naizmjenično zavarene kako bi se postiglo predviđeno vrijeme zadržavanja u komori i spriječilo pogrešno vrijeme zadržavanja, do kojeg bi došlo kada bi komora za zadržavanje bila u potpunosti prolazna (bez pregrada). Pregrade (17) izrađene su od nehrđajućeg čelika 316L, debljine 5 mm, i osiguravaju vrijeme zadržavanja u komori za zadržavanje (2) ne kraće od 13 minuta i linearnu brzinu ne veću od 0,5 m/s potrebno za otapanje plina. Zatim se kroz cjevovod (13) od nehrđajućeg čelika 316L, tekućina pumpa u spremnik za prihvat tekućine (4), što je sljedeća faza sustava za biološku obradu otpadnih voda, tj. flotacija. Izvedbenim rješenjem ovog izuma, postignuta je njegova svrha. Nakon primjene gore opisanog postupka, dobivena je tekućina s vrlo visokom koncentracijom kisika koja premašuje 30 g/m3. As a result of the atomization of the liquid into droplets with a diameter of 5 microns and their injection into the gas volume under pressure in the gas dissolution chamber (1), the liquid-gas exchange surface expands to a value of 1200 m2, which is 1000% more than in the conventional solution, while the maintained pressure of 4 bar(a) increases the gas dissolution coefficient in the liquid, and is 5 times higher than the observed coefficient in the case of surface aeration, which enables a very dynamic and efficient gas saturation process. Then, through a pipeline (12) made of 316L stainless steel, the liquid is pumped into a retention chamber (2), made of 316L steel, with a diameter of 2200mm, a height of 1200mm and a wall thickness of 3mm, in which semicircular baffles (17) are placed, alternately welded to the intended retention time in the chamber was achieved and prevented the incorrect retention time that would have occurred if the retention chamber was completely pass-through (no baffles). The baffles (17) are made of stainless steel 316L, 5 mm thick, and ensure a retention time in the retention chamber (2) of no less than 13 minutes and a linear velocity of no more than 0.5 m/s required for gas dissolution. Then, through the pipeline (13) made of stainless steel 316L, the liquid is pumped into the tank for receiving the liquid (4), which is the next stage of the system for biological treatment of waste water, i.e. flotation. With the implementation of this invention, its purpose has been achieved. After applying the procedure described above, a liquid with a very high oxygen concentration exceeding 30 g/m3 was obtained.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL430663A PL243000B1 (en) | 2019-07-19 | 2019-07-19 | A system for saturating a liquid with gas and a method for saturating a liquid with gas using this system |
PCT/PL2020/000063 WO2021015633A1 (en) | 2019-07-19 | 2020-07-17 | A system for saturating liquids with gas and a method for saturating liquids with gas using this system |
Publications (2)
Publication Number | Publication Date |
---|---|
HRP20220213A1 HRP20220213A1 (en) | 2022-08-19 |
HRP20220213B1 true HRP20220213B1 (en) | 2024-03-15 |
Family
ID=74193628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HRP20220213AA HRP20220213B1 (en) | 2019-07-19 | 2020-07-17 | A system for saturating liquids with gas and a method for saturating liquids with gas using this system |
Country Status (5)
Country | Link |
---|---|
ES (1) | ES2933485B2 (en) |
HR (1) | HRP20220213B1 (en) |
PL (1) | PL243000B1 (en) |
PT (1) | PT2021015633B (en) |
WO (1) | WO2021015633A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240416303A1 (en) * | 2021-11-08 | 2024-12-19 | LignoSol IP Limited | Fluid treatment system and related methods |
PL445744A1 (en) * | 2023-08-02 | 2025-02-03 | Głuch Mirosław | System for dissolving oxygen in water |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3653182A (en) * | 1970-01-21 | 1972-04-04 | Lewis Hall Sr M | Water conditioning method and apparatus |
WO1999055450A1 (en) * | 1998-04-28 | 1999-11-04 | Life International Products, Inc. | Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof |
US20060027100A1 (en) * | 2003-06-13 | 2006-02-09 | Five Star Technologies, Inc. | Device and method for generating micro bubbles in a liquid using hydrodynamic cavitation |
JP2007021393A (en) * | 2005-07-19 | 2007-02-01 | Hitachi Ltd | Water treatment equipment using fine bubbles |
DE102009032567A1 (en) * | 2009-07-11 | 2011-01-13 | Awas Ag | Saturator for introducing water-soluble gases into a water to be treated, comprises a pressure container, which has lower liquid chamber and upper gas chamber, where the gas chamber is provided with compressed gas inlet and water inlet |
JP2018094533A (en) * | 2016-12-16 | 2018-06-21 | 三菱重工機械システム株式会社 | Gas-liquid mixer and gas-liquid mixing method |
-
2019
- 2019-07-19 PL PL430663A patent/PL243000B1/en unknown
-
2020
- 2020-07-17 WO PCT/PL2020/000063 patent/WO2021015633A1/en active Application Filing
- 2020-07-17 ES ES202290005A patent/ES2933485B2/en active Active
- 2020-07-17 HR HRP20220213AA patent/HRP20220213B1/en active IP Right Grant
- 2020-07-17 PT PT2020000063A patent/PT2021015633B/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3653182A (en) * | 1970-01-21 | 1972-04-04 | Lewis Hall Sr M | Water conditioning method and apparatus |
WO1999055450A1 (en) * | 1998-04-28 | 1999-11-04 | Life International Products, Inc. | Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof |
US20060027100A1 (en) * | 2003-06-13 | 2006-02-09 | Five Star Technologies, Inc. | Device and method for generating micro bubbles in a liquid using hydrodynamic cavitation |
JP2007021393A (en) * | 2005-07-19 | 2007-02-01 | Hitachi Ltd | Water treatment equipment using fine bubbles |
DE102009032567A1 (en) * | 2009-07-11 | 2011-01-13 | Awas Ag | Saturator for introducing water-soluble gases into a water to be treated, comprises a pressure container, which has lower liquid chamber and upper gas chamber, where the gas chamber is provided with compressed gas inlet and water inlet |
JP2018094533A (en) * | 2016-12-16 | 2018-06-21 | 三菱重工機械システム株式会社 | Gas-liquid mixer and gas-liquid mixing method |
Also Published As
Publication number | Publication date |
---|---|
HRP20220213A1 (en) | 2022-08-19 |
WO2021015633A1 (en) | 2021-01-28 |
ES2933485A1 (en) | 2023-02-09 |
PL430663A1 (en) | 2021-01-25 |
PT2021015633B (en) | 2023-05-02 |
ES2933485B2 (en) | 2025-02-18 |
PL243000B1 (en) | 2023-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102442879B1 (en) | Composition containing nano-bubbles in a liquid carrier | |
KR100843970B1 (en) | Micro Bubble Generator | |
WO2010107077A1 (en) | Microbubble generator, activated sludge aeration system, and ballast water sterilizing system | |
US20160193573A1 (en) | Method and system for enhancing mass transfer in aeration/oxygenation systems | |
JP2003205228A (en) | Turning type fine bubbles production apparatus | |
US4117048A (en) | Apparatus for introducing gas into a liquid | |
JP2010155243A (en) | Swirling type fine-bubble generating system | |
HRP20220213B1 (en) | A system for saturating liquids with gas and a method for saturating liquids with gas using this system | |
US20150008191A1 (en) | Low-turbulent aerator and aeration method | |
EP0389230A2 (en) | Dissolution of gas | |
JP2010535627A (en) | Method and apparatus for aeration | |
EP1670574B1 (en) | Method and apparatus for mixing of two fluids | |
US7661660B2 (en) | Method and apparatus for aeration of a fluid | |
JPH10225696A (en) | Pressurized ozone treatment equipment | |
WO2017124128A1 (en) | Jet aeration and mixing nozzle | |
JP2003181259A (en) | Swirling type fine bubble formation method and apparatus | |
JP2008509803A (en) | Mixing equipment | |
TR2022000673T2 (en) | A SYSTEM TO SATURATE LIQUIDS WITH GAS AND A METHOD TO SATURATE LIQUIDS WITH GAS USING THIS SYSTEM | |
US20160326018A1 (en) | Process | |
SU1699616A1 (en) | Method for aeration of liquid | |
CA2733861C (en) | Low-turbulent aerator and aeration method | |
US11642634B2 (en) | Gas saturation of liquids with application to dissolved gas flotation and supplying dissolved gases to downstream processes and water treatment | |
JP2018075512A (en) | Sewage treatment system | |
RU2279408C2 (en) | Apparatus for biological purification of sewage water | |
RU2156746C1 (en) | Jet-airlift aerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
ODRP | Renewal fee for the maintenance of a patent |
Payment date: 20220222 Year of fee payment: 3 |
|
AIPI | Request for the grant of a patent on the basis of a substantive examination of a patent application | ||
B1PR | Patent granted |